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Abstract

Federated Learning (FL) has recently emerged as a pos-
sible way to tackle the domain shift in real-world Semantic
Segmentation (SS) without compromising the private na-
ture of the collected data. However, most of the existing
works on FL unrealistically assume labeled data in the re-
mote clients. Here we propose a novel task (FFREEDA) in
which the clients’ data is unlabeled and the server accesses
a source labeled dataset for pre-training only. To solve
FFREEDA, we propose LADD, which leverages the knowl-
edge of the pre-trained model by employing self-supervision
with ad-hoc regularization techniques for local training and
introducing a novel federated clustered aggregation scheme
based on the clients’ style. Our experiments show that
our algorithm is able to efficiently tackle the new task out-
performing existing approaches. The code is available at
https://github.com/Erosinho13/LADD.

1. Introduction
Federated Learning (FL) [49, 38, 1, 31, 52, 7, 36, 10] is

a relatively new field of research that is attracting increasing
interest. In FL, a learning task is solved through a collabo-
ration among several edge devices, i.e., clients, coordinated
by a central server [49]. This learning paradigm is useful
when data cannot be freely shared due to regulations, laws,
and ethical principles: FL allows training a global model
without leaking the users’ data, preserving their privacy.

As an example, FL also constitutes a practical solution
to tackle real-world vision tasks with data collected from
multiple users in different scenarios. For instance, in the
case of Semantic Segmentation (SS), it can be employed by
self-driving cars for obstacle detection, and avoidance [19].
Most existing FL works assume the availability of labeled
data on the client side. This assumption is clearly unrealistic
due to the high cost and amount of manual work needed for
dense pixel-level annotations [72].

*: Equal contribution. †: Equal supervision.

Unlabeled Target Data

Cluster Style 1 

Unlabeled Target Data 

Cluster Style 2

Unlabeled Target Data
Cluster Style N

Central

Server {

{

Figure 1. FFREEDA overview: clients having similar appearance
are clustered together, while local learning is carried out exploiting
both global and cluster-specific parameters. The clients’ data is
unlabeled and the source labeled dataset is kept on the server.

In this work, we focus on autonomous driving appli-
cations introducing a novel, more realistic setting for SS:
Federated source-Free Domain Adaptation (FFREEDA).
In FFREEDA, the server can pre-train the model on la-
beled source data. However, further accessing the source
data is forbidden as in the Source-Free Domain Adaptation
(SFDA) setting [41]. Clients access only their unlabeled
target dataset, which they cannot share with other clients or
the server. In particular, we consider real-world scenarios
with several clients, each with a limited amount of images.

After the pre-training phase, the training setting is fully
unsupervised. However, the objective of FFREEDA is not
only to solve a multi-target domain adaptation problem in
SS, rather to tackle specific issues arising in FL, such as sta-
tistical and system heterogeneity [38, 51], communication
bottleneck [24], and clients’ privacy preservation [37, 6].
To the best of our knowledge, no previous works addressed
this problem and their related issues at the same time.

To address the FFREEDA problem, we propose LADD,
a novel federated algorithm that assumes the presence of
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multiple distributions hidden among the clients. To exem-
plify, it is reasonable to assume that self-driving cars within
the same city collect similar images. Indeed, the geographi-
cal proximity of two self-driving cars and different weather
conditions could make the local datasets more or less sim-
ilar. Therefore, LADD partitions the clients into clusters
based on the styles of the images belonging to each client,
trying to match them with their actual latent distribution.
To minimize parameters duplication and improve commu-
nication efficiency, LADD splits the model’s parameters in
shared, globally aggregated across all clients, and cluster-
specific which are aggregated only across clients within the
same cluster, as visible in Fig. 1. Moreover, LADD takes
full advantage of the source dataset during the pre-training
stage with style transfer data augmentation [71], randomly
loading the target styles in the source images to mimic the
target distributions. Finally, LADD also leverages self-
training through an ad-hoc pseudo-labeling strategy and sta-
bilizes training with regularization techniques.

As FFREEDA is a novel setting, we adapted several
baselines from other settings. LADD outperforms all base-
lines, showing the importance of designing specific algo-
rithms for the proposed setting. To summarize:

• We introduce FFREEDA, a novel SS task for FL
where we dropped the unrealistic assumption of dense
labeled data at client side.

• We propose two realistic benchmarks for it, based on
the Mapillary Vistas [53] and CrossCity [13] datasets.

• We propose LADD, a new federated algorithm tack-
ling FFREEDA based on style-transfer and clustering.

• LADD shows excellent performance on all bench-
marks with a source dataset (GTA5 [56]) and three dif-
ferent targets (Cityscapes [15], CrossCity, Mapillary),
with diversified splits of the data across the clients.

2. Related Work
Semantic Segmentation (SS), i.e., classifying each

pixel of an image with the corresponding semantic class,
is an important challenge in many use cases such as self-
driving cars [20]. State-of-the-art SS models rely on an
encoder-decoder architectures, based on CNNs [44, 11, 12,
74, 59, 25] or transformers [17, 43, 14, 68] to generate dense
predictions. These approaches typically assume a simpli-
fied, centralized setting in which the whole training dataset
is available on a central server. However, this is not always
possible due to privacy and efficiency constraints, and dis-
tributed training solutions must be considered.

Domain Adaptation (DA). Being a complex structured
prediction task, SS generally requires expensive dense an-
notations. Recently, an increasing number of methods
[63, 16] tackle this by training on synthetic data generated
in virtual environments [56, 57, 2, 62]. Nonetheless, mod-
els trained on these data fail to generalize to the real world

because of the inherent domain shift between the simulated
and real distributions. DA aims at reducing the performance
gap between a source domain on which a model has been
trained and a target one. When the target data is unlabeled,
this is called Unsupervised DA (UDA). Initially, DA meth-
ods attempted to close the gap by measuring domain diver-
gence [45, 66, 58]. Another popular direction is adversar-
ial training [65, 48, 50], which includes the segmentation
network and a domain discriminator competing in a min-
imax game. Other applications attempt to reduce domain
shift by employing image-to-image translation algorithms
to generate images modified with the style of the other do-
main [27, 55, 64]. Since this is a time-consuming tech-
nique, some non-trainable style translation algorithms, such
as FDA [71], have been introduced. Modern approaches
[40, 76, 4, 28] use self-learning techniques to create pseudo-
labels from the target data, allowing the model to be fine-
tuned even in a federated scenario in which each client ob-
serves its unlabeled domain.

Main Challenges in FL. Clients in FL have different
hardware capabilities (system heterogeneity) and their data
may belong to different distributions (statistical heterogene-
ity). Additionally, clients-server communication should be
efficient [24] and privacy must be preserved by preventing
the server to access clients’ local data [37, 6].

Vision Tasks in FL. Thanks to its many applications in
the real world and its potential in managing sensitive data,
FL [49] has recently captured the interest of the research
community [36, 30, 73]. However, most research papers
focus on the theoretical aspects of FL [38, 31, 1, 47], ne-
glecting its application to more complex vision tasks, e.g.,
SS, and realistic scenarios, e.g., heterogeneous domain dis-
tribution and unlabeled data observed at clients. A few ex-
ceptions are [52, 19, 8], which study FL SS and FL in the
context of autonomous driving, and [61, 39, 5, 70, 69] that
leverage medical images. Their main limitation is the costly
assumption of having labeled data available.

In [47], the authors deal with the novel unsupervised
FL setting from strong theoretical assumptions whilst only
focusing on classification tasks for simple datasets such
as MNIST [34], and CIFAR10 [32]. Focusing on SS,
and proposing a more realistic approach, [72] introduces
FMTDA (Federated Multi-target Domain Adaptation) to
handle a few clients with unlabeled target local datasets
belonging to different distributions while maintaining an
open-access labeled source dataset on the server-side. In-
spired by this work, we investigate the more complex setup
of SFDA [42], in which the source dataset is only visible on
the server during the pre-training phase and is not available
to the clients. Moreover, we study a more realistic scenario
where many more clients collaborate in the training but ac-
cess much less data. As in FMTDA, we assume that clients’
data may differ in terms of visual domains, e.g., the scenes



collected by the autonomous vehicles in different geograph-
ical locations may have different weather or light conditions
or may not show some semantic classes.

The study of DA in FL (both UDA and SFDA) is still
in its early stages: [75] leverages UDA techniques for face
recognition, [54] tackles domain shift via adversarial ap-
proaches, while [72] sees each client as a distinct target do-
main. To the best of our knowledge, this is the first work
adapting SFDA to FL. Additional insights on vision tasks
in FL other than SS and DA are reported in [3].

Clustered FL (CFL). In a real-world context, sub-
sets of users typically share some common characteristics:
for example, users in nearby geographic locations experi-
ence cities with similar architecture or weather conditions.
Therefore, clients can be partitioned into clusters, each rep-
resenting a specific set of conditions that we match to a cor-
responding style [33]. This approach falls under the liter-
ature of CFL [60], in which clustering is usually exploited
for building personalized models that work well in a spe-
cific subdomain of interest [18, 23, 9]. Differently from
these methods, we cluster clients based on the styles ex-
tracted from the unlabeled samples seen by each client.

3. Problem Setting
In this section, we formalize the proposed Federated

Source Free Domain Adaptation (FFREEDA) setting.
Given a central server and the set of all clients K with

|K| = K, the input space X , the output space Y and
Np pixels in each image, the datasets are distinguished
as follows: the source dataset DS is kept on the server-
side and is made of pairs of image and segmentation la-
bel (xS , yS) ∼ PS(x,y), where x and y are the random
variables following the distribution PS , associated with
xS ∈ X and yS ∈ YNp respectively; the K target train-
ing datasets DT

k = {xT
k,i ∈ X ∀i ∈ |DT

k |} are local to each
client k ∈ [K] := {0, 1, ...,K − 1} and xT

k,i ∼ PT
k (x).

By definition of the SFDA scenario, the source and test
datasets share the same set of categories Q = QS = QT .
As for the federated setting, K is reasonably large and
the local datasets differ in terms of both size and distribu-
tions but have typically a much smaller size than the source
dataset. Since users may share some common character-
istics, it may happen that PT

k (x) = PT
h (x) for some

k, h ∈ [K]. We assume the local datasets to be drawn from
the same meta-distribution, which contains G latent visual
domains (e.g., different cities), and each DT

k contain only
images from one of the G latent domains. The test dataset
DT

test follows the target distribution PT and is used to eval-
uate the final model learned across domains and devices.

Given the model f(w) : X → RNp×|Y| parametrized
by w, the global objective is to obtain optimal segmentation
performance on the target data distribution PT (x), and it
can be achieved by minimizing a suitable loss function, i.e.:

Algorithm 1: LADD (Learning Across Domains and Devices)

Require:
Source (labeled) datasetDS , clients k ∈ K with target (unlabeled)

datasetsDT
k , global model f(w) = f({θ, ϕ})

Clustering of the clientsK and Pre-Training of f onDS

Extract the styles Ps
k for each k ∈ K

Define the style-based clusters C (refer to Algorithm 2)
Train f(w) onDS with style-transfer from Ps =

⋃
k∈K P

s
k

Adaptation of f onDT

Initialize:
Cluster models fc(wc) = f(w) and teachers gc(wgc ) = f(w)
for each round t ∈ [T ] do

Randomly extractKt ⊂ K. Let c := ΓC(k).
for k ∈ Kt in parallel do

Set fk(wk) = fc(wc)

ϕt
k, θ

t
k ← CLIENTUPDATE(fk , gc, f ,DT

k ) (Sec. 4.3)
ϕt+1 ← Aggregate ϕt

k globally
θt+1
c ← Aggregate θt

k within the cluster c
if t mod ω ≡ 0 then

if t ≥ tSTART then
gt+1
c (wgc ) = SWATUPDATE

(
gt
c

)
∀c (Sec. 4.3)

else
gc(wgc ) = ft

c(w
t
c) ∀c ∈ C

  w^* = \argmin _w \sum _{k\in [K]} \frac {|\mathcal {D}_k^T|}{|\mathcal {D}^T|}\loss _k(w)  









 (1)

where Lk is the local loss function and DT =
⋃

k∈KDT
k .

4. Method

In this section, we describe in detail our FL algorithm
by detailing the pre-training strategy (Sec. 4.1), the aggre-
gation (Sec. 4.2) and the adaptation techniques (Sec. 4.3).
The procedure is summarized in Fig. 2 and Algorithm 1.

4.1. Server Pre-training

The first step of LADD is a pre-training stage on the la-
beled source dataset DS . Before training, to bring the styles
of source and target images closer together and improve
the generalization of the pre-trained model, we apply the
FDA [71] style transfer technique. First, the clients’ style is
transferred to the server and then applied to DS , on which
the model is trained. Specifically, the k-th client extracts
the style sk from each of its images, given by a window
of width ls located at the center of the amplitude spectrum
of that image [71], i.e. representing the amplitude of the
lowest spatial frequency coefficients. Critically, these co-
efficients do not contain relevant information on the scene
content, thus not breaking the user’s privacy. The pool of
styles Ps

k extracted from client k is populated by sending
the average of its extracted styles, i.e. Ps

k = {s̄k}. On the
server-side, the randomly initialized model f(w) is trained
on the source dataset DS , augmenting the source images
with random styles extracted from the set Ps =

⋃
k∈K Ps

k .
It is worth noting that these styles are never shared among
the clients, and even a few images are sufficient to compute
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Figure 2. LADD overview (best seen in colors). 1) Each client k extracts the average style s̄k of its local data DT
k using FDA. At server-

side, the collected styles Ps are applied to the source dataset Ds during the supervised pre-training. 2) Clients are clustered according
to their style. 3) At client-side, the cluster-specific teacher gc outputs the pseudo-labels, used for training f t

c , leveraging KD from the
pre-trained model. 4) At the server-side aggregation, we distinguish between global (ϕt+1) and cluster-specific parameters (θt+1

c ).

s̄k on each client. Once the pre-training stage is completed,
the source dataset is no longer used.

4.2. Style-based Aggregation

In a realistic FL setting, different clients may observe
similar samples, e.g. self-driving cars in the same region are
likely to collect similar images and are not subject to statis-
tical heterogeneity [38] during the server aggregation. On
the other side, this premise does not apply to self-driving
cars scattered throughout various distant places, which may
learn conflicting information, thus affecting performances
if naively aggregated. In addition, users may have access to
a limited number of images, hindering clients from general-
izing only from local optimization [8].

Taking these factors into account, we propose to explic-
itly cluster the clients to find their G latent visual domains.
To this end, we partition K in a set of non-empty clusters
C with |C| = C and

∑
c∈C |c| = K basing on the clients’

transferred styles. The centroid µc of each cluster is com-
puted using s̄k,∀k ∈ C. We summarize our approach in
Algorithm 2. We refer to H-Means instead of K-Means for
symbolic convenience. First, we compute H-Means N times
∀H ∈ [n]m, with N , n, m positive integers. Then, for each
value of H, we select the partition CH with the smallest intra-
cluster distance, and compute its Silhouette Score. Finally,
we select the clustering C with the highest Silhouette Score.

As for the server-side aggregation, instead of averaging
the updates of the selected clients at each round as done
by the standard FedAvg [49] algorithm, LADD introduces
a clustered and layer-aware aggregation policy. We de-
fine as: (i) wt

k the weights of the model of client k after
E local epochs of training at round t; (ii) θtk and ϕt

k the
group of cluster-specific and global parameters of the lo-
cal model, such that wt

k = θtk ∪ ϕt
k and θtk ∩ ϕt

k = ∅;
(iii) Kt ⊂ K the subset of clients selected at round t. We
globally aggregate the global parameters ϕt

k over all the se-
lected clients in Kt to obtain the new parameter set ϕt+1.
On the other side the cluster-specific parameters θtk are av-
eraged within the clusters, resulting in C specific parame-

Algorithm 2: Clustering Selection algorithm.
Let d(·, ·) be the L2-norm operator.

Require:
Clients k ∈ K, target datasetsDT

k ∀k ∈ [K], function Γ assigning each
client to one of the C clusters. Hyper-params n,m,N ∈ N0, m < n

for H ∈ [n]m := {m,m + 1, ..., n− 1} do
for n ∈ [N ] do

Change random seed rs
CrsH = H-MEANS
Compute
ak(CrsH ) = INTRACLUSTERDIST(CrsH , k) ∀k ∈ K

CH = argminCrs
H

∑
k∈K ak(CrsH )

Define aH
k := ak(CH) ∀k ∈ K

Compute bH
k := bk(CH) = INTERCLUSTERDIST(CH, k) ∀k ∈ K

Compute σ̄(CH) = SILHOUETTESCORE(aH
k, b

H
k ∀k ∈ K)

return C = argmaxH σ̄(CH)

INTRACLUSTERDIST(C, k)
return 1

|ΓC(k)|−1

∑
h∈ΓC(k),h̸=k d(k, h)

INTERCLUSTERDIST(C, k)
return minc∈C,c ̸=ΓC(k)

1
|c|

∑
h∈c d(k, h)

SILHOUETTESCORE(C, a, b)
σk =

bk−ak
max(ak,bk)

if |ΓC(k)| > 1, 0 otherwise, ∀k ∈ K

return 1
K

∑
k∈K σk

ter sets θt+1
c and C models f t+1

c (x;wt+1
c ),∀ c ∈ C where

wt+1
c = ϕt+1 ∪ θt+1

c . Note that the server is not required to
store independent models for each cluster, it is sufficient to
save only the cluster-specific parameters θt+1

c ∀c ∈ C and
the global parameters ϕt+1, loading them when needed. At
test time, given the i-th target test image, we (i) extract the
style sTEST,i, (ii) compute the L2-norm between sTEST,i and
all the cluster centroids µc ∀c ∈ C, (iii) select the clus-
ter c with the smallest L2-norm, and (iv) use the model
f t+1
c (x;wt+1

c ) to evaluate the model on the i-th test image.

4.3. Client Adaptation

Here we introduce the main components of the local loss
Lk(w) and the employed regularization techniques.

Self-Training. At round t, given an image x on the
k-th client, we train the local model f t

k(x;w
t
k) by em-

ploying hard one-hot pseudo-labels ỹ(x) ∈ RQ×Np with
the same thresholding mechanism as proposed in [71],



Table 1. Federated SS splits employed in our work.
Split Q |DT | |DT

test| |K| # Img/Client (range)

Cityscapes 19 2975 500 144 [10, 45]
CrossCity 13 12800 400 476 [17, 37]
Mapillary 19 17969 2000 357 [16, 100]
CrossCity (split of [72]) 13 12800 400 4 3200

where Q = |Q| is the number of classes. To reduce
the computation burden on the client, we avoid hav-
ing client-specific teacher networks. On the contrary,
the pseudo-labels are computed using a cluster-specific
teacher network gtc(x;w

t
gc), which outputs the predictions

ŷ(x) := gtc(x;wgc). The teacher parameters wt
gc are first

initialized as w0
gc = w and then updated every ω rounds as

wt
gc = wt

c.

Regularization. Pseudo-labels allow the clients to mimic
the presence of the labels. However, after a few training iter-
ations, the learning curve starts dropping [21]. At first, self-
training allows to reduce the gap between the knowledge
extracted by DS and the one needed to perform well on the
target datasets DT

k . Later on though the network starts being
too confident on its predictions, reducing its effectiveness
and making more miss-classifications. It therefore becomes
of the utmost importance to try to reverse this trend. To this
end, we exploit a Knowledge Distillation (KD) loss LKD
[26] based on the soft predictions given by the pre-trained
model to prevent f t(w) from forgetting the knowledge ac-
quired during the pre-training phase. However, our exper-
iments showed KD on its own was not enough for avoid-
ing overfitting, since the learning curve starts slightly drop-
ping again during the last rounds of adaptation (see Suppl.
Mat. for more details). Inspired by the recent success of
Stochastic Weight Averaging (SWA) [29] in FL [8], we ap-
ply a moving average to the clients’ teachers gc after a start-
ing round tSTART as wt+ω

gc = (wt
gc

nt
gc

+wt+ω
c )/(nt

gc
+1), where

nt
gc = (t−tSTART)/ω. We name this technique SWA teacher

(SWAt). SWAt allows noise reduction, further stabilizes the
learning curve and enables the model to better converge to
the local minimum of the total loss L = LPSEUDO +λKDLKD,
where λKD is an hyper-parameter to control the KD.

5. Experiments
5.1. Experimental Setup

Datasets. We evaluate the proposed framework in
synthetic-to-real experimental setups for autonomous driv-
ing applications, which are commonly used as benchmark
for domain adaptation methods. For the source domain, we
opt for the synthetic GTA5 dataset [56]. It comprises 24966
highly realistic road scenes of typical US-like urban and
suburban environments. As for the real (i.e., target) domain,
we experiment with three different datasets: Cityscapes
[15], CrossCity [13] and Mapillary Vistas [53]. We use un-

labeled training samples from all the datasets. Results are
reported on the original validation split for Cityscapes and
Mapillary, while on the test split for CrossCity.

Cityscapes provides street-view images from 50 cities in
Central Europe. CrossCity includes more diverse locations
and appearances, collecting driving scenes from multiple
cities around the world (i.e., Rome, Rio, Tokyo, and Taipei).
Finally, the Mapillary Vistas dataset collects geo-localized
street-view images from all around the world. We consider
the largest number of overlapping classes among GTA5 and
the real datasets (i.e., 19 for Cityscapes and Mapillary, and
13 for CrossCity).
We propose a federated partitioning of the target datasets
among the clients for each of the target dataset (i.e., a
split), as summarized in Table 1 and detailed in Suppl. Mat.
For Cityscapes, we use the heterogeneous split from [19],
where 144 clients observe images taken only from one city.
We emulated the same kind of split also for the CrossCity
dataset. Finally, we used the GPS information of the Map-
illary dataset to discover clients with spatially near images.
Baselines and Competitors. To support the efficacy of
the proposed approach in the unexplored FFREEDA setup,
we compare with multiple methods on both centralized and
federated setups. As the lower bound, we consider the naı̈ve
source only approach, which entails the sole use of source
labeled data during training. At the other end, as the upper
bound we propose the FTDA and Oracle comparisons. Both
the methods assume the availability of supervised target
data, either on the server side (i.e., centralized framework)
or on the client side (i.e., federated framework). However,
the FTDA method implies that target data is used to fine-
tune the model after a source-only pre-training, while the
Oracle simply consists in a supervised FedAvg training on
the labeled version of the target dataset. Moreover, we re-
implemented the Maximum Classifier Discrepancy (MCD)
[58] method, and we adapted it to the federated setting
as the authors of [72] did. Furthermore, we compare our
method with DAFormer [28], that we regard as the cur-
rent state-of-the-art UDA approach. We remark that both
baselines are evaluated in the UDA setting, i.e., a simpler
scenario where source and target datasets are jointly avail-
able. Concerning the FL aggregation, [35, 8] show that al-
gorithms like FedProx [38] and SCAFFOLD [31] typically
do not provide an improvement for vision tasks, therefore
we focused on other aspects of the training, like domain
adaptation, clustering and style transfer techniques.
Server Pre-train. We pre-trained the model on GTA5 us-
ing a power-law decreasing learning rate η, starting from
η = 5.0 · 10−3 with power 0.9 and using SGD optimizer
with momentum equal to 0.9 and no weight decay. We pre-
train the model for 15k steps. Each client computes the style
on all its images using a window of size 3× 3 and sends the
mean style to the server, before the pre-training starts.



Federated Adaption. In CrossCity, we run the experiments
with fixed η = 1.0 · 10−2, training on 4 clients per round
for a number of rounds T = 1000, with λKD = 20; we up-
date the pseudo-label teacher model every round (ω = 1)
and set tSTART = 400 for SWAt. In Cityscapes, we trained
on 5 client per round, with T = 300, fixed η = 5e − 5,
λKD = 10, ω = 5 and tSTART = 200. For Mapillary we
used η = 1.0 · 10−2, λKD = 10, 6 clients per round,
with T = 100, same pseudo-label policy of Cityscapes and
tSTART = 50. In both settings, for all datasets, the batch size
was 16. We performed data augmentation as follows: ran-
dom scaling (0.7, 2), random crop of 1024×512, color jitter
with brightness, contrast and saturation equal to 0.5, and im-
age normalization. For Mapillary instead of random scaling
we forced a fixed rescaling with width equal to 1024.

5.2. Experimental Results

GTA5→Cityscapes Our first setup is the GTA5 →
Cityscapes adaptation. Experimental results are reported in
Table 2. Even though providing high quality realistic im-
ages, the GTA5 dataset still suffers a domain gap compared
to real-world images, as those included in Cityscapes. We
notice that simply training over supervised source data (i.e.,
source only) leads to a significant performance discrepancy
compared to the full target supervision. Even applying the
state-of-the-art DAFormer method [28] in an UDA setting
(i.e., assuming joint availability of source supervised and
aggregated target unsupervised data, which violates the as-
sumptions of our setup), there is a noticeable performance
drop of around 25% of mIoU from the supervised oracle.

In our setup, we assume a federated learning framework
with private target data distributed among multiple clients
and a large-scale source dataset only available in a central
server for the pre-training stage only. This introduces addi-
tional challenges not present in standard centralized domain
adaptation settings. In particular, we assume that source and
target data are not accessible on the same device, and that
target data is available in small batches scattered among de-
vices and not in a single place. Furthermore, target data
is heterogeneously distributed among clients. The increase
in the task complexity is noticeable from the performance
drop of the supervised target oracle and FTDA methods
(which still assume target supervision). This is also true
for the MCD [58] UDA approach, which loses almost 10%
of mIoU when tested in a federated setting.

The proposed method is able to obtain robust results in
this challenging setting achieving a mIoU of around 36.5%.
In particular, the efficient pre-training based on domain styl-
ization, along with the self-training optimization scheme,
allows to tackle the lack of source data at the client side. We
additionally improve training stability, which is hindered
by the small amount of target data available within single
clients, with KD and SWAt, as shown by the very small

Table 2. Results on the heterogeneous split of Cityscapes.
Setting Method mIoU (%)

centralized Oracle 66.64± 0.33
centralized Source Only 24.05± 1.14
centralized FTDA 65.74± 0.48
centralized MCD [58] 20.55± 2.66
centralized DAFormer [28] 42.31± 0.20
federated Oracle 58.16± 1.02
federated FTDA 59.35± 0.61
FL-UDA MCD [58] 10.86± 0.67
FFREEDA FedAvg† [49] + Self-Tr. 35.10± 0.73
FFREEDA LADD (cls) 36.49 ± 0.13
FFREEDA LADD (all) 36.49 ± 0.14

standard deviation of the results in Table 2. Finally, we
provide an enhanced aggregation mechanism, which indi-
rectly shares task information in a effective manner among
clients sharing similar input statistics (i.e., with smaller do-
main gap), according to our style-based client clustering.
By observing results in Table 2, we notice that LADD keeps
a similar performance gap w.r.t. the target oracle compared
to what DAFormer achieves in a centralized UDA setting.
Competitive results are provided by different variations of
the proposed style-based clustering, i.e., by keeping only
the decoder (i.e., LADD (cls)) or the whole network (i.e.,
LADD (all)) as cluster-specific during the aggregation. Ad-
ditional analyses are provided in Sec. 5.3.

GTA5→CrossCity We further investigate the performance
of the proposed approach in the GTA5→CrossCity sce-
nario. Quantitative results are reported in Table 3. We com-
pare with the naı̈ve source only baseline, as well as with
MCD [58]. Due to the lack of target supervision on train-
ing images, the upper bound of the target oracle cannot be
provided, nor the result of FTDA.

The diverse content and appearance of CrossCity’s road
scenes, due to variable geographic origin of its samples,
provide a heterogeneous target distribution. The enhanced
heterogeneity w.r.t. the more uniform Cityscapes dataset in
turn leads to a tougher challenge for federated training. For
instance, the MCD method when extended from a central-
ized to a federated learning framework suffers from a sub-
stantial performance reduction. Instead, LADD provides
a much higher accuracy in a federated setting, with more
than 17% gain over federated MCD, while also not requir-
ing reuse of source data after the initial pre-training. This is
indicative of the robustness of our method w.r.t. the statisti-
cal diversity of client target data.

Finally, we note that, by allowing only a minimal amount
of network parameters to be cluster-dependent, we achieve
a final accuracy very close to our best result, obtained with-
out any parameter sharing across clusters of clients. This
result shows that LADD demands limited communication
overhead w.r.t. standard FedAvg.



Table 3. Results on the proposed CrossCity split.
Setting Method mIoU (%)

centralized Source Only 26.49± 1.46
centralized MCD [58] 27.15± 0.87
FL-UDA MCD [58] 24.80± 1.56
FFREEDA FedAvg† [49] + Self-Tr. 33.59± 1.25
FFREEDA LADD (cls) 39.87± 0.14
FFREEDA LADD (all) 40.09 ± 0.19

Table 4. Results on the proposed Mapillary split.
Setting Method mIoU%

centralized Oracle 61.46± 0.21
centralized Source Only 32.40± 0.71
centralized MCD 31.93± 1.89
federated Oracle 49.91± 0.49
FL-UDA MCD 19.15± 0.75
FFREEDA FedAvg† [49]+ Self-Tr. 38.97± 0.21
FFREEDA LADD (cls) 40.16 ± 1.02
FFREEDA LADD (all) 38.78± 1.82

GTA5→Mapillary Finally, we provide an experimental
analysis with target data from Mapillary Vistas, while the
GTA5 still serves as source dataset. Table 4 contains nu-
merical results of the evaluation. The diverse assortment
of target data collected around the world, and dispersed
among clients according to geographic location (see Sec.
5.1), makes client data distribution even more heteroge-
neous than the previous setups. We notice that with tar-
get supervision (i.e., oracle method), there exists a signif-
icant performance drop of around 11.5% of mIoU from
centralized to federated settings. This is even more no-
ticeable with the MCD [58] UDA approach, which strug-
gles when tested under the considered federated learning
setup, suffering from a similar mIoU decrease of 12%. The
proposed LADD framework instead provides considerable
performance, with results surpassing the source only op-
timization by a large margin (more than 8% of mIoU) in
its best version with only classifier weights kept cluster-
specific (LADD (cls)), and approaching the federated oracle
result. We further observe that LADD outperforms (in its
best configuration) the simpler framework based on FedAvg
and self-training. This supports the effectiveness of the pro-
posed additional modules (concerning local training regu-
larization and federated aggregation, see Sec. 4.2 and 4.3)
in tackling the domain adaptation problem in a distributed
learning setting. Finally, we remark that the lightweight ag-
gregation scheme with a cluster-specific classifier achieves
the best results.

5.3. Ablation Studies

Impact of Optimization Modules. We now study the con-
tribution of each component of our method. In Table 5,
we report the target mIoU computed with modules incre-
mentally activated, showing the gain brought by each of

†: Same pretrain as LADD.

Table 5. Ablation of our optimization framework, performed on
CrossCity dataset for the presented split.

FDA ST KD SWAt Cluster Aggr mIoU (%)

26.49± 1.46
✓ 30.58± 0.59

✓ 32.43± 0.61
✓ ✓ ✓ ✓ 32.78± 0.09

✓ ✓ 33.59± 1.25
✓ ✓ ✓ 37.49± 0.14
✓ ✓ ✓ ✓ 38.83± 0.12
✓ ✓ ✓ ✓ 39.18± 0.24
✓ ✓ ✓ ✓ ✓ 40.09 ± 0.19

them (GTA5→CrossCity setup). We notice that the intro-
duction of the style transfer technique during server pre-
training generates an improvement of almost 6% of mIoU,
where the lower bound (source only pre-training) coincides
with the centralized source only experiment. The naı̈ve
federated adaptation using the proposed self-training rou-
tine (and FedAvg aggregation) allows to gain an initial im-
provement of 2% of mIoU, but leads to unstable training
curves (see Suppl. Mat.). Adding the KD module we further
boost the performance (by almost 3% mIoU) and prevent
clients’ optimization from undertaking unsteady behaviors,
with the initial stable configuration as anchor point. By ac-
tivating SWAt we get an extra boost in terms of final mIoU
and training stability, and training convergence is achieved
much more consistently. We remark how the std drops when
enabling KD and SWAt. When further introducing clus-
ter aggregation, but leaving SWAt disabled, we get a small
mIoU increase, at the price of higher instability. Finally,
by adding the cluster aggregation along with SWAt we get
our complete method, for a final score of 40.09% of mIoU,
achieved with stable training.
Style-based Pre-training. We analyze the impact of the
stylization mechanism on the pre-training. We test different
style extraction schemes, by varying the size of the Fourier
amplitude window. Table 6 reports quantitative results of
the ablation study (GTA5→CrossCity setup). It is possi-
ble to observe that a window of 1x1 is sufficient to capture
and transfer useful domain-dependent information across
domains. However, by increasing the dimension of the style
window to 3×3 and 5×5 pixels we get an improvement of
1% mIoU. In addition, even though providing similar results
to the 5 × 5 size in terms of final mIoU, the 3 × 3 window
leads to a more stable pre-training (testified by lower std),
due to less artifacts being introduced in the stylized images.

We remark that the style data occupies a very limited
amount of memory (in the order of a few bytes), and thus re-
quires little communication overhead to be transmitted from
client to server before federated rounds start. The style win-
dow corresponds to a small portion of the Fourier Transform
and, prior to its transmission, is averaged over all data sam-
ples within each client. Recall also that shape information is
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Figure 3. t-SNE of the styles. The colors represent the city ground-
truth, while the symbols represent the inferred clusters. The clus-
tering accuracy, considering each cluster a city, is equal to 0.68.

mapped to the phase data, while we transmit only amplitude
information. Therefore, we argue that it encloses a negligi-
ble fraction of the overall information of the local image
data, and thus does not violate data privacy limitations.
Cluster-level Aggregation. We study how different cluster-
based aggregation schemes affect the overall adaptation per-
formance. In particular, we select different groups of model
parameters for cluster-specific and global aggregations. Re-
sults obtained in the GTA5→CrossCity setup are collected
in Table 7. We notice that keeping only batch-norm pa-
rameters cluster-dependent (second row) provides similar
results as the standard FedAvg (first row), where all model
parameters are global. When holding per-cluster backbone
and classifier blocks individually, we get improved perfor-
mance. The accuracy is further slightly boosted when the
entire model is kept cluster-specific, showing that backbone
and classifier both enclose cluster-dependent information.

Finally, we observe that solely treating the lightweight
classifier block as cluster-specific gives comparable per-
formance to the best full-model intra-cluster aggregation.
Therefore, we found a less computational and memory de-
manding version of the proposed LADD approach, still
providing robust performance.
Style-based Client Clustering. We analyze the distribu-
tion of clients across the style-based clusters identified by
our approach in an unsupervised fashion. The study is con-
ducted when the CrossCity target dataset is employed, so
that we can compare style-based clusters with those deter-
mined by the city of origin. In Fig. 3 we associate each
cluster with a point in a 2D space according to its style ten-
sor. In particular, each style tensor is flattened resulting into
a 27-D vector, and the t-SNE [67] dimensional reduction
method is used to project it into a 2D space. We can observe
that clients from different cities (each of which identified
by a different color) tend to be clustered together. At the
same time, we notice that clients with similar styles (i.e.,
are associated to the same style-based cluster by our ap-
proach, see Sec. 4.2) are projected in adjacent regions. Fur-

Table 6. Ablation on window
size used for FDA pre-training.

Size mIoU (%)

None 26.49± 1.46
1× 1 31.59± 0.68
3× 3 32.43± 0.61
5× 5 32.51± 0.75

Table 7. Ablation on cluster-
specific layers (CrossCity).

Layers mIoU (%)

None 38.83± 0.12
BN 38.72± 0.20
Backbone 39.31± 0.13
Classifier 39.87± 0.14
All 40.09 ± 0.19

Table 8. Results on the CrossCity split proposed in [72].
Method Rio Rome Taipei Tokyo Avg

Source Only 27.9 27.6 26.0 28.2 27.4
Cent-MCD [58] 31.3 30.6 28.8 31.6 30.5

Fed-DAN [46] 27.3 26.4 26.0 28.5 27.1
Fed-DANN [22] 28.6 26.0 26.6 28.6 27.5
Fed-MCD [58] 27.7 27.3 26.5 29.0 27.6
DualAdapt [72] 29.2 28.0 27.6 30.7 28.9
LADD (ours) 35.4 34.0 31.5 32.4 33.3

thermore, both city- and style-based partitions appear to be
highly overlapping, signifying that style-based clustering is
effectively able to capture domain-dependent information,
which is highly correlated to the geographical location.
Comparison in a simpler CrossCity split. We compare
with the FMTDA method [72] in the GTA5→CrossCity
adaptation setup they propose, with target data distributed
over 4 total clients, each containing images of one of the 4
CrossCity’s cities. For a fair comparison, we use the same
segmentation network adopted in [72]. In this simpler fed-
erated setting, a restricted version of LADD without the
cluster-level aggregation is still effective. In Table 8, we re-
port the mIoU computed on each city, along with the aver-
age value, for different approaches directly taken from [72].
We observe a consistent improvement, which in the average
target mIoU reaches almost 5%, demonstrating the superi-
ority of the proposed LADD approach.

6. Conclusion
In this work we introduced FFREEDA, a new challeng-

ing and realistic setting for Source-Free Domain Adapta-
tion in Federated Learning for Semantic Segmentation. In
FFREEDA, a server-side labeled dataset is used for pre-
training the model, while local training uses only the un-
labeled clients’ data. We introduced LADD, an innovative
algorithm to solve FFREEDA, employing (i) style-transfer,
knowledge distillation and SWA teacher on the pseudo-
labels for regularizing learning, and (ii) style-driven clus-
tering for learning both global and personalized parameters.
LADD has no direct competitors due to the novel setup
FFREEDA, but is still able to achieve competing results
compared to state-of-the-art algorithms. We also provided
two new splits adapting the CrossCity and Mapillary Vistas
datasets to the federated scenario as a reference for future
research in FL SS.
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Supplementary Material
Learning Across Domains and Devices:

Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning

This document contains supporting material for the pa-
per Learning Across Domains and Devices: Style-driven
Source-Free Domain Adaptation in Clustered Federated
Learning. Here, we include additional details on the fed-
erated splits employed in the paper along with analyses of
the convergence stability of our approach when compared
to competing strategies adapted to our federated setup. Fi-
nally, we show some qualitative segmentation maps.

S1. Additional Details on Splits
In this section, we complete the description of how the

federated splits used in our experiments are generated.
Cityscapes. We used the heterogeneous federated split

of Cityscapes [15] proposed in [19]. The split comprises
144 clients, where each client has between 10 and 45 sam-
ples belonging to a single city from the dataset. Further de-
tails on the distribution of the number of images per client
are shown in Figure S1.

CrossCity. We generated the federated split of the
CrossCity [13] dataset by assigning 27 ± 10 images taken
from the same city to each client, where the number of sam-
ples per client is uniformly sampled. The final distributions
of the number of images per client are shown in Figure S2
both per city and overall. We observe how the distributions
are balanced across the four cities.

Mapillary. We propose a novel split for the Mapillary
Vistas [53] dataset via a clustering procedure based on the
GPS coordinates of the images. We started from the origi-
nal training set of 18000 images and discarded 31 of them
missing the GPS coordinates. Then, we run the k-Means al-
gorithm over the GPS coordinates six times, one per conti-
nent. The k-Means algorithm is constrained to assign every
client a random number of images in the range 16 and 100.
The procedure resulted in 357 clients, where each client ob-
served samples from only one continent. The final distri-
butions of the number of images per client are shown in
Figure S3. Unlike the other scenarios, we observe a large
variability across the distributions obtained in different con-
tinents due to the highly imbalanced nature of the dataset.
Also, note that the two entries with higher values, 16 and
100, correspond to the extreme values of the constrained
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Figure S1. Histogram of images per client in the federated
Cityscapes split.

k-Means process.

S2. Additional Details on the Style-Based
Client Clustering

In a realistic FL setting, different clients may observe
similar samples, e.g. self-driving cars in the same region
are likely to collect similar images, thus they are not subject
to statistical heterogeneity during the server aggregation.
Therefore, we proposed a style-driven client clustering as
one of the foundational parts of our algorithm. During the
FL optimization stage, we employed the identified commu-
nities in a clustered and layer-aware aggregation policy on
the server side.

First of all, we remark that the four clusters identified by
the styles extracted from the images contain mostly clients
belonging to one single geographical location (i.e., city).
Table S1 shows the number of clients belonging to a spe-
cific city assigned to each cluster for the federated Cross-
City dataset. Overall, the clustering accuracy, considering
each cluster a city, is equal to 68%. Therefore, there is not
a one-to-one correspondence of the clusters with the cities.

To investigate this aspect, we show in Figure S4 some



(a) Rio

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(b) Rome

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(c) Taipei

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(d) Tokyo

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(e) Cumulative

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

Figure S2. Histogram of images per clients in the proposed federated CrossCity split.
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Figure S3. Histogram of images per clients in the proposed federated Mapillary Vistas split.

Table S1. Number of clients belonging to a specific city assigned
to each cluster for the federated CrossCity split.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Rio 7 1 70 38
Rome 76 6 22 17
Taipei 6 103 0 9
Tokyo 26 8 10 73

samples taken from the clients belonging to each of the
four clusters in the federated CrossCity dataset. Here, we
observe an interesting finding: despite being generated via
style information only, the clusters tend to show scenes with
similar semantics. For instance, Cluster 1 contains clients
having images of large and trafficked streets, and grayish
sky. Cluster 2 contains clients having images of narrow
streets with little to no vegetation, many buildings, a few
parked cars and whitish sky. Cluster 3 contains clients hav-
ing images of empty roads with green surrounding vegeta-
tion. Cluster 4 contains clients having images from sunny
weather and blue sky, narrow streets with no traffic and
green vegetation.

Finally, we show in Figure S5 some samples taken from
the clients belonging to each of four clusters in the feder-
ated Mapillary dataset. Unlike as for CrossCity, here we
do not appreciate a clear assignment as the number of clus-

ters is different from the number of towns or continents.
Therefore, we observe that here the clustering is much more
appearance-related, according to the style of the images.

For instance, Cluster 1 contains clients having cloudy
and foggy images where the visual appearance is grayish.
Cluster 2 contains clients having grayish sky and yellowish
buildings with some similar semantics across clients. Clus-
ter 3 contains clients having images at the sunset or sunrise
where the light scatters yellow shadows. Cluster 4 contains
clients having images with predominant blue colors in the
sky.

S3. Implementation Details

The proposed method is implemented in PyTorch, the
code and federated splits are available at https://
github.com/Erosinho13/LADD.

The semantic segmentation network used is DeepLab-
V3 [12] with Mobilenet-V2 [59] as the backbone and width
multiplier equal to 1, representing a good compromise in
terms of performance and lightness, important aspects to
consider for real-world applications, such as self-driving
cars. On each communication round, the selected clients
are trained sequentially, allowing to perform the complete
simulation and reproduce the results on a single GPU with

https://github.com/Erosinho13/LADD
https://github.com/Erosinho13/LADD
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Figure S4. Sample images in each cluster for the federated CrossCity split.
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Figure S5. Sample images in some clusters for the federated Mapillary split.

32GB of VRAM (we used a NVIDIA RTX 3090).

S4. Qualitative Results
We provide some qualitative results in the form of seg-

mentation maps of target images generated by the segmen-
tation model subject to different adaptation schemes. Fig-
ures S6, S7 and S8 refer to the 3 adaptation setups cho-
sen for experimental evaluations, with respectively CrossC-
ity, Cityscapes and Mapillary as target datasets. We com-
pare the naı̈ve source only training (3rd columns in all the
aforementioned figures) and the baseline federated adapta-
tion strategy (4th columns), based on FedAvg[49] aggrega-
tion and local self-training, with the proposed LADD (when

cluster-specific aggregation is extended to all the segmenta-
tion network layers) (last columns). For fair comparison
we employ the same pretraining for FedAvg and LADD.
By inspecting the segmentation maps produced by the dif-
ferent adaptation strategies, we notice how the source only
maps show inconsistent and noisy predictions, where se-
mantically similar classes are confused, such as sidewalk
and road or terrain in all the reported samples. Local self-
training and standard FedAvg aggregation at server-side
partially mitigate the prediction accuracy drop caused by
domain shift between source and target data. Nonetheless,
we observe that the adapted model still tends to mistake
semantically-similar classes such as sidewalk and road in



(a) RGB (b) GT (c) Source Only (d) FedAvg [49] + Self-Tr. (e) LADD (all)
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Figure S6. GTA5→CrossCity qualitative results.

(a) RGB (b) GT (c) Source Only (d) FedAvg [49] + Self-Tr. (e) LADD (all)

Road Sidewalk Building Wall Fence Pole T. Light T. Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Train Motorbike Bicycle Unlabeled

Figure S7. GTA5→Cityscapes qualitative results.

the first sample of Figure S6. The proposed regularized lo-
cal training leads to more robust local optimization, which
otherwise tends to suffer from unsteady behavior, due to
the small amount of available training data and the lack
of any form of supervision (even from the source domain)
at the client side. This, along with the cluster-specific se-
mantically aware aggregation mechanism, results into less
noisy and more accurate predictions as we can see in the
last columns of the figures.

S5. Additional Quantitative Results

Finally, we report additional results in the form of per-
class IoUs achieved when different modules of our frame-
work are enabled. Once more, results are reported with
CrossCity (Table S2), Cityscapes (Table S3) and Mapillary
(Table S4) as target datasets, in terms of mean and standard
deviation computed over the last 10% rounds.

When enabled, we observe that each module improves

the overall mIoU score, which is also generally shared by
the individual IoU scores of the semantic classes in the dif-
ferent experimental setups.

In addition, in Figure S9 we report the learning
curves as a result of federated optimization under differ-
ent configurations of the proposed LADD method in the
GTA→CrossCity setup. When only ST is employed in
the client-side optimization, the training is extremely unsta-
ble, showing a small initial burst of performance followed
by a rapid decrease after few rounds. When adding KD
and then SWAt, the training curves become progressively
more robust and stable, achieving the best results when KD
and SWAt are joined by the cluster-specific aggregation,
in either classifier-exclusive or full model configuration of
cluster-specific parameters. We finally remark how LADD
in its complete configuration is characterized by steady and
converging learning curves, unaffected by diverging phe-
nomena.



(a) RGB (b) GT (c) Source Only (d) FedAvg [49] + Self-Tr. (e) LADD (all)
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Figure S8. GTA5→Mapillary qualitative results.

Table S2. CrossCity IoU by class and mIoU (%).
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Table S3. Cityscapes IoU by class and mIoU (%).
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Table S4. Mapillary Vistas IoU by class and mIoU (%).
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Figure S9. Comparison of learning curves in the CrossCity federated split.


