
18 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Edge Computing with Early Exiting for Adaptive Inference in Mobile Autonomous Systems / Angelucci, Simone; Valentini,
Roberto; Levorato, Marco; Santucci, Fortunato; Chiasserini, Carla Fabiana. - ELETTRONICO. - (2024), pp. 2080-2085.
(Intervento presentato al convegno ICC 2024 - IEEE International Conference on Communications tenutosi a Denver
(USA) nel 09-13 June 2024) [10.1109/ICC51166.2024.10622411].

Original

Edge Computing with Early Exiting for Adaptive Inference in Mobile Autonomous Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICC51166.2024.10622411

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987073 since: 2024-03-17T16:12:43Z

IEEE

Edge Computing with Early Exiting for Adaptive
Inference in Mobile Autonomous Systems

Simone Angelucci∗, Roberto Valentini∗, Marco Levorato†, Fortunato Santucci∗, Carla Fabiana Chiasserini‡
∗ Dept. of Information Engineering, Computer Science and Mathematics, and Centre Ex-EMERGE, University of L’Aquila, IT

† The Donald Bren School of Information and Computer Science, UC Irvine, CA, US
‡ Dept. of Electronics and Telecommunications, Politecnico di Torino, Torino, IT

Abstract—Early Exiting (EE) is an emerging computing
paradigm where Deep Neural Networks (DNNs) are equipped
with earlier classifiers, enabling trading-off accuracy with in-
ference latency. EE can be effectively combined with edge
computing, a paradigm that allows mobile nodes to offload
complex tasks, such as the execution of DNNs, to servers at
the edge of the network, thus reducing computing times and
energy consumption at the mobile devices. The integration of
such technologies is particularly attractive for the support of
applications for connected and automated driving. In this paper,
we consider a system that jointly leverages the benefits of EE
and edge computing, and we model their complex interactions by
means of a Markov Decision Process (MDP). We then formulate
an optimization problem to select the inference strategy that
maximizes the average task accuracy. Importantly, such an
optimization problem has low complexity, as the optimal policy
can be derived by mapping the MDP into a linear program. Our
numerical results focus on a use case centered on automated
vehicles connected with an edge server under varying channel
and network conditions, and show that our solution achieves up
to 11% higher accuracy compared to the optimal policy with no
EE.

Index Terms—Early exiting, Edge computing, Mobile edge
applications, Markov decision process, Connected and automated
vehicles

I. INTRODUCTION

Connected and automated vehicles (CAV) are envisioned to
play a key role in future Intelligent Transportation Systems
(ITS), as demonstrated by the many use cases identified
by major organizations such as the Third Generation Part-
nership Project (3GPP) and the 5G Automotive Association
(5GAA) [1]–[4]. Some of the prospected use cases heavily
rely on Artificial Intelligence (AI). For instance, local dynamic
maps [5] – databases that can be accessed by safety-related
applications to retrieve meaningful information about a vehi-
cle’s surroundings – are populated by recognition of vulnerable
road users, other vehicles, and obstacles surrounding the
vehicle. AI tasks such as object detection/recognition and
instance segmentation typically leverage resource-demanding
and power-consuming Deep Neural Networks (DNNs), thus
limiting their execution on mobile devices, including CAVs.

This research was partly funded by the project “Centre of Excellence on
Connected, Geo-Localized and Cyber-secure Vehicles (EX-Emerge)” – Italian
Government (Grant Number: CIPE Resolution 70/2017) and by the Horizon
Europe project CENTRIC (Grant No. 101096379). Marco Levorato’s work
has been partially supported by the NSF, under grant CCF 2140154.

However, by connecting with edge servers positioned
within the edge of wireless infrastructures, CAVs can offload
compute-intense inference tasks. Existing work aims to iden-
tify effective offloading strategies that can satisfy application-
dependent requirements. Among these studies, [6] proposes
two offloading strategies, for independent and connected edge
servers, highlighting that in the latter case task offloading
between edge servers can effectively counteract users’ mo-
bility. A game-theoretic approach is used in [7] for the
minimization of the overall tasks execution latency, while a
deep reinforcement learning-based approach is proposed with
the same goal in [8]. Optimal offloading strategies for latency
minimization are derived in [9]–[11], within the framework of
Markov Decision Processes (MDPs).

Interestingly, edge computing can be combined with trends
that aim at making the execution of DNNs dynamic and
adaptive with respect to input to reduce resource footprint
and inference time. In this domain, an emerging paradigm is
Early Exiting (EE) [12], according to which existing neural
network architectures are modified to introduce early branches
producing the same output as the full model with reduced com-
plexity. Branches are executed sequentially, and the execution
is terminated if the latest output has sufficient confidence. The
use of EE may thus represent an effective way to trade off
accuracy with inference times, especially when considering
scenarios with severe latency constraints. Further, it enables
tuning the inference performance to the system load, thus
allowing for an efficient usage of computational resources.

Based on the above observations, in this paper we com-
bine EE and edge computing, and envision a novel solution
to the problem of DNN task offloading that is particularly
suitable for resource-limited mobile systems. To the best of
our knowledge, our work is the first one that proposes such
an approach and designs an optimal, low-complexity, policy
that can easily and effectively adapt to the changes in the
application requirements and the system conditions.

More specifically, our main contributions are as follows.
1) We develop a MDP approach to find the best inference

execution strategy in an edge computing scenario. Dif-
ferent from [9]–[11], we consider that while the CAV
uses a simple DNN with no EE, the edge server can
rely on EE, which leads to the design of a flexible and
effective approach.

Fig. 1. Reference system scenario and main components of the system model.

2) We then formulate an optimization problem to identify
the inference execution strategy that maximizes accu-
racy, while fulfilling the application-level requirements
in terms of inference time and task dropping rate.

3) Finally, we evaluate the obtained optimal policy un-
der varying system settings and operational conditions,
including propagation channel and levels of network
congestion and edge load. The performance of our policy
is also compared to an optimal policy without EE,
showing that EE achieves up to 11% performance gain.

The rest of the paper is organized as follows. Sec. II
introduces the system model, while Sec. III gives its functional
description. In Sec. IV, we formulate and solve the constrained
accuracy maximization problem, presenting our optimal, low-
complexity, offloading policy. Sec. V shows some numerical
results, highlighting the benefits of combining early exiting
with edge computing. Finally, Sec. VI draws our conclusions
and sketches future research directions.

II. SYSTEM MODEL

We consider the system scenario depicted in Fig. 1, which
consists of a CAV that has to perform DNN-based inference
tasks, and an edge server connected to a base station. The CAV
can either perform the tasks locally or offload them to the edge
server. We assume that the edge server uses a dynamic neural
model equipped with EE, whereas the CAV uses simpler DNN
models without branches due to its more limited computing
capabilities. Also, time is assumed to be slotted; we denote by
the time variable t the time interval [tT, (t+1)T), where T is
the slot duration. For compliance with the subframe duration
in both 4G and 5G radio interfaces, we set T=1ms.

All other system aspects, concerning task generation and
handling as well as data transfer over the radio interface and
the network model, are described below.

A. Task generation

The CAV stores tasks to be executed in a queue with finite
capacity Qmax; let q(t) denote the state of the queue, i.e., the
amount of backlogged tasks, at time slot t. The evolution of
q(t) is described as

q(t+ 1) = min{max{q(t)− e(t), 0}+ i(t), Qmax}, (1)

where e(t) is a binary flag representing the execution of a task
at slot t and i(t) is the number of incoming tasks at t. When
the queue reaches its maximum capacity Qmax, new incoming
tasks are discarded.

Tasks are generated at the CAV depending on the running
application state, v(t)∈{v0, v1}, where v1 denotes the appli-
cation active state, in which new tasks are generated, whereas
v0 represents the application idle state where no tasks are
generated. For simplicity, we assume that only a single task
can be generated in each time slot, then we define the task gen-
eration probabilities in each state as p(i(t)=0|v(t)=v0)=1 and
p(i(t)=1|v(t)=v1)=1, where p(·) indicates the probability of
an event.

The time evolution of v(t) can be described through a two-
state Markov chain with transition probability matrix PV =(

α 1−α
1−β β

)
, where α=p(v(t+1)=v0|v(t)=v0) and β=p(v(t+

1)=v1|v(t)=v1). In particular, the transition probabilities are
expressed in terms of the burstiness bv (i.e., mean sojourn
time in state v1) and the steady state probability ϕv of the
application being active (i.e., in state v1). Then,

1− α =
ϕv

bv(1− ϕv)
(2)

1− β =
1

bv
. (3)

A task removal from the queue occurs when its execution is
terminated. By denoting with cE(t) the remaining time slots
required for executing a task, we can express e(t) as

e(t) =

{
1 if cE(t) = 0

0 otherwise.
. (4)

B. Wireless Channel model

The wireless link between the CAV and the edge server is
assumed to be affected by Rayleigh fading. To obtain a finite-
state representation of the channel gain envelope r(t), we rely
on a Markov chain model of the fading process, where the
chain states are obtained by quantizing r(t) through a finite
set of intervals.

The intervals are identified by a set of thresholds that
can be obtained by imposing the steady state probabilities
πi, i=1, . . . , Nr, of the channel states, being Nr the desired
number of states. Following [13], we assume a uniform steady
state distribution, that is πi=1/Nr, ∀i, and we determine the
thresholds Γi and Γi+1 by solving∫ Γi+1

Γi

fr(r)dr = 1/Nr, (5)

where fr(r) is the Rayleigh probability density function (pdf).
Solving Eq. (5) yields

Γi =

√
−2σ2 ln

(
1− i

Nr

)
. (6)

Given the partitioning scheme in (6), we say that the chain is
in state ri if r(t) ∈ [Γi,Γi+1) and the channel output is given
as the midpoint of the interval.

To define the transition probability matrix PR=(pR,ij)
Nr
i,j=1,

we follow the approach in [13]. In particular, the transition
probabilities between each pair of states are obtained through
a series expansion of the bivariate Rayleigh cumulative dis-
tribution function (CDF), which allows capturing the second-
order properties of the fading process. In particular, for the
autocorrelation function of the underlying complex Gaussian
fading process we adopt the well known Clarke’s model, where
the correlation between two consecutive fading samples is
given as J0(2πfDT), with fD being the maximum Doppler
shift and T the observation time between two samples, which
is assumed to be equal to the time slot duration.

Note that the channel state affects the opportunity of
performing tasks offloading. Indeed, assuming for simplicity
a fixed rate Rc supported by a specific Modulation and
Coding Scheme (MCS), to guarantee reliable data transfer, the
experienced Signal-to-Noise Ratio (SNR) should be above a
given minimum level. If not, task offloading cannot take place.

C. Radio resources allocation

To offload a task, the CAV has to request the base station for
the necessary radio resources. Let n(t)∈{n0, n1} be a binary
flag indicating the availability of radio resources at slot t: if
n(t)=n0, no radio resources are readily available; otherwise,
if n(t)=n1, a radio resource can be allocated. Assuming the
CAV demands radio resources and the system is in n0, a slot
counter cN (t) is initialized to Tg . When cN (t) reaches 0, then
n(t) moves to state n1 with probability pg , corresponding
to a successful resource assignment in that specific time
slot. Conversely, when n(t) stays in n0 (which happens with
probability 1− pg), no offload can take place due to the lack
of available resources. Then, the above procedure may repeat.
Notice that, when in n1, the user can offload the task to the
server only if the SNR is above the minimum threshold for
the previously selected MCS, otherwise the offload fails.

D. Inference time and accuracy

The execution time of an inference task depends on whether
computation occurs at the CAV or at the edge. A local task
execution has a duration Tl, due solely to the computation
at the CAV; on the contrary, remote execution also involves
offloading the task, which increases the overall latency.

Furthermore, since the edge server relies on EE, it can
choose among several exits of the DNN, each exit e
(e=1, . . . ,M) yielding a different level of accuracy, Ae, and
execution time, Te. Notice that we have: T1<T2< . . .<TM

and A1<A2< . . .<AM . Additionally, the execution time at
the edge is affected by the current computational load the edge
server is experiencing. To account for the case where the edge
server might not have ready-to-use computing capabilities, we
define the server state s(t)∈{s0, s1}, with s0 and s1 represent-
ing idle and busy computational resources, respectively. An
additive random delay d(t) is then associated with each state
and characterized by the probabilities p(d(t)=0|s(t)=s0)=1
and p(d(t)=τ |s(t)=s1)=p(τ), where τ∈{0, 1, . . . , τmax} and

p(τ) is assumed to be a truncated decreasing geometric
probability mass function (pmf).

The dynamic of s(t) is modelled through a Markov chain
with transition probability matrix PS=

(γ 1−γ
1−ϕ ϕ

)
, where

γ=p(s(t + 1)=s0|s(t)=s0) and ϕ=p(s(t + 1)=s1|s(t)=s1).
Similarly to the task generation model, transition probabilities
can be expressed as a function of the burstiness bs and the
steady state distribution ϕs of state s1.

Depending on the selected exit and the server state, the
remote execution time is thus given by:

Tedge(t) = Te + d(t). (7)

III. ACTIONS SET AND SYSTEM BEHAVIOUR

The overall system state x(t) at time slot t is defined as

x(t) = (q(t), v(t), s(t), r(t), n(t), cE(t), cN (t)). (8)

The time evolution of x(t) is driven by uncontrollable system
dynamics (such as the channel state, task generation, compu-
tational resource availability, etc.) as well as the undertaken
action ae. We denote with A = {ae}M+2

e=0 the set of possible
actions. In particular, action ae, with e=1, . . . ,M , represents
the execution up to exit e deferred to the edge; aM+1=al
indicates a local execution of the task; aM+2=ag defines
the action of making a request for a radio resource; finally,
a0=aw is the action corresponding to the CAV doing nothing.
According to the defined action set, we can distinguish the
following relevant cases:

a) cE(t)=0, cN (t)=0, n(t)=n0: in this case the system
is in idle state and a task waiting in the queue can be executed.
However, since n(t)=n0, there are no radio resources avail-
able and only local computing, resource request or waiting
are admissible actions. By selecting action al, the task is
executed locally and cE(t) is initialized to Tl. Denoting with
p(x′|x, a)=p(x(t+1)=x′|x(t)=x, a(t)=a) the probability of
moving into state x′ from state x by taking action a, we can
write the possible state transitions as follows:

p((q + 1, v1, s1, rj , n0, Tl, 0)|(q, v0, s1, ri, n0, 0, 0), al)

= (1− α)ϕpR,ij , (9)

with similar transition probabilities that can be written in both
the above cases for different values of states v(t) and s(t).

Instead, a radio resource can be requested by selecting
action ag , which allows transitions as

p((q, v0, s1, rj , n0, 0, Tg)|(q, v0, s1, ri, n0, 0, 0), ag)

= αϕpR,ij . (10)

b) cE(t)=0, cN (t)=0, n(t)=n1: in this case also remote
computing is possible if the SNR is high enough for the
selected MCS. Then an action ae, with e=1, . . . ,M , can be
selected, thus yielding transition probabilities of the type

p((q, v0, s0, rj , n0, Te, 0)|(q, v0, s0, ri, n1, 0, 0), ae)

= αγpR,ij . (11)

Moreover, if the server is busy (i.e., s(t)=s1), an additional
random delay is required for obtaining computing resources,
which yields the following state transitions:

p((q, v0, s1, rj , n0, Te + τ, 0)|(q, v0, s1, ri, n1, 0, 0), ae)

= αϕp(τ)pR,ij . (12)

c) cE>0 or cN>0: in such situations, the system is
either executing a task, locally or remotely, or counting the
time spent for requesting a radio resource; it follows that the
only possible action is aw. Additionally, at any time slot either
cE(t) or cN (t) decrease by 1, thus yielding the transition
probabilities

p((q, v0, s0, rj , n0, N − 1, 0)|(q, v0, s0, ri, n0, N, 0), aw)

= αγpR,ij . (13)

When cE(t)=1, according to the behavior of the queue mod-
eled in Eq. (1), we have

p((q − 1, v0, s0, rj , n0, 0, 0)|(q, v0, s0, ri, n0, 1, 0), aw)

= αγpR,ij . (14)

Instead, when cN (t)=1, a radio resource could not be assigned
in the next time slot with probability 1 − pg , giving the
following transitions:

p((q, v0, s1, rj , n0, 0, 0)|(q, v0, s1, ri, n0, 0, 1), aw)

= αϕ(1− pg)pR,ij , (15)

or a radio resource can be assigned with probability pg
allowing the following transitions:

p((q, v0, s1, rj , n1, 0, 0)|(q, v0, s1, ri, n0, 0, 1), aw)

= αϕpgpR,ij . (16)

IV. OPTIMAL EXECUTION POLICY

We now derive an optimal action selection strategy that
maximizes the average inference accuracy while meeting
the constraints on the average execution time and the task
discarding rate. To do so, we formulate an optimization
problem by exploiting the above MDP framework, and solve
it through Linear Program (LP) mapping – a well-established
and effective solution approach [14].

Without loss of optimality we limit our search within
the class of past-independent randomized policies
µ : X×A→[0, 1], where X is the set of possible system
states and µ(a|x)=p(a(t)=a|x(t)=x) is the probability
of taking action a∈A when in state x∈X . Note that the
distribution of the action is independent of the past history
of the system, so that the state-action sample paths are
Markovian with transition probabilities p(x′|x, a). If the
Markov process is ergodic (i.e., recurrent aperiodic for
any control policy [15]), then time averages converge to
state-space averages. Thus, by denoting with A(x, a) the

accuracy generated by taking action a when being in state x,
we can express the expected accuracy as

A =
∑
x∈X

∑
a∈A

A(x, a)πµ(x, a), (17)

where πµ(x, a) is the joint steady state distribution of the
states and the actions, and A(x, a)=0 for actions that do not
correspond to the execution of an inference (i.e., aw and ag).

Next, following [10], we define the average execution time
TEX as the average total queuing time, which encompasses
the execution time along with idleness epochs and the time
required for radio resource assignment. Formally, TEX is
given as the ratio between the fraction of time a task remains
in the queue and the fraction of executed tasks, that is

TEX =

∑
x∈X

∑
a∈A r1(x, a)πµ(x, a)∑

x∈X
∑

a∈A r2(x, a)πµ(x, a)
, (18)

where

r1(x, a) =

{
1 if a = aw, ag,

0 otherwise,
(19)

is an indicator function for the count of time slots in which
execution-related actions are not chosen. By recalling that
waiting (i.e., aw) is the only admissible choice during both
running executions (i.e., cE(t) > 0) and radio resource nego-
tiation (i.e., cN (t) > 0), then r1(x, a) inherently accounts for
the time spent in executing a task (either locally or remotely)
and the time spent in obtaining radio resources. Similarly,

r2(x, a) =

{
1 if a ̸= aw, ag,

0 otherwise,
(20)

is a flag indicating whether a task is executed or not.
The optimal randomized policy for maximizing the average

accuracy can be obtained by solving the following LP:

argmax
µ

∑
x∈X

∑
a∈A

A(x, a)πµ(x, a) (21)

s.t.
∑

x∈X
∑

a∈A r1(x, a)πµ(x, a)∑
x∈X

∑
a∈A r2(x, a)πµ(x, a)

≤ tc (22)

1−
∑

x∈X
∑

a∈A r2(x, a)πµ(x, a)

ϕv
≤ dr (23)∑

a∈A
πµ(x

′, a)−
∑
x∈X

∑
a∈A

πµ(x, a)p(x
′|x, a)=0,∀x′

(24)∑
x∈X

∑
a∈A

πµ(x, a)=1 (25)

that yields the optimal steady state distribution π⋆
µ(a, x).

Constraint (22) states that the average execution time cannot
exceed a maximum tolerable value tc. Constraint (23) imposes
that the task dropping probability is lower than the target value
dr. Indeed, the ratio between the probability of executing a
task and the probability of generating a task ϕv represents
the fraction of tasks generated and effectively executed, while
the left-hand side term in (23) represents the probability of

TABLE I
ACCURACY AND EXECUTION TIMES ASSOCIATED WITH THE DIFFERENT

ACTIONS

a1 a2 a3 al

Ae 88.9 92.9 93.84 72.4
Te [ms] 2 3 4 10

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value

Qmax 10 Tg [ms] 5
bs 5 tc [ms] 30
bv 5 dr 0.1
τmax [ms] 15 Nr 4

not executing a generated task. Finally, constraints (24)–(25)
come from the mapping of the MDP into the LP [14], where
(25) represents a flow-balance constraint.

Finally, the optimal policy µ⋆(a|x) can be obtained as

µ⋆(a|x) =
π⋆
µ(a, x)∑

a∈A π⋆
µ(a, x)

, (26)

that is, as the optimal probability of choosing action a,
conditioned on the system being in state x.

V. NUMERICAL RESULTS

In this section, we evaluate the system performance when
our optimal executing strategy is applied. The values of infer-
ence execution times and accuracy are presented in Tab. I: for
the early exiting model, they refer to a modified ResNet56 with
3 exits trained on the CIFAR-10 dataset [16], while, for the
local inference, they refer to the MobileNetV2 model executed
on a mobile device [17]. All relevant system parameters
considered for results derivation are listed in Tab. II and are
kept fixed, unless otherwise stated.

To find the set of channel states limiting the offloading
procedure for the different MCS, we considered the SNR
values reported in [18]. In particular, we fixed the transmission
rate of the CAV, the transmit power, and the noise power.
Then, depending on the value of the channel envelope power
associated with each channel state, we identified a set of SNRs
and identified which of the channel states allow for a sufficient
MCS that can honor the rate constraint Rc.

We also remark that, since a non zero value of accuracy
is obtained only if the task is executed, we normalize the
maximum accuracy obtained under the optimal policy with
respect to the fraction of tasks for which an inference is
performed. We do so by defining

A =

∑
x∈X

∑
a∈A A(x, a)π⋆

µ(x, a)∑
x∈X

∑
a∈A r2(x, a)π⋆

µ(x, a)
, (27)

which is considered as the reference metric for performance
assessment.

Fig. 2 shows the average accuracy as a function of the
steady state probability of the application being in active

1 2 3 4 5 6 7 8

10
-3

75

80

85

90

Fig. 2. Average accuracy as a function of ϕv , as obtained with Edge
Computing with and without Early Exiting, and for various settings of ϕs. It
is assumed pg = 0.8, fDT = 0.01 and Rc = 15Mbps.

state (ϕv) and for different values of the busy probability of
the server (ϕs). Moreover, a comparison between the derived
optimal policy and a benchmark scenario where the edge
can only execute the full DNN (i.e., no EE is possible) is
reported. In the latter case, we set the execution time and
accuracy as in the third column of Tab. I. Referring to the
EE-based policy, we can observe how the obtained accuracy
matches the DNN highest performance for low values of
ϕv . However, when the task generation rate increases (higher
values of ϕv), the accuracy starts slightly decreasing, since
the action policy favors earlier exits of the DNN model to
avoid queue overflow and meet the constraint on the task
dropping rate. Then, as ϕv further increases, the system starts
avoiding radio resource requests by prioritizing local inference
(hence, avoiding the time to offload the task), which causes
additional accuracy drop. These effects are exacerbated when
the server availability is exiguous (high values of ϕs), since
remote task execution is affected by delayed assignment of the
computing resources. Importantly, when the task generation
rate at the CAV grows (high values of ϕv), the traditional edge
computing approach with no EE favors local inference, while
our approach exploits the earlier classifiers at the edge server,
thus reaching higher accuracy. This effect is substantial when
the edge availability rate is high (i.e., low values of ϕs), with
our policy producing an accuracy gain of 11% if compared to
the traditional edge computing scheme.

Next, Fig. 3 shows how the running application require-
ments affect the average accuracy. In particular, the plot reports
the average accuracy as a function of the constraint on the
average execution time tc and for different values of the
target maximum dropping rate dr. As expected, by relaxing
the application constraints, performance improves, since the
optimal policy favours remote execution to maximize accuracy.
Furthermore, the results highlight the flexibility of the early
exiting paradigm in satisfying the application constraints:
under stringent constraints, remote execution is still viable by
exploiting the earlier classifiers.

Finally, Fig. 4 illustrates how the inference executing strat-
egy reacts to different channel dynamics and network condi-
tions. The plot reports the average accuracy as a function of the
probability of obtaining a radio resource pg , and for different
regimes of channel correlation fDT . Two different MCSs

10 12 14 16 18 20 22 24 26 28 30

75

80

85

90

Fig. 3. Average accuracy as a function of tc and for various settings of
dr . It is assumed ϕv = 5e − 3, ϕs = 0.8, pg = 0.6, fDT = 0.01 and
Rc = 30Mbps.

(i.e., different rates Rc) are considered for the same channel
partitioning scheme. As expected, when the probability of ob-
taining a radio resource is low, local execution is predominant:
this allows the system to honor the target task dropping rate,
at the cost of a lower accuracy value. Instead, as pg increases,
the CAV offloads the task more frequently, so as to maximize
the accuracy. We can also observe that transmitting at higher
rate requires a higher minimum SNR and this may prevent
successful offloading, hence leading to a longer waiting time
before a task can be actually dispatched to the server. In this
case, the action policy is prone to opt for local computing thus
reducing the attained accuracy. This highlights the importance
of carefully adapting the MCS according to the wireless
link conditions, since channel impairments may induce severe
degradation of the attained accuracy if the transmission rate
is selected regardless of the propagation phenomena. Finally,
looking at the impact of the channel dynamics, one can observe
how a higher accuracy level can be achieved when the channel
exhibits low correlation, since in this case the channel tends
to remain in unfavorable states for a shorter time. This effect
is even more evident with higher rate constraints.

VI. CONCLUSIONS

We considered mobile devices that have to execute DNN
tasks, either locally or by offloading them to the network edge.
By leveraging both the Early Exiting and the Edge Computing
paradigms, and modeling their interaction through a Markov
Decision Process, we derived a low-complexity offloading
policy that maximizes the tasks accuracy. We investigated the
benefits of our policy in a scenario where automated vehicles
are connected with an edge server. Results show that early
exiting provides high flexibility in adapting the performance
to different operational conditions and application-specific
requirements. In particular, the obtained accuracy level can
be tailored to the task generation rate at the vehicles, to
the computing capabilities available at the server, and to the
channel conditions and network load, thus demonstrating that
Early Exiting can be a powerful tool to optimally orchestrate
DNN tasks in dynamic scenarios.

As future development, we plan to extend the proposed
model to capture complex multi-CAV dynamics impacting
the server and network load, as well as the interference

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

75

80

85

90

Fig. 4. Average accuracy as a function of pg and for various settings of Rc,
and fDT . It is assumed ϕv=0.001 and ϕs=0.5.

experienced by the CAV users. Also, we will account for CAVs
generating tasks with different service requirements and levels
of priority.

REFERENCES

[1] 3GPP, “Service requirements for V2X services ,” 3rd Generation Partner-
ship Project (3GPP), Technical Specification (TS) 22.185, 2016, v.14.0.0.

[2] 5GAA, “C-V2X Use Cases: Methodology, Examples and Service Level
Requirements,” 5G Automotive Association, White Paper, 2019.

[3] ——, “C-V2X Use Cases Volume II: Examples and Service Level
Requirements,” 5G Automotive Association, White Paper, 2020.

[4] E. Cinque, F. Valentini, A. Persia, S. Chiocchio, F. Santucci, and
M. Pratesi, “V2X Communication Technologies and Service Require-
ments for Connected and Autonomous Driving,” in 2020 AEIT In-
ternational Conference of Electrical and Electronic Technologies for
Automotive (AEIT AUTOMOTIVE), 2020, pp. 1–6.

[5] L. Andreone, R. Brignolo, S. Damiani, G. Sommariva, G. Vivo, and
M. Stefano, “SAFESPOT Final Report,” , Tech. Rep., 2010, v.1.0.

[6] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “Efficient Mobility-
Aware Task Offloading for Vehicular Edge Computing Networks,” IEEE
Access, 2019.

[7] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicular
Edge Computing Networks: A Load-Balancing Solution,” IEEE Trans.
on Veh. Tech., 2020.

[8] B. Lv, C. Yang, X. Chen, Z. Yao, and J. Yang, “Task Offloading and
Serving Handover of Vehicular Edge Computing Networks Based on
Trajectory Prediction,” IEEE Access, 2021.

[9] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in IEEE ISIT,
2016.

[10] D. Callegaro, Y. Matsubara, and M. Levorato, “Optimal Task Allocation
for Time-Varying Edge Computing Systems with Split DNNs,” in IEEE
GLOBECOM, 2020.

[11] D. Callegaro and M. Levorato, “Optimal Edge Computing for
Infrastructure-Assisted UAV Systems,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 2, pp. 1782–1792, 2021.

[12] Y. Matsubara, M. Levorato, and F. Restuccia, “Split Computing and
Early Exiting for Deep Learning Applications: Survey and Research
Challenges,” 2022.

[13] C. Tan and N. Beaulieu, “On first-order Markov modeling for the
Rayleigh fading channel,” IEEE Trans. on Comm., 2000.

[14] K. W. Ross, “Randomized and Past-Dependent Policies for Markov
Decision Processes with Multiple Constraints,” Oper. Res., 1989.
[Online]. Available: https://doi.org/10.1287/opre.37.3.474

[15] S. Meyn, R. L. Tweedie, and P. W. Glynn, Markov Chains and Stochastic
Stability, 2nd ed., ser. Cambridge Mathematical Library. Cambridge
University Press, 2009.

[16] F. Ilhan, L. Liu, K.-H. Chow, W. Wei, Y. Wu, M. Lee, R. Kompella,
H. Latapie, and G. Liu, “EENet: Learning to Early Exit for Adaptive
Inference,” 2023.

[17] Q. Zhang, X. Che, Y. Chen, X. Ma, M. Xu, S. Dustdar, X. Liu, and
S. Wang, “A Comprehensive Deep Learning Library Benchmark and
Optimal Library Selection,” IEEE Trans. on Mob. Comp., 2023.

[18] J. Fan, Q. Yin, G. Y. Li, B. Peng, and X. Zhu, “MCS Selection for
Throughput Improvement in Downlink LTE Systems,” in ICCCN, 2011.

