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A Customized EKF model for GNSS-based
Navigation in the Harsh Space Environment

Oliviero Vouch∗, Andrea Nardin∗, Alex Minetto∗, Matteo Valvano∗, Simone Zocca∗, Fabio Dovis∗
∗Department of Electronics and Telecommunications (DET), Politecnico di Torino, Torino, Italy

Abstract—The extension of the Global Navigation Satellite
System (GNSS) Space Service Volume (SSV) is of utmost rel-
evance to afford enhanced autonomy in navigation, guidance,
and control of space missions. Pioneering studies have shown
the feasibility of using terrestrial GNSS signals in space applica-
tions, supporting Orbit Determination and Time Synchronization
(ODTS) during Earth-Moon transfer orbits (MTOs) and lunar
landings. However, non-terrestrial applications face challenges
due to compromised signal availability at high altitudes, thus
requiring advanced receiver architectures coupled with external
aiding data. This paper presents a customized Bayesian filter, the
Trajectory-Aware Extended Kalman Filter (TA-EKF), specifically
designed for GNSS navigation along MTOs. The proposed filter
architecture integrates aiding information, such as the planned
mission orbital trajectory, to speed up filter convergence and
achieve highly accurate positioning solutions. The performance
of the TA-EKF is evaluated through simulations of MTO mission
scenarios supported by Monte Carlo analyses, and it is compared
against a standalone EKF.

Index Terms—Global Navigation Satellite System, Moon, Space
Service Volume, Lunar Missions, Extended Kalman Filter

I. INTRODUCTION

Although Global Navigation Satellite Systems (GNSSs)
were historically conceived to supply accurate and dependable
Positioning, Navigation and Timing (PNT) to terrestrial users,
the momentum taken by the space sector has made the space
environment a new playground for in-orbit GNSS-based navi-
gation systems. Since the Global Positioning System Package
(GPSPAC) onboard the Landsat 4 mission was launched in
1982 [1], major technology progress in GNSS space-borne
receivers allowed to steadily improve the spectrum of PNT
services within the Terrestrial Service Volume (TSV) [2].
Over the past decade, the increasing demand for navigation
capability for space vehicles has fostered the expansion of
the Space Service Volume (SSV) well beyond the Low-Earth
Orbit (LEO) [3]. Interestingly, National Aeronautics and Space
Administration (NASA)’s Magnetospheric Multiscale Mission
(MMS) set the highest record for GNSS signal reception
and onboard Position, Velocity, Timing (PVT) solutions to
about 150 000 km, i.e., ∼25 Earth Radii (RE), away from the
Earth’s surface [4]. Nevertheless, most of state-of-the-art Orbit
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Determination and Time Synchronization (ODTS) and Precise
Orbit Determination (POD) algorithms are still broadly relying
on Direct-to-Earth (DTE) ranging capabilities and long-term
post-processing solutions [5], [6]. These methods, besides
putting high costs on the ground infrastructure, might turn
out not being sufficient to support the deep-space exploration
roadmap both in terms of service availability and far-side
accessibility [7], [8].

Forecasting a sustained human presence to the Moon for
long-term operations on the lunar surface and at other deep
space destinations, increased autonomy in high-altitude space-
craft navigation and guidance is urgent [9]. Further motivated
by the absence of a dedicated communication and navigation
infrastructure in the lunar environment, Earth GNSS signals
are key to enable real-time absolute positioning for Earth-
Moon transfer orbits (MTOs) as well as to assist in Moon
landing operations [10]–[12]. However, the MTO environment
poses non-trivial challenges that can prevent the navigation
unit from achieving highly-accurate orbit determination. In
fact, reduced GNSS signal availability is likely to be expe-
rienced at high altitudes because of the very-limited region
in the field of view where satellites can be observed [11]. In
addition, the unfortunate distribution of GNSS satellites can
result in very-high Geometric Dilution Of Precision (GDOP),
even with multi-constellation GNSS receiver processing. In-
deed, the steady spacecraft dynamics along the MTO penalises
spatial diversity in the retrieved satellite measurements, thus
increasing their linear dependency in multilateration problems.
Against this background, a batch Least-Mean Squares (LMS)
estimator inevitably leads to extremely coarse single-point
solutions, even if the receiver could process satellite signals
correctly and provide sufficient observables. Moreover, filtered
GNSS navigation solutions obtained through legacy Bayesian
formulations [13], [14] can be affected by errors of hundreds
of meters when approaching Moon altitudes. Yet the moderate
accuracy improvements obtained from the combined process-
ing of both code-based and carrier phase-based observables are
not rewarding the increased burden of handling phase-cycle
ambiguities [15].

A well-documented approach to pursue precise satellite
orbit determination foresees the integration of an orbital prop-
agator within the GNSS navigation filter [16], [17]. Being the
spacecraft trajectory constrained by the orbital forces, GNSS
observations can be tightly fused with an orbital forces’ model;
while the latter is used to propagate the spacecraft’s state
along its orbit, satellite measurements can prevent the orbital



propagation from drifting. The resulting hybrid architecture is
often referred to as Orbital Filter (OF), and the work in [18]
was a pioneering Proof of Concept (PoC) of an OF for the
MTO based on an Extended Kalman Filter (EKF).

In a similar vein, this contribution proposes a customized
EKF architecture tailored to GNSS-based navigation on
the way to the Moon. The developed solution, namely a
Trajectory-Aware EKF (TA-EKF), integrates the information
about the planned MTO as an aiding to correct the EKF state-
prediction which follows an oversimplified constant-velocity
process model. By leveraging a dedicated simulation frame-
work able to faithfully reproduce the GNSS signal environ-
ment up to Moon altitudes, the TA-EKF is verified against a
plain EKF architecture. In particular, Monte Carlo (MC) anal-
yses allow to exhaustively investigate the TA-EKF positioning
accuracy performance together with its convergence pattern.

II. BACKGROUND

Following the Bayesian approach to statistical estimation,
the process to be estimated and the associated dependency of
measurements may be written in the form [19]:

xk = fk−1(xk−1,ud,k−1) +wk−1 (1)

zk = hk(xk) + vk (2)

where:
• xk is the true, unknown process state at time tk;
• zk is the deterministic measurement vector at time tk;
• wk−1 ∼ N (0,Qk−1) and vk ∼ N (0,Rk) are the

normally distributed process and measurement noises,
respectively; they are assumed with zero-mean, known
variance-covariance statistics and mutually independent.

• fk−1 and hk are known, non-linear state-transition and
observation functions, respectively.

• ud,k−1 are deterministic forcing functions affecting the
process state; this term is assumed equal to zero.

The combination of (1) and (2) leads to a state-space for-
mulation following a Hidden Markov Model (HMM) [20].
Identifying with x∗

k the estimated process state at time tk—
which includes, among the other quantities, the spacecraft
trajectory—the following relation holds:

xk = x∗
k +∆xk (3)

which introduces ∆xk as the residual of the estimate. Choos-
ing x∗

k = fk−1(x
∗
k−1), the linear(-ized) process dynamics and

measurement models can be obtained in terms of residuals
[19]:

∆xk = Φk−1 ·∆xk−1 +wk−1 (4)

zk − hk(x
∗
k) = Hk ·∆xk + vk (5)

where Φk−1 and Hk are the linear(-ized) state-transition
matrix and measurement matrix, respectively. Based on
model (4), the predicted residual takes the form:

∆x̂−
k = Φk−1 ·∆x̂k−1 (6)

being ∆x̂k−1 the residual on the last process estimate at tk−1.
Summing x∗

k on both sides of (6), the linear(-ized) process
prediction model in terms of total states reads as [19]:

x∗
k +∆x̂−

k︸ ︷︷ ︸
x̂

−
k

= Φk−1 ·

x∗
k−1 +∆x̂k−1︸ ︷︷ ︸

x̂k−1

 (7)

with the associated predicted process covariance:

P̂−
k = Φk−1P̂k−1Φ

T
k−1 +Qk. (8)

Accordingly, leveraging on model (5), the corrected residual
estimate at time tk follows as:

∆x̂k = ∆x̂−
k +Kk

zk −
(
hk(x

∗
k) +Hk∆x̂−

k

)
︸ ︷︷ ︸

ẑ−
k

 (9)

where the predicted measurements ẑ−
k are highlighted. Even-

tually, the linear(-ized) process update equation in terms of
total states is obtained from (9) by resuming x∗

k [19]:

x∗
k +∆x̂k︸ ︷︷ ︸

x̂k

= x̂−
k +Kk(zk − ẑ−

k ) (10)

The associated process covariance update is:

P̂k = (I −KkHk)P̂
−
k (I −KkHk)

T +KkRkK
T
k (11)

being Kk = P̂−
k HT

k (HkP̂
−
k HT

k +Rk)
−1 the Kalman gain.

A. Transitional model for process dynamics

Although a plethora of possibilities exist [21], a simple
constant velocity model is selected to characterize the discrete-
time evolution of the process state. Then, the state vector at
time tk is defined as:

xk =
[
rk vk bk ḃk

]T
(12)

and it involves the following quantities:
• rk the spacecraft antenna absolute position vector (Earth-

Centred Earth-Fixed (ECEF) coordinates) in (m);
• vk the spacecraft antenna absolute velocity vector (ECEF

coordinates) in (m/s);
• bk the range equivalent of the GNSS receiver clock offset

in (m);
• ḃk the range-rate equivalent of the GNSS receiver clock

drift in (m/s);
Based on (12), the state-transition matrix corresponds to [22]:

Φk−1 =


I3×3 I3×3∆t 03×1 03×1

03×3 I3×3 03×1 03×1

01×3 01×3 1 ∆t
01×3 01×3 0 1

 (13)

where ∆t is the process state propagation interval, In×n is
the n× n identity matrix and 0n×n is the n× n null-matrix.



Eventually, the process noise variance-covariance matrix can
be compactly written as [22]:

Qk−1 =

[
Qp 06×2

02×6 Qt

]
(14)

where Qp is the covariance component for the positioning
states resolved about the ECEF-frame axes; it reads as:

Qp =

∆t3

3

∆t2

2
∆t2

2
∆t

⊗ diag(Sa,x, Sa,y, Sa,z︸ ︷︷ ︸
Sa

) (15)

being Sa the acceleration Power Spectral Density (PSD) and
⊗ the Kronecker product. Similarly, Qt is the covariance
component for the timing states and equals:

Qt =

Scϕ∆t+ Scf
∆t3

3
Scf

∆t2

2

Scf
∆t2

2
Scf∆t

 (16)

being Scϕ and Scf the PSDs of the GNSS receiver clock phase-
drift and frequency-drift, respectively1.

III. METHODOLOGY

A. Trajectory-Aware EKF for MTO navigation

According to the developed TA-EKF model, the GNSS
navigation filter is aided by the nominal spacecraft trajectory
along the MTO. The latter trajectory—in terms of spacecraft
position and velocity—can be retrieved onboard as an aiding
state via

• Guidance, Navigation & Control (GNC) subsystems;
• processing of radiometric measurements - performed at

the mission ground segment by federated ground-based
networks and uploaded as telecommands [6] - paired with
a suitable propagator.

This aiding to the GNSS navigation filter is meant to enhance
the process state prediction as well as to empower the filter
convergence rate upon initialization. By identifying with x̃k−1

the aiding state the latest a-posteriori estimate x̂k−1 is mapped
to, a residual term can be defined:

εk−1 = x̂k−1 − x̃k−1. (17)

Then, the linear(-ized) prediction model (7) can be modified
in order to account for the residual term:

x̂−
k = Φk−1x̂k−1 − εk−1. (18)

For this approach to be effective, accurate synchronization
must exist between x̂k−1 and the aiding state it is mapped to
via (17). Suppose the aiding describing the nominal process
state evolution is given as a discrete-time sequence of state
vectors. Given the generic k − 1-th time instant and in the
absence of any additional timing information, it is not obvious
which aiding state vector should be matched to x̂k−1. In
fact, there is no guarantee that a one-to-one sample matching

1For Qk−1, Scϕ = 2.5 ·10−12 (m/s)2/Hz, Scf = 1.5 ·10−4 (m/s2)2/Hz,
Sa,x = Sa,y = Sa,z = 2 (m/s2)2/Hz were set as in [23].

between the aiding and the estimated trajectories is optimal.
Accordingly, several strategies can be implemented to perform
aiding matching [24]. For example, one might select the aiding
state upon interpolation of the available data, taking into
account both the elapsed time as well as potential receiver
motion anomalies that might cause abrupt slowdowns and
accelerations [25]. Given the same sample rate between the
nominal spacecraft trajectory and the GNSS navigation filter
estimate, in this work the aiding state is selected by averaging
over a set of aiding state vectors taken within a neighborhood
of x̂k−1. Overall, the more the identification of the aiding
state is accurate, the faster is expected to be the navigation
filter convergence.

B. Simulation framework

As a byproduct of ongoing research activities, the upcoming
Lunar GNSS Receiver Experiment (LuGRE) is taken as refer-
ence mission-case scenario. LuGRE is a joint NASA-Italian
Space Agency (ASI) demonstration payload which will be
carried on the Firefly Blue Ghost Mission 1 (BGM1) with the
goal of demonstrating multi-GNSS based PNT in cis-lunar
space and at Moon altitudes [26], [27]. Among the driving
scientific investigations identified to respond to the LuGRE
objectives, it is considered the performance assessment of
filtering-based PVT solutions obtained both onboard through-
out the mission and via ground-based post-processing of the
multi-GNSS observables collected during the mission transit-
phase up to Moon altitudes (i.e., about 62 RE) [28].

Tailored to this case-study, a custom Matlab ®-based soft-
ware simulator has been developed in order to emulate the
GNSS signal environment experienced along the MTO. Two
GNSS constellations are considered: Global Positioning Sys-
tem (GPS) and Galileo. As regards the former, the antenna
panel patterns for Block IIR and IIR-M satellites have been
designed following the technical documentation released by
the U.S. Coast Guard Navigation Center (NAVCEN) [29].
Moreover, details about the panel pattern specification for
Block IIF over L1-band was retrieved based on the published
scientific products from NASA’s GPS Antenna Character-
ization Experiment (GPS ACE) [30]. Concerning Galileo
satellites’ antenna radiation patterns, the details of which are
kept confidential, unofficial Effective Isotropic Radiated Power
(EIRP) values have been assumed for main and side lobes
as derived by the European Space Operations Centre (ESOC)
to enable preliminary scientific investigations in support of
the PROBA-3 mission [31]. For the radiation patterns of both
constellations, a 90◦ off-boresight angle mask is adopted.

1) Modelling and simulation of GNSS observables: In the
designed simulation framework, the synthetic generation of
GNSS observables to each of the modelled GPS and Galileo
satellites along the MTO is bound to both geometric and radio-
metric visibility conditions. In particular, geometric visibility
takes into account the instantaneous availability of a Line-
of-Sight (LOS) link between the spacecraft and the satellite
vehicle; it can be hindered either in case the satellite-spacecraft
baseline is more than 90◦ off-boresight the nadir pointing
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Fig. 1: Expected radiometric visibility pattern for both GPS and Galileo constellations (a) and GDOP profile (b) along the
MTO up to low-lunar orbit.

direction, or as a result of occultation effects induced by the
Earth and the Moon. Radiometric visibility, instead, is based
upon the estimation of the received Carrier-to-Noise-density
ratio (C/N0) from each satellite, and it leverages the link-
budget equation modelling the C/N0 obtained by the LuGRE
receiver [26]. Radiometric visibility strictly depends on a
favourable alignment of the receiver’s and GNSS satellites’
antenna radiation patterns.

Pseudorange measurements carry satellites-to-spacecraft
range information corrupted by satellite clock errors, propaga-
tion delays induced by the atmosphere, plus other unmodelled
effects usually lumped into a residual error term [32]. For sim-
ulation purposes, only code-based ranging is considered and
compensation of the modelled bias contributions is assumed.
Therefore, the corrected pseudorange measurement to a visible
satellite s at time instant tk is simulated according to:

P
(s)
r,k = ρ

(s)
r,k + cδtr,k︸ ︷︷ ︸

bk

+ϵ
(s)
r,k (19)

where:
• ρ

(s)
r,k is the spacecraft-to-satellite geometric range in (m);

• δtr,k is the spacecraft GNSS receiver clock offset in (s);
• ϵ

(s)
r,k ∼ N

(
0, σ

(s)
r,k

)
is the normally distributed pseudor-

ange residual in (m).
For δtr,k, the apex (s) is omitted in (19) under the hypothesis
that satellite measurements are predicted forward to a time of
arrival common to all active receiver tracking channels (i.e.,
tk); it follows that the receiver clock bias evenly affects all the
available observables. Accounting for the phase noise on the
clock offset and the random walk of the receiver clock drift
over ∆t, δtr,k is simulated according to:

δtr,k =

√
Scϕ

∆t
+

Scf∆t

3︸ ︷︷ ︸
x̄ϕ,rms

+N (0, Scf∆t) (20)

where x̄ϕ,rms is the average Root-Mean-Square (RMS) value
for the clock offset phase noise. As concerns ϵ

(s)
r,k, the value

of σ
(s)
r,k is computed as a function of the estimated C/N0

following the model reported in [27].
The corrected Doppler-shift measurement, transformed into

the equivalent pseudorange-rate, to a visible satellite s at time
instant tk is constructed based on the radial component of the
satellite-spacecraft relative velocity vector:

Ṗ
(s)
r,k = u

(s)T

r,k

[
v
(s)
k − vk

]
+ ḃk + ϵ̇

(s)
r,k (21)

where:
• v

(s)
k is the velocity vector of visible satellite (s) at the

measured transmission time (w.r.t. tk) in (m/s);
• u

(s)
r,k is the spacecraft-to-satellite unit LOS vector;

• ϵ̇
(s)
r,k is the normally distributed pseudorange-rate residual

(i.e., ϵ̇(s)r,k ∼ N
(
0, σ̇

(s)
r,k

)
) in (m/s).

Similarly to ϵ
(s)
r,k, the value of σ̇

(s)
r,k for ϵ̇

(s)
r,k is retrieved as a

function of the estimated C/N0 following the corresponding
model in [27].

IV. RESULTS
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Fig. 3: Time-series of the standard deviation (1σ) of the
navigation filter estimates for the position (a), velocity (b),
clock-bias (c) and clock-drift (d) states. Comparison between
plain EKF and TA-EKF.

A. Predicted visibility and dilution of precision throughout
MTO

Taking a reference C/N0 threshold of 23 dBHz to dis-
criminate radiometric visibility of satellites, Fig. 1a reports
the predicted signal availability as a function of the distance
from the Earth (in RE) along the MTO. In particular, both
composite and disjoint trends are shown for GPS and Galileo
constellations. GNSS Observables are available if either ge-
ometric and radiometric visibility are experienced at the re-
ceiver location. Line markers represent the average number
of GNSS satellites under radiometric visibility measured over
15-minutes long time windows during the simulated mission
transit-phase. Moreover, background markers highlight that,
besides the mean expected radiometric visibility, instanta-
neous satellite visibility might be oscillating. Interestingly, the
Galileo constellation shows a much earlier average radiometric
visibility drop-off at about 30 RE compared to the GPS
constellation. This phenomenon is likely to be induced by an
overly pessimistic assumption for the EIRP values of both
main and side lobes of Galileo satellites’ radiation patterns.

The estimated GDOP profile along the MTO is represented

in Fig. 1b. Unsurprisingly, the more the spacecraft gets away
from the Earth’s surface, the more the GDOP deteriorates. In
fact, close to the Earth, radiometric-visible satellites fall under
a broader angle of view which generally guarantees a low
linear dependency among the spacecraft-to-satellite unit LOS
pointing vectors; on the contrary, getting away from the earth’s
surface, the angle of view increasingly narrows whichever the
satellite distribution is and the geometrical arrangement of
ranging sources deteriorates. This phenomenon is summarized
by the resulting GDOP profile which acts as a compact,
although non-exhaustive, scalar indicator of the effect of the
satellites’ spatial distribution on the covariance terms of the
state estimates.

B. Navigation filters comparison

With the aim of statistically assessing the state-estimation
performance of the proposed TA-EKF architecture, a mission
time frame of one hour is selected in a neighborhood of a
point belonging to the LuGRE trajectory at about 25 RE. In
fact, this portion of the LuGRE MTO is considered relevant
to the mission scientific objectives [26]. Fig. 2 illustrates
the Empirical Cumulative Density Function (ECDF) of the
positioning error obtained via MC analysis with 100 runs.
Moreover, Table I summarizes the cumulative statistics at few
relevant percentiles. Taking the accuracy as figure of merit,
the proposed TA-EKF architecture achieves obvious gains
over a plain EKF. For example, at the 95-th percentile, the
accuracy improvement amounts to 83.53%. As a matter of
fact, the introduction of aiding information (e.g., the expected
MTO trajectory) empowers the navigation filter against the
detrimental GDOP conditions which are experienced along the
MTO (see Fig. 1b for reference). Furthermore, these results
have been obtained despite the adoption of an overly simple
model to characterize the process dynamics between discrete-
time filter iterations.

In addition, Fig. 3 highlights the convergence pattern (1σ-
uncertainty) of the navigation filter estimates for the process
states modelled in (12). Owing to high spacecraft dynamics,
the process state estimate suffers the adoption of a constant
velocity approximation (i.e., high acceleration noise). In turns,
upon linearization of the state-transition model in the EKF,
the gradient of fk−1 over the uncertainty bounds of the state-
estimate is likely to be large. This condition, besides signalling
a coarser model linearization against the one attainable with
the true state, negatively impacts on the process state estimate.
Moreover, such phenomenon reflects on the process covariance

TABLE I: Positioning error (m) for both plain EKF and TA-
EKF architectures considering 3600 filter iterations at 1Hz.

Navigation Filter
Error Percentile (m)

50-th 75-th 95-th

Plain EKF 38.79 65.98 131.24

TA-EKF 4.32 8.52 21.61



estimate—which, as a consequence of linearization, depends
upon the state estimate—and it is especially visible in Fig. 3b
for the unaided EKF.

In light of the foregoing, the introduction of an aiding state
as in the proposed TA-EKF empowers model linearization and
leads to enhanced state estimates. Besides, the convergence
pattern of covariance statistics improves accordingly.

V. CONCLUSIONS

By leveraging a dedicated simulation framework, the present
study demonstrates the use of a customized EKF, i.e., TA-
EKF to mitigate bad GNSS visibility conditions across MTOs.
The filter exploits the trajectory data of a sample MTO to
improve the EKF prediction stage. Under proper conditions
this solution can improve the accuracy of the position estimate
of about 84% at the 95-th percentile. Furthermore, the TA-EKF
shows a faster convergence than its unaided counterpart in
both position and velocity states. Further works will quantify
the effects on the state estimation when inaccurate trajectory
aidings are applied to the TA-EKF.
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