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ABSTRACT
The landscape of human interaction has undergone a profound

transformation since the advent of Online Social Networks (OSNs).

Not only are they changing interpersonal dynamics, but they are

also redefining the way businesses, political figures, and media

organizations engage with the broader population. In today’s dig-

ital landscape, OSNs have spawned a new class of social media

influencers who play a crucial role in shaping opinion. These influ-

encers actively compete within social media to seize users’ attention.

Through these targeted efforts, influencers seek to captivate users

and build a loyal and engaged fan base, solidifying their position

as an authoritative voice in the digital world. In this work, we de-

velop a game-theoretic model for the interactions between users

and influencers, where the latter compete to maximize their impact

on the population’s opinions. The goal of this work is twofold: first,

we formalize the problem of maximizing social media impact and

study the structure of the optimal solution. Then, taking inspiration

from the optimal strategy, we develop a game with two opposing

players trying to maximize their influence on users’ opinions, for

which we characterize the Nash equilibria in pure strategy. The

model allows us to evaluate the impact of influencer differences

and user population characteristics. In addition, we study the effect

of the speed at which user popularity evolves in such a competi-

tive environment. The proposed model proves valuable for brand

competition, marketing campaigns, and the ever-evolving political

arena.

CCS CONCEPTS
• Applied computing→ Sociology; • Information systems→
Social advertising; Social networking sites; Social networks;
• Theory of computation→ Social networks; • Computing
methodologies→ Simulation evaluation.
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Online social networks, game theory, competition, Nash equilibria,

social impact maximization, opinion dynamics
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1 INTRODUCTION
The proliferation of online social networks (OSNs) has impacted

various components of modern living such as the way we commu-

nicate, consume information, and navigate daily hurdles. It touches

a variety of dimensions of everyday life and has not spared the way

people form their opinions and make their consumption decisions.

With billions of users around the world and an ever-expanding

range of platforms and features, online social networks can pro-

duce alluring opportunities both for companies and individuals

(e.g., influencers). A defining characteristic of online social net-

works (OSNs) is the remarkable asymmetry among users. On the

one hand, there is a small number of highly visible and influential

users, commonly known as influencers or opinion leaders. On the

other hand, the vast majority of users are “regular”users and typi-

cally have a much more modest following. We consider an opinion

model that explicitly separates these two classes of users [9] and

considers the interactions between the two
1
. Another distinctive

feature is the content filtering performed by the platform on the

posts suggested to the users.

In this paper, our goal is to represent the competition between

different influencers over an OSN and investigate the best possible

strategies they can adopt to maximize their own utility function by

extending the opinion model for OSN proposed in [9]. As a first step

in our investigation, we address the fundamental question of how

an influencer, taken in isolation, should best proceed to increase her

influence on a particular group of users. An influencer’s strategy is

a sequence of posts that convey an opinion, and that she publishes

on her social media profile. The “best”strategy is the one that brings

the greatest benefit, however, it is defined. Although an individual’s

opinion generally does not frequently fluctuate, an influencer’s

stance can be influenced by both external and personal factors. For

example, it is common for influencers to retract certain positions

due to the pressure of public opinion. Another example, influencers

may change their collaborative partnerships and promote other

brands’ products. Similarly, politicians often adjust their positions

based on the opinions of their electorate on certain issues. Therefore,

assuming an influencer’s opinion can span the entire opinion space,

we show that the greedy strategy which maximizes influence at

every post emission is not always optimal. Our experiments hint

that it is optimal to group the user base, which has diverse initial

views on the topic, around a common viewpoint, and then move

the group towards the desired opinion.

1
In this work, to avoid the confusion which would arise using the gender-neutral

“they”, we will, arbitrarily, use she/her for an influencer, and he/his for a regular user.

https://doi.org/10.1145/3614419.3644031
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Following the analysis of this scenario, we then consider the com-

petition of two influencers in a population. We aim to characterize

the resulting strategic competition, which can be mathematically

formulated as a zero-sum game. Our goal is to identify the Nash

equilibria that represent the optimal outcome in the context of the

game’s rules and strategies. Even if considering only a duopolistic

situation may appear restrictive, it encompasses many real-world

situations, such as political opposition: democrats vs liberals, brand

competition, or software rivalry, e.g. Linux vs Windows.

The article is structured as follows. Section 2 discusses relevant

work in the area of opinion dynamics and strategic competition. Our

novel social impact maximization problem is formalized in Section

3, along with the underlying model of opinion dynamics. Section

4 is concerned with the optimal solution and a comparison with

the greedy one. Then, Section 5 models influencers’ competition by

defining a two-player game for which we study the Nash equilibria

in pure strategy. We extend the model and consider arbitrary user

distributions thanks to a discretization procedure in Section 6. Sec-

tion 7 concludes the article. The source code for this work can be

found on GitHub
2
.

2 RELATEDWORK
Our work can be considered at the intersection between the lit-

erature on opinion dynamics [3] and the more classic economic

literature on competition [18]. Widely used models of opinion dy-

namics include linear models proposed by DeGroot [6] and Fried-

kin–Johnsen [8], and non-linear models by Deffuant–Weisbuch [5]

and Hegselman-Krause [20]. We refer the reader to [19] for a recent

review on different models of opinion propagation, and to [1] for

results specific to non-linear (bounded confidence) dynamics.

Influence maximization is a different problem, slightly related

to ours [13]. It aims at finding a (small) set of 𝑘 agents so that to

maximize the adoption of a certain product. This problem differs

largely from ours in that it considers an explicit network structure

and uses a simpler underlying (cascade) opinion model whose states

are binary. Many extensions appeared, [4] considers a negativity
bias, and [15] non only competitive behavior. In the following,

we limit ourselves to mentioning works more similar in spirit to

ours, i.e., those dealing with non-linear (e.g., bounded confidence)

dynamics, and focused on opinion manipulation by a restricted

set of strategic agents aiming at maximizing their impact on a

population of users.

A bounded confidence model of opinion dynamics on a fixed

network structure comprising both influencers and followers is

proposed and analyzed by simulation in [2]. In [12] the impact of

charismatic leaders is taken into account in bounded confidence

dynamics as a constant exogenous signal. Interestingly, they dis-

covered that higher signals may have less effect in attracting other

agents. Opinion manipulation through (possibly time-varying) ex-

ogenous inputs is analyzed in [17] for an Eulerian (i.e., by con-

sidering a probability distribution of agents) bounded-confidence

system. In [23], the authors consider a continuous-time bounded

confidence model with a single leader, showing that it is possible to

control the leader velocity to ensure final consensus at a prescribed

opinion value.

2
Link: https://github.com/Franco-Galante/onine-social-impact-maximization

We mention that optimal control approaches have also been

proposed to optimize opinion manipulation. For example, [11] takes

this direction considering the case of a single influencer. In [14],

a set of (coordinated) controllers is optimally placed to minimize

the convergence time of the system to a final stable state in the

influence graph.

To the best of our knowledge, there are only a few game-theoretical

attempts to study the problem of opinion formation/manipulation.

Papers [7, 16, 21, 22] consider a scenario in which two competing

marketers play a resource allocation game, whose goal is to estab-

lish how many resources to allocate to each potential customer in

the network. Customers dynamics obey a voter model in [16], to a

consensus model over a graph in [21, 22], and to a Friedkin-Johnsen

model in [7]. A Nash control formulation is proposed in [10] for the

case of two opposing influencers. Opinions spread on an underlying

graph in an epidemic manner.

Differently from previous papers, we consider non-linear opinion

dynamics where the interaction between influencers and users is

mediated by a social media platform. Influencers operate on a fixed

budget, and have to decide what opinion to express within each of

𝑁 posts.

3 FORMULATION OF THE PROBLEM
We first discuss the underlying opinion model that describes how

popular individuals (i.e., influencers) interact with the pool of reg-
ular users through an online platform. The opinion model is a

simplified version of the model presented in [9]. We will use the

full version of this model in the framework discussed in Section 6.1.

Then, we introduce the social impact maximization problem for an

influencer taken in isolation.

3.1 The opinion model
The foundational element at the core of our approach is the model

that determines how social media users interact with each other.

The social media audience can be divided into twomacro-categories:

the popular and influential, commonly referred to as influencers,
and the “other”users, who represent the vast majority of OSN users,

whom we refer to as regular users. We are interested in the dynam-

ics between users and influencers and consider only this type of

interaction. Indeed, we use a simplified version of the Communica-

tion Asymmetry opinion model [9], considering a one-dimensional

opinion space X = [0, 1] and a simple characterization of the influ-

encers.

Let us denote by I (indexed by 𝑖) the set of influencers and by

U (indexed by 𝑢) the set of regular users. These social network

users at a certain time instant 𝑛 ∈ N+
0
hold opinions 𝑥

(𝑖 )
𝑛 ∈ X

and 𝑥
(𝑢 )
𝑛 ∈ X, respectively. We assume that at each discrete time

instant 𝑛 influencer 𝑖 ∈ I publishes a post over the social media

network conveying her expressed opinion. In this paper, as opposed

to [9], we consider influencers with time-varying opinions, i.e.,

the influencers generate a sequence of posts {𝑥 (𝑖 )𝑛 }, 𝑛 ∈ [0, .., 𝑁 ],
where𝑁 represents a considered (finite) time horizon. An influencer

will adapt her expressed point of view strategically in order to

maximize her impact on the population (see Section 3.2).

https://github.com/Franco-Galante/onine-social-impact-maximization
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A given post is not guaranteed to reach a regular user 𝑢 ∈ U,

due to the filtering effect of the social media platform. This rep-

resents the content personalization performed by most platforms

(e.g., the ranking of posts to be shown on the user’s timeline). We

assume a post effectively reaches a regular user with a probabil-

ity 𝜓

(
|𝑥 (𝑖 ) − 𝑥 (𝑢 ) |

)
which depends on the distance between the

influencer’s expressed opinion and the user’s opinion, modeling a

homophilic behavior, whereby individuals are more likely to inter-

act with others who share similar beliefs.

A user holding opinion 𝑥
(𝑢 )
𝑛 at instant 𝑛 updates his opinion

according to the following rule:

𝑥
(𝑢 )
𝑛+1 =


𝛼𝑧 (𝑢 ) + 𝛽𝑥 (𝑢 )𝑛 + 𝛾𝑥 (𝑖 )𝑛 if Ψ

(
𝜓 ( |𝑥 (𝑢 )𝑛 − 𝑥 (𝑖 )𝑛 |)

)
= 1

𝛼
𝛼+𝛽 𝑧

(𝑢 ) + 𝛽

𝛼+𝛽 𝑥
(𝑢 )
𝑛 otherwise

(1)

where 𝛼, 𝛽,𝛾 are fixed parameters in [0, 1] such that 𝛼 + 𝛽 +
𝛾 = 1. Ψ(𝜓 ) is a Bernoulli random variable with parameter𝜓 and

determines whether a post will be visible to a given user or not.

Note that when a user receives a new post from the influencer, i.e,

when Ψ = 1 (first row of Eq. (1)), he moves to a new position in the

opinion space, which is a convex combination of three contributions:

i) his prejudice 𝑧 (𝑢 ) , i.e., the preconceived opinion about a certain

matter
3
; ii) his current opinion 𝑥

(𝑢 )
𝑛 ; and iii) the influencer’s opinion

𝑥
(𝑖 )
𝑛 expressed in the post.

Otherwise (second row of Eq. (1)), the influencer’s contribution

is not present, either because the post has not been proposed to

the user or he has not been influenced (e.g., not liked it), so a renor-

malization of the weights is required. This case in Eq. (1) models a

process of self-thinking, namely that users who are not reached by

an influencer’s post gradually return to their prejudice 𝑧 (𝑢 ) .
The above updating rule is simple but does not allow a direct

interpretation of the parameters. Noting that the free parameters

in the first line of Eq. (1) are only two, it is possible to rewrite the

update rule:

𝑥
(𝑢 )
𝑛+1 =


(1 − 𝛽)

[
𝛿𝑧 (𝑢 ) + (1 − 𝛿)𝑥 (𝑖 )𝑛

]
+ 𝛽𝑥 (𝑢 )𝑛 if Ψ (𝜓 ) = 1

𝛿

𝛿+ 𝛽

1−𝛽
𝑧 (𝑢 ) +

𝛽

1−𝛽

𝛿+ 𝛽

1−𝛽
𝑥
(𝑢 )
𝑛 otherwise

(2)

where 𝛿, 𝛽 ∈ [0, 1] have a direct interpretation as the inertia (𝛽)
of the user, i.e., the weight the users give to their current opinion,

and the degree of stubbornness (𝛿), i.e., the weight on the user’s

preconceived opinion.

Remark 1. (Large population) In the large population limit (i.e.,
when |U| → ∞) fluctuations of aggregate random variables around
their average smooth out. Therefore macroscopic dynamics tend to
become deterministic.

Thanks to the large-population assumption, we do not have to

track the microscopic interactions described in Eq. (2) but we can

consider a distribution of regular users characterized by the prob-

ability density function 𝜇𝑛 (𝑥), whose evolution is driven by in-

fluencers’ posts emission. In particular, every time influencer 𝑖

generates a new post, a fraction 𝜓 ( |𝑥 − 𝑥 (𝑖 ) |)) of the population
3
This quantity could also be interpreted as the field effect of the total population, which
would represent a process of peer interaction not otherwise included in the model.

placed at 𝑥 will be hit by the influencer’s messages while the re-

maining fraction of users will not be reached by it. This assumption

greatly simplifies the analysis, in particular in Section 6.2 where

we consider a more complicated function𝜓 , while it is not strictly

necessary for the rest of the work (see Remark 2). In our framework,

the assumption is not restrictive, as our focus lies in the mean-field

effects observed across a large population of individuals.

3.2 Online social impact maximization for an
influencer in isolation

We are interested in determining the influencer posting pattern

that maximizes her online social impact on a population of regular

users. Even considering the case where a single influencer seeks

to maximize her impact over a finite time horizon, assuming there

are no other influencers, is insightful and complicated enough to

be worth exploring. We will then use the observations gathered in

this simplified setting to develop our game of online competition.

Our novel social impact maximization problem, for the case of

a single influencer, can be formulated as follows. Recall that we

consider a fixed time horizon 𝑁 , where the influencer has to choose

the temporal sequence of opinions {𝑥 (𝑖 )𝑛 }𝑁𝑛=1 to convey through

her posts in order to attract regular users towards a desired target
opinion 𝑥𝑇 in the opinion space. This value can represent, for

example, the true opinion of the influencer regarding a certain topic

or a certain consumption behavior to be instilled in the population.

Regular users obey the dynamics in Eq. (1).

We assume that the influencer knows how users would react to

her posts, i.e., the parameters of Eq. (1), and in particular the shape

of𝜓 (·) as a function of the opinion distance𝑑 ≜ |𝑥 (𝑢 )𝑛 −𝑥 (𝑖 )𝑛 |, which
dictates whether her posts are received by users in the first place

(platform filtering). Moreover, we assume that the influencers know

the initial distribution of users 𝜇0 (𝑥) (e.g., through polls, surveys,

reviews and other forms of users’ feedback).
4

The benefit an influencer obtains from a particular distribution

of users’ opinions may vary. This variability can be captured by an

arbitrary function 𝑓 (·) that provides the influencer’s benefit from
a generic user at a given distance from the target opinion. Thus, in

its greatest generality, the problem can be formulated as follows:

max

{𝑥 (𝑖 )𝑛 }𝑁𝑛=1
E𝑥

[
𝑓 ( |𝑥 (𝑢 )

𝑁
− 𝑥𝑇 |)

]
=

∫
𝑓 ( |𝑥 − 𝑥𝑇 |)d𝜇𝑁 (𝑥) (3)

s.t. dynamics in (2)

where 𝜇𝑁 (𝑥) is the final distribution reached by users over the

opinion space at time 𝑁 . Note however that the maximization in Eq.

(4) is over the entire sequence of𝑁 posts generated by the influencer.

The influencer benefit function 𝑓 (·) is reasonably a non-increasing

function of the distance from the target opinion.

The formulation in Eq. (4) leads to a complex optimization prob-

lem, given the generality of the initial user distribution, the prob-

abilistic movement of users (in the finite population case), the ar-

bitrary choice of the influencer’s opinion at each step, and the

arbitrariness of function 𝑓 (·). Therefore, we will now make a series

4
It would be possible to incorporate a noisy version of such distribution into the model,

along the lines of what happens in politics, where polls provide a noisy measure of

the true distribution of public opinion. We leave this possibility for future work.
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of simplifications that eventually lead to a problem that is solvable

in polynomial time with 𝑁 .

First, we assume that 𝑓 (·) is a linearly decreasing function of

the distance from the target point 𝑥𝑇 , i.e., 𝑓 = −|𝑥 (𝑢 )
𝑁
− 𝑥𝑇 |. While

this simplification does not effectively reduce the complexity, it

allows us to get a reasonable case study that does not require us to

specify details of the shape function 𝑓 (·). Therefore, by linearity of

the mean and as max−𝑔(·) = min𝑔(·), the problem becomes:

min

{𝑥 (𝑖 )𝑛 }𝑁𝑛=1
E𝑥

[
|𝑥 (𝑢 )
𝑁
− 𝑥𝑇 |

]
=

∫ ���𝑥 − 𝑥𝑇 ��� d𝜇𝑁 (𝑥) (4)

s.t. dynamics in (2)

This reformulation also corresponds to a simpler interpretation:

the influencer aims to bring the overall opinion of the population

of regular users as close as possible to her target opinion.

Our main simplification assumes a binary (0-1) behavior for the

event related to whether a post reaches a user at a certain distance

𝑑 from the opinion expressed in the post. This is achieved, for

example, by the following natural choice for the function𝜓 :

𝜓

(
𝑑 =

���𝑥 (𝑢 )𝑛 − 𝑥 (𝑖 )𝑛

��� ;𝑤 )
=

{
0 if 𝑑 > 𝑤

1 if 𝑑 ≤ 𝑤
(5)

where𝑤 is a fixed width parameter. This means that a post convey-

ing the opinion of the influencer 𝑥
(𝑖 )
𝑛 is deterministically read at

time 𝑛 by users who have an opinion that is at most𝑤 away from

it. This formulation of the model essentially implements the well

known concept of bounded confidence (see e.g. [20] and [5]), where

here we consider a single entity (the influencer) publishing posts

to attract regular users. We emphasize that bounded confidence dy-

namics have proven quite difficult to analyze, so most of the known

results have been obtained through Monte Carlo simulations.

Remark 2. Due to the assumption of a 0-1𝜓 (·) function in Eq. (5),
the model becomes deterministic even in the case of |U| < +∞ (finite
population). Indeed, a user either moves or does not move, depending
solely on his distance from the influencer’s expressed opinion.

Even with this simplifying assumption, the optimization problem

remains significantly challenging. Indeed, it can be formulated as a

Markov Decision Process (MDP), in which the number of states of

the underlying Markov Chains (MCs), i.e., the MCs obtained by fix-

ing the influencer sequence of posts, is combinatorially exponential

with the number of users.

To gain initial insights into the problem and as a useful bench-

mark, we consider the greedy solution that, at each time step, se-

lects the influencer’s opinion 𝑥
(𝑖 )
𝑛 that produces the best instanta-

neous improvement of the objective function. More formally, let

Δ𝑥
(𝑢 )
𝑛 ≜ 𝑥

(𝑢 )
𝑛+1−𝑥

(𝑢 )
𝑛 be the opinion shift of a user𝑢 holding opinion

𝑥
(𝑢 )
𝑛 at time 𝑛:

Δ𝑥
(𝑢 )
𝑛 =


(1 − 𝛽)

[
𝛿𝑧 (𝑢 ) + (1 − 𝛿)𝑥 (𝑖 )𝑛 − 𝑥

(𝑢 )
𝑛

]
ifΨ(𝜓 ) = 1

𝛿

𝛿+ 𝛽

1−𝛽

(
𝑧 (𝑢 ) − 𝑥 (𝑢 )𝑛

)
ifΨ(𝜓 ) = 0

For simplicity of exposition, but without loss of generality, con-

sider the case in which all users are initially to the left of target

point 𝑥𝑇 , so that positive values of Δ𝑥
(𝑢 )
𝑛 translate into equivalent

improvements of the objective function, whereas negative values

translate into equivalent utility losses.

Then, given the users’ distribution 𝜇𝑛 (𝑥), the greedy algorithm

selects, at each step 𝑛, the influencer opinion 𝑥
(𝑖 )
𝑛 maximizing the

overall users’ opinion shifts:

𝑥
(𝑖 )
𝑛 = argmax

𝑥
(𝑖 )
𝑛

E
[
Δ𝑥
(𝑢 )
𝑛

]
= argmax

𝑥
(𝑖 )
𝑛

∫
Δ𝑥
(𝑢 )
𝑛 d𝜇𝑛 (𝑥) (6)

Claim 1. The greedy strategy is not always optimal.

As might have been expected, the above greedy strategy is, in

general, suboptimal. We will demonstrate this in the next section in

a simple but representative scenario. The reason for the suboptimal-

ity lies in the fact that the greedy algorithm does not “look into the

future," ruling out solutions that initially reduce the overall utility

but, in the long run, lead to a better final configuration of users in

the opinion space. Understanding when the greedy strategy may be

suboptimal and by how much is of great interest both theoretically

and practically. In cases where the greedy strategy does not lead to

an optimal outcome, it is essential to apply strategies that sacrifice

short-term gains in favor of long-term benefits.

4 THE OPTIMAL STRATEGY
The optimal strategy can be computed (numerically) under the sim-

plifying assumptions introduced in the previous section by resorting

to a discretization of the opinion space and the user distribution.

In particular, let us assume that both the users’ opinion and the

influencer’s opinion expressed in each post can only take values in a

discrete set of cardinality 𝐵. In practice, we divide the opinion space

X = [0, 1] into bins of constant width, and assume that only the

mid-point of each bin is a feasible opinion value for the influencer’s

expressed opinion. For the sake of simplicity, we take as target

points 𝑥 (𝑇 ) ∈ {0, 1} for the influencers operating in the system:

these points can be interpreted as two opposing political views or

as two different brands offering the same product to customers. In

the case of a single influencer, we assume 𝑥𝑇 = 1 (the case 𝑥𝑇 = 0

is completely symmetrical).

Let B be the set of feasible opinion values, and 𝑗 be the index

running on it. We will also discretize the prejudice of users, assum-

ing that it belongs to a finite set Z ⊆ B of prejudice values, of

cardinality 𝑍 . Note that the population is indeed described by two

distributions, the time-varying opinion and the static prejudice.

At last, we assume that the distribution 𝜇𝑛 (𝑥) of users over the
opinion space can be well approximated by considering the users

belonging to a finite setM of “groups”, of cardinality𝑀 , indexed by

𝑚. Users of a given group𝑚 share the same (time-varying) opinion

𝑥
(𝑚)
𝑛 ∈ B, and the same (static) prejudice value 𝑧 (𝑚) ∈ Z. Groups

represent discrete “masses”of users moving together as a single unit,

that cannot split into smaller sub-units over time. This is guaranteed

by the assumption stated in Eq. (5), which leads to deterministic

opinion movements. Note that without the 0-1 assumption for𝜓 ,

the position of a group could not be used to identify the state of the

system and that as long as 0 < 𝜓 < 1, there would be an exponential

growth of group subdivisions over time.

It follows that the system state at time 𝑛 can be fully specified by

the vector {𝑥 (𝑚)𝑛 }𝑚 , and that there are 𝐵𝑀 possible system states.
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Figure 1: A simple illustration with only four states (𝐵 = 2) to demonstrate the method used to determine the optimal solution.

At each time step, influencer 𝑖 has to choose an opinion 𝑥 (𝑖 ) ∈ B to

convey in her 𝑛-th post, and we can separately evaluate the effect of

this post on each group. This can be efficiently done by exploiting

the Trellis-like structure of system dynamics described next.

4.1 Trellis-like structure for optimal strategy
Under the simplifying assumptions introduced before, the optimal

solution can be computed in polynomial time for any 𝑛 but exploit-

ing the trellis-like structure sketched in Figure 1 for the toy case of

𝑀 = 2 groups,𝑚 ∈ {0, 1}, and 𝐵 = 2 opinion values, 𝑥
(𝑚)
𝑛 ∈ {𝑎, 𝑏},

leading to 4 possible system states. Let for short 𝑆
(𝑠 )
𝑛 ∈ S denote

the possible system states at time 𝑛. From each state 𝑆
(𝑠 )
𝑛 ∈ S, it

is possible to evaluate all reachable states and the action 𝑥 (𝑖 ) that
leads to the transition. This allows us to define a transition matrix

𝑇 , shown on the left in Figure 1. Note that there may be multiple

𝑥 (𝑖 ) leading to the same target state, and for our purposes these

transitions are equivalent. Indeed, we are interested only in the final

best state, and not in finding all particular sequences of traversed

states leading to it.

With the transition matrix in hand, it is possible to unfold the

process over time, starting from a given initial state 𝑆1
0
(see right

part of Figure 1). The resulting trellis-like structure allows us to

account for all paths starting from the initial state and efficiently

compute the one to the final best state.
Without loss of generality, we can consider the case where 𝑥𝑇 =

1 and the objective of our social impact maximization problem

becomes max{𝑥 (𝑖 ) }𝑁
1

E[𝑥𝑁 ]. Therefore, the best state is the one

that leads to the highest average opinion in the population for

𝑛 = 𝑁 . In principle, the path leading to this state is not unique, and

thus we consider a path as optimal if it leads to the best state in the

shortest possible time.

4.2 The case of two user groups
Now that we have a method for deriving the optimal solution to

the influence maximization problem, we can prove the correctness

of Claim 1. For this, we have considered a very simple system

that is computationally tractable and contains enough features to

be of interest. We consider only two regular users’ groups whose

Table 1: Scenarios of the greedy vs optimal comparison

# 𝑧 (0) 𝑥
(0)
0

𝑧 (1) 𝑥
(1)
0

𝛼 𝛽 𝑁 𝑤

1 0.5 0.005 0.5 0.995 0.05 0.3 50 0.1

2 0.005 0.005 0.995 0.995 0.05 0.3 50 0.1

prejudice and initial opinion are 𝑧 (𝑚) , 𝑥 (𝑚)
0

, 𝑚 ∈ {0, 1} respectively,
and a large number 𝐵 of possible opinion values, leading to 𝐵2

possible system states.

The discrepancy between greedy and optimal strategies can be

evaluated for a variety of parameters. However, for the sake of

compactness, we limit ourselves to two representative scenarios

whose parameters are summarized in Table 1.

There are two ways in which the optimal solution can be better.

It is either faster, i.e., it reaches the best state with a smaller number

of posts (first scenario, Fig. 2a), or it leads to a higher value of

E[𝑥𝑁 ], i.e., a better best final state (second scenario Fig. 2d).

As a general rule of thumb, we have derived the following em-

pirical rule from the optimal numerical solution of the system:

Remark 3. The optimal strategy for the online impact maximiza-
tion problem is to first bring the (two) user groups close together, and
then gradually persuade them towards the target opinion 𝑥𝑇 .

Note that as an effect of our choice of the platform filtering

function𝜓 , group𝑢 is affected by the influencer’s expressed opinion

onlywhen |𝑥 (𝑢 )−𝑥 (𝑖 ) | < 𝑤 . Thismeans that a groupwhose opinion

𝑥 (𝑢 ) is too far from the influencer’s expressed opinion 𝑥 (𝑖 ) is not
affected by the post. Recall, however, that a group can still change

its current opinion in the absence of a post’s influence, as it is also

attracted to its prejudice. In the next Section, we will go into more

detail about what happens in the two-group scenario and explain

the underlying system dynamics. We will also briefly discuss the

effects of the parameters.

4.3 Numerical experiments: parameters impact
The first scenario considers two user groups with equal prejudice

of 0.5 (representing a moderate position toward a certain topic
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Figure 2: (2a) Scenario # 1 in Table 1, (2b) greedy, (2c) optimal. (2d) Scenario # 2 in Table 1. (2e) greedy (2f) optimal.

or indifference between the two extreme choices), and extreme

initial opinions around 0 and 1, respectively. The second scenario

instead assumes that the prejudices of the two groups coincide with

their initial opinions, which are again set at the extremes of the

opinion domain. It is interesting to note that the two strategies

lead to different results in both cases, albeit in different ways. This

becomes clear by looking at figures 2b-2c (for the first scenario) and

figures 2e-2f (for the second scenario), showing detailed locations

of the two user groups, as well as the influencer opinion, at each

time step 𝑛, separately for the greedy and optimal strategy.

In the first scenario, the greedy strategy (plot 2b) leads the in-

fluencer to focus on the first, closest group 𝑥 (𝑢=1) and ignore the

second, distant group 𝑥 (𝑢=0) , which, in the absence of influencer

stimulus, starts to gradually shift towards its prejudice 𝑧 (0) = 0.5.

Only when the second group is close enough, the greedy influ-

encer finds it temporarily convenient to jump close to the second

group, and immediately after go back to 𝑥 (𝑖 ) = 1 to bring the first

group close to the extreme of the opinion domain. This results in

the erratic behavior of the orange trajectory in plot 2b.

These “hectic”moves make the greedy strategy inefficient, and

in fact, the greedy strategy is largely outperformed by the optimal

strategy (plot 2c) in terms of the number of steps (posts) to reach

the best state. Note that, on the contrary, the optimal strategy

focuses on the second distant group, which at some point (around

𝑛 = 10) merges with the first group. The coalesced groups are then

efficiently moved together towards the best state (see plot 2c).

In the second scenario, the greedy strategy (plot 2e) never al-

lows the first group 𝑥 (𝑢=1) to step away from its (already taken)

radicalized opinion at 𝑥 (𝑢=1) = 0.995. Note that since𝑤 = 0.1 the

first group would move away from its initial position whenever the

influencer conveys an opinion 0.895 ≤ 𝑥 (𝑖 ) < 0.995

On the contrary, the optimal solution (plot 2f) accepts to tem-

porarily worsen the opinion of the closer group, and by so doing it

is able to pull the second group up to a better (closer to the target

point) final position. This requires, at some point, a non-greedy

step (see the non-monotonocity
5
in plot 2d).

The difference between the two strategies increases when 𝑤

takes small values and gradually diminishes as 𝑤 increases. For

𝑤 > 0.5, the greedy and optimal strategies coincide in virtually

all cases, as larger 𝑤 values lead to a more significant influence

over the population. The extreme scenario is the one in which the

entire population is always reached by a post. The optimal strategy

in this case is to publish the target opinion exclusively, as there

is no advantage in taking other viewpoints. Finally, it is worth

mentioning that the weight coefficients 𝛼 and 𝛽 in the opinion

update determine both the inertia of the system and the maximum

achievable opinion value of each user group. Slow dynamics (high

values of 𝛼 + 𝛽) are more challenging to study numerically because

of the smaller opinion shifts Δ𝑥 produced, which require a denser

discretization of the opinion space (larger number of bins 𝐵)

Results (in terms of greedy vs optimal performance) are consis-

tent despite the choice of these parameters, considering that the

final opinion value depends very weakly on 𝛽 (which primarily

impacts the convergence time), while 𝛼 essentially determines the

best target opinion that any strategy can eventually achieve in the

long run.

5
Sometimes we observe non-monotonic behavior on the greedy trajectory, which can

occur when any greedy step produces a negative increment of the objective function.
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5 THE GAME: COMPETING FOR INFLUENCE
The above framework is interesting in that it shows how to opti-

mally target a population of users, and it provides evidence that it is

worth accepting short-term losses to achieve long-term gains. How-

ever, it completely disregards competition from other influencers

on the social media platform. Inspired by the fact that in the online
impact maximization problem an influencer has an incentive to first

take a more moderate position in order to then exert influence over

a larger user base, we will develop a game that embodies this idea.

Indeed, Remark 3 suggests that it is better for the influencer to first

group users, i.e. to express an opinion that allows it to reach “dis-

tant”users even, potentially, at the expense of de-radicalizing users

close to its target opinion, and then gradually draw them towards

its target. This consideration allows us to propose a fixed structure

for an influencer’s strategy that greatly simplifies the problem and

makes it tractable.

We define a game for the duopolistic competition of influencers

aiming at maximizing their online social impact. Indeed, we con-

sider a set I = {0, 1} of two players (influencers), each of which

has a target opinion 𝑥 (𝑖;𝑇 ) : the opinion around which the influ-

encer wants to attract users, recall Eq. (4). We will assume, without

loss of generality, to have players having diametrically opposing

views: 𝑥 (𝑖=0;𝑇 ) = 0 and 𝑥 (𝑖=1;𝑇 ) = 1, representing, for example, two

opposing political parties.

The players/influencers are characterized by their willingness to

deviate from their target opinion 𝑥 (𝑖;𝑇 ) when trying to reach new

users. This aspect is modeled by the parameter 𝛿 (𝑖 ) , which allows

us to define 𝑥 (𝑖;𝐸 ) = 𝑥 (𝑖;𝑇 ) − sgn

(
𝑥 (𝑖;𝑇 ) − 0.5

)
· 𝛿 (𝑖 ) , which we

will refer to as the exploratory6 opinion. We thus assume that the

influencers will only assume one of the two opinions 𝑥 (𝑖;𝑇 ) , 𝑥 (𝑖;𝐸 ) .
Moreover, the “exploration”phase will always precede the “target-

ing”phase, the situation is sketched in Figure 3.

Figure 3: Two-phase strategy {𝑥 (𝑖 ) }𝑁
𝑖=1

structure.

Our assumptionsmay appear rather restrictive, however, they are

motivated in part by the Remark 3 and by the necessity of reducing

the space of possible actions for each player for tractability purposes.
As a matter of fact, the set of actions becomes A (𝑖 ) = {0, 1, ..., 𝑁 },
and the action 𝑎 (𝑖 ) determines how long the exploration phase

lasts for influencer 𝑖 , defining a particular {𝑥 (𝑖 ) } sequence. Recall
that knowing (the system’s parameters) and the influencer post

sequence, the movement of the regular users is described by Eq. (2).

Note that, once we fix the sequences of posts emitted by the two

influencers (and knowing the system’s parameters), the movement

of the regular users can be deterministically predicted by opinion

dynamics in Eq. (2), by superposition of the effects.

6
This variable represents the opinion that the influencer expresses while trying to

approach a group of users who are far apart in their opinions and whom it would

otherwise not reach due to the filter function𝜓 .

The last element to be specified to characterize our game is

the payoff (or utility) function, which in our setting is a function

𝑢𝑖 : A×A → R and specifies the preferences of the players over the
outcomes of the game, given the strategy of the other player(s). In

our case, the payoff function corresponds to the objective function

in Eq. (4), where the opinion configuration depends on the combined

actions of the two influencers: 𝑥
(𝑢 )
𝑁

(
𝑎 (0) , 𝑎 (1)

)
.

The game is a simultaneous game, i.e. both players choose their

strategies at the same time and then stick to their choice for the

entire duration of the game. It is also a game with complete infor-
mation, i.e. both players know perfectly the rules of the game, i.e.,

they know the set of actions playable by the other player and the

effect that such actions exert on the population of users.

5.1 The two-groups scenario
We first consider a simplified but illustrative scenario, similar to the

one in Section 4.2, for which it is possible to provide an exact proce-

dure to determine the Nash Equilibria (NE) under the assumption

that only pure strategies may be adopted.

0 1

Figure 4: Schematic representation of the simplified scenario.

The restriction to two user groups is not strictly necessary, and

we could consider a population with𝑀 groups, each with a (static)

prejudice 𝑧 (𝑚) ∈ Z. Indeed, the complexity of the procedure to

determine the NE would only scale linearly with𝑀 , as will become

clearer later. However, we decided to limit the number of groups

to two for continuity with Section 4.2 and ease of interpretation.

We (first) consider a 0-1 𝜓 function to ensure identical reactions

from the bulk of users belonging to the same group. So doing,

we avoid the exponential growth of the user groups over time

generated by their splitting. In Section 6 the case of a general user

distribution and𝜓 function is discussed. Each group is characterized

by 𝑧 (𝑚) ∈ Z (assuming 𝑥
(𝑚)
0

= 𝑧 (𝑚) ) and its “proportion”defined

as 𝜌 (𝑚) ≜
∫
d𝜇𝑁 (𝑥 |𝑧 (𝑚) )∫

d𝜇𝑁 (𝑥 )
with respect to the overall population.

Lastly, we consider influencers whose target opinions lay at the

extreme of the opinion domain: 𝑥 (𝑖;𝑇 ) ∈ {0, 1}. Fig. 4 sketches the
setting. We first look into some straightforward solutions to the

problem:

Proposition 1. If |𝑥 (𝑖;𝑇 ) − 𝑧 (𝑚) | ≤ 𝑤, ∀𝑚 ∈ M,∀𝑖 ∈ I then
(0, 0) is a Nash equilibrium (NE) of the game.

Proof. Without loss of generality, we can consider 𝑖′ such that

𝑥 (𝑖
′
;𝑇 ) = 1 (recall 𝑥 (𝑖;𝑇 ) ∈ {0, 1}). Given that 𝑥

(𝑚)
0

= 𝑧 (𝑚) , ∀𝑚 ∈
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M and |1−𝑥 (𝑚)
0
| ≤ 𝑤, ∀𝑚 ∈ M, then 𝑎 (𝑖

′ ) = 0 is a dominant strat-

egy for 𝑖′, i.e., argmax𝑎 (𝑖′ ) E𝑥 [𝑥
(𝑢 )
𝑁
({𝑎 (𝑖 ) }𝑖 )] = 0, ∀𝑎 (𝑖 ) , 𝑖 ∈ I \ 𝑖′.

Indeed, the total opinion increment Δ𝑥 ({𝑥 (𝑖 )𝑛 }𝑛) ≜ Δ𝑥 (0) + Δ𝑥 (1)

for a general 𝑥
(𝑖 )
𝑛 sequence is weakly smaller than Δ𝑥 ({𝑥 (𝑖;𝑇 ) }𝑛),

for any strategy of the other players. Every player would play this

dominant strategy, so (0, 0) is a NE. □

It is clear that such situations are not of interest. Note aslo that

in the exploration phase, a player favors the other player in some

way (i.e. the closer user group moves further away from the player).

A player would only do this if there is a possibility of reaching a

larger user base, which is otherwise hindered by filtering.

We make a structural assumption that is in no way restrictive

but has the dual goal of avoiding trivial solutions (see proposition

1) and ensures that the influencer does not deviate too much from

her target opinion. This captures the fact that the influencer needs

to still keep in contact with (and somehow maintain under control)

the more radical individuals (those closer to 𝑥 (𝑖;𝑇 ) ).

Assumption 1. a) Only the closest group in opinion𝑚 is reachable
(𝜓 ( |𝑥 (𝑖;𝑇 ) − 𝑥 (𝑚) |) = 1 ≠ 0) in the targeting phase while b) both
(𝑚,𝑀) are reachable in the exploring phase.

5.2 Exact solution for the two-groups scenario
Since the set of possible actions A is finite and as |I | = 2, it is

possible to find the Nash equilibria for the two-players game or to

determine when no Nash equilibrium exists.

Theorem 1. The procedure in Algorithm 1 identifies all the Nash
equilibria in pure strategy of the game, if any exist.

Proof. The rationale for the algorithm is that in a Nash equilib-

rium, each player plays a best response BR𝑖 (𝑎 (𝑖 ) , 𝑎 (−𝑖 ) ) to the other
player(s). In a two-player game, it is possible to define a matrix P in

which we have as rows the strategies of player 𝑖 = 0 and as columns

those of player 𝑖 = 1. Each element 𝑝𝑖 𝑗 is defined as (𝑢0, 𝑢1). This
matrix is well-defined because the action space A has finite car-

dinality, P is 𝑁 + 1 × 𝑁 + 1. For each column 𝑘 (strategy of player

𝑖 = 1), we compute argmax𝑎 (0) 𝑢0 (𝑎 (0) , 𝑎 (1) = 𝑘), which is the best
response of player 𝑖 = 0 to the action 𝑘 of player 𝑖 = 1. We do the

same over the rows and then consider the elements (𝑖, 𝑗), if any,
for which the procedure identified an argmax over both the rows

and the columns. These are the Nash equilibria in pure strategy, as

both players play their best response to each other’s strategy. □

5.3 Characterization of the Nash equilibria as a
function of the population characteristics

Figure 5 shows the Nash equilibria computed with the method in

Algorithm 1, as a function of the user inertia 𝛽 and the degree of

stubbornness 𝛿 and under the Assumption 1. The experimental

setting includes two equal user groups with 𝑧 (0) = 0.25, 𝑧 (1) =

0.75, the influencers are identical (𝛿 (0) = 𝛿 (1) ) and the considered

time horizon 𝑁 = 5, with a rectangular 𝜓 function with width

𝑤 = 0.7. We see that the less the population can be influenced,

the more time the influencers spend on exploration. This can be

explained by the fact that the closer an influencer is to a group of

Algorithm 1: Determine Nash equilibria

Data: players I, groups of usersM,𝜓 function, actions A
// Compute the payoff matrix 𝑃

foreach
(
𝑎 (0) , 𝑎 (1)

)
∈ A × A do

𝑣 ← argmin𝑖 𝑎
(𝑖 )

𝑉 ← I \𝑚
for 𝑛 ∈ {1, ..., 𝑁 } do

if 𝑛 < 𝑚 then
𝑥
(𝑚)
𝑛+1 = UpdateBelief (𝑥 (𝑣;𝐸 )𝑛 , 𝑥

(𝑉 ;𝐸 )
𝑛 ), ∀𝑚 ∈ M

else if 𝑚 < 𝑛 < 𝑀 then
𝑥
(𝑚)
𝑛+1 = UpdateBelief (𝑥 (𝑣;𝑇 ) , 𝑥 (𝑉 ;𝐸 ) ), ∀𝑚 ∈ M

else
𝑥
(𝑚)
𝑛+1 = UpdateBelief (𝑥 (𝑣;𝑇 )𝑛 , 𝑥

(𝑉 ;𝑇 )
𝑛 ), ∀𝑚 ∈ M

𝑃

[
𝑎 (0) , 𝑎 (1)

]
←

(
1 − E𝑥

[
𝑥
(𝑢 )
𝑁

]
, E𝑥

[
𝑥
(𝑢 )
𝑁

] )
// Compute Best Responses and Nash equilibria

BR0 (𝑎 (1) ) ← argmax𝑎 (0) P
[
·, 𝑎 (1)

]
BR1 (𝑎 (0) ) ← argmax𝑎 (1) P

[
𝑎 (0) , ·

]
𝑁𝐸 =

{
(𝑎 (0) , 𝑎 (1) ) : 𝑎 (0) ∈ BR0 (𝑎 (1) ), 𝑎 (1) ∈ BR0 (𝑎 (0) )

}
users, the more influence she can exert. This is also related to the

fact that (0, 0) is not a NE for the game. Since influencers in the

exploration phase have a higher influence and can reach more users,

any influencer who knows that the competing influencer can switch

to a milder opinion would also carry out an exploration phase.

In such a symmetric setting it is reasonable to expect symmetric

equilibria (as in Fig. 5), and this is summarized in Proposition 2:
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Figure 5: Nash equilibria in a symmetric scenario as a func-
tion of the population characteristics 𝛽, 𝛿 . The Nash Equilib-
ria are a list (of one element) of tuples of the form

(
𝑎 (0) , 𝑎 (1)

)
.

Proposition 2. In the two-groups scenario, in the symmetric case
(𝛿 (𝑖 ) = 𝛿 ∀𝑖, 𝑧 (0) = 1−𝑧 (1) , 𝜌 (0) = 𝜌1) the actions of the two players
in the Nash equilibrium are the same if the NE is unique.

Proof. It is rather straightforward to see that, in this situation,

the best response of player 0 is 𝐵𝑅0 = argmax𝑖 𝑢

(
𝜇𝑛 (𝑥)

���𝑎 (1) ) , and
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Figure 6: Nash equilibria as a function of 𝛽 and 𝛿 for different shifts 𝛿 (𝑖 ) from the target opinion 𝑥 (𝑖;𝑇 ) , we organize the shifts
for the two influencers as (𝛿 (0) , 𝛿 (1) ) and we consider (0.2,0.2) in (6a), (0.1,0.2) in (6b), and (0.2,0.3) in (6c).

it is equal to the best response of player 1 due to symmetry. Thus,

if the NE is unique, the two players play the same strategy. □

Under Assumption 1, the equilibria of the game are non-trivial,

i.e., different from (0, 0), and there is for the players a strategic

incentive to compete.

So far we discussed a fully symmetric situation but, it is in-

teresting to consider also an asymmetric distribution, i.e., 𝑧 (0) =
0.15, 𝑧 (1) = 0.75, in Figure 6 we depict the Nash equilibria. This

setup implies that player 0 has an initial advantage in terms of user

distribution. The structure of the above Nash equilibria suggests

that the one in a disadvantageous position (here player 1) has a

strategic incentive to prolong the exploration phases in order to

approach the average collective opinion value of the population

and thus also reach the most distant group and try to persuade it.

6 TOWARDS A MORE REALISTIC SCENARIO
Online social networks are characterized by pronounced asymme-

tries in the interaction between entities. Furthermore, in [9], the

authors model the closed feedback between regular users and in-

fluencers. User feedback determines the popularity of influencers,

which in turn is tied to their ability to reach users, i.e., their visibility
over the platform. In this section, we use the full specification of

the model in [9] in our framework.

6.1 Closed-loop opinion model
The users are subject to the dynamics described in Section 3.1

with the addition of the closed loop between regular users and

influencers. For simplicity, we already present the model in its

deterministic form, see Remark 1. The user feedback can be directly

derived by the value of 𝜓 , as it describes when a user is reached

by a certain post and the probability of he moving in the direction

of the influencer’s opinion because he likes it (positive feedback).

Therefore we can define the total feedback provided by the users

to a post of an influencer as 𝑇
(𝑖 )
𝑛 =

∫
𝜓
(𝑖 )
𝑛 d𝜇𝑁 (𝑥). The feedback

allows us to define the popularity 𝑝 (𝑖 ) update:

𝑝 (𝑖 ) (𝑡 + 1) = 𝑝 (𝑖 ) (𝑡) +𝑇 (𝑖 )𝑛 (7)

To close the loop, it is necessary to make𝜓 a function of popu-

larity, i.e. the more popular an influence is in the OSN, the more

users it can reach. To this end, consider the factorization of the

function𝜓 into two contributions (𝜓 = 𝜔 · 𝜃 ), where the first factor
models the homophily of interactions across OSNs together with

the filtering of the platform, and the second describes the degree to

which a user likes a post
7
. Considering 𝜃 a decreasing function of

opinion distance also models the fact that users with very different

opinions are less likely to be convinced. So even if an influencer

is very popular, she will find it difficult to convince users who are

distant in opinion.

6.2 Approximate solution of the game for
arbitrary𝜓 and user distribution

The closed-loop scenario is more realistic but clearly more com-

plicated. The procedure in Algorithm 1 cannot be applied directly

because a group of users𝑚 cannot be tracked perfectly. At each

time instant 𝑛, a certain group “splits”into a subgroup that is in-

fluenced and updates its opinion (with probability𝜓 (𝑑, 𝑝 (𝑖 ) )), and
the complementary group, which does not move. The number of

subgroups grows exponentially as 2
𝑁𝑀 . To avoid the exponential

explosion, one can discretize the opinion space into B bins and

keep the proportion of users from the groups inM in each of the

bins. With this simplification, it is possible to apply Algorithm 1 and

consider any𝜓 function and also any (discrete) distribution of users.

The 𝜓 function in the product form we used in our experimental

setting is:

𝜓
(𝑖 )
𝑛 (𝑑, 𝑝 (𝑖 ) ) = 𝜔 (𝑑, 𝑝 (𝑖 ) ) 𝜃 (𝑑) = 𝑒

𝜈 · 𝑑2

𝑝 (𝑖 )/∑𝑖 𝑝
(𝑖 ) (1 − 𝑑) (8)

only the first factor depends on the relative popularity of the

given influencer, and the parameter 𝜈 controls to what extent the

visibility of an influencer decays with the distance.

From now on, we consider two possible scenarios, the “slow-

dynamics”, in which popularity evolves considerably slower com-

pared to opinions, and the “fast-dynamics”, in which popularity

evolves quicker and has a greater impact on the visibility over the

7
Only the product 𝜔𝜃 is relevant for the total feedback, since a user must be reached

(Ω = 1) to give positive feedback (Θ = 1) in the general stochastic model.
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Figure 7: (a) Player’s payoffs considering the other influencer as stubborn with 𝑥
(𝑖;𝑇 )
𝑛 , ∀𝑛 for Scenario 1 (top) and Scenario 2

(bottom). Final opinion distribution at NE (b) Scenario 1 (c) Scenario 2, with different popularity growth speeds.

OSN. It is immediate to do so by appropriately normalizing the total

feedback update 𝑇
(𝑖 )
𝑛 in Eq. (7), choosing a large enough constant.

6.3 The effects of strategic behavior and
popularity evolution

We developed a game for which the solution is limited to a very

simplified structure. We will briefly discuss whether this simplified

strategic behavior leads to a sizeable advantage for the players who

behave strategically. To do this, we consider that one of the players

is stubborn, i.e., she only posts her target opinion 𝑥 (𝑖;𝑇 ) . We can do

this by looking at the first column and the first row of the payoff

matrix 𝑃 , which correspond respectively to a stubborn player 1 and

a stubborn player 2.

We consider a Beta-shaped prejudice distribution (see grey line

in Fig 7b-7c), skewed towards 𝑥 = 0 and whose characterizing pa-

rameters 𝑎 = 2 and 𝑏 = 4. Similarly to previous sections, we assume

that the initial opinion coincides with the users’ prejudice. The two

players have 𝑥 (𝑖;𝑇 ) of 0 and 1 respectively and both have 𝛿 (𝑖 ) = 0.1.

We consider two possible choices for the underlying opinion update

weights, i.e., 𝛼 = 0.1, 𝛽 = 0.5 (Scenario 1) and 𝛼 = 0.1, 𝛽 = 0.8 (Sce-

nario 2). In this setting we slightly modified the dynamical behavior

so that the popularity can evolve macroscopically. For each action,

we consider 𝑁 = 10 posts are emitted carrying either the target

opinion 𝑥 (𝑖;𝑇 ) or the exploratory one 𝑥 (𝑖;𝐸 ) .
The results are shown in Figure 7a and reveal two aspects: first,

the player who has a structural advantage, i.e., is favored by the

initial distribution, benefits from the fast-dynamic settings. Second,

the two players would exhibit somewhat opposite behavior, in that

the favored player is harmed by long exploration phases, while the

other receives better payoffs with long exploration phases. This

supports the claim that the one in a disadvantaged position would

benefit from being more “aggressive”and compromising her target

opinion to get closer to the majority opinion in the population. This

is also supported by the fact that in our experiments, when looking

at the Nash equilibria, we have that: 𝑎
(0)
𝑁𝐸
≤ 𝑎
(1)
𝑁𝐸

.

Finally, from Figure 7b-7c, it is clear that the rapid evolution

of popularity erases competition, as the advantaged influencer is

able to become more visible on the platform (see Eq. (8)) than the

other, and eventually attracts all users. Note the bimodal nature of

the final distribution in the slow-dynamics setting (blue curve) and

the flat nature of the distribution in the fast-dynamics setting (red

curve).

7 CONCLUSION
We formalized the problem of maximizing online social impact over

an online social network by considering a model that incorporates

communication asymmetry and platform filtering in OSNs. In the

case of a single influencer over the network, we characterized the

optimal strategy, highlighting that the greedy strategy does not pro-

vide the same benefits. Inspired by this experiment, we developed

a competitive game that we extended for the case of closed-loop

interactions (post-feedback-popularity-filtering). We showed that

a disadvantaged influencer should compromise her target opinion

more to get closer to the mass of the population to have a greater

degree of persuasiveness towards them. We found that when popu-

larity develops rapidly, an influencer (the advantaged one) tends to

monopolize attention and attract virtually all users to her opinion.
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