
12 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Restoring Application Traffic of Latency-Sensitive Networked Systems using Adversarial Autoencoders / Sacco, Alessio;
Esposito, Flavio; Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN
1932-4537. - ELETTRONICO. - 19:3(2022), pp. 2521-2535. [10.1109/TNSM.2022.3192305]

Original

Restoring Application Traffic of Latency-Sensitive Networked Systems using Adversarial Autoencoders

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2022.3192305

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970939 since: 2022-10-21T09:02:42Z

IEEE

1

Restoring Application Traffic of Latency-Sensitive
Networked Systems using Adversarial Autoencoders
Alessio Sacco Student Member, IEEE, Flavio Esposito Member, IEEE, Guido Marchetto Senior Member, IEEE

Abstract—The Internet of Things (IoT), coupled with the edge
computing paradigm, is enabling several pervasive networked
applications with stringent real-time requirements, such as
telemedicine and haptic telecommunications. Recent advances in
network virtualization and artificial intelligence are helping solve
network latency and capacity problems, learning from several
states of the network stack. However, despite such advances, a
network architecture able to meet the demands of next-generation
networked applications with stringent real-time requirements still
has untackled challenges. In this paper, we argue that only
using network (or transport) layer information to predict traffic
evolution and other network states may be insufficient, and a
more holistic approach that considers predictions of application-
layer states is needed to repair the inefficiencies of the TCP/IP
architecture. Based on this intuition, we present the design
and implementation of Reparo. At its core, the design of our
solution is based on the detection of a packet loss and its
restoration using a Hidden Markov Model (HMM) empowered
with adversarial autoencoders. In our evaluation, we considered
a telemedicine use case, specifically a telepathology session,
in which a microscope is controlled remotely in real-time to
assess histological imagery. Our results confirm that the use of
adversarial autoencoders enhances the accuracy of the prediction
method satisfying our telemedicine application’s requirements
with a notable improvement in terms of throughput and latency
perceived by the user.

Index Terms—Hidden markov model, edge computing, ma-
chine learning

I. INTRODUCTION

The ongoing pandemic has highlighted the challenges of
building remote and responsive communication systems. One
major challenge in implementing such remote interactive ser-
vices is the design of an architecture that could support very
low latency and high reliability, labeled almost a decade ago
as “Tactile Internet” [1]. Such paradigm has also led to the
definition of the ultra-reliable and low-latency communica-
tion (URLLC) services [2], [3], considered to be among the
most challenging applications in future networked systems.
Their typical use cases include haptic telecommunications,
telemedicine, and immersive virtual reality services, to name
a few [4], [5]. The networking community proposed the
use of several Artificial Intelligence and Machine Learning
(AI/ML) techniques, sometimes in combination with network
virtualization, to solve some of these problems and provide

This work has been partially supported by NSF Awards 1647084 and
2201536.

Alessio Sacco and Guido Marchetto are with DAUIN, Politec-
nico di Torino, 10129 Turin, Italy (e-mail: alessio sacco@polito.it,
guido.marchetto@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

URLLC services. Some of the most recent advances in AI/ML
have favored the design of reactive systems in which states
from the TCP/IP network stack are used as input of predictors
to foresee future network conditions and react appropriately.

Although we believe those knowledge-defined networking
approaches [6] have merit [7]–[10], and indeed they brought
significant improvements, URLLC services opened up new
challenges, that are exacerbated in networks where time-
varying delays and packet losses are frequent. To cope with
such conditions, we argue that learning from the TCP/IP stack
may be insufficient and a more holistic approach is needed.

Just like error correction codes try to repair the com-
munication at the physical layer, we believe that, in many
cases, networked applications can self-repair to improve their
performance. The intuition behind such a design principle
is based on the notion that predicting network conditions
is insufficient to deliver an acceptable level of performance
in many applications. Our design is inspired by financial
market predictors, that use several indicators to forecast the
future price of a stock or the implied volatility of an option
contract, and from recent video streaming solutions that learn
the optimal video bitrate combining network statistics, e.g.,
throughput, with application-specific metrics, e.g., buffer occu-
pancy [11]–[13]. So latency-sensitive applications should also
predict, when feasible, what the application-level data is going
to do, not merely what the network data are.

We are not the first to propose application-data prediction,
although not for networking applications. For example, re-
searchers have leveraged distributed machine learning mod-
els to predict and suggest next actions at the application
layer, for next-word prediction, content suggestion, and e-
commerce recommendations, offering valid results [14]–[16].
In this paper, we argue for a similar approach in which
the network architecture and the application work together
to address the following research challenge: to what extent
network information can help application-layer predictions for
a more immersive user experience?
Our Contribution. To solve such research question, in this
paper we present Reparo, a solution that copes with network
suboptimalities by reconstructing, when possible, the content
of lost packets at the edge of the network with the help of
a novel predictive model. Our system detects when a packet
gets lost or is too delayed because of a congestion, and if
this is the case, it restores synthetically its content with a
new predicted packet generated at the edge. To reproduce the
application-layer payload, our model is based on a Hidden
Markov Model (HMM), where the traditionally employed
Viterbi algorithm [17] is replaced with an Adversarial AutoEn-

2

coder (AAE)-based approach [18]. The AAE belongs to the
family of Generative Adversarial Network (GAN), a machine
learning technique in which two neural networks compete with
each other to become more accurate in their predictions. In
our context, the adversarial autoencoder is trained to learn
the emission probability of the Markov Model and helps
the HMM decode the network layer information. Thus, the
resulting HMM model keeps track of the communication by
monitoring the network state (observed state), and, when
a packet gets lost or experiences long delays, it predicts
the next application-layer payload (hidden state). As such,
by leveraging this model, we can efficiently map network
statistics to application information, enabling statistically and
logically similar action to be taken autonomously while the
actual action is on its transmission way via the network. The
Adversarial AutoEncoder raises the HMM model accuracy to
94%, outperforming other benchmark predictors.

We implemented Reparo on a real medical application:
an edge-computing empowered microscope for telepathology
remote consultations. Pathologists have the need to operate a
microscope remotely for emergency or second consultations,
even during surgery, as their opinion can change the course of
action of the intervention, e.g., tumor removal surgery. Our
results, obtained both in a trace-driven manner and in the
real-world scenario, show how an HMM model augmented
by an adversarial autoencoder (AAE) is able to obtain a 30%
increase in accuracy with respect to a traditional HMM. Be-
sides, Reparo agents can overcome the network loss or delays
and provide acceptable reliability of a remotely controlled
microscope, and we found that the average latency perceived
by the user with Reparo is 4 times less than the one attainable
without our predictor.

In the rest of the paper, we first review the literature about
predictive systems and applications that would benefit from
this solution in Section II. Section III depicts the design
of our presented solution and overall algorithm. Later, in
Section IV we describe the model utilized for the application-
level message prediction. We then outlines the implementation
details of Reparo and experimental results in Section VI.
Finally, we conclude the paper in Section VII with some final
considerations.

II. RELATED WORK

As tele-operated tasks have received ample attention re-
cently, with an increment of remote critical applications, mod-
eling the corresponding profiles and parameters is becoming
more and more important. In this section, we first consider
solutions advocating AI/ML to solve this problem; then, we
review limitations in current telepathology systems, which
refer to our considered use case.
Message and packet prediction. An example of successful
use of the ML approach can be found in [19], where delayed
or lost feedback information was successfully predicted via
Gaussian Mixture Model (GMM) regression problem in a local
area network setting. In the context of haptic interaction, the
model aims to enable visual feedback, providing the illusion of
remotely “touching” something. The same model, GMM, has

been used similarly to retrieve a haptic reference trajectory
on-the-fly for a peg transfer task [20]. Another common
method used in this context is the Hidden Markov Model
(HMM), given its ability to model and recognize particular
structures [21]. It is often followed by a Gaussian Mixture
Regression (GMR) for the online retrieval of a generalized
profile. In [22] it has been used to encode a set of force/torque
profiles to reproduce the generalized version of force/torque
profile for grasping an object in the virtual environment. In
the context of mobile apps traffic, [23] proposed the use
of HMM to predict the network traffic at both packet and
message levels. At the same time, [24], [25] proved a way to
reconstruct message-level content on encrypted traffic using
Markov models. The great benefit brought by these predictors
is their ability to execute predictions in a very short time [26].
However, they come with a high computational cost when
the number of Gaussian components increases. Therefore, to
meet the latency requirement of URRLC, other improvements
are needed. For example, [27] selects a low number of states
in order to execute prediction with minimal error in remote
robotic surgery applications. In [28] two recurrent neural
network (RNN)-based models taught a robot how to draw a
line along a ruler exploiting position and force information.
The time-consuming prediction, however, indicates that RNN
is a bad choice for use as the predictor in remote microscopy.
A similar ML predictor is presented in [29] which addresses
the problem of viewport prediction (VP) in a networked VR
system, i.e., predicting what a viewer is about to consume in
the near term. However, none of these predictors has been
applied in a real system, neither has been proved to meet
critical thresholds in latency and throughput.
Telepathology solutions. One of the interactive services
demanding low latency but whose performance is strongly
affected by network congestion is telepathology. Current
telepathology solutions are limited by the technology, the
scale, and the (best-effort) performance of the underlying
telecommunication media on which they rely, i.e., the Internet,
or, at best, a virtual private network for non-real-time (offline)
consultations [30]. These solutions only focus on the transmis-
sion of histological images, for asynchronous analysis [31],
[32], or on collaborative image viewers [33], but without
the ability to control a microscope remotely, and without the
ability to cope with suboptimal network conditions. Remotely
controlling a microscope (for pathology or other microscopy
applications) requires high bandwidth and low delay, along
with fast image processing. Nevertheless, these current solu-
tions fail to keep packet losses to a minimum and guarantee a
fast and reliable communication. The aforementioned studies
on action prediction motivate the need for the telepathology
field to receive the same attention, deploying a system able
to fetch the content before it is displayed to viewers. When
empowered with this feature, our solution can accommodate
the network latency and content processing delay.

III. SYSTEM DESIGN

In this section, we analyze our solution design, highlighting
how burdens of interactive communication are shared between

3

User

Client
Side
Edge

Robotic
Plugin

Server
Side
EdgeReparo

Client
Agent

Reparo
Server
Agent

Inter-
Network
Domain

Console

Plugin
Server

Packets
Fwd

Info
Caching

Network
State

Packets
Fwd

AI/ML Info
Refresh

Fig. 1: System Overview. The remote users can operate and
use specific resources even if located in a different site. Edge
computations are present in both sites, with the aim of speedup
message restoration.

both client and server edges. Then, we analyze the functionali-
ties offered by these new components, and finally, we overview
the overall algorithm that defines our system.

A. Reparo Overview
Our general system design, whose overview is presented

in Figure 1, can help latency-sensitive networked systems to
work efficiently. A user establishes a communication, asking
for control of a remote resource, in our case the control of
the microscope stage or camera operations. These services are
hosted on a Plugin Server (in the following often referred to
as plugin) that is directly connected to the machinery, e.g.,
microscope or haptic robot. While in this paper, our imple-
mentation and evaluation focus on controlling a microscope
remotely, our design can also be deployed on other systems
whose purpose is to enable interactive communications, for
example, commanding a robotic agent, haptic applications,
or even virtual reality systems. In the case of holographic-
type communications, for example, the user changes position
or viewing angle, and the application is supposed to rapidly
adapt the streamed contents. Similarly, in our telemedicine
application, a pathologist moves the stage mechanically to shift
the position of the glass slide containing human histological
tissue. Regardless of the use case, we design the solution so
that our Plugin Server responds by sending a stream of data
that the user can view on a web portal. While viewing the
image and the video stream, the user can interactively operate
over such stream.

Challenges raised by these interactive communications go
beyond the ones in traditional video streaming [34]. While
conventional video and voice applications naturally allow for
graceful degradation of network performance (e.g., adaptive
video coding), this context requires handling both input and
output of remote machinery for smooth user interaction (e.g.,
a microscope zoom or pan operation for remote diagnosis),
treating user feedback as sensitive application traffic. To ad-
dress these challenges and speed up such communications, we
move the intelligence to the edge of the network by equipping
both client and server sites with edge computation for the
processing of network and application information. In between
sits the network, which we assume is fully or partially out of
control.

The edge agents monitor the ongoing communications and
provide a fast response to the client and server, assuring a
smooth user interaction and guaranteeing an acceptable level
of user experience. The Reparo client agent is responsible for
improving the interaction with the client; as such, it replies
to requests coming from the user and provides cached content
such as known portions of images. Likewise, the Reparo server
agent predicts the client requests at the application-level and
maintains the server transmission active. These agents can be
viewed as proxies that analyze the traffic and take appropriate
actions before the occurrence of undesirable behavior, such as
network congestion. Due to this functionality, in the following,
we often refer to client and server proxies.

During our solution design, we devise an architecture that
assures being as minimally invasive as possible. In fact,
the client is oblivious of the complexity and keeps sending
packets as normal. All the complexity is managed by the edge
components. In particular, the server must accept application
requests coming from the original client, but implicitly from
the client proxy, which intercepts all the packets for/from the
user.

B. Reparo Edge Network Components

To productively exploit both network edges, we delegate
network processing operations to the two edge proxies present
in our system. However, the presence of two nodes acting
on the client-server transmission allows providing appropriate
services but requires a clear and sound tasks division so that
actions are not overlapped.

Our Reparo client agent acts as a reverse and caching proxy
at the client site, keeps track of the ongoing TCP connections
that entails the plugin server. It forwards the packets for the
plugin and, if the subsequent response is received, no further
operations are demanded. Otherwise, this component sends the
most appropriate response to the user: plain positive reply, if
the requested action does not impact image or video view,
e.g., plugin configuration or setting; or if an update of the
image view is necessary, in response to panning or zooming
of the sample, it searches if this image portion was cached.
If present, the proxy sends this piece of information without
contacting the server, so to reduce the response time.

The Reparo server agent, being at the server site, is where
the actual prediction takes place. In this node resides the HMM
boosted model, which outputs the most likely client message
request in case the packet is undergoing network congestion.
Since the client message in latency-sensitive applications
likely contains the action requested, in the following, we often
refer to it simply as action. Aside from this ML component,
the server proxy includes the application logic in order to
adapt and optimize the prediction to the application messages.
In fact, two are the main tasks to execute. First, gathering
the statistics to improve the HMM model at run-time and
providing the final known state on which prediction occurs.
Second, restoring the message content that is thought to be lost
or very delayed. This situation is spotted by means of a timeout
that would help not exceed a maximum application latency.
These tasks, i.e., additional network processing and predictive

4

component, run asynchronously to the communication process,
so that packets are then sent to the actual destination without
incurring in excessive overhead. We provide further details
about the prediction model and our proposed variant in the
following (Section IV), after having formalized algorithms
dictating the logic in message restoration.

C. Overall Algorithm

Given these considerations, we are now ready to formulate
and overview the global algorithm underpinning Reparo in
Algorithm 1.

Algorithm 1 Edge proxies logic with packet loss recovery

1: Let Ts and Tc be the timeout intervals on server and client
2: Let Tt be the HMM re-training interval
3: Initialize the HMM and AAE models
4: Function at the client side
5: Set timer Tc for incoming packets from plugin
6: upon receive packet p do
7: if p.dst=plugin.ip then
8: req ← p.req
9: if p.src=plugin.ip then

10: If p carried an image, save it
11: upon timer Tc expiration do
12: sendResponse(req)

13: End function
14: Function at the server side
15: Set timer Ts for incoming packets for plugin
16: upon receive packet p do
17: if p.dst=plugin.ip then
18: size← p.size
19: if p.src=plugin.ip then
20: obs← [size, remaining features of Table I]
21: if Tt is elapsed since last model update then
22: Re-train HMM using last values of obs
23: upon timer Ts expiration do
24: a← predict(obs)
25: Take action based on predicted user action a
26: If necessary, sendClientResponse(a)

27: End function

The communication in the server-client direction is mainly
characterized by video and image transmission and is thus
critical to our interactive system. However, the literature about
video streaming is broad and continuously advancing [35],
[36], and we decide not to add more ad-hoc mechanisms
and leverage the current solutions. For example, to mitigate
network congestion, image and video super-resolution is a
valuable approach in using ML to recover a high-resolution
image from a low-resolution media [37]. Alternatively, many
studies suggest deep learning is also effective in predicting
future frames that look natural to human eyes [38]. On the
other hand, we look with particular interest to the requests
from client to server, where our predictive model is applied.
Recent studies have shown how the prediction performs very
nicely when in this direction [29] (see Section II for a more

Console
(Remote side)

Reparo server
Agent

Plugin
(Patient side)

Message Request

Message Reply

Message Request

Ts

Reparo Cient
Agent

Restored Request

Message Reply

Message Request

Message ReplyTc

Response

Fig. 2: Signaling and interaction of our Reparo procedure. We
highlight the intervention of the two timers Ts and Tc, which
acts respectively on the server and client agent.

complete discussion). That said, we can observe the presence
of two functions: one running at the client site and one for the
server site. They replicate the functionalities aforementioned,
where the Reparo server agent is the core of our predictive
system, and the Reparo client agent is fundamental to provide
fast feedback.

An important aspect to consider is the presence of three time
intervals, which serve to establish the occurrence of relevant
events. Specifically, we re-train the HMM periodically on the
server proxy, with a time interval named Tt. By doing so,
we can improve the model even at run-time by considering
fresh data. We then consider one timer for the client proxy,
Tc, and one for the server proxy, Ts. They are triggered if
no message is received from the server or the client within
the defined time interval, respectively. The expiration of Tc
indicates the absence of a coming reply, and in response, the
appropriate feedback is sent to the waiting user. Similarly,
when Ts expires, the server proxy sends the predicted request
to the server, since it indicates that the packet is likely to be
lost or just very delayed. The subsequent response coming
from the server and directed to the client is forwarded as
normal. It must be noted that, despite restored messages can
be generated either from the client agent or the server agent,
we design the solution in order to not overlap the actions and
no not deliver duplicate messages to the client console. If the
client agent receives a message in response to an event already
managed by itself, i.e., the TCP state has already evolved, it
discards the message.

We summarize the exchange of messages entailed in the
communication between the plugin and the connected user
in Figure 2. If no (i) packet losses or (ii) excessive delays
occur, the messages exchange follows as normal. Yet, at
the occurrence of one of the two events (detected by the
server agent by means of a timer Ts), the system activates
the restoration process. This allows the plugin to receive the
message despite the adversarial network conditions. Similarly,
if the response from the server gets lost or delays more than Tc,
the Reparo client agent can generate a response containing the

5

Hidden x1 x2 x3 xt

Observed
y1 y2 y3 yt

.

. . .

Fig. 3: Schematic view of a general HMM model, composed
of temporarily-ordered metrics, in turn categorized as hidden
or observed states.

cached image (if a simple image is requested) or an affirmative
response (if a plugin operation is requested).

Our insight is that the time required to detect a loss,
added to the retransmission time, may lead to intolerable
delays. Predicting the application payload would eliminate
the retransmission process overhead, demanding only for loss
identification. This mechanism is thus crucial in real-time
applications. The timeouts are hence crucial to assess when
a packet gets lost. For this reason, we set such default values
only after a sensitivity analysis presented in Section VI-C.
Lastly, specific actions depend on the considered application.
As such, more details about these optimizations are thus
presented in Section V.

IV. PREDICTIVE MODEL DESIGN

In this section, we briefly describe the model used to
predict the transmitted messages. Such a predictor consists
of a Hidden Markov Model (HMM) that dictates the way of
modeling the environment and an autoencoder used to increase
the performance of the HMM. We start by describing the
latter component and its parameters; then, we overview the
application of the autoencoder in the general HMM model;
we finish outlining our model and how it is employed in the
prediction.

A. Modeling the System Dynamic with Hidden Markov Model

Because of their ability to capture important traffic statistical
properties with a relatively small number of states, HMMs
have gained popularity as the traffic model of choice in years
states [21], [39]. In these studies, HMM has been applied
to model the packet flow either generated by an individual
application or that of the aggregate traffic on a single channel.
In addition, HMM has been shown to be effective in capturing
the dynamic behavior of losses and delays on end-to-end
packet channels [40], [41]. Motivated by these analyses and
successful results, we model the TCP channel between the
client and the plugin by means of the HMM.

In a HMM problem, the time invariant state-space models
are typically defined as follows:

p(X,Y) = π(x0)

T∏
i=0

p(yi |xi)
T−1∏
i=0

p(xi+1 |xi)

where xi represents the hidden variable and yi is the observed
variable, p(xi+1 | xi) denotes the transition probability which

describes the dynamic behavior of the system, and p(yi | xi)
is the emission probability which identifies how the system
generates the observation based on the hidden variable. π(x0)
constitutes the initial state distribution, that is required to the
model to start the process.

The model can be represented as in Figure 3, which explains
the relationship between hidden states, observed states, and
their probabilities to occur. The evolution of states in HMM
is based on the key assumption that the state evolves as
a Markov process where the probability distribution of the
current state only depends on the state of the previous epoch,
i.e., p(xi |xi−1, ..., x1) = p(xi |xi−1). Despite its simplicity,
this first-order Markov process is sufficient for modeling
temporal characteristics of the network channel, as outlined
in [41], [42].

It is convenient (and hence common) to describe the state
evolution over time by means of a transition matrix (TM).
Such a matrix is filled with all the transition probabilities
p(xi+1 |xi),∀xi ∈ χ. The probabilities of moving from hidden
state to the observed state, p(yi |xi = j),∀xi ∈ χ are saved
in the emission probability matrix. Furthermore, each Hidden
Markov Model can also be represented as λ = (A,B, π),
where A refers to the transition probability matrix (TM), B is
to the emission probability matrix, and π denotes the vector
containing the initial states probabilities.

Generally, these three variables (TM, π(x0), and emission
probabilities) are unknown, and they are estimated either using
some parametric or data-driven approaches. In particular, three
are the main basic problems which need to be solved to
characterize the HMMs: training, likelihood, and decoding.

The first problem, training, is common to other ML al-
gorithms and is formally defined as the problem of, given
the observation sequence in time Y , finding the model λ =
(A,B, π) that maximizes the probability of Y . This problem
is crucial for any HMM application because it allows model
parameters to be optimally adapted to the training observation
sequence, i.e., to learn the best models for real phenomena.
This problem is generally solved via expectation-maximization
(EM) algorithms, where a particularly successful instance is
the Baum-Welch algorithm (forward-backward algorithm) [43].
The Baum-Welch algorithm starts by iteratively estimating the
initial transition, emission, and state transition probabilities,
repeating estimations until the resulting probabilities converge
satisfactorily. Being a special case of the EM algorithms, such
an algorithm consists of two main steps: the E-step, which
computes posteriors over the states, i.e., the probabilities of
being at state s at time t, and the M -step, which performs
re-estimation of the model parameters in order to maximize
the likelihood of posteriors found in the previous E-step.

The second problem, the likelihood, attempts to compute the
likelihood of a particular observation sequence. More formally,
given the observation sequence over time Y and the HMM
model λ = (A,B, π), a solution algorithm should determine
the likelihood P (Y |λ), i.e., the probability that the observed
sequence was produced by the model. This problem can be
solved via the recursive forward algorithm, which computes
the joint probability of observing the sequence up to time t and
the Markov process being in state st. The likelihood values

6

P (Y |λ) are then calculated using these joint probabilities.
Thirdly and finally, the decoding phase is responsible for

finding the hidden state sequence X that is most likely to
obtain, given in input the observation sequence over time
Y and the HMM model λ = (A,B, π). The problem is a
very common situation and is usually solved by means of the
Viterbi [17] algorithm for hidden state estimation. This algo-
rithm is a two-step process based on a dynamic programming
approach that maximizes the likelihood of the whole generat-
ing state sequence. In the first step, it obtains the most likely
state st at time t through the utilization of a γt parameter,
while during the second step, the γ parameter is calculated
using the forward-backward method. This problem of finding
the most likely state sequence can also been summarized
as: given a sequence of observed values (ỹ0, ỹ1, ..., ỹn), the
decoding algorithm infers the corresponding hidden variable
x̃t, i.e.,

x̃t ∼ p(xt | ỹt, ..., ỹ0).

In this paper we improve traditional HMMs by making use
of adversarial autoencoder as an alternative method for the
decoding problem. Empirically we have observed how this
learner can be helpful and effective in empowering HMM
because of its capacity to encode and decode information
between different spaces (see results in Section VI).

B. Decoding the Information via Adversarial Autoencoder

Adversarial AutoEncoder (AAE) is based on the idea of
blending the autoencoder architecture with the adversarial
loss concept introduced by generative adversarial networks
(GAN), to reproduce a generative model [18]. An autoencoder
model is generally an artificial neural network that learns how
to efficiently compress and encode data and then uses this
reduced encoded representation to reconstruct a representation
that is as close to the original input as possible. AAE simply
turns an autoencoder into a generative model by combining
the traditional autoencoder with the more general approach of
GAN. As in any GAN-based model, the main idea at the basis
of AAE is the match of an aggregated posterior of the model
(in this case autoencoder) with an arbitrary prior distribution.

In recent years GAN has become one of the most utilized
approaches in deep generative modelling, giving rise to a
large number of GAN-based models, such as Super-Resolution
GAN [44], CycleGAN [45], and BiGAN [46], to cite a few.
GAN and its variation models are typically applied over bits of
an image, to generate a new synthetic image. Any GAN model
is made up of at least two neural networks: a generator and a
discriminator. The former accepts an input vector of randomly
generated noise and produces an output “imitation” image that
looks similar, if not identical, to the authentic image. On the
other hand, the latter network attempts to determine if a given
output image is “authentic” or “fake”. The purpose of GAN is
to take a random vector as an input and transform it to follow
the pixel distribution of a desired output. The similarity with
GAN in AAE is that the autoencoder is trained with dual
objectives– a traditional reconstruction error criterion and an
adversarial training criterion. At the same time, the presence of
a discriminator network and a different training process, make

N

Observed
state

Hidden
Info

Encoder Decoder

Discriminator

Real

Fake

State
Generator

-

+

Latent

z

M

Fig. 4: Autoencoder architecture. In the top row the autoen-
coder reconstructs the output space (hidden info) from the
input data (observed state), using a latent code z. In the bottom
row a second network discriminatively predicts whether given
latent code is generated by the autoencoder (fake) or a random
vector sampled from the normal distribution (real).

AAE different from traditional autoencoders, i.e., the well-
known Variational autoencoder (VAE). While VAE regularizes
the latent space with KL-divergence, AAE uses the adversarial
training for the regularization.

Figure 4 summarizes the main components of an AAE
model: (i) the encoder, a neural network transforming the
observed state (input composed of N elements), into a lower
dimension, the latent code z; (ii) the decoder, a neural network
that takes the latent code z and transforms it into the hidden
info (output composed of M elements); (iii) the discriminator,
responsible for checking whether the input is real or not. The
encoder learns to convert the data distribution to the prior
distribution (of the latent space) after a necessary training
period, while the decoder learns the best deep generative
model that maps such a prior distribution to the actual data
distribution. This matching is guided by the discriminator and
generator attached to the latent code vector of the autoencoder
(encoder + decoder), creating the adversarial aspect of AAE.
The purpose of the autoencoder is also to minimize the
reconstruction error. In other words, the encoder, acting as the
generator, creates a latent code, z, and tries to fool the discrim-
inator into believing that the latent code is sampled from the
chosen distribution. The discriminator, instead, detects if the
given latent code is generated by the autoencoder or is sampled
from the normal distribution created by the state generator.
Once the training procedure is done, the autoencoder produces
a minimal error in mapping the inputs to the desired output.
In particular, this output represents the missing traffic matrix
entries, thus constituting the hidden information.

Although generative models have been frequently applied to
generate a synthetic version of audio, images, or video, there
is now a recent and mostly unexplored trend of applying these
models in diverse domains [47]. In this paper we consider this
class of problems for Markovian environments, leveraging the
autoencoder to map some collected metrics (observed state) to
application-specific values (hidden state), following the HMM
modelization.

7

C. Reparo State Variables

We can now describe how the observed and hidden states
are defined in our specific model. In our system, the current
evidence yi is modeled with a vector of metrics at timestamp
i; similarly for the corresponding hidden state value xi. To
order the information chronologically, we collect and exploit
the timestamp, which is then disregarded during the learning
phase since it is worthwhile only in data preparation. Table I
outlines the metrics collected from the edge nodes and used
as observations in the HMM model.

TABLE I: The communication statistics gathered as observed
states of HMM.

y Features retrieved for each request-response pair

1 Request size [bytes]
2 Ratio request/response size [bytes]
3 Response time [ms]

x Hidden state observation

1 Request message content

Clearly, the number of observed states y, N , as well as
the cardinality of the hidden x, M , are crucial parameters
that must be specified when designing the model and that
also affect the solution performance. While modeling a single
hidden (M = 1) is a de-facto standard in HMM [17], there
is a tradeoff here in choosing suitable N . Smaller N yields
simpler models, but it may be inadequate to capture the space
of possible behaviors. On the other hand, a large N leads to a
more exhaustive model with more parameters, but may cause
overfitting issues and deployability problems. We converged
to these metrics in Table I and this cardinality (N = 3), as a
result of feature importance study and cross-validation to learn
this critical parameter. In particular, the three metrics are: (i)
the size of the application request content sent by the user, (ii)
the ratio between the size of the request and the corresponding
response, and (iii) time elapsed between the sending of the
request and the reception of corresponding response.

The hidden state x denotes the application-level content
of the user request. Predicting this value in the near future
means forecasting the most likely operation that the client will
send to the remote site. Among the application operations,
we also include a “no action” operation that constitutes the
case when, at that time interval, the user does not transmit
any message. As explained in Section III-C, our prediction
occurs periodically in order to guarantee a continuous flow
perception. As such, we need to model the possibility of no
message received within this interval.

As a best practice for any ML model, before using des-
ignated metrics, they must be prepared. Therefore, we also
apply data preparation for our metrics, using normalization
and standardization techniques to re-scale input and output
variables before training the ML model. In fact, differences
in the scales across input variables may lead to a problem
difficult to being modeled [48]. In addition to this standard
normalization approach to scale input values into 0 − 1
range, we improved this process with the aim of making the

model more general and transferable over different networks.
Specifically, before such a normalization, the response time
is divided by the latency encountered by the ping command
in the case of an unloaded network. This quantity should
represent the minimal RTT and can then be used to scale all
values accordingly. This assures a more transferable model that
adapts to different environments, even though further actions
are required to obtain a global and general model [7], [49]–
[51].

Furthermore, as explained in Section III-B, these metrics
can be collected at either the client or the server site. The
location where these features are extrapolated mainly impacts
the “response time”, which represents the time elapsed since
the request sending and the reception of the response. As
shown in Section VI, data pre-processing, in conjunction with
the model selected, attenuates such differences originating
from the site of collection.

D. Message Predictions via HMM

Taking the above into account, we can now describe the
procedure dictating the Reparo behavior when demanded to
predict the next event. After having gathered the metrics at
time t, if requested by the restoration algorithm (Algorithm 1),
it may be required the prediction of the future state at time
t + 1. We convert this task to the HMM task of computing
posterior distribution over the future states given evidence till
now. We derive the predicted next event as the future hidden
state with the highest probability, according to:

x̃t+1 = arg max
xt+1

p(xt+1 | ỹt, ..., ỹ0). (1)

We limit our focus in this paper to the one-step ahead
prediction, since we have experienced that predicting for more
steps ahead drastically degrades the accuracy, as motivated
in Section VI. In conclusion, our prediction procedure is
composed of two steps. First, we decode the observations at
time t in input into the most likely hidden state using AAE.
Then, we forecast the next (one-step ahead) hidden variable
using the maximization of posterior probabilities.

V. REPARO IMPLEMENTATION FOR REMOTE MICROSCOPY

Even though our system has general applicability, our
primary considered use case is telemedicine. In particular,
remote microscopy. In this section, we define our deployment
use case, a telepathology system, the motivation for its respon-
siveness requirements, and we provide some implementation
details.
Use case: telepathology. Pathology is the study of disease
and underpins every aspect of patient care. Telepathology, the
practice of pathology at a distance, focuses on transmitting
images of specimens by a telecommunication linkage to a
diagnostic hub where a telephatologist views the images on
a video monitor. The transmitted medical images may be used
for primary diagnosis, proficiency testing, consultation, quality
assurance, and distance learning. A telepathology or more
generally a telemedicine session involves the transmission
of delay-sensitive and bandwidth-sensitive data that must be

8

processed and shared with a remote medical doctor. Thus,
our system ensures that these requested functionalities are
provided.
Why Telepathology? Patient care relies on rapid and ac-
curate diagnosis in the pathology laboratory, which can be
made possible thanks to a video-assisted procedure. In critical
situations, e.g., timely recognition of bacterial organisms in
cerebrospinal fluid, the time to diagnosis and its accuracy can
literally be life-saving. Often, these diagnoses are made by a
pathologist using a microscope to analyze biological material
(cells or tissue) on a glass slide. The speed of the diagnosis
depends on the experience of the on-call pathologist, who
often covers a broad range of subspecialties. Similarly during
surgeries, it is common for surgeons to ask the pathologist
for rapid assessment of tissue, e.g., to assess whether a tumor
has been completely removed. In the majority of non-trivial
cases, pathologists seek second opinions from colleagues by
physically transporting privacy-protected [52] glass specimens
or asking for an additional opinion of the frozen section
area. These consultations must occur rapidly to minimize the
patient’s time under anesthesia. Critical quality assurance mea-
sure is painfully limited, particularly when travel is restricted
by special circumstance such as the COVID-19 pandemic,
or in rural and underserved community hospitals, as it is
dependent upon physical availability of on-site personnel and
microscopic review.
Telepathology system implementation details. Inspired by
recent studies on real-time telepathology [53], [54], we de-
ployed a real system composed of a Java program that the
user can utilize to control the microscope remotely. The
microscope is emulated through Micro-Manager [55], which
we used to create a modified plugin for providing microscope
control and image and frames acquisition. We also modify the
original Micro-Manager in a program that, supporting network
connectivity, handles data marshaling between the network and
the microscope firmware. The client program sends commands
for the plugin based on gRPC protocol, demonstrated to be
extremely lightweight [56]. The Reparo client and server
agents work as a reverse proxy, using the NetfilterQueue
library to intercept incoming packets [57]. Clearly, this proxy
acts as a reverse proxy for the ingress traffic but as a forward
proxy for the egress traffic. These nodes collect all incoming
packets, keep track of the ongoing flows, and, by caching static
contents, they can also work as accelerators. In our specific
case, they are required to reconstruct the TCP status machine
so that when a predicted message needs to be sent, the appro-
priate parameters can be set according to the last TCP state.
Besides, often the transmitted data carry sensitive material,
so they are able to encrypt/decrypt traffic in order to observe
messages. This setting is also very secure, where protected
devices, i.e., server proxy, host security functions, releasing
the back-end, i.e., plugin, from the burden of implementing
SSL logic, which is orthogonal to the application logic. We
then opportunely implemented Reparo’s logic on these nodes
in Python programs, and specifically, the AAE agent on top
of Keras [58], while the HMM model is built upon hmmlearn
library [59].
Live video streaming management. Since we acknowledge

that a fluid video experience is key for such an interaction,
our decision is to exploit well-known and studied protocols.
Empirically, we experienced how encoding new frames via
ffmpeg into MPEG-TS data results in an extremely low-latency
stream with high frame rates, and acceptable quality and bi-
trates. Compared to other alternative solutions, such as HTTP
Live Streaming (HLS), MPEG-DASH, WebRTC, encoding
with ffmpeg and decoding in a web page via WebSocket,
is tremendously simpler, with reduced overhead and reduced
latency. These characteristics are indeed precious and key
for live video streaming. For this reason, in the following,
we leverage this approach for the live video transfer part,
which constitutes the main transmission in the server to client
direction. At the same time, we mainly investigate the effects
caused by network congestion in the client to server direction,
where the predictive model in Section IV is responsible for
restoring application messages telepathology-specific.
(Offline) image Viewer. Aside from live services offered,
the user can also access the application server and demand
an offline image view. In such a case, we leverage the
OpenSeadragon JavaScript library [60] to visualize the cor-
rect slide in an efficient way, reducing the latency. Since it
occurs offline, however, there are no strict requirements of
latency, and the different tiles are downloaded while loading
the page. Therefore, no further mechanisms (aside from the
optimizations offered by the library) are required to improve
the user experience. Although the Reparo’s focus is mainly
for the online interaction, where interaction takes place, this
service is fundamental for any telepathology system.
Bounded latency. Another function of potential interest that
we implemented was the assurance of a delay bounded within
an interval, i.e., both lower and upper bound. This means that
our proxy, if desired by the application, also assures that the
delay between the request-response pair is always higher than
a certain minimum delay. This requirement is often necessary
for many contexts [61]. Examples include applications that
require fairness, such as for gaming or for trading, and/or
whose endpoints do not possess sufficient buffer memory to
temporarily store packets that are being received early but
require a later playout. The minimum target latency can also
serve as an equalizer for cases where traffic may flow across
paths of different lengths, limiting jitter differences among
packets. For this reason, we also provide this application
extension in our telepathology-oriented implementation.
Multiple losses. An extreme case to consider is the reaction
to multiple losses. In this case, the server proxy could start
predicting and sending packets over the congested network,
exacerbating the congestion and resulting in performance
degradation. To avoid this case, the server proxy only reacts
to the first identified loss and neglects all further timeouts.
In such a way, the network is not overloaded, and it avoids
predicting many future actions, i.e., for a high time horizon,
which is acknowledged to be less accurate [62]. The client
proxy, conversely, takes action against these losses on the basis
of application requests. When the number of losses becomes
too high, a warning message is sent to the user to notify an
ineluctable network problem. However, most of the network
congestions are transient [63], [64], and client proxy attempts

9

to mitigate this effect by providing a fast response waiting for
the network to be fully available.
Application request: an example. As an example, if the
medical doctor changes the snipped area of the histological
sample while the network is congested, the client proxy
intervenes and sends a cached version of the image of the
interested region (ROI), if present. Thus, the client agent is an
active part and can help mitigate the network congestion. It
must be noted that the pathologist is used to visiting multiple
times the same ROI in search of different details, and the proxy
can save these tiles once for all future requests. But the request
may also refer to a change of the microscope settings or to
a pre-process of the sample image. In these cases, after the
timeout Ts, the agent will predict this request and send it to
the plugin. This node will reply with the proper response. In
the case of a configuration request, the response is overlooked
and, consequently, not sent, since such a response represents
only a positive answer and can be generated by the client
proxy. In such a way, we avoid duplication of messages and
we achieve an efficient use of network resources. On the other
hand, for a request of processing the image, the response is
crucial and, consequently, the image is sent. These examples of
requests highlight the importance of a proper and synchronized
division of concerns, like the one presented in Reparo.

VI. EVALUATION RESULTS

To evaluate the performance of our developed system, we
implemented Reparo in a real scenario of a telepathology ses-
sion where network conditions are often emulated to replicate
critical environments. After an initial phase where a team of
pathologists used the program to learn typical workflow, we
also replicated these requests programmatically, without user
intervention, to make evaluation repeatable and validate the
solution at varying network conditions. In this section, we
first present the evaluation of our model and the comparison
with other ML models. Then, we expose the benefits that
our novel model brings to the application when compared to
similar solutions. Lastly, we present the sensitivity analysis
that we carried out to select the timeout settings utilized in
the experimental campaign.

A. Model Prediction Accuracy

In this first part, we study the efficacy of an ML model to
predict the correct messages. We thus experienced different ac-
tivities of pathologists over this tool and saved the collection of
messages exchanged during this interaction user-microscope.
Traffic workload. The prediction accuracy and effectiveness
of Reparo severely depend on the traffic patterns. For this
reason, we evaluate the behavior of considered solutions in a
variety of traffic demands. Specifically, we saved four different
workload patterns examined during real telepathology sessions
that were undertaken by our pathologists’ team. These traces
differ for the type of requests, e.g., activation of a video
stream, image processing algorithms, and operations sequence.
We then combine these collections in a single dataset that
consists of more than 40, 000 samples, and we (offline) test
the accuracy of predictors on it. We leave the performance

assessment for these predictors when applied in real-time with
different (partially randomized) patterns to the next subsection.

Since the metrics exposed in Section IV-A can be aggre-
gated either at the server edge or client edge, we generated
two datasets accounting for these two options, considered as
client-side and server-side. Both scenarios represent the set
of packets exchanged during a telepathology session over our
system, with the only difference regarding the response time
feature. We then separately performed training and testing
phases for all the considered algorithms in both scenarios, by
splitting the dataset into train (80%) and test (20%) sets. In
our application we consider 11 different actions, counting the
“no action” option, which must be accounted to represent the
case of no packet sent.
Accuracy. First, we evaluate the fidelity of decoding methods,
as part of the HMM method. Recalling how this algorithm
serves to find the best hidden state (application message)
given the observations (network features), we evaluate: (i) the
traditional algorithm used in HMM, i.e., Viterbi, (ii) an alter-
native Generative adversarial networks (GAN)-based method,
referred herein as GAN, whose implementation is inspired
by [65], (iii) Variational autoencoder (VAE) [66], and (iv)
our choice, i.e., AAE. We report the results in Figure 5a. For
all the graphs in this subsection, the confidence intervals are
negligible and do not appear in the graphs since randomicity
takes place only in a few algorithms with limited impacts.

It can be observed how AAE is able to reach the maximum
accuracy, with a notable 99.7%, which makes it outperforming
the default Viterbi of more than 10%. Compared to VAE, we
can also conclude how the presence of the adversarial loss
similar to GANs makes the model more accurate. In fact,
the loss computed on the latent representation of AAE can
notably increase accuracy at the cost of a higher training time.
The standard GAN model, instead, exhibits a poor ability to
encode the observations into hidden states. Obtained results
support our choice of replacing Viterbi with AAE as the
default decoding algorithm.

Second, we compare our overall prediction method pre-
sented in Section IV-D against other regressors and classi-
fiers. Specifically, in the former class resides Autoregressive
Integrated Moving Average (ARIMA), Hidden Markov Model
(HMM), whilst in the latter remain Decision-Tree (DT), K-
Nearest Neighbors (KNN), Naive-Bayes (NB), Deep Neural
Networks (DNN), Support Machine Vectors (SVM). In the
case of our HMM model, the next action constitutes the next
hidden value; for a regression problem, this value represents
the value at the time interval t+1 given the last actions; finally,
for the classifiers, the action is the output given the past values
in inputs. The difference among these models results in how
the inputs and outputs are decided and interpreted, which in
turn affects the accuracy of the next action prediction.

The results in Figure 5b confirm the hypothesis of the
HMM-based algorithm ability to interpret network signals and
model the channel. We can notice, indeed, how both our
algorithm and HMM outperform the alternatives. Between
these two models, however, Reparo raises the accuracy in
predicting future values of more than 15%. An improvement of
even a few percentage points leads to significant improvements

10

70 80 90 100
Accuracy (%)

Viterbi

AAE

GAN

VAE

Server site
Client site

(a)

40 60 80 100
Accuracy (%)

HMM

Reparo
ARIMA

SVM

DT

NB

KNN

DNN

Server-side
Client-side

(b)

Fig. 5: Accuracy. (a) Encoding methods performance evalu-
ation. (b) Accuracy of different methods for future payload
prediction. Our Reparo system benefits from the autoencoder
application and outperforms the benchmarks.

101 102

Training time (s)

Viterbi

AAE

GAN

VAE

Server site
Client site

(a)

10−1 100 101 102

Training time (s)

HMM

Reparo
ARIMA

SVM

DT

NB

KNN

DNN

Server site
Client site

(b)
Fig. 6: Training time. (a) Time required for the encoding
methods to be trained. (b) Time spent for solving the training
problem of predictor algorithms.

in application performance, since it means reduced erroneous
usage of network resources (see Section VI-B). Moreover,
since the obtained accuracy is close to the (unfeasible) perfect
oracle, it results in a trusted predictor that can tremendously
enhance the traffic restoration process.

Regarding the location where the model is applied, we can
also observe that, even if moderately, running these algorithms
at the server-side leads to a better outcome. This confirms our
design of employing the HMM model on the server proxy.
Training time. We also measure the required time to train
these models. This information is precious to assess the
cost of an improved prediction and to, subsequently, set the
timing logic in our algorithm. We first consider the algo-
rithms addressing the decoding problem, displaying results in
Figure 6a. As expected, GAN is the most time-consuming
method, with more than 560 seconds, and Viterbi the fastest,
with nearly 2 seconds. In between, there are AAE and VAE;
the AAE process is slightly longer, but with only 20 seconds
of difference. Given the nearly 2 minutes to be trained for our
AAE model, we imposed an offline pre-training phase that can
also take place over a possible large dataset.

Considering the time to train the predictor model (Fig-
ure 6b), the time-series procedure (ARIMA) and the deep-
learning model (DNN) need the most considerable amount of
time. The remaining algorithms produce a comparable training
time, with negligible differences. Notably, for the training
problem, our version is also more rapid than the traditional
HMM. However, since Reparo’s time is less than a second,
we opt for an online training based on a rolling window; that
is, every period Tt we consider the last obtained data and, on

these metrics, perform a re-training process.
Having pre-processed data, the AAE model is application-

specific and can be reused for other network scenarios. This
motivates our choice of training offline the AAE generator
network with a large quantity of data to make it the most
accurate as possible. On the other hand, HMM, which models
the user experience and the consequent network evolution
over time, can be online trained given the shorter training
time. Learning data in an online manner, i.e., “on-the-fly”,
enables continuous model adaptation, and this characteristic
is particularly useful for live systems where latency has a
significant impact on users.

B. Application Benefits

Besides the validity of the proposed predictor, we evaluate
the benefits it can give to a telepathology application. In
particular, we deploy some different environments to assess
the performance of Reparo in multiple conditions.
Application requirements. Our telepathology system has
performance requirements in terms of latency, bandwidth,
security, etc., that can be enumerated as follows: latency ≤ 100
ms; throughput 1 Mbps; security “High”; reliability “Very
High”, which are in line with the recent studies [67]–[69]. In
the following, we evaluate mostly the latency and throughput,
since they represent the predominant metrics from the user
point of view and the key for assuring real-time control of the
microscope.
Benchmark algorithms. To validate our solution, we compare
against other two alternative solutions: (i) a telepathology
application not equipped with any predictor for lost packets,
named LiveMicro [33]; (ii) a proper adaptation to our use case
of the solution proposed in [27], where an HMM/GMR model
is used to predict actions in haptic communication, herein
referred to as HMM/GMR due to its method.
Application performance. First of all, we consider a local
deployment, where the user is located in the same geographical
area of the plugin but different access networks. In such a
way, we have full control over the two edge networks, but the
impact of the network in between, which is however beyond
our control, is reduced and allows us to limit the series of
unexpected events. We run the telepathology application for
15-minutes and we evaluate the throughput and latency during
its execution (Figure 7a). Metrics are collected on the client
program and refer to packets sent/received. We can notice how
Reparo provides the lowest perceived latency in conjunction
with the highest throughput, showing a particularly significant
advantage in latency. In fact, as LiveMicro does not utilize
any predictive mechanism, it is unable to provide a shorter
delay. Not only Reparo has a lower latency on average, but
this value is also more stable. This feature is clearly one of
the differences from the HMM/GMR solution. This outcome
derives from the algorithm that benefits from adopting more
periodic actions based on diverse timers, online training, and
wise response to multiple consecutive losses.
Congested network: losses. We then consider how the net-
work affects our solution, studying in particular the impact
of packet loss rate. We simulate this experience using the

11

0 2 4 6 8 10
Latency (ms)

1

2

3

T
hr

ou
gh

pu
t(

M
bp

s)

Reparo
LiveMicro
HMM/GMR

(a)

0 5 10 15
Loss rate (%)

4

6

8

10

L
at

en
cy

(m
s)

Reparo
LiveMicro
HMM/GMR

(b)

0 20 40 60 80 100
Network delay (ms)

5

10

15

20

∆
L

at
en

cy
(m

s)

Reparo
LiveMicro
HMM/GMR

(c)

Fig. 7: Edge Prediction advantages. (a) Throughput and latency of a session performed locally, in the same campus. Application
performance for challenging network conditions: (b) for increasing loss rate in the network, (c) for increasing network delay.
The prediction in Reparo enables to drastically shorten the encountered latency. All bars or colored area denote 95% C.I.

Mahimahi emulator [70]. As can be seen in Figure 7b, the
latency of the application is bounded even in the case of a high
packet loss rate in the network. As the number of lost packets
increases, our solution can take an appropriate response to
limit the latency to acceptable levels, while also limiting the
variability. It must be noted how the network conditions are
exacerbated in order to better assess the behavior of a traffic
restoration process. For example, a loss rate of 10% is very
rare and only occurs in some cellular networks. Nevertheless,
we can observe how Reparo, when the loss caused by the
network raises, can tackle this lack of messages by restoring
them and can provide reliability and continuity in the interac-
tive telepathology session.
Congested network: delay. Along with the packet loss, we
then consider the effects of an increasing network delay, and
we compare the resulting perceived latency (Figure 7c). A
larger delay may occur either because a microscope is farther
away or due to congestion that increases the switching queue
delay. In the graph we report the difference between the ap-
plication latency and network delay, referring to this quantity
as ∆latency. Firstly, we can observe the reduced variance
in latency for our solution, similar to the previous figure.
Secondly, we can notice how Reparo can further reduce the
viewed application latency, reacting to the increasing delay and
providing a bounded increment in the latency. By predicting
actions, the solution can then achieve a reduced latency on
average and tolerate extremely delayed packets. Clearly, this
result is a consequence of both message predictor and services
offered by the two proxies to reduce the number of messages
over a wider network. Hence, our solution can drastically help
towards a latency that can enable interactivity.
Multiple clients. In Figure 8a we quantify the application
throughput when the number of concurrent clients increases.
The reported throughput refers to the mean among the users.
When more clients are connected simultaneously, our edge
components have to keep more models as well, with the result
of a greater overhead. However, we can observe how this
does not severely affect the behavior of the proxies. On the
contrary, Reparo allows to reduce the impact of the inevitable
bottleneck and to efficiently handle more ongoing transmis-
sions. HMM/GMR dramatically suffers from the increment
of users exhibiting an inability to share resources when they
are reduced. As expected, when no mechanism is employed

as in LiveMicro, network congestion becomes dominant and
degrades the application performance.

Moreover, we measure the amount of RAM and CPU
required to run the Reparo server agent, which manages all the
active connections and where reside our predictive component.
To analyze the resource consumption, we execute the agent
over an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, and
limit our focus to solutions restoring message content: we
neglect LiveMicro as it only offers the mere stream of data.
Considering the amount of CPU required for an increasing
number of clients (Figure 8b), we can observe how Reparo
reduces the CPU usage. Clearly, as the number of clients
increases, so does the CPU. Nevertheless, this consumption
is drastically lower than with the HMM/GMR solution. This
is due to the implementation of a restoration process only for
some events and only when the timer Ts expires.

Similar conclusions hold for the use of RAM (Figure 8c),
where for more clients, Reparo needs to create more data struc-
tures to store the state of the multiple connections. However,
these resources utilized are less than the other benchmark
HMM/GMR. These results are important to validate how
Reparo can manage a high number of concurrent connections
without incurring in excessive resource consumption.
Incorrect predictions. Another issue to take into account is
how a wrong prediction damages the application and to what
extent. To this end, we consider a highly lossy network that
can fool the predictor and report the obtained reliability in
Figure 9a. We collect results by running the three different
solutions in a network with a loss rate = 12%, until the
reported number of wrong predictions is obtained, then we
stop the execution. In the case of Reparo and HMM/GMR, the
reliability refers only to the actual desired application traffic
that is correctly received (often referred in the literature as
goodput). Since LiveMicro does not forecast, its reliability
value is just determined by the packet lost in the network
and, thus, it is constant in the graph and is used as the
baseline. As shown in the graph, we can note how the more
accurate model of Reparo leads to fewer and more sparse
errors over time.As mentioned in Section V, our algorithm
reduces the number of consecutive predictions, which, if
wrong, would harm exponentially. This design choice led the
reliability of Reparo more stable and only partially affected
by more mistakes. Conversely, HMM/GMR drastically reduce

12

5 10 15 20
clients

0

1

2

3
T

hr
ou

gh
pu

t(
M

bp
s) Reparo

LiveMicro
HMM/GMR

(a)

5 10 15 20
clients

30

35

40

45

C
PU

U
sa

ge
(%

)

Reparo
HMM/GMR

(b)

5 10 15 20
clients

300

400

500

600

R
A

M
U

sa
ge

(M
B

)

Reparo
HMM/GMR

(c)

Fig. 8: Multiple clients. (a) System performance when the more clients access the same microscope and share network
resources. (b) CPU and (c) Memory resources consumed on board of the Reparo server agent. All bars or colored area denote
95% C.I.

20 40 60 80
wrong predictions

70

80

90

100

R
ea

lia
bi

lit
y

(%
)

Reparo
LiveMicro
HMM/GMR

(a)

1 2 3 4 5
Network Delay (ms)

0

100

200

300
R

es
po

ns
e

Ti
m

e
(m

s) Reparo
LiveMicro
HMM/GMR

(b)

0 200 400 600 800 1000
Distance (km)

0.00

0.25

0.50

0.75

1.00

L
at

en
cy

(s
)

Reparo
LiveMicro
UDP

(c)

Fig. 9: Incorrect predictions. (a) Impact over the actual communication reliability of wrong predictions. Wide area
communication. (b) Measuring the application latency for diverse transmission technologies, Reparo can stably lead to lower
latency. The comparison also includes an interaction based on UDP. (c) Impact of the physical distance between the user
(client) and the microscope (server).

the offered performance when the predictor misinterprets the
network signals. Even with a considerable number of wrong
predictions (around 80), our system considerably outperforms
a prediction-less solution. Moreover, we realize that the worst
case occurs when the model predicts a request for a time-
consuming action, but in reality the user has not requested any
action. However, the high reliability observed in the results,
along with the high prediction accuracy, suggests that our
solution can well mitigate this circumstance.
Geographical distance. At the same time, the benefits of
Reparo are also valid when the distance between the client
and the server increases. Figure 9b displays the average time
between the client sent the request and its received response,
varying the distance between the client and the microscope
from a few meters to a few kilometers. To obtain results, we
simply leave the plugin in the same campus, but we reproduce
a new client in a new location. The figure reports the network
delay, measured through the ping tool and indicating the time
required to send a (small) packet over the network when it
is uncongested. We compare our Reparo against solutions not
equipped with a restoration process. From the graph, we can
assess that our timer-based algorithm is particularly effective
at limiting response time, even when network delay, along with
geographic distance, increases.

We then compare the latency attained by the application
requests when the server is placed at hundreds of kilome-
ters away (Figure 9c). To further validate our approach, we

compare Reparo against a UDP-based protocol to contemplate
differences between reliable and unreliable communication.
Similar conclusions to the response time hold. Our solution
can efficiently reduce transmission latency when the distance
is significant. Therefore, the impacts of different and multiple
ISP networks are only partially felt when a solution such as
ours is deployed, and interactivity is thus preserved.

C. Sensitivity Analysis

Lastly, we discuss our sensitivity analysis, performed to
configure timers on the client and server proxies of our system.
These values are important as they define when a packet is
imagined to struggle in the network congestion storm and can
be considered lost. Another timer Tt determines the frequency
in re-training the predictor and impacts the amount of fresh
information to use.

Firstly, we analyze the best combination of timers running
on client and server proxies, respectively Tc and Ts. Rather
than focusing on a single value, we study the combination of
these timers, since they ensure that the procedures running in
the two edge components operate in a synchronized way, and
we aim to guarantee the unicity and validity of the actions
performed. Figure 10a shows the performance (throughput)
at varying the values and relationship between these two
values. In particular, we perform tests in a network whose
RTT between the user and the plugin is of 0.0274s. We can
observe how in this scenario the combination Ts = 0.2s

13

0.1 0.2 0.3 0.5
Ts (s)

0

1

2

3

T
hr

ou
gh

pu
t(

M
bp

s)

Tc = RT T + 10%
Tc = RT T + 5%
Tc = RT T

(a)

3 5 20 50
Number of rcv. messages

1.5

2.0

2.5

3.0

3.5

T
hr

ou
gh

pu
t(

M
bp

s)

Ts = 0.1 s
Ts = 0.2 s
Ts = 0.3 s

(b)

Fig. 10: Effects of timers over the application. (a) Com-
bination of the timer on the client proxy (Tc) and the server
proxy (Ts). (b) Relationship between the model train interval,
occurring every x received messages, and timer on the server
side (Ts).

and Tc = 0.03s (RTT + 10%) results in highest application
throughput.

Secondly, we consider the interval for re-training the predic-
tor in terms of the number of messages received by the server
proxy. We report in Figure 10b the resulting throughput for
diverse model update intervals, changing also the Ts timer.
We note that the throughput reaches its maximum when the
network model is re-trained every 20 messages and Ts is 0.2s.
This value also assures the usage of fresh data but without
incurring in too frequent updates.

In light of these findings, we set the following default
values in our evaluation campaign, Ts = 0.2s, Tc = 0.4s,
Tt = 20 msg. However, these values are parameters of the
algorithm that can be set by the user in accordance with the
application requirements. Since these timers are application-
specific and highly depend on the RTT of the network, it
is highly recommended that they are set depending on the
application and network environment where the solution run.

VII. CONCLUSION

In this paper, we presented Reparo, an edge computing
based system designed for latency-critical applications. To
achieve the required low-latency interactive sessions even
when a session experiences delays or losses due to a congested
path, Reparo predicts the next application-layer message using
a Hidden Markov Model (HMM) empowered with adversarial
autoencoders. We have implemented Reparo over a telepathol-
ogy application, providing the ability to control a microscope
remotely. Experimental results demonstrate the high accuracy
of the model and the validity of our solution in lowering the
experienced delay and increasing the throughput and reliability
of the application. While the results focus on a telemedicine
scenario, we can argue that our message restoration process
can be transferred to other haptic programs or in industry 4.0
applications, given the similarity of requirements. To this end,
in the future, we plan to transfer the predictive model and ap-
ply our approach even in other critical applications to evaluate
its potential and assess the benefits brought. We envision our
solution to constitute a portion of a possible broader system
aiming to guarantee a specific Service Level Objective (SLO),
where Reparo can tremendously help mitigate the impact of
packet losses.

REFERENCES

[1] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[2] A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh,
“Realizing the tactile internet: Haptic communications over next gen-
eration 5g cellular networks,” IEEE Wireless Communications, vol. 24,
no. 2, pp. 82–89, 2016.

[3] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5g: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE journal
on selected areas in communications, vol. 35, no. 6, pp. 1201–1221,
2017.

[4] M. Luvisotto, Z. Pang, and D. Dzung, “Ultra high performance wire-
less control for critical applications: Challenges and directions,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1448–1459,
2016.

[5] R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg, and H. S. Kim, “Urllc
for 5g and beyond: Requirements, enabling incumbent technologies and
network intelligence,” IEEE Access, vol. 9, pp. 67 064–67 095, 2021.

[6] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett
et al., “Knowledge-defined networking,” ACM SIGCOMM Computer
Communication Review, vol. 47, no. 3, pp. 2–10, 2017.

[7] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. Caicedo Rendon, “A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9, 05
2018.

[8] A. Sacco, F. Esposito, and G. Marchetto, “Supporting sustainable virtual
network mutations with mystique,” IEEE Transactions on Network and
Service Management, vol. 18, no. 3, pp. 2714–2727, 2021.

[9] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wire-
less networking: A survey,” IEEE Communications surveys & tutorials,
vol. 21, no. 3, pp. 2224–2287, 2019.

[10] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Owl: Congestion
control with partially invisible networks via reinforcement learning,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021.

[11] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-
Bassett, B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: auto-tuning video
abr algorithms to network conditions,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18, 2018, pp. 44–58.

[12] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’17, 2017, pp.
197–210.

[13] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), 2020, pp. 495–511.

[14] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[15] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen,
“Billion-scale federated learning on mobile clients: A submodel design
with tunable privacy,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking (MobiCom ’20),
2020, pp. 1–14.

[16] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[17] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[18] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[19] A. Chowriappa, R. Wirz, A. R. Ashammagari, and Y. W. Seo, “Prediction
from expert demonstrations for safe tele-surgery,” International Journal
of Automation and Computing, vol. 10, no. 6, pp. 487–497, 2013.

[20] C. J. Pérez-del Pulgar, J. Smisek, V. F. Munoz, and A. Schiele, “Using
learning from demonstration to generate real-time guidance for haptic
shared control,” in 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, 2016, pp. 003 205–003 210.

14

[21] K. Salamatian and S. Vaton, “Hidden markov modeling for network
communication channels,” ACM SIGMETRICS Performance Evaluation
Review, vol. 29, no. 1, pp. 92–101, 2001.

[22] A. M. Schmidts, D. Lee, and A. Peer, “Imitation learning of human
grasping skills from motion and force data,” in 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2011, pp.
1002–1007.

[23] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Characterization and prediction of mobile-app traffic
using markov modeling,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 907–925, 2021.

[24] C. Liu, Z. Cao, G. Xiong, G. Gou, S.-M. Yiu, and L. He, “Mampf:
Encrypted traffic classification based on multi-attribute markov proba-
bility fingerprints,” in 2018 IEEE/ACM 26th International Symposium
on Quality of Service (IWQoS). IEEE, 2018, pp. 1–10.

[25] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of encrypted
traffic with second-order markov chains and application attribute bi-
grams,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 8, pp. 1830–1843, 2017.

[26] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, vol. 9, no. 1, pp. 1–29, 2016.

[27] F. Boabang, R. Glitho, H. Elbiaze, F. Belqami, and O. Alfandi, “A frame-
work for predicting haptic feedback in needle insertion in 5g remote
robotic surgery,” in 2020 IEEE 17th Annual Consumer Communications
& Networking Conference (CCNC). IEEE, 2020, pp. 1–6.

[28] T. Adachi, K. Fujimoto, S. Sakaino, and T. Tsuji, “Imitation learning for
object manipulation based on position/force information using bilateral
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3648–3653.

[29] T. Xu, B. Han, and F. Qian, “Analyzing viewport prediction under
different vr interactions,” in Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies,
ser. CoNEXT ’19, 2019, pp. 165–171.

[30] R. S. Weinstein, A. R. Graham et al., “Overview of telepathology, virtual
microscopy, and whole slide imaging: prospects for the future,” Human
pathology, vol. 40, no. 8, pp. 1057–1069, 2009.

[31] R. Lebre, R. Jesus, P. Nunes, and C. Costa, “Collaborative framework
for a whole-slide image viewer,” in 2019 IEEE 32nd International
Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2019,
pp. 221–224.

[32] C. Alvarez, G. Corredor, D. Giraldo, and E. Romero, “Tele-pathology:
A use case in colombia,” in 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019). IEEE, 2019, pp. 1417–1421.

[33] A. Sacco, F. Esposito, P. Okorie, and G. Marchetto, “Livemicro: An
edge computing system for collaborative telepathology,” in Proceedings
of the 2nd USENIX Workshop on Hot Topics in Edge Computing, ser.
HotEdge ’19, 2019.

[34] C. Han, Y. Wu, Z. Chen et al., “Network 2030 a blueprint of technology,
applications and market drivers towards the year 2030 and beyond,”
2018.

[35] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, ser. SIGCOMM ’20, 2020,
pp. 557–570.

[36] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proceed-
ings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures,
and protocols for computer communication, ser. SIGCOMM ’20, 2020,
pp. 107–125.

[37] H. Yeo, S. Do, and D. Han, “How will deep learning change internet
video delivery?” in Proceedings of the 16th ACM Workshop on Hot
Topics in Networks (HotNets ’17), 2017, pp. 57–64.

[38] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding net-
works for video prediction and unsupervised learning,” arXiv preprint
arXiv:1605.08104, 2016.

[39] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16, 2016, pp. 272–285.

[40] P. S. Rossi, G. Romano, F. Palmieri, and G. Iannello, “A hidden markov
model for internet channels,” in Proceedings of the 3rd IEEE Inter-
national Symposium on Signal Processing and Information Technology
(IEEE Cat. No. 03EX795). IEEE, 2003, pp. 50–53.

[41] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature
in a hybrid wired/wireless environment,” in Proceedings of WiOpt’03:
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
2003.

[42] S. Tao and R. Guérin, “On-line estimation of internet path performance:
an application perspective,” in IEEE INFOCOM 2004-IEEE Conference
on Computer Communications, vol. 3. IEEE, 2004, pp. 1774–1785.

[43] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[44] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4681–4690.

[45] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[46] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” arXiv preprint arXiv:1605.09782, 2016.

[47] K.-Y. Chen, C.-P. Tsai, D.-R. Liu, H.-Y. Lee, and L.-s. Lee, “Com-
pletely unsupervised phoneme recognition by a generative adversarial
network harmonized with iteratively refined hidden markov models,” in
INTERSPEECH 2019 - Annual Conference of the International Speech
Communication Association, 2019, pp. 1856–1860.

[48] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[49] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in over-
parameterized neural networks, going beyond two layers,” in Advances
in neural information processing systems (NeurIPS 2019), 2019, pp.
6158–6169.

[50] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning (ICML 2019). PMLR,
2019, pp. 3050–3059.

[51] H. Wang, S. Zheng, C. Xiong, and R. Socher, “On the generaliza-
tion gap in reparameterizable reinforcement learning,” arXiv preprint
arXiv:1905.12654, 2019.

[52] Health Insurance Portability and Accountability Act of 1996 (HIPAA),
2021, http://www.hhs.gov/hipaa/.

[53] D. U. Ekong and P. Fontelo, “Prototype telepathology solutions that use
the raspberry pi and mobile devices,” in 2017 IEEE Global Humanitar-
ian Technology Conference (GHTC). IEEE, 2017, pp. 1–4.

[54] A. Sacco, F. Esposito, G. Marchetto, G. Kolar, and K. Schwetye, “On
edge computing for remote pathology consultations and computations,”
IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 9, pp.
2523–2534, 2020.

[55] Micro-Manager library, https://micro-manager.org/.
[56] gRPC, A high performance, open-source universal RPC framework.,

2021, https://grpc.io/docs/.
[57] NetfilterQueue library, https://pypi.org/project/NetfilterQueue/.
[58] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,

2017.
[59] HMM Learn library, 2021, https://github.com/hmmlearn/hmmlearn/.
[60] OpenSeadragon, http://openseadragon.github.io/.
[61] A. Clemm and T. Eckert, “High-precision latency forwarding over

packet-programmable networks,” in NOMS 2020-2020 IEEE/IFIP Net-
work Operations and Management Symposium. IEEE, 2020, pp. 1–8.

[62] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[63] A. P. C. da Silva, M. Varela, E. d. S. e Silva, R. M. Leao, and G. Ru-
bino, “Quality assessment of interactive voice applications,” Computer
Networks, vol. 52, no. 6, pp. 1179–1192, 2008.

[64] J.-c. Bolot and H. Crépin, “Analysis and control of audio packet loss
over packet-switched networks,” in IEEE Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV).
Citeseer, 1993.

[65] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[66] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[67] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware vnf place-
ment for service-customized 5g network slices,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 2449–2457.

15

[68] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[69] N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, vol. 1, 2015.

[70] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for http,”
in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015,
pp. 417–429.

Alessio Sacco received the received the M.Sc. de-
gree (summa cum laude) and the Ph.D. degree
(summa cum laude) in computer engineering from
the Politecnico di Torino, Torino, Italy, in 2018
and 2022, respectively, His research interests include
architecture and protocols for network management;
implementation and design of cloud computing ap-
plications; algorithms and protocols for service-
based architecture, such as Software Defined Net-
works (SDN), used in conjunction with Machine
Learning algorithms.

Flavio Esposito is an Assistant Professor with the
Department of Computer Science at Saint Louis
University (SLU). He also has an affiliation with the
Parks College of Engineering at SLU. He received
an M.Sc. degree in Telecommunication Engineering
from the University of Florence, Italy, and a Ph.D. in
computer science from Boston University in 2013.
Flavio worked in the industry for a few years,
and his main research interests include network
management, network virtualization, and distributed
systems. Flavio is the recipient of several awards,

including four National Science Foundation awards and two best paper awards,
one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto (M’06-SM’21) received the Ph.D.
degree in computer engineering from the Politec-
nico di Torino, in 2008, where he is currently an
Associate Professor with the Department of Control
and Computer Engineering. In 2009, he visited the
Department of Computer Science at Boston Univer-
sity. His research topics cover distributed systems
and formal verification of systems and protocols. His
interests also include network protocols and network
architectures. He is Senior Member of the IEEE
and he serves as an Associate Editor of the IEEE

Transactions on Vehicular Technology.

