
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Unexpectedly Useful: Convergence Bounds And Real-World Distributed Learning / Malandrino, Francesco; Chiasserini,
Carla Fabiana. - STAMPA. - (2023), pp. 76-79. (Intervento presentato al convegno 2023 15th International Conference
on Machine Learning and Computing (ICMLC 2023) tenutosi a Zhuhai (China) nel Feb. 2023)
[10.1145/3587716.3587728].

Original

Unexpectedly Useful: Convergence Bounds And Real-World Distributed Learning

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3587716.3587728

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973549 since: 2022-12-01T14:12:17Z

ACM

Unexpectedly Useful: Convergence Bounds
And Real-World Distributed Learning

Francesco Malandrino
CNR-IEIIT and CNIT

Torino, Italy

Carla Fabiana Chiasserini
Politecnico di Torino, CNR-IEIIT, and CNIT

Torino, Italy

ABSTRACT
Convergence bounds are one of themain tools to obtain information
on the performance of a distributed machine learning task, before
running the task itself. In this work, we perform a set of experiments
to assess towhich extent, and inwhichway, such bounds can predict
and improve the performance of real-world distributed (namely,
federated) learning tasks. We find that, as can be expected given
the way they are obtained, bounds are quite loose and their relative
magnitude reflects the training rather than the testing loss. More
unexpectedly, we find that some of the quantities appearing in the
bounds turn out to be very useful to identify the clients that are
most likely to contribute to the learning process, without requiring
the disclosure of any information about the quality or size of their
datasets. This suggests that further research is warranted on the
ways – often counter-intuitive – in which convergence bounds can
be exploited to improve the performance of real-world distributed
learning tasks.

ACM Reference Format:
Francesco Malandrino and Carla Fabiana Chiasserini. 2023. Unexpectedly
Useful: Convergence Bounds And Real-World Distributed Learning. In Pro-
ceedings of International Conference on Machine Learning and Computing
(ICMLC ’23). ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
It would be hard to overstate the importance of machine learning
(ML) for a growing number of aspects of technology and, indeed,
of our daily lives. Furthermore, owing to the growing complexity
of the learning tasks to perform, to the ever-increasing amount of
resources they require, and to the need to keep data local, a lot of
today’s learning is distributed, i.e., it requires the cooperation of
multiple learning nodes, leveraging the help of a learning server.

A prominent example of distributed learning is represented by
the Federated Learning (FL) paradigm, which operates [1] by per-
forming five main steps, as summarized in Fig. 1:

(1) each learning node trains a localmodel, leveraging on-device
data;

(2) after one or more local epochs, learning nodes send their
current model to the server;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICMLC ’23, February 2023, Zhuhai, China
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Node A Node BLearning server

1: local training 1: local training

2: local
model

2: local
model

3: combine

4: global
model

Figure 1: Main steps of each iteration of the federated learn-
ing paradigm: learning nodes train their local model (1) and
send the local parameters to the server (2); the server per-
forms a (weighted) averaging of the model (3) and sends the
global parameters back to the learning nodes (4).

(3) the server creates a global model by combining, e.g., averag-
ing [1], the local models it receives;

(4) the server sends the global model back to the learning nodes;
(5) the learning nodes replace their local models with the global

one, and resume training from step 1 above.
In FL – as in all types of distributed optimization – the overall

performance of learning chiefly depends upon three factors [2, 3]:
(1) how long each iteration (step 1 in Fig. 1) takes;
(2) how much network delay (steps 2 and 4 in Fig. 1) is incurred;
(3) how much the learning progresses at each iteration, hence,

how many iterations are needed.
The first two factors are widely studied, comparatively well under-
stood, and relatively easy to estimate with a good level of accuracy.
The third factor, instead, is much harder to assess; indeed, how well
a learning model (e.g., a deep neural network (DNN)) can learn
depends upon many factors, several of which are unknown a priori.

The most promising efforts towards modeling and estimating the
progress of learning tasks focus on convergence bounds, i.e., upper
bounds on the loss achieved by a given model by a certain training
epoch. Such bounds may account for features of the model being
trained (e.g., the number of parameters therein), the loss function
(e.g., its smoothness), and the datasets being learned from (e.g.,
their size). Since they establish upper bounds on the loss, works on
convergence analysis must account for the worst-case scenario, i.e.,
they describe the behavior of the model under the most unfavorable
possible conditions.

In this paper, we aim at bridging the gap between theoretical
works on convergence and real-world distributed learning. Our
main contributions are twofold:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• first, we assess how accurately convergence bounds cap-
ture the qualitative and quantitative behavior of concrete
distributed ML;

• second, we find that, while the bounds themselves have a
loose relationship with the actual loss evolution, the quanti-
ties needed to compute the bounds can identify the learning
nodes where local iterations yield the most substantial learn-
ing improvement [4–7].

The latter aspect is linked to the problem of selecting the nodes that
can best contribute to the distributed training, whilst reducing the
overhead [7].

In the remainder of this paper, Sec. 2 describes the convergence
bounds we consider as a reference and our experimental setup,
while Sec. 3 presents our experimental analysis and discusses our
main findings. Finally, Sec. 4 concludes the paper and sketches
directions for future research.

2 REFERENCE BOUNDS AND EXPERIMENTAL
SETUP

In the following, we discuss the convergence results we compare
against, as well as our experimental setup.

2.1 Convergence bounds
Among the many works dealing with distributed learning conver-
gence, we take [8] as a reference. The main reason for our choice
is that the bounds presented in [8] account for multiple aspects of
the learning scenario, hence, they are (i) more suited to assess the
impact of each factor, and (ii) potentially, tighter.

Under the assumptions that all learning nodes participate in the
learning process, they are equally weighted, and one local epoch
is performed for each FL iteration, [8] proves that the difference
between expected loss E [𝐹 (𝑡)] at iteration 𝑡 and minimum loss 𝐹 ∗
is given by:

8𝐿/`
(𝑡 − 1 + 8𝐿/`)

(
16𝐺2

`
+ 4𝐿E∥w1 −w∗∥

)
. (1)

In (1), bold letters denote vectors; also,
• ` is a non-negative quantity such that loss function 𝐹 is
`-strongly convex;

• 𝐿 is a non-negative quantity such that loss function 𝐹 is
𝐿-smooth;

• 𝐺 is a non-negative quantity such that the squared norm of
the gradients of loss function 𝐹 is bounded by 𝐺2.

Recall that, as reported in [8], a loss function, 𝐹 , is `-strongly convex
if there exists a quantity ` ≥ 0 such that, for any possible model
parameters u and v,

𝐹 (u) ≤ 𝐹 (v) + (u − v)𝑇∇𝐹 (v) + 𝐿

2
∥u − v∥22 . (2)

Similarly, 𝐹 is 𝐿-smooth if there exists a quantity 𝐿 ≥ 0 such that,
for any possible model parameters u and v,

𝐹 (u) ≥ 𝐹 (v) + (u − v)𝑇∇𝐹 (v) + `

2
∥u − v∥22 . (3)

As better detailed below, quantities `, 𝐿, and𝐺 can be computed
locally at each node, by repeatedly choosing u and v, and studying
how the corresponding model instances perform over the local

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Figure 2: Classes and example images of the CIFAR-10
dataset [9].

datasets. However, the bound in (1) depends upon their global
values; e.g., the global𝐺 will be the largest of the𝐺-values computed
by each learning node. Additionally, it is worth noting that the
local values of `, 𝐿, and 𝐺 can be exploited to predict the loss
improvement achieved by each individual node during local epochs,
as set forth below.

2.2 Experimental setup
We carry out our experiments by performing an image classification
task over the CIFAR-10 dataset [9], containing a total of 60,000 im-
ages belonging to 10 different classes. To perform the classification,
we leverage a DNN including two convolutional layers and three
fully-connected ones, as per [10], for a total of over 60,000 param-
eters. The dataset is partitioned into a testing set of 6,000 images
and a training set of 54,000 ones; the latter is further partitioned
into local datasets associated with the individual learning nodes.

At each local node, we compute `, 𝐿 and 𝐺 as follows:
(1) we extract two random sets of parameters u and v;
(2) we compute the resulting loss values 𝐹 (u) and 𝐹 (v) over the

local datasets;
(3) we compute the gradients of the loss ∇𝐹 (u) and ∇𝐹 (v);
(4) we compute the value 𝑚 = 2 𝐹 (u)−𝐹 (v)+(v−u)

𝑇 ∇𝐹 (v)
∥u−v∥22

and
store it;

(5) we compute the value 𝑔 =
√︁
∥𝐹 (v)∥2 and store it;

(6) we repeat the above steps starting from (1) until a sufficiently
large number of samples has been collected.

After all samples have been collected, (i) as per [8, Assumption 1], `
is set to the smallest of the𝑚-values; (ii) as per [8, Assumption 2], 𝐿
is set to the largest of the𝑚-values, and (iii) as per [8, Assumption 4],
𝐺 is set to the largest of the 𝑔-values.

We compare three different learning scenarios, changing the
number of nodes and the quality of their data. In the basic scenario
(labelled as “5 nodes” in the plots shown in Sec. 3), there are five
learning nodes, each with 2,000 images drawn from the CIFAR-10
dataset. We then consider a richer scenario (labelled as “10 nodes” in
the plots) where we double the number of learning nodes. Finally,

2

we consider a more challenging scenario (labelled as “5 nodes,
missing class” in the plots), where there are five learning nodes,
each has 2,000 images, and all samples of one class (namely, ship)
are missing from all training sets.

3 EXPERIMENTAL ANALYSIS AND MAIN
FINDINGS

The first aspect we are interested in is the extent to which bounds
match, qualitatively and quantitatively, the behavior of the actual
loss. To this end, Fig. 3 shows the evolution of the training loss
(Fig. 3(a)) and of the testing loss (Fig. 3(b)), and the bounds thereto
(Fig. 3(c)). Looking at Fig. 3(a) and Fig. 3(b) and comparing the
blue solid line and the red dotted line therein, we can observe that,
as expected, having more learning nodes increases the training
loss (i.e., intuitively, it is harder to converge to a good model) but
decreases the testing one (i.e., the resulting model works better
with hitherto unknown data). The yellow dashed lines, describing
the effect of removing a whole class from all training datasets, show
very different effects on the testing and training loss. Having fewer
classes to learn makes training easier (hence, a lower training loss
in Fig. 3(a)). However, the resulting model performs very poorly
over the testing set (hence, a higher loss in Fig. 3(b)). Both these
effects make intuitive sense and are routinely observed in similar
scenarios.

More interestingly, Fig. 3(c) depicts the loss bounds, i.e., the
value of (1), for the three scenarios. By looking at the scale of the
𝑦-axis, the first thing we can notice is that bounds are orders of
magnitude larger than the corresponding loss values – which is
to be expected, as bounds have to account for the worst possible
conditions over all choices of u and v. Perhaps more relevant, the
qualitative relationship between the bounds of different scenarios
follows neither the train losses in Fig. 3(a) nor the testing losses
in Fig. 3(b). Furthermore, the bounds provide no warning about
the serious problems arising from whole categories missing in the
training set (yellow lines in Fig. 3(a) and Fig. 3(b)).

However, a more detailed analysis surprisinly shows that, al-
though the bounds themselves cannot be directly used to predict
and improve the performance of real-world ML tasks, some of their
components can be very useful. In Fig. 4, we examine the relation-
ship between the three quantities we compute to determine the
bounds, i.e., `, 𝐿, and 𝐺 , and the usefulness of each node within
the cooperative training. The usefulness metric is defined [7] as
average improvement in testing loss achieved by learning nodes
during their local iterations; the underlying intuition is that nodes
with a larger usefulness “push” the learning further during their
local epochs.

It is interesting to notice how 𝐿 and (to a lesser extent)𝐺 have a
strong correlation with node usefulness. It follows that computing
local values of such quantities can significantly help identify the
nodes that are more likely to give a better contribution to the
cooperative learning, a very important problem in all distributed
learning scenarios. Even more importantly, computing and sharing
these quantities require nodes to disclose no information about the
size and quality of their dataset, which is instead required by many
existing node selection schemes and may result in privacy leakage.

Another very interesting aspect we can notice from Fig. 4 is that
higher values of both 𝐿 and𝐺 are associated with higher usefulness;
however, as per (1), high values of both 𝐿 and 𝐺 make the value of
the bound larger, i.e., indicate a worse learning. We can make sense
of this apparent contradiction by remembering to what exactly the
bound in (1) refers, that is, the training loss. Intuitively, a good way
to obtain a low training loss is to have a small training dataset, with
samples that are not too different from each other. Indeed, moving
to a degenerate scenario, a dataset with only one class represented
therein can be learned with zero training loss by a DNN always
predicting that class. On the other hand, generalization (hence,
good performance over the testing set) requires larger datasets of
higher quality, which may require more training epochs, thus, incur
a higher training loss.

This discrepancy also points at a higher-level aspect that it is
essential to keep in mind, in order to understand and leverage
convergence results: bounds are based upon the analysis of the
behavior of the stochastic gradient descent (SGD) optimization
algorithm. While optimization is a fundamental part of ML, ML is
much more than optimization; therefore, there are many aspects of
ML that convergence bounds, by their nature, cannot capture.

A further example is shown in Fig. 5, presenting the cumulative
density function (CDF) of the quantity 𝐺 obtained by selecting
random u and v values (blue dotted curve in the plot) and the 𝐺-
values observed during actual training (red solid curve). We can
immediately see that the values obtained from random u and v
values are over an order of magnitude larger than those actually
observed during training. Recalling that bounds must hold for even
the largest possible values of𝐺 , i.e., the top point of the blue curve,
this explains why the bounds in Fig. 3(c) are as loose as they are.

This also ties with our earlier remark about the intrinsic limit
of convergence studies, i.e., there are aspects of ML that simply
cannot be captured by convergence studies. In the case of Fig. 5,
the gradients (hence, the 𝐺-values) encountered during training
are relatively small precisely because a lot of effort and research
in the field of ML, e.g., DNN initialization schemes, learning rate
adaptation algorithms, etc., have been devoted to keeping gradients
low. In other words, one may say that convergence bounds capture
the optimization aspect of ML, but not the many techniques used
in ML to make the optimization perform better.

4 CONCLUSION AND FUTUREWORK
In the context of distributed learning, it is of paramount importance
to estimate how many training epochs will be needed to reach the
target learning performance; this, in turn, depends upon how much
the loss function can be reduced in a single epoch. Convergence
analysis results, based on the performance and behavior of SGD,
are a very valuable tool to estimate this important quantity a priori,
that is, before actually starting to train the network.

In this work, we have leveraged a set of experiments based on
federated learning to (i) assess to which extent the bounds reflect,
qualitatively and quantitatively, the behavior of actual DNN train-
ing, and (ii) whether the quantities appearing in the bounds can be
leveraged to improve the performance of distributed learning. Our
major findings can be summarized as follows:

3

0 5 10 15 20 25 30
Epoch

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Lo
ss

5 nodes
10 nodes
5 nodes,
missing class

(a)

0 5 10 15 20 25 30
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Lo
ss

5 nodes
10 nodes
5 nodes,
missing class

(b)

0 5 10 15 20 25 30
Epoch

0

500

1000

1500

2000

2500

3000

3500

Lo
ss

 b
ou

nd

5 nodes
10 nodes
5 nodes,
missing class

(c)

Figure 3: FL experiments: loss achieved during the training (a) and testing (b) phase; bounds thereto (c).

2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25
local L

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

us
ef

ul
ne

ss

(a)

13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0
local μ

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

us
ef

ul
ne

ss

(b)

90 95 100 105 110 115 120 125
local G

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

us
ef

ul
ne

ss

(c)

Figure 4: FL experiments: relationship between the node usefulness and the local values for the 𝐿 (a), ` (b) and 𝐺 (c) quantities.

10−1 100 101 102 103

Value of G

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

random
v, w

actual
training

Figure 5: FL experiments: distribution of the values of 𝐺
measured through random u and v values (blue) and during
actual training (red).

• the full convergence bounds have only a loose relationship
with the qualitative and quantitative evolution of the testing
and training losses;

• nonetheless, the quantities appearing therein can be very
useful to identify the learning nodes where local updates
yield the largest loss reduction.

The latter metric is linked to how effectively each node can con-
tribute to the learning process [7], hence, it is also useful towards
more effective node selection.

Our results also highlight a fundamental feature of all conver-
gence studies, i.e., that they can well capture the behavior of the
optimization component of ML, while it is much harder for them to
account for the techniques used in ML to improve the performance

of optimization. In spite of this inherent limitation, as noted above,
theoretical convergence studies can be very valuable in identifying
the most suitable nodes to participate in the distributed ML process,
thereby improving the performance of the learning itself.

Future work will focus on leveraging such insights to build a
concrete algorithm for the selection of learning nodes, and evaluate
its performance over a wide set of datasets and DNN architectures.

REFERENCES
[1] J. Konečný, B. McMahan, and D. Ramage, “Federated optimization: Distributed

optimization beyond the datacenter,” arXiv preprint arXiv:1511.03575, 2015.
[2] F. Malandrino, C. F. Chiasserini, N. Molner, and A. De La Oliva, “Network support

for high-performance distributed machine learning,” IEEE/ACM Transactions on
Networking, 2022.

[3] F. Malandrino, C. F. Chiasserini, and G. Di Giacomo, “Energy-efficient training of
distributed dnns in the mobile-edge-cloud continuum,” in IEEE/IFIP WONS, 2022.

[4] T. Nishio and R. Yonetani, “Client Selection for Federated Learning with Hetero-
geneous Resources in Mobile Edge,” in IEEE ICC 2019, 2019.

[5] A. Imteaj andM.H. Amini, “Fedar: Activity and resource-aware federated learning
model for distributed mobile robots,” in IEEE ICMLA, 2020.

[6] C. W. Zaw, S. R. Pandey, K. Kim, and C. S. Hong, “Energy-aware resource man-
agement for federated learning in multi-access edge computing systems,” IEEE
Access, 2021.

[7] F. Malandrino and C. F. Chiasserini, “Federated learning at the network edge:
When not all nodes are created equal,” IEEE Communications Magazine, 2021.

[8] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg
on non-iid data,” in International Conference on Learning Representations, 2019.

[9] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny
images,” 2009.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, 1998.

4

	Abstract
	1 Introduction
	2 Reference bounds and experimental setup
	2.1 Convergence bounds
	2.2 Experimental setup

	3 Experimental Analysis and Main findings
	4 Conclusion and future work
	References

