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Abstract—This contribution introduces a novel approach for
generating guaranteed stable macromodels of large multiport
structures in a completely automated and efficient manner. The
presented method is based on the Adaptive Antoulas-Anderson
(AAA) algorithm for rational fitting of scalar transfer functions.
We propose a computationally cheap multi-input multi-output
extension of the AAA, and we combine the resulting algorithm
with a novel post-processing stability enforcement step that is
formulated in terms of a small-size convex program. Applying the
resulting framework to a large Power Delivery Network (PDN),
we show a significant computational cost reduction with respect
to commonly employed state-of-the-art methods. The proposed
scheme fits naturally as a bridge between electromagnetic and
circuit simulation, enabling the representation of high-frequency
phenomena and parasitics as low-order equivalent circuits syn-
thesized from the computed macromodels.

Index Terms—Macromodeling, power integrity, transient anal-
yses.

I. INTRODUCTION

Transient analysis of complex electronic systems represents
nowadays a mandatory step for the verification and the op-
timization of the electrical performance of a given design,
especially for meeting adequate signal and power integrity
requirements. To cope with the computational complexity that
characterizes such simulations, rational macromodels of large-
scale passive components are of crucial importance. Beyond
being in general accurate and compact, macromodels allow for
conversion between native characterizations of the underlying
components given in terms of frequency domain tabulated
responses into small size equivalent circuits, thus enabling
the possibility of performing fast transient analysis when only
frequency data are available. Nowadays, the Vector Fitting
(VF) iteration [1] is the method of choice for generating
accurate macromodels in a data-driven setting, mainly due to
its robustness [2] and ease in enforcing model stability.

Despite the algorithm admits efficient [3] and parallelization
compliant implementations [4], the continuously increasing

complexity of state-of-the-art electronic technologies often
requires handling extremely large scale structures, for which
the synthesis of the macromodel represents by itself a time-
demanding task. This is particularly true when dealing with
system-level power integrity verification of Power Delivery
Networks (PDNs), that are defined in terms of hundreds or
even thousands of electrical ports [5] and pose significant
challenges to the computational feasibility of the macromod-
eling process. To boost the efficiency of the macromodeling
workflow in the presence of a large number of electrical ports,
the works in [6], [7] propose to exploit data redundancy by
reducing the rational fitting problem to that of reconstructing
via VF only a limited number of independent principal com-
ponents, from which the desired response can be recovered by
superposition.

In this work, we introduce a novel approach for modeling
large-scale electrical interconnects in an efficient and auto-
mated manner, that does not rely on any data redundancy
assumption or need for potentially costly preprocessing. Con-
trarily to the available state-of-the-art approaches, the proposed
method concurrently retains the following advantages

1) is based on a model structure with a number of free
variables that is independent of the number of underlying
structure ports,

2) simultaneously performs model generation and order
estimation, requiring as input only a user-prescribed
accuracy requirement, and

3) guarantees asymptotically stable models by construction.

Our approach represents a Multi-Input-Multi-Output (MIMO)
formulation of the recently introduced Adaptive Antoulas-
Anderson (AAA) algorithm for scalar rational approxima-
tion [8] and performs an iterative update of a template barycen-
tric model structure until it meets a prescribed target accuracy.
The model update is performed by first interpolating the model
response against the data point where the maximum residual



error is detected, and then optimizing a set of free model
coefficients to approximate the remaining samples. Due to the
interpolation conditions, the number of such model coefficients
depends only on the current iteration number. Further, the
algorithm admits a particularly efficient implementation that
does not require computing from scratch large data matrices
as the model complexity increases.

From the applications standpoint, one of the main reasons
that prevented interpolatory approaches from being success-
fully exploited in macromodeling workflows was the lack of
stability guarantees, that are instead easily provided by ap-
proximation schemes similar to VF. In this sense, we propose
for the first time a novel set of algebraic conditions that can be
used to characterize and enforce the stability of the employed
model structure without spoiling its accuracy. The stability
enforcement is achieved via post-processing, and requires the
solution of a small semidefinite program, easily handled via
convex optimization methods in a completely deterministic
and efficient manner.

Experimental evidence based on macromodeling of a realis-
tic PDN structure involving hundreds of electrical ports shows
that the proposed approach is superior to the VF iteration
in terms of efficiency, granting a reduction of the modeling
time requirements of almost 50× while being on par in terms
of modeling accuracy. Thus, it represents a valuable tool
for increasing the efficiency of power integrity assessment
workflows.

II. NOTATION AND PROBLEM STATEMENT

We will denote with j =
√
−1 and with s = σ + jω ∈ C

respectively the imaginary unit and the Laplace variable. Low-
ercase italic letters will be reserved for scalars, while lower-
case and uppercase blackboard bold letters will be reserved for
vectors and matrices (e.g., x for a vector and X for a matrix).
Given a matrix X, its (r, c)-th element will be denoted as xrc.
With XT we will denote the matrix transpose. The matrix In
is the identity matrix of size n. The expression J ≻ K (J ⪰ K)
means that the matrix J−K is positive (semi)definite. Given a
matrix, we will refer to least eigen/singular vector as the one
associated with its smallest eigen/singular value.

We consider an arbitrarily complex electromagnetic struc-
ture accessible from the outer environment by a large set of P
well-defined electrical ports. We assume that the knowledge
of this structure is limited to the availability of samples of
one of its network functions, e.g. its impedance, admittance
or scattering matrix; we will generically denote this network
function in the following as H(s) ∈ CP×P . Further, we
assume that the available data represent samples of H(s)
retrieved in correspondence of a set Γ of discrete frequency
configurations,

Hv = H(jλv), jλv ∈ Γ = {jλ1, . . . , jλV }, λv > 0. (1)

Such samples can be obtained through real or virtual measure-
ments, performed in the latter case exploiting a high-fidelity
electromagnetic (full-wave) characterization of the structure,

including high-performance commercial Maxwell equations
solvers.

In this setting, our goal is to formulate an efficient numerical
algorithm that returns an asymptotically stable macromodel
with rational transfer function Ĥ(s) fulfilling the following
approximation condition

Ĥ(jλv) ≈ Hv, ∀jλv ∈ Γ. (2)

III. MODEL STRUCTURE

Our approach builds the macromodel network function Ĥ(s)
based on the following formulation

Ĥ(s) =

∑k
i=1

(
Fiwi

s−jλi
+ (Fiwi)

∗

s+jλi

)
∑k

i=1

(
wi

s−jλi
+

w∗
i

s+jλi

) =
N(s)

d(s)
∈ CP×P , (3)

that represents a straightforward matrix extension [9]–[12]
of the barycentric structure employed in many state-of-the-
art rational fitting approaches, including the scalar AAA
algorithm [8], [13], and the classical Loewner matrix inter-
polation framework [14]. See also [15], [16], [16]–[19]. Other
advances of the AAA algorithm, including approximation on a
continuum and randomized sketching properties, were shown
in [20], [21].

In (3), the barycentric weights wi = αi+jβi ∈ C represent
the model unknowns that must be optimized in order to enforce
condition (2), while the matrices Fi ∈ CP×P are assumed to
be known quantities. Whenever wi ̸= 0, i = 1 . . . k this model
structure retains the following properties by construction

• Every element of Ĥ(s) can be expressed as a pole-residue
expansion over the same set of at most 2k − 1 poles.
Depending on wi, these poles can be located everywhere
except at locations ±jλi [8].

• It holds Ĥ
∗
(s) = Ĥ(s∗) so that the impulse response of

the macromodel is real-valued.
• It holds Ĥ(jλi) = Fi. The quantities ±jλi are referred

to as support points [8].

Due to the last interpolation property, by selecting λi ∈ Γ and
Fi = H(jλi) the macromodel will interpolate the underlying
structure response over a subset of the available sample points.
The next section outlines an algorithm derived from AAA [8]
that efficiently and automatically selects the interpolation
points (and thus the model order) and estimates the model
coefficients in order to meet the approximation condition (2).

IV. MODEL GENERATION

Following the philosophy of [8], the proposed approach
builds a model of the kind of (3) following a greedy iterative
procedure. By defining the iteration index ℓ, and denoting with
Ĥℓ(s) the model obtained at the ℓ-th iteration, the algorithm
is initialized by defining for ℓ = 0

Ĥ0(s) = V −1
V∑

v=1

Hv. Γ(0) = Γ. (4)



The ℓ-th iteration (ℓ ≥ 1) starts by finding the data point jλℓ

within Γ(ℓ−1) over which the maximum error value is attained,
according to the following criterion

jλℓ = arg max
jλ∈Γ(ℓ−1)

∥∥∥H(jλ)− Ĥℓ−1(jλ)
∥∥∥
2

(5)

and consequently updating the definition of the test set Γ(ℓ) :=
Γ(ℓ−1) \ {jλℓ} and of the model as

Ĥℓ(s) :=

∑ℓ
i=1

(
Hiw

(ℓ)
i

s−jλi
+

(Hiw
(ℓ)
i )∗

s+jλi

)
∑ℓ

i=1

(
w

(ℓ)
i

s−jλi
+

(w
(ℓ)
i )∗

s+jλi

) =
Nℓ(s)

dℓ(s)
, (6)

with Hℓ = H(jλℓ). The model unknowns w
(ℓ)
i are found in

order to enforce (2) using the current model structure. This is
done by defining the linearized error matrix function,

Eℓ(s) = dℓ(s)H(s)− Nℓ(s), (7)

with (r, c)-th entries that read

eℓrc(s) =

ℓ∑
i=1

hrc(s)− hi
rc

s− jλi
· w(ℓ)

i +

ℓ∑
i=1

hrc(s)− (hi
rc)

∗

s+ jλi
· (w(ℓ)

i )∗, (8)

and looking for the w
(ℓ)
i that best meet the condition

ℜ{eℓrc(s)} ≈ 0, ℑ{eℓr,c(s)} ≈ 0 ∀s ∈ Γ(ℓ), r, c = 1, . . . P.
(9)

Since the functions eℓrc(s) are linear in the unknowns w
(ℓ)
i =

α
(ℓ)
i + jβ

(ℓ)
i , the ensemble of conditions (9) can be expressed

collectively in matrix form involving only real quantities,
as for similar rational fitting schemes [1], [2]. Defining the
vector of real unknowns x(ℓ) = [α

(ℓ)
1 , β

(ℓ)
1 , . . . , α

(ℓ)
ℓ , β

(ℓ)
ℓ ]T ,

conditions (9) are rewritten as

L(ℓ)x(ℓ) ≈ 0, L(ℓ) ∈ R2(V−ℓ)P 2×2ℓ. (10)

The above error minimization condition is enforced in a least-
squares sense, solving the homogeneous problem

x(ℓ)opt = arg min
||x(ℓ)||2=1

∥∥∥L(ℓ)x(ℓ)
∥∥∥
2
. (11)

The solution to the above optimization problem is the least
right singular vector of L(ℓ). Once the solution is available,
the optimal model coefficients are used to set up the next
iteration.

The iteration stops when the fitting error hits a user-
prescribed error tolerance. As target error metric, in this work,
we consider the following

δ(ℓ) =

√√√√ 1

V P 2

P∑
r=1

P∑
c=1

V∑
v=1

(
hrc(jλv)− ĥ

(ℓ)
rc (jλv)

)2
, (12)

that represents the cumulative RMS error of the model with
respect to the training dataset. Using this definition, the

algorithm stop condition is δ(ℓ) ≤ ϵ, being ϵ a positive user-
defined error tolerance. The following remarks are in order

• The support point selection criterion (5) is chosen as a
generalization of the criterion used in [8] for the scalar
case. The algorithm selects as the next support point the
frequency sample for which the largest singular value of
the residual error matrix attains its maximum.

• To stop the algorithm, we use the RMS value δ(ℓ) defined
in (12), and not the same error metric that drives the
support point selection. This is because the RMS error is
insensitive to the dimension P of the underlying structure
and representative of the overall model accuracy. We
highlight however that different error metrics can be used
to define the stop criterion.

V. EFFICIENT IMPLEMENTATION

From the computational standpoint, each iteration of the
algorithm described in Sec. IV amounts to evaluating the
samples of the cost function in (5), constructing the regression
matrix L(ℓ), and computing its SVD. The latter two steps admit
a particularly efficient implementation. This can be seen by
noticing that at iteration ℓ one as

L(ℓ) =
[
B(ℓ) C(ℓ)

]
, C(ℓ) ∈ R2(V−ℓ)P 2×2, (13)

where B(ℓ) is obtained from L(ℓ−1) by removing the
rows corresponding to the evaluation of the error functions
ℜ{e(ℓ−1)

rc (s)},ℑ{e(ℓ−1)
rc (s)} over the newly defined support

point jλℓ, while C(ℓ) is the actual update term needed to take
into account the additional variable wℓ = αℓ+ jβℓ introduced
in (8) by the current iteration. Therefore, the matrix L(ℓ) must
not be recomputed from scratch when a new support point is
added. Also, we recall that the least right singular vector of
L(ℓ) computed to solve (11) coincides with the least eigenvec-
tor of the symmetric matrix R(ℓ) =

(
L(ℓ)

)T L(ℓ) ∈ R2ℓ×2ℓ. In
view of (13), this matrix can be partitioned as

R(ℓ) =

[(
B(ℓ)

)T B(ℓ)
(
B(ℓ)

)T C(ℓ)(
C(ℓ)

)T B(ℓ)
(
C(ℓ)

)T C(ℓ)

]
=

[
R(ℓ)

11 R(ℓ)
12

R(ℓ)
21 R(ℓ)

22

]
,

(14)
and can be built efficiently by

• Computing from scratch R(ℓ)
22 and R(ℓ)

12 =
(
R(ℓ)

21

)T
• Computing R(ℓ)

11 from R(ℓ−1) via the update

R(ℓ)
11 = R(ℓ−1) −

(
Λ(ℓ)

)T
Λ(ℓ) (15)

where Λ(ℓ) stacks the rows removed from L(ℓ−1) to
obtain B(ℓ).

Once R(ℓ) is available, computing its eigendecomposition is a
computationally inexpensive task since it is square symmetric
with dimensions equal to the current model complexity (i.e.
order, which is assumed to be small). Neglecting the cost
of this last operation, and supposing that the algorithm stops
at iteration k, the cumulative computational cost required to
optimize the model coefficients during all the iterations is
approximately the same as building L(k) from scratch and
computing the product

(
L(k)

)T L(k).



VI. STABILITY ENFORCEMENT

Let us consider the model structure in (3). Due to its
barycentric form, the poles of each element of Ĥ(s) are located
in correspondence with the zeros of the denominator d(s).
Applying the model generation routine outlined in Sec. IV
does not guarantee that such zeros have a strictly negative real
part, meaning that the procedure could generate an unstable
model. Thus, the admissible model coefficients wi should be
restricted to the set of those such that d(s) is a minimum
phase function [22], i.e., a function whose zeros are located
in the open left-half complex plane. To introduce our stability
enforcement approach, we will need the following definitions

Definition VI.1 (Positive Real (PR) function [23]). A scalar
rational function f(s) is positive real if

1) f(s) has no poles in ℜ{s} > 0
2) f(s) is real for all positive real s
3) ℜ{f(s)} ≥ 0 for ℜ{s} > 0

Definition VI.2 (Strictly Positive Real (SPR) function [23]).
A rational function f(s) ∈ C that is not identically zero for
all s is strictly positive real if f(s− τ) is PR for some τ > 0.

The above definitions are of interest because of the follow-
ing result, which is proved in [24] for the case P = 1, and
extended here for the multiport case:

Lemma VI.1. Let Ĥ(s) be defined as in (3), with wi ̸= 0.
Assume that all the elements of Ĥ(s) have 2k − 1 poles and
that (A, b, c) is a minimal state space realization for d(s),
with cb > 0. Then Ĥ(s) is asymptotically stable if and only if
∃g ∈ R such that

g+(s) =
d(s)

1 + gd(s)
= c(sI2k − A + gbc)−1b (16)

is SPR.

Building on the proof reported in [24] for the case P = 1
and based on the employed model structure, the validity of
this result for an arbitrary number of ports P can be verified
easily. About the hypothesis of the Lemma, we remark the
following:

• From the numerical standpoint, the condition wi ̸= 0 is
always verified in practice.

• The assumption that d(s) admits a realization with cb > 0
is not restrictive, as will be clear in the following.

• When model structure (3) is defined upon k support
points, wi ̸= 0, and cb > 0, all the elements of Ĥ(s)
have 2k − 1 poles up to exact zero-poles cancellations,
that practically never occur numerically.

Based on Lemma VI.1, the stability of Ĥ(s) can be enforced
as follows. Let us assume that the modeling procedure of
Sec. IV stops at iteration k. Dropping any iteration index,
we consider the case in which the final model, defined by the
set of optimal coefficients xopt, obtained by solving (11), is
unstable. Our objective is to estimate a new set of weights
wi = αi + jβi, i = 1, . . . , k that renders the macromodel

stable while preserving its accuracy. The denominator d(s) of
the target stable model can be represented as

d(s) =

k∑
i=1

(
wi

s− jλi
+

w∗
i

s+ jλi

)
= c(sI2k − A)−1b, (17)

with state space realization

A = blkdiag[A1, . . . ,Ak], b = [b1, . . . ,bk]
T , (18)

c = [α1, β1, . . . , αk, βk], (19)

and

Ai =

[
0 λi

−λi 0

]
, bi =

[
2 0

]
, i = 1, . . . , k. (20)

The definition (19) shows that c embeds the model unknowns
in a vector defined as the unknown vector in condition (10).
In terms of such unknowns, the fitting problem (11) can be
rewritten equivalently exploiting xopt as

copt = argmin
c

∥∥L(cT − xopt)
∥∥2
2
, (21)

which is not homogeneous, and where we assume that the
ambiguity on the sign of the singular vector xopt is removed
by requiring xToptb > 0. This choice is not restrictive, since
changing the sign of xopt (or, equivalently, of copt) has no
influence on model structure (3).

To enforce stability, we will consider as feasible for prob-
lem (21) only the vectors c that render SPR the function g+(s)
in (16) for some g ∈ R. Under the hypothesis of Lemma VI.1,
this condition is equivalent to the stability of Ĥ(s). In view of
the Positive Real Lemma [25], the SPR-ness of g+(s) can be
verified by every feasible solution of the following constrained
optimization problem

copt = arg min
c,Q,g

∥∥L(cT − xopt)
∥∥2
2
, (22)

subject to:

Q ∈ R2k×2k, Q = QT ≻ 0,

AT Q + QA − g(bc)T Q − gQbc ≺ 0,

Qb = cT .

Verification steps for this condition are omitted here for the
sake of brevity, but they can be performed as in [24]. Notice
that Qb = cT and Q ≻ 0 enforced together imply cb > 0, as
required by Lemma VI.1. Thus, solving (22) returns a vector
of model weights copt that guarantees the stability of Ĥ(s) by
construction.

Unfortunately, problem (22) is non-convex and hard to solve
even when a small number of variables is involved. To tackle
the problem, here we follow the approach introduced in [24],
which relies on solving a convex relaxation of (22), formulated
in terms of a semi-definite program involving (4k2 + 2)
variables. Full details about the relaxation approach are avail-
able in [24, Sec. 4.2, 4.3]. For the sake of our discussion,
we highlight here that the employed approach preserves the
exactness of the stability constraints, and that its complexity
depends only on the number of poles of the macromodel (that



is assumed to be small). Thus, the computational requirements
of the proposed stability enforcement step are independent on
the number of ports P of the underlying structure.

VII. EXPERIMENTAL RESULTS

We apply the proposed approach to model a real PDN
design employed on a 4-core mobile computational platform
(courtesy of Intel) with P = 144 electrical ports, first pre-
sented in [5]. The structure is known through a high-accuracy
mixed circuit-electromagnetic characterization given in terms
of samples of its impedance matrix Z(s). The total number of
sampling points for this test case is V = 84, logarithmically
distributed in the interval f ∈ [10−8, 2.5] GHz.

The algorithm is applied with RMS error tolerance ϵ =
5 × 10−6. With this setting, the model stops at the 13-rd
iteration, returning a rational macromodel of order 25. The
RMS error committed by the model is δ(13) = 2.2348×10−6;
yet, it exhibits one unstable real pole, so that the stability
enforcement step described in Sec. VI must be applied. After
the model correction, the asymptotically stable result commits
the RMS error δ

(13)
stab = 2.2352 × 10−6. For this test case,

the stability enforcement practically does not introduce any
significant accuracy degradation.

A graphical illustration of the model fitting accuracy is
reported in Figs. 1 and 2, which respectively show compar-
isons between data and model responses for diagonal and off-
diagonal entries of the PDN impedance matrix. An overall
picture of the RMS residual error is provided in Fig. 3; such
error is bounded by 2.0511×10−5 over the P ×P responses.

Our MATLAB implementation was executed on a worksta-
tion equipped with 32 GB of memory and a 3.3 GHz Intel
i9-X7900 CPU. The stability enforcement step was performed
using the YALMIP toolbox [26] and the semidefinite program-
ming solver MOSEK [27]. The whole modeling process took
12.6 s, where ≈ 10.14 s were necessary to build the model
while ≈ 1.6 s were spent in stability enforcement.

To further assess the scalability features of the workflow
with respect to the number of underlying structure ports, we
used the available data to simulate the scenario in which a
PDN with P = 288 ports is considered. This was done by
defining a fictitious impedance matrix

Zext(s) =

[
1 1
1 1

]
⊗ Z(s) ∈ C288×288, (23)

where ⊗ is the Kronecker product. Defining a new dataset
accordingly, we modeled the resulting synthetic structure using
our algorithm. The runtime required in this case amounted to
≈ 44 s, of which 1.5 s were taken by stability enforcement
and the remaining by the model generation. As expected by
the structure of Zext(s), the quality of the model is in perfect
agreement with the one obtained when modeling Z(s).

As a term of comparison, we modeled both Z(s) and
Zext(s), using the same dataset, via Fast Vector Fitting
(FVF) [3], setting the algorithm to return a model of order
25 after 10 iterations. For the smaller test case, FVF took
≈ 119 s, while for the larger one, it took ≈ 2050 s. Thus, the

Fitting of Diagonal Responses

Fig. 1. Modeling performance of the proposed approach on a PDN structure
with P = 144 electrical ports. The figure shows the quality of the model
fitting against the available data over a number of diagonal elements of the
PDN impedance matrix.

proposed approach guarantees respectively a speed-up factor
of 9.41× and 46.61× when compared with this state-of-the-art
method. Higher gains are expected for increasing port count.
The FVF iteration fitted the samples of Z(s) with a residual
error δV F = 1.0084 × 10−6, which is fully compatible with
the accuracy of our proposed method so that the two models
can be considered as equivalent up to any practical extent.

We note that the above results were obtained by executing
prototypal MATLAB implementations of both the proposed
approach and the FVF. We also tested the former in terms
of efficiency against a state-of-the-art implementation of FVF,
by modeling Zext(s) using a commercial modeling tool [28].
The tool took ≈ 95 s to process the dataset, returning a
macromodel with a residual error which is practically identical
to our FVF MATLAB implementation. Even when compared
with this commercial tool, the proposed approach produces a
stable model in less than half of the run time. This suggests
additional margins for improvement in speedup, which can be
attained by code optimization of the proposed algorithm.

VIII. CONCLUSIONS

In this contribution, we introduced a novel macromodeling
framework specifically designed to efficiently handle large-
scale electrical interconnects, such as the PDNs that are
commonly encountered when dealing with transient analy-
ses for power integrity. The approach represents a valuable
tool for reducing the time required by the overall electrical
performance assessment workflow, by providing users with a
reliable, efficient, and fully automated algorithm for perform-
ing system-level verification and optimization. The method
can be easily embedded in any EDA tool or flow to convert



Fitting of Off-Diagonal Responses

Fig. 2. As in Fig. 1, but for off-diagonal elements of the impedance matrix.

RMS Error of Individual Responses

Fig. 3. A graphical representation of the RMS error committed by the
macromodel against each element of the PDN impedance matrix.

large-scale S-parameter sets to SPICE-compatible equivalent
circuits, enabling significant modeling time reductions when
compared to state-of-the-art approaches. Further investigations
will concern the efficient passivity enforcement of massively
MIMO systems, such as those considered in this paper.
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[18] P. Lietaert, K. Meerbergen, J. Pérez, and B. Vandereycken, “Automatic
rational approximation and linearization of nonlinear eigenvalue prob-
lems,” IMA J. Numer. Anal., vol. 42, no. 2, pp. 1087–1115, 2022.
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