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Abstract—Modern Structural Health Monitoring (SHM) systems
are becoming of pervasive use in civil engineering because they
can track the structural condition and detect damages of critical
and civil infrastructures such as buildings, viaducts, and tunnels.
Although noticeable work has been done to improve anomaly
detection for ensuring public safety, algorithms that can be executed
on low-cost hardware for long-term monitoring are still an open
issue to the community. This paper presents a new framework
that exploits compression techniques to identify anomalies in the
structure, avoiding continuous streaming of raw data to the cloud.
We used a real installation on a bridge in Italy to test the proposed
anomaly detection algorithm. We trained three compression models,
namely a Principal Component Analysis (PCA), a fully-connected
autoencoder, and a convolutional autoencoder. Performance com-
parison is also provided through an ablation study that analyzes the
impact of various parameters. Results demonstrate that the model-
based approach, i.e., PCA, can reach a better accuracy whereas
data-driven models, i.e., autoencoders, are limited by training set
size.

Index Terms—Structural Health Monitoring, Edge computing,
Anomaly detection, Deep Learning, Compression Techniques.

I. INTRODUCTION & RELATED WORKS

Large-scale civil engineering buildings, such as bridges, dams,
and tunnels, have complex structures that can suffer from stress
and aging-induced deterioration. In these scenarios, Structural
Health Monitoring (SHM) is a key technology [1], because
its main objective is to track with continuous monitoring the
condition of the infrastructure and to detect early-anomalies,
triggering alerts in case of any mismatches with the planned safe
state of the structure [2], [3], [4].

The effectiveness of SHM further increases in the case of real-
time and online detection, where it can provide an immediate state
of structure to avoid catastrophic collapses [1], [2], [4]. As authors
in [5], [6] specified, SHM main tasks are the identification,
localization, and characterization of damage or deterioration. This
can be done by exploiting several types of sensors, such as
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accelerometers [7], humidity sensors, ultrasonic wave reflection
sensors [8], and cameras [9], that have heterogeneous character-
istics in terms of power consumption and data generation.

In SHM, anomaly detection is not a trivial task because it
faces two major challenges; namely, i) the variety of anomalous
behavior, and ii) the lack of large-scale labeled dataset from
real (or realistic) anomalies to train the models [10]. Effective
anomaly detection in SHM is still a debating field among re-
searchers [11]. According to [12], machine learning-based tech-
niques to detect anomalies can be categorized into four sections: i)
clustering-based approaches, ii) classification-based approaches,
iii) dimension-reduction-based approaches, and eventually, iv)
hybrid approaches that combine multiple technologies. Authors
in [13], [14], [6], [15], [16] highlighted the need for techniques in
SHM that uses low memory size and can be ported directly on the
sensors or the gateways. For instance, [6] uses reconstruction error
measured by PCA method to identify anomalies for structural
damage detection on an oil platform. It concludes that PCA can be
an affordable approach to eliminate the influence of varying wave
condition, and provides a technique on damage indices to improve
the accuracy of detection. [17] uses fiber optic sensors to record
longitudinal displacements over a bridge in Mexico. It exploits
PCA to find Q-statistics of collected data to detect damaged
features of the bridge, and concludes the work by constructing a
threshold value for anomalies detection.

PCA is used for correlated data and the residual deep neural
networks for more non-linear correlations data. This is further ex-
perimented by [15], where linear PCA or MSD-based approaches
do not suit long-term monitoring purposes with highly non-linear
patterns. [13] demonstrated that the reconstruction error is a good
indicator to find outliers and detect anomalies. Both PCA and
autoencoders are trained to construct an outliner detector for
heavy-ion collisions. [3] performed unsupervised learning with
the purpose of vehicle identification using vibration data from
MEMS.

Apart from the aforementioned work on the vibrations acquired
by MEMS, other works [18], [15], [19] focus more on the
thermal and humidity data to identify damages on the given
bridges. Therefore, a study of lightweight unsupervised anomaly
detection techniques for acceleration data acquired in real bridges
is necessary to fill the gap.



Fig. 1. Overview of the SHM installation.

In this work, we present the following contributions:
• We illustrate the acquisition scenario, and we detail the pos-

sibility of embedding an anomaly detection algorithm on the
sensors to modulate the amount of data to transmit from remote
sensing;

• We use a real bridge scenario, with data samples acquired
both from the bridge in normal conditions and from the bridge
suffering from structural damage;

• We illustrate a full pipeline, from raw data to the anomaly
prediction; with this pipeline, we show that on a 25-days dataset
consisting of five days taken with a damaged bridge, and twenty
days data from a normal bridge condition, we can achieve up to
98.20% accuracy, with 96.60% sensitivity and 100% specificity;

• We compare model-based and data-driven models as main
elements of this pipeline. Further, we explore different pipeline
choices, namely i) raw data vs. frequency trace as input, ii)
input time dimension, iii) the presence of an additional energy
check, and iv) the final post-processing dimension. Finally, we
assess the capability of our pipeline to predict more/less severe
anomalies using PCA.
The rest of the article is organized as follows: Sec. II introduces

the bridge structure, the algorithms of anomaly detection and
compression used. Sec. III presents the complete pipeline pro-
posed in this work, detailing the pre-processing (Sec. III-A) and
the anomaly detection algorithms, both data-driven and model-
driven (Sec. III-B). In Sec. IV, we present general results of
our pipeline. Finally, we discuss all the pipeline choices and the
difficulties of the task in an ablation study in Sec. V. Sec. VI
concludes the paper with final considerations and remarks.

II. BACKGROUND & REAL SCENARIO

A. Bridge structure

The structure used for the comparison in this article is an
old bridge in northern Italy, on the state highway SS335. The
SHM system measures accelerations and inclinations in several
critical points of the structure, e.g [3]. The bridge consists of
18 sections, but only one is monitored by five nodes, as shown
in Fig. 1. Recorded data are split into two groups that contain
information before and after a renewing intervention of the bridge
to consolidate the structure the building.

B. SHM Framework

As it is shown in Fig. 1, each SHM node uses a triaxial
accelerometer, a temperature, and a humidity sensor connected to
the STM32F405RG microcontroller as a computational unit. The
sampling frequency of the accelerometer is 25.6 KHz, followed
by a filtering and subsampling procedure that provides output

at 100 Hz. As highlighted in Fig. 1, sensors are connected via
a CAN-Bus connection to transfer data to the gateway. Finally,
data are streamed to an IoT cloud platform for further analysis.

C. Anomaly Detection: PCA & Autoencoder

Principal Component Analysis is a method to deal with high
dimensional correlated data by transforming them into a minimal
correlated data [20]. Exploiting co-variance matrix of high dimen-
sional space, lower dimension subspace can be found by taking
eigen-values and eigen-vectors of the original one. PCA projects
data into low dimensional subspace by preserving most of the
energy of the high dimensional space [21] . Consider a M ×N
dimensional data matrix x =

[
x1, x2, x3, ... , xN

]
where

xk is a column vector of M features representing a sample. Its
co-variance matrix centered mean is:

Σ =
1

n− 1

N∑
k=0

(xk − x̃)(xk − x̃)T (1)

where Σ is a square M×M matrix. Its diagonal holds variance of
each individual sample, and off-diagonal values are co-variances
of sample combinations. Using eigen-values decomposition, we
can write:

Σ = V ΛV −1 (2)

V columns are the eigen-vectors, whereas Λ diagonal contains
corresponding eigen-values of the co-variance matrix. It can be
proven that Vk ∈ RM×k is a basis of the sub-space of dimension
RM×k which retains the highest similarity with the original one.

Autoencoders are exploited in several applications for di-
mensionality reduction, and/or anomaly detection/prediction [22],
[23]. These architectures can be a good candidate to be used in
SHM systems to develop an accurate anomaly detector. Autoen-
coders are a sub-group of neural networks, which encompass
a two-level structure: the first part, the Encoder, reduce the
dimension of the input data RM , projecting it through one or
multiple layer in a latent space RN , N < M . The second part,
the Decoder, projects back the signal to its original space. The
objective function is the reconstruction of the original signal, to
create a latent space which is suitable for the compression of the
training data. Compressing and decompressing a signal different
from the training ones causes an higher error in the reconstruction.
This error is used as a metric for anomaly detection.

Encoder maps the input layer x̄ ∈ RM into the latent space
h̄ ∈ Rk through:

h̄ = f(x̄) = Φ(Wx̄ + b) (3)

where W is the weight matrix and Φ the non-linearity. Mean
square error (MSE) is usually employed as loss [24].

III. ANOMALY DETECTION PIPELINE

This section highlights the main contribution of this work,
namely a framework to detect anomalies in a SHM system and
consequently reducing data traffic to cloud. First, we divide the
data into windows and we extract their energy. Windows that do
not reach a sufficient energy level are discarded prior to further
analysis. After, the windows of vibration data are processed by an
anomaly detection algorithm, which includes signal compression



Fig. 2. Description of the anomaly detection pipeline, from acceleration signal to final outcome.

Fig. 3. Window of 10 minutes of input acceleration. In subfigure B and C, the
zoom of a peak is represented in time and frequency domain.

and reconstruction to detect anomalies. Fig. 2 illustrates the
details of our framework, with an additional offline training vs.
online prediction separation.

A. Pre-processing

The first step of the processing pipeline includes the windowing
of the signal, the extraction of the energy of the windows, and the
frequency extraction. Fig. 3 shows the raw acceleration signal and
the zoom on a vibration peak in both time and frequency domains.
FFT of the data is used in experiments to compare with anomaly
detection made on time domain data. Data are mean centered and
scaled down between -1 and 1. The peaks are viaduct vibrations
inducted by vehicle passages.

1) Windowing: We divide the data into not overlapping win-
dows for processing, similarly to [6]. We explore a window di-
mension in the range of 1-10 seconds in an ablation study, demon-
strating best performance with 5 seconds dimension. Therefore,
during in-field execution of the algorithm, data are gathered for
5 seconds before a new instance of the pipeline is executed to
distinguish normal windows from anomalies.

2) Energy Computing & Tresholding: Since the analysed
bridge experiences a low level of traffic, hence having many win-
dows without vibrations, we decided to filter out non-informative

Fig. 4. Input signal filtered with energy. Windows that are above the energy
threshold are further processed by the rest of the pipeline.

Algorithm 1 Energy Filtering
1: Input: Xtrain,Xval

2: th = 10−10

3: do
4: th+ = 2−8

5: Xtrain,Xval ← filter (Xtrain,Xval, th)
6: W ← pca(Xtrain)
7: Xr ← XvalWWᵀ

8: S ← RSNR(X,Xr)
9: while S < 16 dB

10: Output: th

windows (white noise) to not impair the anomaly detection. Note
that anomaly detection algorithms based on signal compression
and reconstruction can not be applied to a signal without corre-
lation, e.g. white noise. Therefore, we extract the energy of each
window and remove the ones with energy lower than a trained
threshold. In Sec. V-B, we describe the performance gain of this
step in the whole application.

We compute energy of each window as follows:

E =

Wd∑
i=1

Si (4)

To determine the energy threshold, we decide to remove an
increasing percentage of window, until the reconstruction of the
signal does not reach a sufficient mean quality. According to [6],



Fig. 5. Classification of the PCA algorithm with 5 input seconds windows and
30 minutes postprocessing. The threshold is automatically defined as described in
section III-B

a Reconstructed Signal to Noise Ratio (RSNR) = 16 dB (we refer
to [6] for RSNR definition) allows subsequent structure analysis,
thus implying that the compressed signal contains enough infor-
mation of the starting one. Therefore, we increase the percentage
of windows removal until the mean RSNR of compression-
decompression pipeline over a validation set is higher than 16
dB (using a compression ratio factor of 15× as in [6], [3]). Refer
to Alg. 1 for the pseudocode of this window filtering. Fig. 4 shows
selected and discarded windows over a 10 minutes interval.

B. Signal Reconstruction & Anomaly Detection

After preprocessing, we feed the data to a compression-
decompression algorithm, used in our pipeline as an anomaly
detector. Beside the normal task of compression, these algorithms
can indeed be used to detect anomaly by looking at the differ-
ence between original signal and compressed-reconstructed one.
Higher is the difference, farther is the new sample from the
training (normal) data.

This step is divided in 3 phases, i.e., the compression, the
reconstruction and the computation of the error to identify
anomalies. For the first 2 steps, we explored three different
algorithms, namely a PCA, with level of compression of 15×,
a fully-connected autoencoder, with a single hidden layer and
without non-linear activation, which mimics the behaviour of
the PCA and a convolutional autoencoder with 8 hidden layers
followed by sigmoid activation. We used the Adam optimizer
and 80 epochs to train our models. Note that PCA and the fully-
connected autoencoder are identical from the point of view of the
computation, but while the PCA is based on the data-modeling,
the second is a data driven approach. With all the algorithm
we produce the mean square error (MSE) between original and
reconstructed signals.

Finally, a threshold is applied to distinguish normal from
anomaly data. As the threshold of the energy, also this threshold
is automatically derived from normal (not anomaly) validation
data, simulating a scenario with not available abnormal data. To
compute it, the compression algorithm is applied to the normal
validation set and the threshold is computed as the mean of the
MSE over all the data in the validation plus three time their
standard deviation. In this way we have a statistical false negative
ratio of 0.01%, which is later further reduced with the post-
processing. Fig.5 depicts the computation of MSE over normal

Fig. 6. Performance exploration with input window and post-processing dimen-
sion sweeping.

and abnormal data using PCA and the corresponding separating
threshold, reaching an accuracy of 0.98 percent.

C. Post-processing: Time Average

To reduce isolated false alarms, which would be not possible
in the SHM scenario (the structure degradates over time, and a
damage can not be suddenly recovered), we try different averaging
post-processing. As presented in Fig. 2, before comparing with the
threshold and classify a window as safe or anomaly the MAE is
averaged over windows of 15 to 240 minutes. In the next section,
we will explore the impact of this step on the overall results.

IV. EXPERIMENTAL RESULTS

A. Setup

This section assesses the performance of the proposed pipeline
on a dataset extracted from a real SHM system installed on a
viaduct presented in Sec. II-A. We use sensitivity, the percentage
of correctly detected anomalies, specificity, the percentage of
correctly normal classification and accuracy, the total correct
classification, as metrics to validate our pipeline.

B. SHM Dataset

The dataset is composed by five days of anomaly data and
twenty days of normal data, continuously sampled at 100 Hz
from 5 tri-axial accelerometers. For this analysis, we consider
only the the z-axis (i.e., the vertical axis) of the middle sensor
of the chain. We consider ”anomalies” the data coming from the
bridge before a scheduled renewing intervention, made on the
bridge that was suffering from structural issues. Given the unique
case of this viaduct, to the best of our knowledge this is the first
labeled dataset with real anomalies from a viaduct. We divide the
data in four sets: i) five days anomaly data test set, ii) five days
normal data test set, iii) ten days normal data for training, and
iv) five days normal data for validation.

C. Input & Post-processing Dimension Exploration

Beside the two thresholds described in the previous section,
Fig.2 shows other 2 hyperparameters (in red) that can be explored,
namely the input and the post-processing window dimension. Fig.
6 showcases the space exploration, using four values for input
window and an increasing dimension for post-processing. The
input size affects the accuracy in a non-deterministic way; hence



TABLE I
COMPARISON OF THE THREE ALGORITHMS OF ANOMALY DETECTION

PROPOSED IN OUR WORK USING 5 SECONDS INPUT AND 60 MINUTES FOR
POST-PROCESSING.

Algorithm Data Input Accuracy Spec. Sens.
PCA Raw 98.2 % 100 % 96.0 %
fully-connected Autoencoder Raw 91.5 % 94.4 % 89.1 %
convolutional Autoencoder Raw 50.6 % 67.2 % 37.1 %

TABLE II
PERFORMANCE OF OUR PIPELINE CHANGING ANOMALY DETECTION

ALGORITHM WITH BOTH FREQUENCY AND TIME DATA AS INPUT.

Algorithm Data Input Accuracy Spec. Sens.

PCA Raw 98.2 % 100 % 96.0%
FFT 93.2 % 84.9 % 100 %

fully-connected Autoencoder Raw 91.5 % 94.4 % 89.1 %
FFT 82.7 % 60.7 % 99.4 %

convolutional Autoencoder Raw 50.6 % 67.2 % 37.1 %
FFT 43.5 % 38.2 % 47.6%

we keep 5 seconds in the subsequent analysis since it outperforms
both smaller and bigger windows. On the other hand, using
longer post-processing windows is positively correlated with
performance. Hence, using longer windows is beneficial for the
accuracy, creating a trade-off in the delay vs accuracy space. Here,
we do not deeply discuss this trade-off since it is not relevant for
our application, usually characterized by slow modifications of the
viaduct structure. Therefore, for the rest of the work, we decided
to use 60 minutes, which could be a reasonable number also to
detect sudden damages and which perform almost perfectly for
our use-case. Note that the same analysis holds also for higher
post-processing window dimensions.

D. Model-Based vs. Data-Driven Anomaly Detectors

We compare the described models for anomaly detection,
namely the PCA, and the two autoencoders, using filtered win-
dows of 5 seconds raw data as input and 60 minutes of post-
processing. Results are shown in Table I, with PCA showing the
best performance, 98.2%, 100% and 96% of accuracy, specificity
and sensitivity, respectively. Fully-connected autoencoder reaches
similar performance (91.5% accuracy), since it uses an identical
model, with different training procedure. Note that autoencoder
performs slightly worse given the low amount of data in training
dataset. On the other hand, convolutional autoencoder results
in a very low accuracy, given the extremely low capability of
recognizing anomaly events. We conclude that this result is again
due to the small number of data used to train it, since the deep
autoencoder has more parameters and it overfits the training data.

V. ABLATION STUDY

In the following, we examine three scenarios. First, we analyze
how different segments of our pipeline affect the performance,
showing the impact of use time vs. frequency data as input to
our pipeline and the effect of energy filtering. After, we test the
tolerance of our detector artificially changing the ”difficulty” of
anomalies in the dataset.

Fig. 7. Performance improvement given by the energy filtering step. For this
experiment, we use input dimension of 5 s, PCA as classification algorithm and
60 minutes as post-processing average.

A. Raw vs. Frequency Data

Modal analysis and in particular natural frequencies are a key
factor to get insights of the dynamic characteristics of a structure
[25]. Hence, Fourier analysis can be a promising direction to de-
tect anomalies in a viaduct. Further, we observe a small variation
in the power spectrum in most of the windows between normal
and anomaly data, which strengthen the conclusion that frequency
analysis could give interesting results. Therefore, we test our
three anomaly detectors using both frequency and time inputs. For
frequency, we extracted the FFT for each input window instead
of using the raw signal. Given the low natural frequencies of
the viaduct, we cut frequency spectrum in the 0-25 Hz band. As
expected, also frequency inputs allow to reach very high accuracy
(e.g. 93.2 % accuracy with PCA), but it comes out to be lower
when compared to the same analysis performed on raw data. With
this analysis, we conclude that we do not have only a phase shift
in the natural frequencies of the viaduct in the anomalies, but
also magnitude and time patterns of the signal can impact the
performance, by giving information about the structural issues of
the viaduct.

B. Energy Filtering Impact

In Sec. III-A, we described the filtering of windows with
no-information, to avoid a detrimental effect on the anomaly
detection algorithm. In Fig. 7, we quantify this benefit, showing
the difference in classification between the pipeline with the
energy filtering or without it. We can observe that the accuracy
of the model, the PCA, is strongly affected by the removal of
this part, with a loss of 41.1 % of the specificity. We can notice
that this degradation is given by the higher MSE showed also in
the normal windows (0.5 vs. 0.8 mean MAE). This behaviour is
mainly caused by the windows that are filtered out by energy (”not
informative” windows), since reconstructing windows without
vibration is an impossible task and result in an high MAE (there
is no correlation in white noise, and there is not a ”trainable”



Fig. 8. Specificity on differenet distances w.r.t real anomaly case scenario of
bridge

scheme). These windows are present both in anomalies and in
normal windows. Therefore, being these windows the dominant
ones, the difference between the ”informative” ones is reduced
(the MAE is the balanced mean between informative and not
informative windows MAE over time) and the two classes are
not more linear separable.

C. Synthetic Experiments

We finally evaluate the difficulty of the task, trying to artifi-
cially vary the difficulties of the anomalies. To realize different
sets of anomalies, we decided to vary the distance between
frequency peaks in normal and anomaly data, transforming the
data to the frequency domain and then back to the time. In
particular, we use a 15 minutes FFT to increase the resolution
in frequency and we change the distance between the peaks (we
have a single peak in the spectrum) of the two classes between
0 to 200% of the original distance. Closer peaks should strongly
increase the difficulty of the problem. A similar approach has
been used in other fields to generate synthetic anomalies [26],
[27]. The results of these experiments are reported in Fig. 8,
where 100 % points to unchanged data. From the graph, we can
clearly see that while the specificity is constant, the sensitivity of
the algorithm proportionally increases with the increment of the
peak distance. With 75% of the original distance, our algorithm
already perform similarly to its application on original data,
achieving 99% of accuracy, whereas specificity is constant at
98%, sensitivity increased to be approximately 100%.

VI. CONCLUSIONS

Light and strong stresses can cause structures to be non-
functional or dangerous to be used. Thus, continuous monitoring
of such a structure with the aim of degradations over time
monitoring is the main objective of many SHM systems. This
work presents several approaches to improve SHM bridge instal-
lations with ML architectures to detect anomalies. We showed
a real system enhanced by our proposed pipeline to monitor
degradation on a unique use case of an Italian bridge. Both model-
based and data-driven approaches have been explored, achieving
nearly optimal accuracy with model-based perspective (i.e., PCA).
Conversely, more complex data-driven algorithms suffer from the
scarce amount of data.
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