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We propose a direct Particle Swarm Optimization
(PSO) method for extracting the parameters of a phys-
ical model describing the behavior of Vertical-Cavity
Surface-Emitting Lasers (VCSELs), starting from the
light-current (L-I) characteristics and the small signal
modulation (S21) responses, at different currents and
temperatures. With an optimal choice of the hyperpa-
rameters of the algorithm, the method is able to predict
parameters that accurately reproduce the behavior of
the device. Its prediction capabilities are compared to
those of two commonly used nonlinear optimizers (Inte-
rior Point and Levenberg-Marquardt), to benchmark its
performances.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Vertical-Cavity Surface-Emitting Lasers (VCSELs) are experienc-
ing an ever-growing success due to their simple manufacturing,
low production costs, and adaptability to a wide range of ap-
plications, particularly for short-reach communications in data
centers, optical sensing, and other industrial applications [1–3].

However, their behavior is not simple to model, due to their
inherent nonlinearities, strong thermal effects, and other phe-
nomena, such as spatial hole burning, thus requiring the in-
troduction of a large number of equations and parameters to
properly reproduce the experimental findings. Therefore, it is
important to possess reliable methods for an easy and rapid
physical characterization of such devices: parameter values
needed for numerical models must be inferred from experimen-
tal measurements. The problem of parameter extraction and,
similarly, the problem of inverse design are traditionally tackled
with brute-force techniques that are extremely inefficient, both
for their computational cost and for the time required to find a
solution. In recent years, other approaches have been gaining
more and more momentum, in particular Machine Learning
(ML) techniques [4, 5] and genetic or evolutionary algorithms,
such as Particle Swarm Optimization (PSO) [6].

Since the generation of large data sets for the training of Arti-
ficial Neural Networks (ANNs) is generally time consuming and

computationally expensive, and, to the best of our knowledge,
evolutionary algorithms have been used mainly as companion
optimizers to ANNs during inverse design of VCSELs, in this
letter we explore the use of a PSO algorithm for the direct ex-
traction of VCSEL physical model parameters. In particular, our
work considers the VCSEL model included in Synopsys Opt-
Sim™ [7], which allows simpler subsequent simulations at the
system level, realistically reproducing the behavior of actual
devices. We analyze the impact of the hyperparameters of the
PSO algorithm on the outcome of the optimization and present
its capability of extracting a set of parameters that accurately
reproduce the behavior of the device, with reasonable computa-
tion time for a non real-time application. To prove the generality
of the method, the optimization is repeated for 100 different
VCSELs, thus obtaining a reliable statistical distribution of the
prediction errors. The optimizations are performed on simulated
curves for better reproducibility, however the method could be
extended to experimental measurements of devices to be char-
acterized. Finally, the PSO algorithm is compared against two
nonlinear optimizers from the MATLAB Optimization Toolbox
to benchmark its performances when addressing a complicated
problem as the physical model parameter extraction of a VCSEL.

2. VCSEL MODEL AND PSO ALGORITHM

For this analysis, the VCSEL behavior is described by means of
a well-established physical model based on carrier and photon
rate equations, taking into account temperature effects [8]. It is
important to note that the proposed approach can be straightfor-
wardly extended to more complex models for VCSELs or even
to other active devices.

First of all, for simplicity’s sake, the explicit spatial depen-
dency for the carrier and photon numbers is neglected by as-
suming a cylindrical geometry with no azimuthal variations and
by describing the distribution of carriers in the radial direction r
through its expansion in a two-term Bessel series [8]:

N(r, t) = N0(t)− N1(t)J0(σ1r/R) (1)

with σ1 first nonzero root of J1, J0 and J1 Bessel functions of the
first kind, and R effective radius of the active layer. The temporal
evolution of the expansion coefficients N0(t) and N1(t) is given
by the following spatially independent rate equations:

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter 2

Table 1. Investigated VCSEL parameters, with variation ranges and values of the target device.

Parameters Range Target Parameters Range Target

Injection efficiency ηi 0.70 to 1.00 0.72 Transp. number N′
tr0

2.00 × 106 to 1.00 × 108 2.03 × 107

Power coeff. kf (nW) 10.00 to 60.00 30.00 Transp. number coeff. C′
n1

(kK−1) −100.00 to −1.00 -5.45

Carrier lifetime τn (ns) 0.50 to 5.00 3.98 Transp. number coeff. C′
n2

(kK−2) 0.00 to 100.00 12.94

Photon lifetime τp (ps) 1.50 to 3.50 2.73 Leakage current factor Il0 (A) 1.00 to 2.00 1.70

Gain coeff. G′
0 (ms−1) −360.0 to −11.1 −210.0 Leakage current coeff. a0 (K) 2.00 × 103 to 1.00 × 104 7.38 × 103

Gain coeff. a′g1
(kK−1) −5.00 to −0.50 -1.36 Leakage current coeff. a1 (K) 0.00 to 3.00 × 10−4 9.81 × 10−5

Gain coeff. a′g2
(kK−2) −50.00 to −2.00 -12.88 Leakage current coeff. a2 1.00 × 10−9 to 4.00 × 10−8 2.60 × 10−8

Gain coeff. b′g1
(kK−1) −100 to 0 -51.35 Diffusion parameter hdiff 1.00 to 20.00 14.53

Gain coeff. b′g2
(kK−2) 5.56 to 900.0 201.8 Thermal impedance Rth (K/W) 5.00 × 102 to 8.00 × 103 3.89 × 103

Gain saturation factor ϵ 1 × 10−6 to 3 × 10−6 2.95 × 10−6

dN0

dt
= +

ηi I
q

− N0

τn
− Il(N0, T)

q
− G(T) [γ00(N0 − Ntr(T))− γ01 N1]

1 + ϵS
S

(2)

dN1

dt
= − N1

τn
(1 + hdiff) +

G(T) [ϕ100(N0 − Ntr(T))− ϕ101 N1]

1 + ϵS
S (3)

with ηi injection efficiency, I injected current, q electron charge,
τn carrier lifetime, T temperature, G(T) gain coefficient, Ntr(T)
transparency carrier number, Il(N0, T) leakage current, ϵ gain
compression factor, hdiff diffusion coefficient. The coefficients
γ00, γ01, ϕ100, ϕ101 quantify the overlap between the fundamen-
tal transverse mode, assumed to have a Gauss-Laguerre profile,
and the active region [9].

The set of rate equations is completed by the differential
equation describing the total number of photons S:

dS
dt

= − S
τp

+
βsp N0

τn
+

G(T) [γ00(N0 − Ntr(T))− γ01 N1]

1 + ϵS
(4)

with τp photon lifetime and βsp spontaneous emission coeffi-
cient. The output power Pout is proportional to S through a
proper coupling coefficient kf.

The following dynamic expression is employed to estimate
the device temperature and to take into account the thermal
dependencies [10]:

T = Tamb + (IV − Pout)Rth − τth
dT
dt

(5)

with V applied voltage, Tamb ambient temperature, Rth thermal
impedance, and τth = 1 µs−1 thermal time constant. Finally,
three empirical laws describe the temperature-dependent gain
coefficient G(T), the transparency carrier number Ntr(T) and
the leakage current Il(N0, T) [8]:

G(T) = G0
ag0 + ag1 T + ag2 T2

bg0 + bg1 T + bg2 T2 = G′
0

1 + a′g1
T + a′g2

T2

1 + b′g1
T + b′g2

T2 (6)

Ntr(T) = Ntr0

(
Cn0 + Cn1 T + Cn2 T2

)
= N′

tr0

(
1 + C′

n1
T + C′

n2
T2

)
(7)

Il(N0, T) = Il0 exp
(
−a0 + a1 N0 + a2 N0T − a3/N0

T

)
(8)

In Eq. (6) and Eq. (7), the rightmost expressions are intro-
duced as substitutes for those from [8] to uniquely define the
values of the parameters and avoid ambiguities.

The PSO algorithm, first implemented to mimic the behavior
of flocks of birds, was discovered to accurately predict global
minima in optimization problems [11]. Optimization is per-
formed by a swarm of Np particles that move in a N-dimensional
solution space with a specific velocity: each dimension corre-
sponds to one of the parameters to optimize and each position in

the space represents a solution. Each particle is moving within
the solution space according to specific rules that are related
to the distance of the particles with respect to the global and
personal best positions. These positions are associated with a
fitness parameter, which is a measure of the distance from the
target and thus of the accuracy of the optimization itself.

Starting from an initial configuration in which the position
of the particles is randomized in the given parameter ranges, at
each k-th step of the algorithm, the velocity vj and position xj of
the j-th particle are updated with the following rules [11]:

vk+1
j = civk

j + ccr1(pk
j − xk

j ) + csr2(pk
gl − xk

j ) (9)

xk+1
j = xk

j + vk+1
j (10)

with ci inertia coefficient, cc cognitive acceleration coefficient, cs
social acceleration coefficient, r1 and r2 random scaling factors,
pk

j personal best position for the j-th particle, and pk
gl global best

position. Then, after the update of the positions, the new fitness
of each particle is computed in order to check whether new
personal or global bests have been found. For this particular
application, the solution space has N=19 dimensions, since that
is the number of physical parameters that we are extracting.
The 19 parameters and their associated ranges of values are
reported in Tab. 1. Note that the bounds for the modified fitting
parameters for Eq. (6) and Eq. (7) are obtained from the ranges
of the original ones. These ranges create a hard boundary for
the solution space and, if a particle reaches one of them, it is
“bounced off" back inside the solution space.

The optimization target is a set of L-I curves and S21 re-
sponses of a simulated device, whose parameters are reported
in Tab. 1. For the purpose of this research, the L-I characteristics
are computed by numerically solving the rate equations under
stationary conditions, while the responses S21 are evaluated as
the response of the output power to a current impulse [12].

To allow the extraction of the coefficients describing the ther-
mal effects, MLI=3 L-I curves are calculated at 25 °C, 40 °C, and
55 °C. For each temperature, the values are saved for 16 equally
spaced currents ranging from 0 mA to 15 mA. Furthermore, to
have a complete picture of the frequency response, MS21=6 small
signal modulation responses are evaluated at 2 mA, 4 mA, and
6 mA for T = 25 °C, at 2 mA and 4 mA for T = 40 °C, and at
5 mA for T = 55 °C: for each case, 16 data samples are stored,
logarithmically spaced between 100 MHz and 15 GHz. As a re-
sult, we deal with 48 samples extracted from the L-I curves and
96 samples from the S21 curves, for a total of 144 samples.

In order to compute the fitness, the average Mean Squared
Errors (MSEs) of the L-I and S21 curves in linear scale are calcu-
lated at each step of the optimization with respect to the target
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Fig. 1. Impact of PSO hyperparameters. (a) Fitness and computation time vs. maximum number of steps Ns. (b) Fitness and computation time vs.
number of particles Np. (c) Fitness vs. social cs and cognitive cc acceleration coefficients. (d) Fitness vs. inertia coefficient ci.

device. For the j-th particle, at the k-th step,

MSEk
LI,j =

1
MLI

MLI

∑
m=1

||Pm
target − Pm,k

PSO,j||
||Pm

target||
(11)

MSEk
S21,j =

1
MS21

MS21

∑
m=1

||S21m
target − S21m,k

PSO,j||
||S21m

target||
(12)

where || · || indicates the norm-2 of the vectors containing the
power P and small signal response S21 data samples. Finally,
the fitness f k

j is defined as the average of MSEk
LI,j and MSEk

S21,j;

during the optimization, the quantity f k = min
j

f k
j is minimized.

3. HYPERPARAMETER ANALYSIS

We started by analyzing the impact of hyperparameters on the
performance of the PSO optimizer itself, implemented with a
custom MATLAB code for maximum flexibility. The results
of this analysis can easily be generalized for problems with a
comparable number of parameters. The optimization was run
multiple times, changing one hyperparameter at a time. In
particular, we focused on the number of steps Ns, number of
particles Np (the convergence depends on how many agents
we consider and on their initial position), inertia ci (how fast
the particle moves in the solution space), social acceleration cs
(how fast the particle tends to the current global best position),
and cognitive acceleration coefficient cc (how much the particle
explores new solutions, around the best personal position of the
particle). For the first two variables, we also studied the impact
of the hyperparameters on the simulation time, since we are
targeting a fast optimizer. The performance of the optimizer
depends on the random initialization of the particles and the
random coefficients present in Eq. Eq. (9): for this reason, the
simulations have been repeated for 10 different random seeds
to generate a statistical distribution of the results. The reported
results have been obtained on a Windows 10 workstation with
Intel Core i7-8700 and 48 GB of RAM.

In Fig. 1a, we report the fitness trends (solid line) and the
computation time (dashed line) for different values of the num-
ber of simulation steps, averaged over 10 random seeds. The
other hyperparameters are set to Np = 200, ci = 0.5, cs = 2, and
cc = 2. The error bars represent the standard deviation from
the average value. As expected, the fitness decreases with a
larger number of steps, since the optimizer has time to converge
to even more accurate solutions. Note that lower numbers of
steps have a larger variation with respect to the random seed
choice. On the other hand, the elapsed computation time in-
creases sharply with the number of steps; therefore, we have to
carefully balance the number of steps in order to have the best
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Fig. 2. PSO predictions (circles) of L-I and S21 curves compared with
the target curves (solid lines).

trade-off. A good balance, taking into account the dispersion of
random seeds, is represented by a number of simulation steps
ranging from 150 to 200.

Similar conclusions can be drawn from the trends obtained
by changing the number of particles, reported in Fig. 1b. In this
case, the other hyperparameters are fixed at Ns = 200, ci = 0.5,
cs = 2, and cc = 2. A reasonable fitness-time trade-off can be
obtained for values Np between 100 and 200.

Regarding velocity coefficients, the simulations are per-
formed with Ns = 200 and Np = 200 and the trends are repre-
sented in Fig. 1c and Fig. 1d. In the case of social and cognitive
coefficients, the fitness does not change drastically, and even the
standard deviations (the error bars) remain near constant for
all the selected values. Similarly, the inertia coefficient does not
appear to substantially influence the fitness, but slightly worse
results are obtained for higher values of ci: a better convergence
is generally obtained with slower particles, since they are less
prone to overshoot the target position.

4. RESULTS

According to our previous findings, we performed an analysis
using the optimal values of the hyperparameters obtained so far
(Ns = 200, Np = 200, ci = 0.4, cs = 2, cc = 2) repeated for 10 dif-
ferent random seeds, each requiring approximately 16 minutes
to complete. In Fig. 2, the comparison of the best predictions and
the target L-I and S21 curves is shown. The graphical agreement
is excellent and the fitness of this optimization is f =7.04 × 10−3 ,
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Fig. 3. Distributions of the average error for the L-I characteristics (a) and for the S21 responses (b) for 100 simulated devices, for the custom PSO
algorithm and the Levenberg-Marquardt and Interior Point optimizers. The dashed vertical lines represent the average values of the distributions.

while the average value of 10 seeds is 2.14 × 10−2 , showing that
PSO still performs well even for less effective seeds.

As previously discussed, the performances of the algorithm
depend heavily on the initialization of the position of the parti-
cles and convergence might depend on the target curves. There-
fore, to show that the method is able to adapt easily to different
VCSELs, the optimization is repeated on the L-I and S21 curves
coming from 100 different simulated target devices. In Fig. 3,
we reported the MSEs distribution for the L-I curves (a) and the
S21 responses (b), using the PSO with optimal hyperparameters
(in red). In both cases, the errors are small, showing not only
that the method is reliable, but also that the optimization of
the hyperparameters previously discussed is general, since the
performances align with those of the example of Fig. 2. Indeed,
using the same error metric, the optimization of the device of
Fig. 2 produces mean errors of 5.53 × 10−3 and 8.55 × 10−3 for
the L-I curves and the S21 responses, respectively.

Finally, we compared the PSO performances for the param-
eter extraction of the 100 VCSELs with those of two built-in
algorithms from the MATLAB Optimization Toolbox [13] and
we reported their error histograms on Fig. 3a and Fig. 3b. In
particular, we tested the Levenberg-Marquardt (LM, in blue) and
the Interior Point (IP, in green) algorithms that can be specified
in the lsqcurvefit MATLAB function. In Fig. 3, we also report the
average errors for each optimizer (the dashed vertical lines). The
LM and IP optimizers are launched with a high maximum num-
ber of steps (1 × 104 ) and a small target tolerance (1 × 10−15 )
to ensure convergence. From the graphs, it can be appreciated
that, predictions-wise, PSO is outperforming the other optimiz-
ers both for the L-I characteristics and the S21 responses, as it
provides error distributions that are narrower and closer to zero,
as can be observed from the smaller average values. The other
optimizers seem to struggle more with the L-I curves than the
S21 responses, whereas for PSO this effect is marginal. With
our current implementation, PSO is six to eight times slower
than the other optimizers; we expect further optimizations and
parallelizations of the code to reduce its computational time.

5. CONCLUSIONS AND OUTLOOK

We analyzed the performance of a PSO algorithm applied to
the extraction of the parameters of the VCSEL physical model
from the device responses. The PSO is capable of extracting
the set of 19 parameters that reproduce well the L-I and S21
curves of a target VCSEL and it can perform well on any other
device that can be described by the presented model. With its
more consistent predictions, PSO is also shown to outperform

the LM and IP optimizers, which are not able to deal with such
a complex nonlinear problem effectively. The strength of this
algorithm lies in its adaptability: the complexity of the model
can be increased, the number of parameters can be scaled up,
and the target curves can be modified, but the optimizer will still
suit the new problem and converge to a solution, with limited
computation time. This makes the PSO particularly well suited
for characterizing any unknown device starting from a set of
measurements, while a machine learning engine would require
ad hoc data sets. Real VCSEL measurements could deviate from
the ideal curves considered in this work. However, the proposed
methodology is not affected, as long as the measurements are
properly processed before optimization (removing artifacts and
properly filtering the measurement noise); more complex physi-
cal models could be required to describe additional effects not
included in [8].
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