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ABSTRACT
Current serverless platforms introduce non-trivial overheads

when chaining and orchestrating loosely-coupled microser-

vices. Containerized function runtimes are also constrained

by insufficient isolation and excessive startup time. This

motivates our exploration of a more efficient, secure, and

rapid serverless design. We describe SURE, a unikernel-based
serverless framework for fast function startup, equipped

with a high-performance and secure data plane. SURE’s data
plane supports distributed zero-copy communication via the

seamless interaction between zero-copy protocol stack (Z-

stack) and local shared memory processing. To establish a

lightweight service mesh, SURE uses library-based sidecars

instead of individual userspace sidecars. We leverage Intel’s

Memory Protection Keys (MPK) as a lightweight capabil-

ity to ensure safe access to the shared memory data plane.

It also isolates the Trusted Computing Base (TCB) compo-

nents in SURE’s function runtime (e.g., library-based sidecar,

scheduler, etc) from untrusted user code, while preserving

the efficient single-address-space nature of unikernels. In

particular, SURE prevents unintended privilege escalation in-

volving MPK with an enhanced TCB. These combined efforts

create a more secure and robust data plane while improv-

ing throughput up to 79X over Knative, a representative

open-source serverless platform.

CCS CONCEPTS
• Networks→ Cloud computing; • Computer systems
organization → Cloud computing; • Security and pri-
vacy→ Virtualization and security.
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1 INTRODUCTION
Cloud computing services are evolving to composable, loosely-
coupled microservices [47, 68], where each microservice is

more quickly developed, tested, and deployed independently.

The request from an external client triggers a series of in-

vocations to a sequence of inter-dependent microservices,

potentially depicted as a call graph [68]. Serverless comput-

ing, often referred to as Function-as-a-Service (FaaS [22]),

is a natural fit for loosely coupled microservices because of

event-driven execution, fine-grained billing (“pay-as-you-

go”) and the unlimited elasticity provided by a serverless

infrastructure, thus simplifying the management of the ap-

plication [7, 50, 52, 54, 65, 86]. Furthermore, with serverless

computing, loosely-coupled microservices can be organized

into a “function chain”, following their call graph dependen-

cies [53, 68]. This helps transition production-level microser-

vice workloads to serverless platforms [34].

One of the main challenges in serverless computing is

the cold-start problem, where the initial invocation of a

function incurs significant latency as the runtime environ-

ment is initialized [37, 66, 91, 104]. This latency can ad-

versely impact the responsiveness of serverless applications.

Achieving fast startup of serverless functions is crucial for

mitigating the cold-start issue. In this context, unikernels
are particularly attractive for serverless computing due to

their ability to achieve fast startup times for serverless func-

tions [24, 30, 74, 95]. Unlike traditional full-size VMs or con-

tainers, unikernels are designed to be lightweight, with a

single address space with only the necessary libraries and

drivers [57, 58, 71, 72]. This streamlined architecture allows

unikernels to boot rapidly, often in milliseconds, making

them ideal for scenarios requiring rapid autoscaling and re-

sponsive scaling to handle increases in the workload [30, 74].

Further, the entire software stack of a unikernel can be spe-

cialized, typically resulting in a much smaller Trusted Com-

puting Base (TCB) and potentially fewer vulnerabilities [108].

These desirable characteristics make unikernels well suited

for secure, lightweight deployment of serverless functions,
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compared to widely used containers or other heavyweight

virtualization approaches [95]. Additionally, compatibility

with existing applications is managed by the introduction

of a compatibility layer in the unikernel [3]. Popular con-

tainer orchestration platforms, such as Kubernetes [10], have

expanded to interface with unikernels [19], making them

production-ready, such as with NanoVMs [14].

State of the Landscape. Despite serverless computing offer-

ing many positive capabilities, current platforms have high

latency (millisecond-scale), and overheads [50]. Kernel-based

inter-function networking and a heavyweight service mesh

using a loosely-coupled userspace sidecar are significant

contributors [33, 82, 110]. But, considering the “killer mi-

croseconds” [27] that serverless computing needs to address,

a naive unikernel-based solution is not yet ready to sup-

port loosely coupled microservices due to the following con-

straints: (1) Unikernel-based serverless environments [95]

face the same problem of slow inter-function networking

as with containerized environments. While shared mem-

ory processing helps with optimizing containerized envi-

ronments [82, 106] such designs only consider intra-node

data plane optimizations and don’t fully address the required

isolation across function chains. Cross-node communication

still uses kernel-based networking [82]. (2) The performance

and resource consumption drawbacks of using an individual

sidecar for service mesh functionality persist. eBPF-based

acceleration [82] provides tremendous improvements over

individual sidecars, and its event-driven execution perfectly

aligns with the idea of serverless computing. However, cor-

responding eBPF functionality (i.e., eBPF hooks) is not yet

available in unikernel-based environments. An eBPF-based

sidecar also faces limitations in achieving full (L7) payload

visibility [93] due to the constraints imposed by the eBPF

verifier [98] for the sake of safe in-kernel execution. (3) Intra-
unikernel isolation remains a concern. Unikernel’s single-

address-space design eliminates the kernel-userspace bound-

ary, making it lightweight and fast for function execution

compared to containers [39, 95]. However, there is no isola-

tion between user code and the necessary LibOS modules

(e.g., scheduler) and data structures (e.g., thread contexts).

This paper describes a unikernel-based serverless comput-

ing framework that strives to operate in the best possible re-

gion of the design space to support rapid function startup and

low latency networking between functions while maintain-

ing isolation. We call our work SURE, for Secure Unikernels
that are Rapid and Efficient. SURE deploys a serverless func-

tion as a unikernel-based VM (called a SURE VM), which

offers substantial agility through fast function startup and

inherently adapts the VM-based isolation at the granular-

ity of independent functions. SURE facilitates low-latency

and high-performance inter-function networking through

distributed, zero-copy communication rather than kernel-

based networking. It first utilizes shared memory processing

for zero-copy intra-node communication, as demonstrated

in [82] and [106]. Going beyond those designs, we introduce

a zero-copy protocol stack (called Z-stack) to facilitate dis-
tributed zero-copy communication across nodes. Z-stack has

a full-fledged FreeBSD TCP/IP stack implementation that

works in userspace to mitigate kernel-related overheads. Im-

portantly, Z-stack seamlessly interfaces with the local shared

memory data plane, augmenting zero-copy communication

without being limited to a single node. We introduce a per-

node SURE gateway for coordinating inter-node zero-copy

communication. The SURE gateway works with Z-stack to

provide consolidated protocol processing for all functions

co-located within the same node (see §4.1).

SURE fully takes advantage of the LibOS-based design

of unikernels by deploying the sidecar as a library linked

into the function code within the unikernel. The unikernel’s

single-address-space design eliminates boundary crossings

between kernel and userspace. It simplifies data exchange

between the library-based sidecar and user code by using in-
ternal function calls. This overcomes the shortcomings of an

individual userspace sidecar. SURE introduces various sidecar
hooks, which allow for the attachment of eBPF-like event-

driven sidecars in a unikernel-based runtime. But unlike

eBPF, SURE’s library-based sidecar allows us to implement

complex L7 sidecar functionality with full payload visibility

to enable a full-functional service mesh (see §4.2).

SURE pays particular attention to security vulnerabilities

that may arise from the use of shared memory processing

and single-address-space unikernels (details in §3.3). Going

beyond existing solutions (e.g., [82]) that use group-based
security domains to enable coarse-grained isolation at the

level of shared memory pools, SURE offers more fine-grained

isolation at the level of memory pages. This allows us to

manage the ownership of shared memory pages for each

individual function, which can prevent a misbehaving func-

tion from inadvertently manipulating shared memory pages

owned by other functions, even if they are in the same se-

curity domain. Additionally, we isolate the library-based

sidecar in SURE, which is part of the serverless infrastruc-

ture and contains sensitive data, such as sidecar statistics,

from user code that is typically untrusted in a cloud environ-

ment. To achieve these design goals without compromising

its high-performance data plane, SURE uses Intel’s Memory

Protection Keys (MPK) [13] for its lightweight memory isola-

tion. SURE provides an MPK-based “call gate” abstraction for

user code to safely interact with memory pages belonging

to protected unikernel modules (e.g., sidecar). The call gate

also uses MPK to selectively grant access to shared memory

pages (see §5.2).
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However, having a single-address-space unikernel still

means that unprivileged user code is capable of modifying

and causing potential MPK privilege escalation and gaining

disallowed access to protected pages, which was overlooked

in previous work [61, 63, 88]. The root cause lies in not pro-

tecting the unikernel TCB components (including the sched-

uler, page table management, and interrupt service handling)

that have control of access privileges to protected memory

pages. These components have direct access to sensitive

data structures in the single address space. SURE protects the
enhanced unikernel TCB to prevent such exploits (see §5.3).

Summary of Contributions.
(1) SURE uses event-driven, shared memory processing while

retaining the philosophy of serverless computing. SURE adds
key extensions, including connection management and back-

pressure for lossless communication between functions.

(2) SURE enhances existing designs [82, 106] by extending

zero-copy communication to go across nodes and integrating

zero-copy TCP/IP processing with the local shared memory

data plane for intra-node communication.

(3)Our use of a library-based sidecar fully exploits the single-
address-space benefits of unikernels, resulting in more than

100× CPU cycle savings and 16× performance improvement

compared to the individual userspace sidecar.

(4) SURE’s MPK-based call gates manage the ownership of

each shared memory page, which is more secure than the

descriptor-based ownership management used in [82], but

retains the high performance of shared memory processing.

(5) We identify and overcome vulnerabilities of a uniker-

nel TCB that may cause privilege escalation of MPK. SURE
(adapted from Unikraft [58]) does so by carefully protecting

and controlling access to each of the distinct TCB compo-

nents.

SURE is publicly available at https://github.com/ucr-serverless/

sure.git.

2 BACKGROUND AND MOTIVATION
We start by examining serverless architectures, understand-

ing the challenges that remain, and discuss related work.

2.1 The tradeoff between isolation and
agility in serverless computing

Isolating serverless functions: Serverless computing is

supported in an open, shared cloud computing environment.

But, without proper isolation there is a risk of unwanted

access of sensitive data as well as resource contention. Con-

tainers offer lightweight virtualization with relatively rapid

startup. However, they are less secure due to their state be-

ing managed by the host OS [25, 42, 45, 73, 103]. This has

provided incentives to commercial serverless providers to

revert to virtualization similar to VMs (individual application

VMs have a separate OS kernel) to enhance their platform’s

security [6, 24]. But running a serverless function as a VM in-

stalled with a full-fledged guest OS can lead to unacceptable

delays in starting the function, which can adversely affect

the responsiveness of serverless applications [57, 95].

Unikernel can make serverless functions agile: Using
the concept of a LibOS [81], we can rebuild a traditional

OS into libraries and bind the application with only the re-

quired OS libraries, all running in a single address space (also

called a unikernel [71]). This customizationmakes unikernels

lightweight, with faster startup than containers even when

working with VM-based virtualization (as we evaluate in

§6.2), while offering stronger isolation than containers [57].

This design also eliminates the kernel-userspace boundary

crossing within the unikernel, further reducing the runtime

overhead compared to a conventional VM [57].

Enhancing Protection inUnikernels.Unikernel-based ap-
plications heavily rely on platform-provided OS components

such as the scheduler, page table management, and interrupt

service routine handling (more details in §3.5 and §5.3). With

a single-address-space unikernel, the serverless cloud service

provider would need to trust the integrity of these compo-

nents inside the unikernel. To achieve high performance, we

also include sensitive data such as the library-based sidecar

and shared memory within the unikernel. We protect this

sensitive data and code using MPK, by including them as

well as the OS components as part of the TCB.

Design Implication#1: Although a unikernel-based VM

runtime enables rapid function startup, which is desired

for serverless computing, and provides strict isolation be-

tween functions, we still need to enhance intra-unikernel

isolation to protect TCB components from user code.

2.2 Inter-function networking and service
mesh in serverless computing

Serverless support for loosely-coupled microservices.
As depicted in Fig. 1, serverless computing has three impor-

tant building blocks in the infrastructure to support loosely-

coupled microservices that are organized as a “function

chain”: (1) Inter-function networking for communication be-

tween decoupled functions. Essential components include a

virtual switch (vSwitch) for L2 forwarding; a network proto-

col stack (e.g., TCP/IP) for handling application layer mes-

sages; and virtual device interfaces (vDevices) to interface

between the virtualized functions and the vSwitch; (2) A

service mesh (e.g., Istio [1]) that transparently facilitates or-

chestration (observability, traffic management, and access

control) of serverless functions in distributed environments

by attaching an individual sidecar to the serverless func-

tion [110]; (3) A virtualized function runtime (sandbox) at the
individual microservice (function) level that is needed for

fine-grained isolation in public clouds.
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Figure 1: An abstract diagram of serverless support for loosely-
coupled microservices. We list existing sidecar designs: (a) container-
based sidecar using TCP/IP socket [1, 110], (b) container-based side-
car using UDS acceleration [110], (c) eBPF-based sidecar [41, 82].

2.2.1 Cost of kernel-based inter-function networking. Most

of the data plane overheads for function chains: e.g., data
copies, context switches, interrupts, protocol processing, and

serialization/deserialization, come from kernel-based net-

working [31, 82]. There is duplicate processing at different

layers, even if functions are co-located on the same node [82].

Existing solution: shared memory processing. [82, 106]
design a high-performance data plane for serverless function

chaining using shared memory enabling zero-copy commu-

nication between functions without incurring any kernel

networking overheads.

Zero-copy networking is limited to intra-node commu-
nication. The zero-copy shared memory communication

in [82, 106], is limited to a single node. For cross-node com-

munication or when functions need to interact with external

clients/servers, [82, 106] still depend on kernel-based net-

working. Both [51] and [32] suggest maximizing locality in

workload placement to reduce cross-node communication

which is not always feasible. Production workloads may con-

tain complex and large-scale microservice call graphs. E.g.,

Alibaba reports a trace analysis showing that more than 3000

microservices in their workload have interdependencies [68].

Functions can also be resource-intensive (as in data analytic

jobs [51]) and need to be spread across multiple nodes.

Design Implication#2: Zero-copy networking should be

extended for inter-node communication. It is important

to reduce kernel-related overheads, and still achieve high

performance for cross-node communication.

Sharedmemory processing is considered not safe. Shared
memory processing can become a potential conduit for data

leakage and corruption [36, 101, 105]. [106] assumes func-

tions from different users are never co-located, thereby, func-

tions on the same node are from the same user and can trust

each other. [82] considers group-based separation, assuming

the same user’s functions trust each other. Different users

have separate memory pools, even in the same node. But

[82] lacks memory-level management of access privileges

within the function chain to protect against buggy code.

Design Implication#3: Need secure shared memory pro-

cessing while retaining its high performance for function

chains, carefully granting access privileges at the indi-

vidual message buffer level. This restricts access to a

shared memory pool combined with group-based sep-

aration. Communication channels established through

shared memory must be secured to prevent manipulation

by an unauthorized entity (i.e., an unintended recipient).

2.2.2 Cost of individual userspace sidecars. Existing service

mesh designs deploy a sidecar as an individual component

(e.g., container), independent of the user function. Commu-

nication between the individual sidecar and the user func-

tion needs to traverse the TCP/IP stack [110] (Fig. 1 (a)),

incurring unnecessary networking overheads in the data

plane [33, 82, 110]. Acceleration includes using Unix domain

sockets [21] to redirect the payload between the user func-

tion sockets and the individual sidecar (Fig. 1 (b)), bypassing

protocol processing. But, running an individual sidecar still

incurs data copy and serialization/deserialization overheads.

eBPF streamlines the Service Mesh. eBPF-based accel-

eration [41] has been used in containerized environments

to provide the service mesh functionality [2, 82] instead of

the individual sidecar (Fig. 1 (c)). eBPF-based sidecars are

developed as run-to-completion programs attached to in-

kernel eBPF hooks (XDP [46], TC [67], and SOCK_MSG [82]).

Executed in the kernel, the eBPF-based sidecar avoids the

frequent userspace-kernel boundary crossing and duplicate

overhead of inter-container communication with the indi-

vidual userspace sidecar. The execution of the eBPF-based

sidecar is triggered upon events, which makes it particularly

suitable for event-driven serverless computing [82].

eBPF-based sidecar is not suitable for unikernel envi-
ronments. But, eBPF cannot be fully utilized in unikernel

environments, due to the lack of certain eBPF hooks (e.g.,

SOCK_MSG), limiting its use. An eBPF-based sidecar doesn’t

provide the full (L7) payload visibility and corresponding L7

functionality that container-based sidecars provide, which

is critical for serverless computing [93]. The constrained

programming model of eBPF is also a deterrent [109].

Design Implication#4: An ideal sidecar design needs to

go beyond by providing full L7 visibility and not being

constrained by the eBPF bytecode limitations. It should

still have the significant benefits of an eBPF-based sidecar,

i.e., event-driven execution and avoiding unnecessary

kernel-userspace boundary crossings, to overcome the

shortcomings of the individual userspace sidecar.

2.3 Related work
As discussed, prior work [82, 106] is limited with regard to se-

cure sharedmemory processing and enable high-performance

inter-node communication. An eBPF-based sidecar, as in [82],
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is also not viable for an unikernel-based serverless environ-

ment. [30, 39, 95] use unikernels as the runtime for the fast

startup of serverless functions. However, they lack support

for zero-copy communication and don’t have a lightweight

service mesh, making them less suitable for supporting de-

coupled microservices. The lack of intra-unikernel isolation

in [30, 39, 95] is also a concern.

Unikernel/LibOS Virtualization: Unikernels are very suit-
able for single-purpose microservices that need to run iso-

lated, secure tasks with minimal overhead [95]. But they may

not be ideal for complex serverless workloads requiring dy-

namic, multi-process environments or use extensive system

services. Jonas et al. [52] observed a growing demand for

fine-grained isolation in serverless computing and identified

unikernels as a potential solution to minimize the attack sur-

face. Several past works have optimized different aspects of

unikernels, including system development kits [57–59, 81],

multi-process support [63, 69, 96], fast startup [70, 73, 100],

TCP proxies for connection acceleration [92]. SURE can take

advantage of these unikernels’ startup optimizations [70, 73,

100] to reduce the cold-start penalty of serverless comput-

ing. CubicleOS [88] and FlexOS [61] offer intra-unikernel

isolation using MPK. However, they are not focused on data

plane optimization and lack service mesh support, crucial

for serverless computing.

High-performance data plane: Many high-performance

data plane designs for disaggregated cloud applications have

been proposed [28, 29, 44, 48, 62, 64, 70, 82, 102, 107]. Com-

pared to SURE, they lack necessary isolation or memory

protection on the data plane [82, 107], or do not support

lightweight manageability [28, 44, 62, 70, 102], making them

not ideal for serverless computing. There are multiple high-

performance TCP/IP protocol stack implementations [5, 49,

56, 102, 107]: StackMap [102] offers zero-copy TCP/IP pro-

cessing by integrating a full-fledged Linux network stack

with the interrupt-driven packet handling of netmap [84].

This could be less efficient under high loads compared to a

full-fledged TCP/IP stack that uses DPDK’s polling-based

packet handling [5, 56]; Demikernel [107] supports zero-

copy processing through its TCP/IP stack. However, it is not

full-fledged. In constrast, SURE’s Z-stack combines zero-copy

TCP/IP processing with the full-fledged FreeBSD TCP/IP

stack and low-latency DPDK-based packet handling.

MPK-based isolation:Multiple proposals study the appli-

cation and optimization of Intel’s MPK [63, 79, 89, 90, 94, 97].

Jenny [89] filters MPK-related syscalls to prevent unautho-

rized changes to the MPK key. ERIM [97] enforces binary in-

spection and rewriting to preventmisuse ofMPK. libmpk [79]

overcomes the limit of 16 MPK keys by carefully recycling

and redistributing keys. EPK [43] extends the supported num-

ber of MPK-protected memory domains by using a hardware-

based protection key extension – extended page table (EPT).

This can enable MPK-protected shared memory communica-

tion between a large number of domains (up to 7680) [43].

These works are complementary to SURE. Other efforts fo-
cus on protecting the unikernel (e.g., OCaml in Mirage [72])

and shared memory processing (Rust in RedLeaf [78]) at the

language level. They can be used as further enhancement to

SURE’s unikernel runtime and shared memory data plane.

3 OVERVIEW OF SURE
3.1 System architecture of SURE
Fig. 2 shows the overall architecture of SURE, including the
following core building blocks: (1) Unikernel-based func-
tion runtime. Each function runs as an individual unikernel-
based VM in SURE (i. e., the SURE VM in Fig. 2) to strike an

ideal balance between providing isolation and being light-

weight. However, SURE also supports running multiple func-

tions within the same unikernel under certain conditions,

e.g., when these functions mutually trust and work together

within the same virtualized runtime. The hypervisor on each

worker node is in charge of controlling the life cycle of SURE
VMs: creating and destroying VMs, allocating addresses, and

initializing shared memory. (2) A distributed, zero-copy
data plane.When functions are co-located on the same node,

we leverage shared memory processing for zero-copy intra-

node communication (§4.1). For cross-node traffic, we de-

velop a high-performance, zero-copy user-space TCP/IP stack,
Z-stack (§4.1) — a zero-copy enhancement to the existing

DPDK F-stack [5]. Z-stack seamlessly interfaces with SURE’s
zero-copy intra-node data plane. (3) Consolidated protocol
processing. To avoid duplicate processing between func-

tions, we consolidate all of the protocol processing in a single

per-node SURE gateway (§4.1). (4) Lightweight library-
based sidecar. As shown in Fig. 2, SURE moves each sidecar

to be a library within the SURE VM (§4.2). The message ex-

changes between the sidecar and the functions are simple

internal function calls, entirely eliminating a number of data

plane overheads of the individual sidecar deployment model.

(5) MPK-based isolation in the shared address space.
We provide an MPK-based call gate abstraction in SURE’s

Secure domain

SURE Gateway

Hypervisor

Z-stack

NIC

DPDK PMD

SURE VM SURE VM

DMA

Worker 
node

User 
code

MPK-based Call Gate

TCB

SURE runtime
sched.

Sidecar NETIO

booter

TCB

data 
region

signal 
region

shared memory pool

ISR_ENTRY

Secure domain

SURE Gateway

Hypervisor

Z-stack

NIC

DPDK PMD

SURE VM SURE VM

DMA

Worker 
node

TCB

data 
region

signal 
region

shared memory pool

Signal handler

User 
data

protected memory
Page Table

PTE_1

…
PTE_2

page_1
page_2

…

Pages

sidecar statistics thread ctx

Figure 2: The overall architecture of SURE. Note that we only show a
single security domain here.
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unikernel runtime to enable untrusted user code to interact

safely with protected memory pages in the shared memory

data plane and also in the TCB components. We also enhance

the unikernel TCB in SURE to prevent privilege escalation of

MPK (see §3.5).

3.2 SURE’s trust model
SURE assumes a one-way trust model typically considered in

a public serverless cloud: Users trust the serverless infras-

tructure (i.e., SURE VM) provided by SURE. However, SURE
does not trust users, as applications may contain security

vulnerabilities, e.g., buggy code. However, functions running
in SURE are exposed to threats from other, potentially ad-

versarial, users in the same cloud. As shown in Fig. 2, SURE
treats the hypervisor and associated toolchains (e.g., emula-

tion of hardware devices and peripherals required by VMs)

as part of the TCB. We further establish another layer of

trust within the SURE VM, which is responsible for enforcing

intra-unikernel isolation between the untrusted user code

and the unikernel TCB modules (scheduler, booter, sidecar,

network I/O lib, and other OS modules, as shown in Fig. 2).

3.3 SURE’s threat model
Based on SURE’s trust model and system architecture, we

identify the following threat sources due to the inevitable

sharing of the address space in SURE: (1) Vulnerabilities
from shared memory processing. Without rigorously en-

forced access controls, a malicious function might exploit

shared memory to gain unauthorized access to sensitive data

or perform memory-based attacks, e.g., Flush+Reload [101],

buffer overflows [35] or injection attacks [83]. This risk is par-

ticularly pronounced in a public cloud environment, shared

by functions from different users. In addition, buggy (even if

not malicious) code in user functions may accidentally and

improperly manipulate shared data. (2) Intra-unikernel
vulnerabilities from a single address space. SURE’s func-
tion runtime (see Fig. 2), including the library-based sidecar

and many other TCB modules, are part of the serverless in-

frastructure and require additional isolation from untrusted

user functions. This cannot be guaranteed within a uniker-

nel’s single address space. A typical threat involves tampering

with application-level observability: buggy function code

could inject false metrics into the sidecar, disrupting the ser-

vice mesh that relies on the integrity of metrics to orchestrate

the deployment of functions.

3.4 Isolation in SURE
By operating each function as a unikernel-based VM, SURE
leverages the VM-based sandbox and the inherent hardware-

level virtualization to reduce the attack surface of container-

ized sandboxes. It also allows for fine-grained isolation that

aligns closely with the disaggregated microservice deploy-

ment paradigm. SURE additionally introduces the follow-

ing features to enable inter-function access control, protect

shared memory processing, and enable intra-unikernel isola-

tion to separate user code with TCBmodules in the unikernel:

Group-based security domains with isolated memory
pools. We require a “security domain” to be specified when

deploying a function on SURE. We assign mutually trusted

SURE VMs (typically from the same user) to the same se-

curity domain. Each security domain possesses a private

memory pool, established as a POSIX shared memory back-

end in the host file system, corresponding to a file. SURE
only allows shared memory processing when functions are

within the same domain. We adopt techniques very similar

to NetVM [48] for constructing the shared memory pool in

a security domain (refer to [48] for details).

Access control with sidecar and SURE gateway. Owner-
ship transfer of a shared memory buffer occurs through a

descriptor exchange within the security domain. We verify

the eligibility of the receiver of the descriptor to prevent

unauthorized shared memory access. SURE takes advantage

of the library-based sidecar to apply traffic filtering (with

a whitelist of allowed peers) on the RX and TX paths of

the SURE VM (Fig. 5). The sidecar discards the descriptor if

the whitelist does not match. Further, we use the SURE gate-

way to perform a copy between memory pools (on the same

node) in different security domains (Fig. 3). We also use the

SURE gateway to enforce cross-node access control by having
traffic filtering as part of Z-stack’s protocol processing.

Memory isolation and MPK-based call gates. In general,

shared memory processing and intra-unikernel interactions

(e.g., between user code and LibOS modules) essentially be-

comememory accesses. This requires memory-level isolation

to prevent unwanted memory access in SURE. Rather than ad-
hering to the conventional approach of kernel-userspace sep-

aration and relying on heavyweight system calls (e.g.,mmap,

mprotect) to constrain memory access initiated by user code,

SURE opts for a more streamlined and rapid solution by using

Intel’s MPK [13] to mitigate the risk of unwanted memory

accesses. This effectively retains the data plane performance

enhancements of SURE, while enabling isolation at the gran-

ularity of memory pages. We protect the integrity of our

sidecar and unikernel LibOS modules from possibly faulty

(or malicious) user-provided function code. With MPK, we

can selectively grant access to portions of the sharedmemory

to VMs taking part in a data exchange. SURE offers crucial

support to take care of dependencies, such as NetIO lib, for

users to transparently and securely interact with the SURE
data plane and sidecar. This allows us to construct and ex-

pose secure APIs derived from platform-provided libraries.

These APIs serve to standardize MPK utilization, thereby

reducing the risk of unintentional privilege escalation.
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3.5 Preventing privilege escalation of MPK
with enhanced TCB

There are several critical subsystems (including scheduler,

page table management, interrupt service handling) in the

TCB of the unikernel that must manipulate the PKRU register

or the PTE that stores the MPK key during their operation

(more details in §5.1). Ensuring these TCB components in

the unikernel are safe and free of errors is needed, which is

to guarantee that the MPK-based isolation in a unikernel is

effective. This helps avoid unforeseen privilege escalation

and invalid MPK protection in SURE. However, the single-
address-space design of unikernels does not guarantee their

integrity in the presence of malicious/misbehaving code.

The root cause is the lack of protection for sensitive data

structures (e.g., PTEs, thread contexts) in the TCB that are

directly related to the access privilege of a particular MPK

key. For example, the PTE contains the MPK key that rep-

resents the access privilege of the memory page, and the

thread context contains PKRU that specifies the access privi-

lege of the given MPK key. Without proper protection, buggy

code could inadvertently elevate access privileges and access

memory pages it is not allowed to access.

SURE strengthens vulnerable TCB components to prevent

unintended MPK privilege escalation. The key idea is to add

additional memory protection to sensitive data structures in

TCB. Our enhancement (details in §5.3) includes a blacklist-

based mechanism designed to prevent unwanted alterations

to the PTEs of protected memory pages. We also safeguard

the thread context with MPK, which can only be accessed

with our call gate. We apply checks at entry/exit points of

interrupt handling to prevent the PKRU leakage.

4 DATA PLANE DESIGN IN SURE
4.1 Distributed, zero-copy communication
SURE comprehensively utilizes shared memory for uniker-

nels in serverless computing. SURE supports reliable (i.e., no

loss, in-order) data transfer with back-pressure for shared

memory processing. Fig. 3 shows the intra-node shared mem-

ory data plane of SURE. VMs in the same security domain

on a node share a dedicated memory pool.
1
Each memory

pool is composed of pre-allocated buffers (in the data region)
to store actual message payloads,

2
and a signal region for

1SURE could further achieve very low-overhead memory management by

adopting the design in [76, 85, 99]. This requires mapping the address space

of a new function to shared memory during the new function’s creation, so

that other functions can access it (they need to map the new address space

locally in their runtime).

2SURE doesn’t impose any constraint on the format of exchanged data, al-

lowing the exchange of both serialized content (e.g., an HTTP payload) for

decoupled applications, or raw binary data for binary-compatible applica-

tions, avoiding the serialization/de-serialization overheads. Applications in

SURE can also allocate a large enough buffer to store the complete payload,

avoiding assembly and disassembly during shared memory data transfer.
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Figure 3: Intra-node data plane in SURE. Communication across secu-
rity domains within the same node uses SURE gateway (GW) to copy
data between memory pools. ISR: Interrupt Service Routine.

descriptor exchanges. SURE allows provisioned concurrency

via concurrent threads in a SURE VM to multiplex warm func-

tion instances, to reduce cold start, as recommended by AWS

Lambda [17]. Threads in a SURE VM can be differentiated

by distinct connections. Hence, SURE requires an a priori

established connection for data transmission.

Connectionmanagement in SURE’s sharedmemory pro-
cessing. This involves the setup of the connection context in

the signal region. SURE exposes a set of APIs (i.e., listen(),
accept(), connect(), close()) for the purpose of connec-
tion lifecycle management with the same semantics as is used

in traditional socket programming.We can dedicate a distinct

connection between a sender thread and receiver thread pair

to avoid the head-of-line (HoL) blocking caused by multiplex-

ing over a single connection. As Fig. 3 shows, each connec-

tion is represented by a “connection context” in the signal re-
gion, with a single-producer, single-consumer descriptor ring
used by the receiver to receive the descriptor. This eliminates

potential race conditions in descriptor exchanges between a

sender and receiver. Each connection context has two point-

ers: waiting_send and waiting_recv. waiting_recv sup-
ports blocking receive in the event-driven signaling mecha-

nism; waiting_send enables the back-pressure between the

connected receiver and sender.

Event-driven signaling mechanism: Each SURE VM has a

multiple-producer, single-consumer signal ring in the signal
region to receive the wake-up signal from peer VMs. Each

SURE VM also has a signal handler thread to process pend-
ing wake-up signals in a batch, triggered by an inter-VM

interrupt from hypervisor [8], handled by the corresponding

Interrupt Service Routine (ISR). Instead of busy-polling the

descriptor ring, a receiver in SURE can block if no descriptor
is currently available. The blocking receiver thread registers

its pointer in the waiting_recv, waiting for the sender to

signal the presence of new descriptors. The sender only sig-

nals the blocked receiver by checking waiting_recv in the

connection context. This reduces the chance of concurrent

writes (multiple-producer) to the receiver’s signal ring. Note
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that if there are available descriptors, the receiver directly

consumes the descriptor without being blocked.

Reliable data transfer and Back-pressure. Entries in the

descriptor ring are handled in FIFO (first-in, first-out) order.

This guarantees the message produced by the sender is al-

ways consumed by the receiver in order when there is no loss,
ensured by the back-pressure mechanism. Back-pressure in

SURE blocks the sender if the receiver’s descriptor ring is full,
indicating the recipient is not consuming descriptors at a

sufficient rate. In such a case, the sender thread registers its

pointer (used by the receiver to identify the sender to be wo-

ken up) to waiting_send in the connection context, before

the sender is blocked. On the other side, the receiver wakes

up the sender when room becomes available in its descriptor
ring of the corresponding connection: When performing a

receive on the connection, if the sender is registered to be

woken up, the receiver sends it a signal.

Z-stack: Zero-copy userspace TCP/IP stack. Like previ-
ous efforts, we also seek to bypass the kernel in Z-stack. But,

going a step further, we work with DPDK’s Poll Mode Driver

(PMD [4]) to DMA the packet between the NIC and shared

memory in userspace, while also avoiding context switches

and interrupts incurred by the kernel protocol stack [31, 75].

In addition, most protocol stack designs rely on the POSIX-

style socket interface (e.g., send() [20], recv() [18]) to in-

teract with user-space applications. This introduces an addi-

tional copy when moving the data between the application’s

send/receive buffer and the socket buffer (accessed by the

TCP/IP protocol stack), and can consume more than 50% of

the total CPU cycles [31]. Such a design is influenced by

the desire for kernel-userspace isolation, i.e., using a copy

to ensure data isolation between the user and kernel space.

However, it is unnecessary in SURE as our data plane operates
entirely in userspace.

Fig. 4 shows the design of Z-stack. We introduce two new

zero-copy APIs (z_recv() and z_send()) in Z-stack to in-

terface between the application layer and underlying TCP/IP

protocol layers by exchanging pointers. Passing the buffer

between different layers involves modifications to protocol

headers. We base our implementation of Z-stack on top of

the existing DPDK F-stack [5], which offers a fully-functional

TCP/IP stack ported from FreeBSD integrated with the DPDK
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Figure 4: Protocol Processing Pipeline within the Z-stack.

PMD. However, F-stack introduces data copies during proto-

col processing, which we eliminate in Z-stack.

Consolidated protocol processing. The single per-node
SURE gateway provides consolidated protocol processing that
is performed once for all incoming/outgoing traffic, with the

processed payload residing in the shared memory pool. The

SURE gateway coordinates between Z-stack and intra-node

shared memory processing that helps SURE achieves true

zero-copy communication in and out of the node, unlike

previous efforts such as SPRIGHT [82].

Fault tolerance of SURE gateway: The SURE gateway can be
a single point of failure, potentially disrupting inter-function

communication, both within a node (when going across secu-

rity domains) or when going across nodes [77]. We maintain

multiple replicas of the SURE gateway, each responsible for

handling multiple NIC receive queues. This can be achieved

by enabling NIC Receive Side Scaling (RSS) to balance the

load between replicas [26]. When a replica crashes, the Indi-

rection Table of RSS is modified to redirect traffic to a healthy

replica, and restart a new replica.

Routing management. SURE maintains an IP routing table

for each security domain, stored in the signal region. Intra-
node routing within the security domain involves a routing

table lookup on the sender side, using the IP 5-tuple to find

the correct connection context of the receiver. IP-based rout-

ing helps maintain compatibility with inter-node routing

(including routing to external clients).

Both intra-node routing across security domains and inter-

node routing relies on the SURE gateway. In both cases, the

sender VM establishes a connection to the SURE gateway

(when the receiving VM doesn’t belong to the same security

domain on the same node or if the receiving VM is located on

a remote node). The sender hands the descriptor to the local

SURE gateway: (1) if the receiver belongs to another security

domain on the same node, the local SURE gateway performs

a copy to move the data across security domains, then routes

the descriptor to the receiver after looking up the routing

table in the destination security domain. (2) if the receiver is

located on a remote node, the local SURE gateway sends the

data to the SURE gateway on the remote node, using Z-stack.

The remote SURE gateway then performs intra-node routing

to route the data to the receiver. The routing table is read-

only to a SURE VM (guarded by the call gate in §5.2). Only the

hypervisor can update the routing table upon establishment

of a new connection.

Application compatibility: Unlike applications using stack
memory or language runtimes with garbage collection, appli-

cations in SUREmust explicitly manage (allocate/free) shared

memory buffers for inter-function communication. To port

legacy applications (e.g., using POSIX, HTTP/REST, or gRPC

APIs), we need to replace legacy APIs with SURE’s zero copy

APIs. We can further leverage automated source-code level
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Figure 5: Library-based sidecar in SURE. The sidecar contains a se-
quence of handlers that perform certain sidecar functionalities on
both RX and TX data path of the user function.

program transformation (e.g., tools used by Coccinelle [60])

or create customized communication libraries (exposed as

POSIX, HTTP/REST, or gRPC) built with SURE’s zero copy

APIs, allowing seamless interactions with SURE’s data plane.

4.2 Library-based, event-driven sidecar
By following the philosophy of LibOSes, SURE provides side-

car functionalities as a library component, embedded in the

application and accessible through simple function calls. This

allows us to extend the application in LibOS with a corre-

sponding lightweight sidecar functionality. Instead of having

a separate sidecar process running, SURE’s LibOS exposes

event-based execution hooks for running additional sidecar

functions, which has proven successful in eBPF-based ser-

vice meshes with improved resource efficiency [41, 82]. With

this extensible event-driven functionality, SURE offers typical
sidecar capabilities in its unikernel, including monitoring

and traffic management, with full visibility to L7 payload

and is capable of offering good expressiveness of service

mesh policies, as in [93]. Unlike other library-based sidecar

solutions (e.g., in ServiceRouter [87]), which do not provide

isolation between user code and the sidecar module, SURE’s
library-based sidecar is further protected using MPK.

Event-driven execution hooks: In order to maintain trans-

parent operation of the sidecar relative to the serverless

function, we predefine two hook points each on the Receive

(RX) path and Transmit (TX) path, located in send() and

recv() in SURE’s network I/O libs (Fig. 5) to invoke side-

car functions. SURE allows cloud providers to customize the

sidecar by adding/removing sidecar functions to/from hooks

based on events they are interested in. Required sidecar func-

tions are organized in an execution sequence, driven by I/O

events occurring on the RX/TX paths.

Implementation of library-based sidecar: We adopt the

implementation methodology from the popular service mesh

solution, Istio [1], which encapsulates a sidecar functionality

into a handler function and organizes the sidecar functions

into a call sequence, as shown in Fig. 5.We have implemented

a set of commonly used sidecar functions in SURE (such as re-

quest logging, metrics collection, rate controllers, and access

control) to enable critical service mesh capabilities, such as

monitoring and traffic management.
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5 MEMORY-LEVEL ISOLATION IN SURE
In this section, we describe how we use MPK to enable

memory-level isolation in a shared address space to protect

(1) the shared memory data plane between functions and

(2) the unikernel TCB (including the library-based sidecar)

from an untrusted user application within the single-address-

space of SURE VM.

5.1 A Primer on MPK
MPK is a hardware-level, intra-process memory isolation

feature introduced in Intel’s server CPUs, starting from the

Skylake microarchitecture [43]. MPK allows for a total of 16

keys (using a 4-bit ID) to be defined locally within a single

process [13]. The process is essentially a VM in the context of

SURE. The access privilege of all 16 MPK keys is defined by a

per-core, 32-bit CPU register, PKRU (Protection Key Register

User), where each key’s access privilege is described by 2 bits

(AD andWD in Fig. 6) in PKRU [79]: (i) “Access Disable” bit
(denoted AD) defines whether access (both read and write)

is disabled; and (ii) “Write Disable” bit (denoted WD), that
specifies whether write is disabled. MPK offers a unique x86

instruction WRPKRU to change the access privilege of the MPK

key by modifying its corresponding (AD,WD) bits in PKRU:
Read/Write (0, 0), Read-Only (0, 1), or No-Access (1, ×) [79].
The access privilege of an MPK key will be in effect for a

memory page after being “tagged” to the Page Table Entry

(PTE) of that page. This is done by modifying the 4 reserved

bits (representing the ID of the key) in the corresponding

PTE and flushing it from the TLB. There are two distinct but

complementary approaches to switch the access privilege of

a memory page when using MPK, as described next.

#1 – Switching the access privilege of certainMPK keys
via WRPKRU.An example of this approach is depicted in Fig. 6.

We have two distinct memory pages: 0x7ffc3 and 0x7ffff.
We tag MPK key-1 to page 0x7ffc3’s PTE and tag MPK key-2
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to page 0x7ffff’s PTE. The PKRU in the user context stores

the access privilege of keys: The initial (AD, WD) bits of key-
1 is (0, 1) (Read-Only) and the initial (AD, WD) bits of key-2 is
(1, 0) (No-Access). As such, write access to the page 0x7ffc3
(tagged key-1) is illegal and results in a page fault. The read

or write access to the page 0x7ffff (tagged key-2) is also
illegal as the page 0x7ffff is tagged with a (No-Access) key.

The user uses WRPKRU to change the access privilege of

key-1 to (0, 0) (Read/Write). After that, write access to the

page 0x7ffc3 (tagged key-1) is allowed. Note that MPK al-

lows tagging a key to multiple memory pages. The privilege

update of the key, achieved using WRPKRU, will be applied to

all tagged pages.

#2 – Switching access privilege of certainmemory pages
by updating the MPK key ID in PTE. Instead of relying

on WRPKRU, we can also change the access privilege to a mem-

ory page by updating the 4 bits reserved for the MPK key

ID in the PTE (i.e., replacing the tagged MPK key for the

memory page). Compared to using WRPKRU, this approach
allows for more granular management of the access privilege
at the individual page level of a VM.

5.2 Secure APIs based on SURE call gates
Since MPK provides only 16 distinct keys within a VM (this

could be far fewer than the potential number of memory

pages in a single VM), it is not feasible to tag each memory

page with a distinct MPK key to enable fine-grained access

management (via WRPKRU) at the individual page level.
We further adopt Approach-2 in §5.1 to complement WRPKRU

(i.e., Approach-1 in §5.1), to enable page-level access privi-

lege management within a SURE VM. Since we only need to

distinguish between unprotected and protected pages, we use

2 out of the 16 distinct keys within a SURE VM: one (called

UK) is used for tagging unprotected memory pages and the

other (called PK) is used for tagging protected memory pages.

The value of the PKRU is always configured to allow access to

memory pages tagged with UK, while access to pages tagged

with PK is disabled when executing user code and only en-

abled when executing the privileged code of the TCB.

We design a call gate abstraction to update the PKRU to
enable/disable access to PK pages and switch execution of

the function onto a stack in protected memory when the user

code executes a privileged function of the TCB. All other

updates to access privilege (i.e., writes to PKRU) are illegal,
prohibited via the binary inspection (see §5.3). While most of

the memory related to TCB components is statically tagged

with the PK, shared memory buffers are dynamically tagged

by changing the key (PK or UK). API functions receiving a

message in a buffer or allocating a new buffer update the

corresponding key to UK to allow unprotected access from

user code. When functions send a message or free a buffer

we perform the inverse operation, setting the key to PK.
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Figure 7: SURE uses call gates to secure function calls by user code.
SURE can dynamically change the access privilege of memory pages.

Fig. 7 shows how the privileged network API recv() func-
tion (within TCB) is invoked by untrusted user code via the

MPK-based call gate. Other APIs in the TCB (e.g., in scheduler

or page table management) are guarded by the MPK-based

call gate in the same way. When running user code, the set of

protected pages (i.e., local data in a SURE VM or shared mem-

ory) is configured to be inaccessible. 1 the user code invokes

functions in NetI/O lib via the call gate. 2 the call gate ad-

justs permissions, making protected memory accessible, and

invokes the recv() function; the NetI/O function receives a

buffer descriptor and updates the corresponding MPK key to

allow unprivileged user access to the buffer. 3 Upon return

to user code, 4 the call gate disables access to protected

memory, while the received buffer remains accessible.

Exclusive, Zero-copy Access to SharedMemory Buffers.
Once user code has exchanged ownership of a shared mem-

ory buffer through our secure API, it may need to access

its content multiple times. To avoid the cost of copying the

whole message to an unprotected buffer, we selectively dis-

able memory protection for memory buffers owned by the

VM, by changing the key from PK to UK in their PTEs. This

operation requires updating the PTE of the buffer and flush-

ing the corresponding TLB entry. Although this operation

is not as lightweight as the WRPKRU instruction, it is still

overall cheaper than copying the whole buffer, as we eval-

uate in §6.3. Memory protection for a buffer is lifted in the

buffer_get() and recv() functions, and re-enforced with

the buffer_put() and send() functions.

5.3 Enhanced unikernel TCB in SURE
As discussed in §3.5, SURE has to secure three additional sys-

tems that in a traditional OS would be protected by the user/-

supervisor privilege separation to guarantee the integrity of

MPK-based memory protection: the paging API; the sched-

uler; and interrupts.
3

(1) Paging API protection. SURE protects memory pages by

writing an MPK key in their corresponding PTEs. However,

PTEs are not protected in the single-address-space uniker-

nel. Thus, untrusted code may manipulate these PTEs to

3
Note that SURE does not offer control flow integrity of MPK, nor protection

against side-channel and microarchitectural attacks, which are beyond

the scope of our threat model. These issues can be addressed by existing

approaches [38, 55, 97].
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gain unauthorized access to protected memory pages. This

may be done either by changing the MPK key in the PTE or

remapping the (guest) physical address of a protected page

to a different, unprotected PTE.

To prevent these exploits, SURE stores the (guest) physical

address of all protected pages in a blacklist. All pages con-

taining a page table are also tagged with the protected key,

hence preventing untrusted code from directly modifying

the PTEs. To interact with the page table, a trusted paging

API protected with call gates is provided. Fig. 8 shows the

example of how the blacklist works when malicious code

tries to update the MPK key of a protected page: whenever a

PTE is modified, the API functions check whether the physi-

cal address in the PTE that is being modified belongs to the

blacklist (i.e., the physical page is protected), and in case of

a match, crash the unikernel. If the requested page address

does not match any entry in the blacklist, the paging API

then updates the MPK key in the PTE of the requested page,

making the page accessible to the user code. This same pro-

cedure is applied when remapping the address of a page to a

different PTE via the paging API in SURE.
(2) Scheduler protection. The scheduler is in charge of

core operations of the lifecycle of a thread in the unikernel,

including context switching that involves storing/loading

the thread context into/from memory. The thread context

in the SURE VM contains the PKRU register (Fig. 6), directly
related to SURE’s guarantee of memory protection. Thread

context switches occur often in SURE’s data plane, e.g., block-
ing receive, back-pressure, and interrupt handling. Thus, the

thread context must be stored in protected memory through-

out its lifecycle (Fig. 2). Hence, we run the whole scheduler

as privileged code and allow its access from untrusted code

only through call gates for safe operation of thread context.

(3) Interrupt validation. SURE relies on Interrupt Service

Routines (ISRs) to handle receiving event-driven sharedmem-

ory processing signals (Fig. 3). Typically, upon entering an

ISR, the unikernel scheduler stores the interrupted thread

context (e.g., PKRU, instruction pointer (IP) and stack pointer
(SP)) on the unprotected interrupt stack. The implemented in-

terrupt handler is then executed to handle the interrupt event.

Upon completion, the ISR exits and restores the interrupted

thread context to continue the execution of the interrupted

task. However, we note that upon entry of the ISR, the PKRU
on the CPU currently executing the ISR remains the same

as the PKRU value (AD, WD) of the interrupted thread. An

untrusted ISR gains unallowed privileges and could corrupt

these values (IP, SP) and, in case of interruption of privileged
code, cause the return to unprivileged code with access to

protected memory.

The root cause is the lack of checks upon ISR entry and

exit. To prevent the exploitation of this feature, we extend

the entry code common to all ISRs to (1) set the PKRU to the

unprivileged value upon interrupt entry and restore it to

the privileged value upon exit if a privileged function was

interrupted; (2) store the (IP, SP) pair in a per-CPU protected-

memory area when privileged code is interrupted, and check

that the values have not been modified on the stack before

returning from the interrupt. We further protect the memory

region containing the IDT
4
with MPK, to guarantee that the

ISR’s entry code cannot be changed. As SURE only protects

the entry/exit points of the ISR, we retain the flexibility for

the user to customize interrupt handlers in their ISR, while

avoiding unintended memory access caused by buggy code

in the ISR. Interrupt validation in SURE can also be applied

whenwe include other ISRs in the SUREVM, e.g., for interrupt

handling for virtual I/O devices (disk, virtio, etc).

(4) Binary inspection of MPK-related instructions. To
guarantee that only safe occurrences of MPK-related instruc-

tions (WRPKRU and XRSTOR) are present and untrusted code

cannot manipulate PKRU without passing through our call

gate, we couple MPK with binary inspection of the exe-

cutable, as in [97]. We also enforce a strict write-xor-execute

memory policy [23] in SURE. This guarantees that executable
pages are not modified at run time with instructions that

change memory access permissions.

6 PERFORMANCE EVALUATION OF SURE
We quantitatively evaluate the performance improvement

and resource efficiency with SURE’s data plane. We start with

a microbenchmark analysis, to quantify the benefit of each

design choice in SURE’s data plane. We also evaluate SURE
with the realistic online boutique workload [16] from Google.

Implementation of SURE: We base the development of

SURE on Unikraft [58] (version 0.16.2), an automated system

for building unikernels. This allows us to reuse key OS build-

ing blocks from Unikraft, such as the scheduler, memory

allocator, and file systems. We use QEMU/KVM (8.2.0) as

the hypervisor. SURE adds support for the shared memory

device and library-based sidecar in Unikraft. SURE employs

the Inter-VM Shared Memory Device [8] from the QEMU

VMM to expose the shared memory pool as a PCIe device to

4
On x86 systems, interrupts are handled through an Interrupt Descriptor

Table (IDT) which stores, for each interrupt vector, the address of the entry

point of its ISR.
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the VM.We enhanced the Unikraft TCB, including page table

management, scheduler, and interrupts handler, to protect

them from MPK privilege escalation. These changes are also

applicable (suitably modified) to OSv [57] unikernels.

Note that some VMMs, including Firecracker [24], cur-

rently do not support inter-VM shared memory devices. This

makes it challenging to deploy SURE’s shared memory data

plane in FaaS offerings such as AWS Lambda, which uses

Firecracker as the VMM. We have kept this as an additional

implementation (primarily engineering) effort for the future.

However, SURE’s design, including the library-based sidecar,

MPK-based call gate, and enhanced unikernel TCB, can gen-

erally be integrated into existing FaaS offerings to strengthen

the isolation of serverless functions.

Testbed Configuration:We built our testbed on NSF Cloud-

lab using three nodes, equipped with a 32-core Intel Xeon

Silver 4314 CPU running at 2.4 GHz, 128GB of memory, and

a 100Gb NIC for network connectivity. The CPU has MPK

support. Throughout the experiments, we use Ubuntu 22.04,

kernel version 5.15 as the OS.

6.1 Microbenchmark Analysis
6.1.1 Improvement from shared memory processing. We eval-

uate the round-trip latency and throughput between a client

and server pair on the same node first. We choose three mes-

sage sizes: 64B, 4KB, and 8KB. There is very little variation for

SURE for packet size ranging from 64B to 1KB. We compare

SURE’s intra-node shared memory data plane with the follow-

ing widely used alternative commercial and open-sourced

serverless platforms: (1) Container (denoted CT); (2) Unikraft
unikernel [58] (denoted UK); (3) OSv unikernel [57] (denoted
OSv). For these alternatives, we use the kernel Linux bridge
for L2 connectivity. We additionally consider the userspace

Open vSwitch (OVS [80]) for UK and OSv.
To match SURE’s reliable data transfer, we use TCP for

reliable data transfer with the others. Note that container

uses the host’s TCP/IP stack, Unikraft uses lwip [12], and

OSv’s TCP/IP stack is ported from FreeBSD. For through-

put measurements, we add sufficient clients to saturate the

server, and metrics are collected on the server. To accurately
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Figure 10: The impact of MPK on SURE’s performance.

assess the improvements from shared memory processing,

we disable SURE’s sidecar for this experiment.

SURE achieves low-latency.We show the latency for a single

client-server connection in Fig. 9 (left). SURE has the lowest

latency (14-16us) across all evaluated message sizes. Unlike

other alternatives, SURE’s shared memory zero-copy data

transfer results in the latency being flat with increasing mes-

sage sizes. We note that lwip (used in the Unikraft setup)

incurs higher latency as it is under-optimized to work with

virtio devices (no checksum offload
5
and extra copy

6
).

SURE is more scalable and efficient. We evaluate through-

put (requests per second (RPS)) as the number of concurrent

connections increases. Fig. 9 (right) shows the RPS for a mes-

sage size of 64B. Our observations are consistent across other

message sizes (4KB, 8KB). Compared to other alternatives,

SURE is also more efficient: with more than 16 connections,

all alternatives have their server’s one assigned CPU core sat-

urated. But SURE has a much higher RPS (and still increases

with increasing concurrent connections).

6.1.2 Cost of Memory Isolation with SURE. SURE has MPK

enabled by default. To see the performance impact of MPK,

we consider a variant of SUREwithMPK disabled (baseline).
We use the same functions, varying the message sizes.

MPK in SUREhas limited penalty. Fig. 10 shows the normal-

ized latency and throughput. With a single connection, SURE
shows 1.2-1.3× increased delay compared to the baseline.
As we increase the number of concurrent connections, SURE’s
RPS decreases (e.g., 1.8× reduction at 64 connections). We

believe this overhead is relatively small for the reward of

robust memory-level isolation in our shared memory data

plane and the unikernel TCB. mprotect() is a system call that

can change the access privilege of specified memory pages,

similar to MPK. However, as reported in [79], switching the

access privilege withMPK incurs only∼20 CPU cycles. Using

mprotect() on the other hand requires more than 1000 CPU

cycles to complete, resulting in much poorer performance.

6.1.3 Protecting message buffers with PTE updates. We com-

pare SURE’s zero-copy approach of enabling/disabling access

5
https://savannah.nongnu.org/patch/?10111

6
https://github.com/unikraft/lib-lwip/blob/staging/uknetdev.c#L166-L167

679

https://savannah.nongnu.org/patch/?10111
https://github.com/unikraft/lib-lwip/blob/staging/uknetdev.c#L166-L167


SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient SoCC ’24, November 20–22, 2024, Redmond, WA, USA

64 12
8

25
6

51
2 1K 2K 4K 6K 8K

Msg size (B)

0

200

400

600

T
im

e 
(n

s)

memcpy() from L3
memcpy() from mem
PTE update

Figure 11: Cost of copying messages of different sizes from L3 cache
or main memory compared to updating their buffer PTEs.

to shared memory buffers (§5.2) with the alternative of copy-

ing messages from protected shared memory to user mem-

ory, in the context of receiving a message. To test SURE’s

approach, we flag pages containing the message buffer as

accessible in their PTEs, flush the corresponding (outdated)

TLB entries, and access the buffer. This would cause a TLB

miss and the fetching of updated entries from the page table.

For the copy approach, we use the memcpy() function from

glibc to copy the content of the message buffer to a local

user buffer. Since we expect a message coming from another

function running on a different CPU core to reside either

in the shared L3 cache or in main memory, we design the

experiment to access the remote buffer from the L3 cache or

from main memory.
7
Fig. 11 shows how SURE’s approach

of PTE updates outperforms copying 1 KB or larger mes-

sages from main memory. It is also better than copying for a

message greater than 4 KB, when it is in the L3 cache. PTE

remapping clearly wins for large messages, while copying

is still better for small messages. Currently, SURE adopts

PTE updates for any message size. We leave the design of a

combined approach similar to [62] for the future.

6.1.4 Improvement with library-based sidecar. We consider

the individual container for each sidecar as the baseline to

compare with. Each sidecar connects to the user function

container over the kernel loopback interface [110]. We use

the NGINX proxy as the implementation of the sidecar, as

demonstrated in production [15]. For the NGINX setup, we

assign one CPU core to the NGINX sidecar and another core

to the user function. In the SURE setup, the library-based side-
car shares a CPU core with the user function code. Note that

we measure the CPU cycle consumption and the added delay

of the sidecar for a single connection. When measuring the

throughput, we use concurrent connections to saturate the

user function and sidecar. We show the throughput results

with 64 connections in Table 1. However, the observations

are consistent for other values (e.g., 32, 128 connections).
Library-based sidecar shows negligible overhead. Table 1
compares the CPU cycles spent on the sidecar for different

alternatives. The CPU cycles consumed by our library-based

7
We do this by randomly accessing multiple remote buffers distributed over

an increasingly large memory area.
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sidecar are negligible compared to those of an NGINX sidecar

(only 0.9%). The higher CPU cycle consumption by the NG-

INX sidecar is due to the loose coupling between the sidecar

and the function, which results in additional overhead from

the kernel’s loopback interface. The extra CPU consump-

tion also results in increased network delay and decreased

throughput: the library-based sidecar adds only 0.21-0.23

𝜇s to the data path, while the NGINX sidecar adds more

than 24𝜇s of delay, potentially severely impacting data plane

performance. The throughput of SURE with a library-based

sidecar is also close to SURE with sidecar disabled (“SR (no
SC)” in Table 1). This is the advantage of our library-based

sidecar - maintaining low latency and high throughput, with

negligible CPU consumption.

Library-based sidecar has lower memory footprint. The
individual sidecar serves as a reverse proxy between the user

function and the external client, inevitably requiring addi-

tional dependencies and having a larger memory footprint.

Our library-based sidecar avoids this overhead almost en-

tirely. Our analysis shows that SURE’s library-based sidecar

(125KB) reduces the memory footprint by 165×, compared

to the NGINX sidecar (20.2MB). This has many benefits, in-

cluding increased function density on every node.

6.1.5 Benefit of the zero-copy TCP/IP stack. We compare Z-

stack (denoted ZS) with F-stack [5] (denoted FS) for protocol
processing in the SURE gateway (Fig. 12).

The F-stack gateway incurs a data copy when exchanging

payloads with the function. We also compare Z-stack with

the Linux kernel’s protocol stack (denoted KS) to evaluate

the performance improvement and costs of using the DPDK

PMD. In the KS setup, we let the function directly access

the kernel stack without involving the gateway. We use a

TCP echo server/client pair (integrated with the different

alternatives) for this experiment. The server and the client

are deployed on different nodes.

Table 1: Library-based sidecar (SR) vs. Individual sidecar (NGINX)

Msg

size

CPU cycles
(× 1K) Added delay (us) Throughput

(MBytes per second)
SR NGINX SR NGINX SR (no SC) SR NGINX

256B 0.50 60.4 0.21 25.2 342 309 12.3

4KB 0.55 59.5 0.23 24.8 3697 3533 185

8KB 0.55 58.2 0.23 24.2 5525 5369 337
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ZS achieves a ∼1.2× RPS improvement and latency reduc-

tion under high traffic load (more than 100 connections)

compared to FS (Fig. 12). This clearly showcases the ad-

vantage of having zero-copy protocol processing. On the

other hand, FS inevitably introduces data copies between the

server function and the F-stack gateway, resulting in lower

performance. SURE also shows significant RPS improvement

compared to the kernel protocol stack. SURE not only avoids

data copies, it also eliminates other kernel-related overheads.

Note that SURE shows slightly higher latency than KS under

very light loads with small packets (e.g., 64B, single con-

nection in Fig. 12 (left)) as SURE uses the SURE gateway to

relay between the function and Z-stack, resulting in some

additional delay. But SURE is significantly better than KS for

larger message sizes.

Assessing the polling “tax” of Z-stack. SURE chooses to
use DPDK’s busy-polling PMD to move packets between the

SURE gateway (with the Z-stack) and the NIC. SURE dedicates
a CPU core to the SURE gateway for protocol processing.

This CPU cost is spent independent of traffic load, unlike an

interrupt-driven kernel, and is the “polling tax” of Z-stack.

The interrupt-driven kernel stack (KS) achieves better CPU
efficiency at light load due to on-demand execution (at 30K,

60K RPS in Table 2). But, KS is inefficient for higher loads

(≥90K), because of interrupt handling [75] and other ker-

nel overheads. In comparison, SURE achieves the same RPS

consistently using a single CPU core with its kernel-bypass,

eliminating interrupts. Busy-polling on a single CPU core

has better overload behavior and is more efficient under

heavy traffic load than an interrupt-based kernel stack. The

increased function density on a single node (e.g., with bin-

packing-based function placement) can facilitate the sharing

of the SURE gateway and amortize the cost of busy polling.

Table 2: Polling tax of Z-stack.

Tested Load

(X 1K RPS)

Kernel stack CPU (%) Z-stack CPU (%)Interrupt Others Total
30 10 14 24 100

60 36 33 69 100

90 54 58 112 100
120 75 78 153 100
240 108 94 202 100

6.2 Function Startup in SURE
We compare the boot time of running functionswithin uniker-

nel VMs (including SURE) against containers, as well as the
impact that our shared memory data plane and MPK-based

memory protection have on boot time.

We use a bare-bones Unikraft VM (UK-BB) as the baseline
for the unikernel boot time (no network interfaces, no sup-

port for virtual memory or multithreading, etc.). We compare

a SURE VM w/ and w/o MPK memory protection (respec-

tively, SURE MPK and SURE), both without a sidecar, with the

baseline. We also compare with a Unikraft VM suitable for
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Figure 13: Boot time: (left) comparison of different isolation solu-
tions; (right) influence of the shared memory size on SURE VM’s with
MPK protection.
running serverless functions (UK), equipped with a vhost net-

work interface, virtual memory, and multithreading, as well

as a Docker container (Docker). All VMs are equipped with

8 MiB of RAM, and SURE VMs are additionally attached to

a 16 MiB shared memory region. For the Unikraft and SURE
based solutions, we use QEMU as the VMM and measure the

boot time as described in [40], which provides a breakdown

of the time needed to configure the VM in the VMM, to run

the BIOS, and to boot the guest. We additionally consider a

microVM-based solution (called “OSv” in our figure) that uses
the OSv unikernel [57] and Firecracker as the VMM [24]. We

run the Docker container with the default configuration and

measure the time elapsed between issuing the docker run
command (with the image available locally, no download),

and the execution of the first instruction in the main().
Fig. 13 shows how unikernel-based solutions generally

allow much faster boot times. SURE achieves a ∼4× speedup

compared to Docker containers. Additionally, the shared

memory data plane employed by SURE (SURE column) is com-

parable to a traditional network setup based on virtio/vhost

interfaces (UK). Adding memory protection has a negligi-

ble impact on boot time. Note that most of the unikernel

boot time is contributed by the VMM and BIOS, which can

be improved by leveraging a microVM VMM such as Fire-

cracker [24] (Fig. 13 shows the guest boot time of SURE (based
on Unikraft) is comparable to OSv+Firecracker). This can

benefit both SURE and the other unikernel approaches.

The amount of shared memory attached to a SURE VM

has a non-negligible impact on the guest boot time when

MPK protection is enabled, as shown in Fig. 13. The reason

is the need to map the memory in the page table, and tag

pages with the proper MPK key. This underscores the need to

carefully size the shared memory pool to maintain fast boot

times. In our experiments, 16 MB of shared memory, with

8 MB for control structures (connections, signal rings, etc.)

and 8 MB storing 2048 4K message buffers, was sufficient to

support the demanding Online Boutique application (§6.3).

6.3 Realistic Workload Evaluation
Online Boutique [16] is an example microservices-based on-

line store application from Google containing 10 functions

and up to 6 different function chains in a serverful setup,
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by default using a container-based runtime and using gRPC

to interconnect functions (called “SF-CT”). We additionally

consider a serverful alternative based on OSv unikernels [57]

with Firecracker VMM [24] (called “SF-OSv”). We use the

kernel Linux bridge for connectivity between functions in

SF-OSv and SF-CT. For the call graphs of the Online Boutique
function chains, refer to [16].

We consider three serverless platforms to compare against:

Knative (termed “SL-KN”) as the baseline, two state-of-the-

art serverless platforms, SPRIGHT [82] (termed “SL-SP”) and
NightCore [50] (termed “SL-NC”). We use Locust [11] as the

load generator using the boutique’s default workload [16].

Note that we disable the user wait time of the default to

generate a heavier workload. We ported the boutique’s mi-

croservices to SURE and OSv. We compare these alternatives

with two distinct deployment settings: (1) All functions are

deployed on the same node (intra-node), and (2) Deploy the

Frontend, Checkout, and Recommendation functions (inter-

mediate functions that could become hotspots) on one node,

and deploy the remaining (leaf) functions on a second node

(inter-node). Note, NightCore [50] does not support inter-

node communication between functions of the same chain.

RPS and Tail Latency. As shown in Fig. 14 (for intra-node

setup), the RPS of SURE is up to 17× and 79× higher than the

SF-CT and SL-KN. Both SF-CT and SL-KN are CPU resource-

limited (the RPS barely increases) for concurrency above 16.

In addition, the 95%ile latency of SURE (at a concurrency

of 16) is below a millisecond (0.39ms), making SURE highly
attractive for latency-sensitive microservices. This shows

the compelling performance improvement of the shared-

memory processing and library-based sidecar of SURE. SL-SP
also uses shared memory processing for intra-node network-

ing. But, incoming client requests are handled by the kernel

protocol stack, before being delivered to shared memory.

This reduces RPS by 8×, with significant increases in tail

latency compared to SURE. SL-NC’s RPS and latency perfor-

mance is also worse than SURE due to SL-NC’s reliance on the
kernel protocol processing and additional queuing delays in

the NightCore engine (the data plane component equivalent

to our SURE gateway).

With the inter-node setup (Fig. 15), SURE still maintains

its superior performance: SURE achieves up to 6× and 19×
higher RPS than SF-CT and SL-KN. Still, the zero-copy proto-
col processing in Z-stack of SURE maintains sub-millisecond

latency, even at the 95%ile (CDF shown in Fig. 15 (b)), unlike

SL-SP, whose tail latency is close to SF-CT, as intra-node
shared memory processing does not help for the inter-node

setup. This is consistent with the microbenchmark of Z-stack

in Fig. 12. SL-KN’s tail latency is 15× higher, and SF-CT’s tail
latency is also 4.8× higher than SURE’s. Note that SURE and
SPRIGHT use a static CPU core allocation for the gateway,
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while the other alternatives support dynamic multi-core scal-

ing. This results in some alternatives (e.g.,SF-CT) seeing im-

proved performance when switching from the intra-node

setup to the inter-node setup.

The RPS and response time performance of SF-OSv is far

worse than SURE (both intra-node and inter-node cases), as

observed in Fig. 14 and Fig. 15. E.g., at a concurrency level of

64, SF-OSv’s RPS is 46X lower than SURE in the intra-node

case, and SF-OSv’s RPS is 25X less than SURE in the inter-

node case. SF-OSv’s poor performance is because Firecracker

does not support vhost-net acceleration for its network de-

vices (for security reasons, disallowing VM-host kernel inter-

actions
8
), resulting in all network transfers having to traverse

the VMM in user space (similar to Xen). This concern of se-

curity is not an issue for SURE, since SURE uses full-userspace
networking and uses MPK to enforce isolation between the

SURE gateway and untrusted functions.

CPUEfficiency. For an apples-to-apples comparison of CPU

usage across different alternatives, we use the metric “CPU

Cost Per RPS”, which is defined as the average utilization of

8
https://github.com/firecracker-microvm/firecracker/issues/3707
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Figure 15: Online boutique results (inter-node): (a) RPS, (b) Response
Time, (c) CPU Cost Per RPS.

all CPU cores (expressed as a percentage) divided by Request

Per Second (RPS):
Average CPU Core Utilization

RPS
. This metric indi-

cates how much CPU is utilized per request. Lower values of
CPU Cost per RPS suggest that each request requires fewer

CPU cycles, indicating a more efficient use of the CPU.
We show the intra-node CPU Cost Per RPS comparison

in Fig. 14 (c) and inter-node case in Fig. 15 (c). We further

break down this CPU Cost into different components: “GW”

denotes gateway, “FN” denotes function, “SC” in SL-KN setup
specifically denotes container-based sidecar. We can observe

that (1) SL-SP is consistently efficient in using the CPU since

it uses eBPF-based event-driven shared memory processing,

as observed in [82]. (2) At a low concurrency (≤ 16 for intra-

node and ≤ 4 for inter-node), SURE’s efficiency is lower than

SL-SP (comes from polling and the use of a CPU for each

function), but SURE delivers a much higher RPS and is much

more efficient than SL-KN and SF-CT. As concurrency goes

up in both intra-node and inter-node cases, SURE is more

efficient than SL-SP under high concurrency levels. This is

because (i) - SL-SP depends on kernel-based networking

for inter-node traffic, which in total takes more than 2 CPU

cores (aggregating the CPU usage of the gateways in SL-SP
on the two nodes) for concurrency level more than 4; (ii) -
More concurrent processing amortizes the cost of polling

in SURE’s gateway and functions. The CPU usage of SURE
gateway also does not grow substantially, unlike SL-KN and

SL-SP. (3) SF-OSv, SL-KN and SF-CT are very inefficient be-

cause they involve kernel networking. SL-KN has the worst
efficiency as it adopts a heavyweight sidecar for each func-

tion within the function chain. SF-OSv has poor efficiency

for low concurrency levels (≤ 16), which we attribute to the

lack of vhost-net acceleration, causing packets to traverse

the VMM, which is equivalent to an individual sidecar. SF-CT
is slightly better since it avoids the sidecar. However, the

cumulative CPU cost of SF-CT will be unacceptable since

functions in SF-CT are always-on (“Serverful”) and occupy

CPU/memory resources even with no requests to process.

7 CONCLUSIONS
SURE is a unikernel-based, lightweight serverless framework

that offers high-performance inter-function networking and

lightweight library-based sidecars for service mesh. The

unikernel-based runtime brings 4× faster startup time com-

pared to docker containers. SURE utilizes MPK-based call

gates to enable fine-grained access management at page level.

We further enhance the unikernel TCB in SURE to mitigate

the vulnerabilities of shared memory processing and single-

address-space unikernels while retaining high performance

and resource (CPU and memory) efficiency. Benchmarked

against a serverful gRPC-based alternative in a multi-node

deployment for a complex web workload, SURE’s data plane
delivers up to 6× increase in throughput and a 4.8× reduc-

tion in tail latency while being more secure. The popular

open-source containerized serverless platform (Knative [9])

achieves only 5.3% of SURE’s throughput and has up to a

15× higher tail latency. SURE’s zero-copy protocol process-

ing, Z-stack, expands shared memory processing go across

nodes. When handling inter-node traffic, SURE achieves 4×
higher RPS than SPRIGHT, which depends on kernel-based

networking for inter-node traffic. SURE seamlessly supports

serverless function processing to multiple nodes.
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