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ABSTRACT We introduce an approach for automated driving in highway scenarios based on a two-level
hierarchical architecture. The high-level consists of a path planner implemented through a Model Predictive
Control algorithm that, using a simple kinematic model of the vehicle, effectively manages the relevant
maneuvers of highway driving, such as lane keeping, lane change, velocity, and distance tracking, by means
of suitable combinations of artificial potential field functions. Parameters of such functions are dynamically
tuned according to the acquired scenario. A switching logic described by a finite state machine, based
on acquired sensor data, selects the most appropriate maneuver to realize in the present driving scenario.
At the low-level, the motion controller regulates the longitudinal and lateral dynamics through an original
decentralized architecture to track the generated reference trajectory. Robustness issues in the presence of
plant uncertainty are handled by H∞ synthesis. Extensive simulation tests show the effectiveness of the
proposed approach.

INDEX TERMS Autonomous vehicles, model predictive control, robust control, path planning.

I. INTRODUCTION
In the past years, the increase of traffic density led to
the need to develop appropriate driving support systems to
improve safety and prevent accidents and fatalities mainly
due to distracted drivers. In such a context, enhancements
were initially introduced by Advanced Driver Assistance
Systems (ADAS) in commercial cars through Automated
LaneKeeping systems andAdaptive Cruise Control functions
(see, e.g., [1]). More recently, thanks to significant research
efforts by both academia and industry, vehicles with fully
automated driving functionality have been developed to
further improve safety and driveability issues, see, e.g.,
[2]. As a result, car manufacturers, like, e.g., Waymo [3],
Tesla [4], Audi [5], Mercedes-Benz [6] and Stellantis [7]
deployed advanced prototypes of autonomous vehicles (AV)
and ongoing field tests are giving promising results, espe-
cially in low complexity scenarios such as highway routes.
In highway scenarios, the vehicle is expected to perform
autonomously standard maneuvers such as lane keeping,
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distance tracking with respect to preceding vehicles, and
lane change to overtake and return when allowed by the
surrounding traffic conditions.

The principal ingredient for automated driving is the
path planner that is responsible for finding an optimal
collision-free path to perform the requested maneuver. In this
context, an effective approach is made up by the use of
artificial potential field (APF) that describes obstacles as
repulsive virtual forces, while attractive forces represent
target locations. Suitable combinations of APF can account
for environment virtual obstacles such as lane borders to
generate minimum energy-constrained paths even for lane
change maneuvers. APFs have been originally introduced
in [8] in industrial and mobile robotics as a collision
avoidance method. The main advantage of this method is the
possibility of adapting the path generation in a closed-loop
fashion with the environment, see, e.g., [9]. Furthermore,
APF can overcome computational drawbacks related to
grid cells methods such as A∗ algorithm, see, e.g., [10],
[11], [12] and Rapidly exploring Random Trees (RTTs)
methods, see, e.g., [13] and [14]. However, as observed
in [15], APF cannot directly include physical limitations

86470

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6836-2516
https://orcid.org/0000-0003-0137-8745
https://orcid.org/0000-0002-7746-4589


M. Canale, V. Razza: Automated Driving Control in Highway Scenarios

in vehicle behavior, such as on the steering angle and
lateral acceleration. A method to include such constraints
in the APF description is introduced in [16] by considering
customized APF. In this regard, more systematic approaches
combine the driving scenario and maneuver setting described
by APF with control methods appropriated for vehicle
dynamics control. As relevant examples, in [17], [18],
and [19], the combined use of APF and model predictive
control (MPC) is introduced for collaborative automated
driving, path planning, and collision avoidance, respectively.
In [20], an MPC controller is employed to track the path
generated by a planner based on the combination of APF
and Reinforcement Learning methodologies. Finally, [21]
proposes an optimal path planning based on enhanced APF
and PID control. To realize the considered automated driving
functions, a suitable tracking of the trajectory provided
by the path planner is performed by means of a motion
controller that computes the steering and acceleration actions
needed to accomplish the required maneuvers and accounting
for the vehicle lateral and longitudinal dynamics. Motion
controller must guarantee, besides smooth driving maneuver
for comfort purposes, robustness issues in the presence of
plant uncertainty. The integrated action of path planning
and vehicle dynamic control is implemented through either
single-level or two-level architectures, according to whether
the planner and the controller are embedded together or are
placed in two different hierarchical layers. In [18], [19],
and [22], a single-level architecture is adopted where an
MPC algorithm performs at the same time as both path
generator and motion controller. Possible critical points
with such approaches are represented by the complexity of
the optimization problem that needs additional constraints
to manage stability and robustness issues (see, e.g., the
methods presented in [23] and [24]) and by consequent higher
computational times.

Two-level architectures are mainly characterized by an
upper layer made up of a path planner that computes
the trajectory way-points and the speed to be tracked
by the vehicle and a lower layer that implements the
motion control functions that realize the requested maneuver.
In general, two-level architectures provide more flexible
solutions to handle the integration between path planning
and motion control since different control methodologies
can be employed for each of the two levels to exploit their
peculiar characteristics in the view of achieving significant
overall performance improvements. The advantages of using
two-level approaches are also shown in the field of cooper-
ative driving, as discussed in [25]. Several interesting and
effective approaches to two-layer architectures have been
recently introduced in the relevant literature. Basically, such
approaches can be classified according to the methodologies
employed in the path planner, the motion controllers, and
the maneuver scenario that is accounted for. As an example,
in [15], the path planner and motion controller are both made
up of an MPC strategy based on, respectively, kinematic
and dynamic linear time-varying (LTV) single-track models.

Such an approach, is successfully tested in overtaking
maneuvers of quasi-static obstacles performed at medium
speed in straight roads. In [21], instead, the upper level
employs suitable APF to describe moving obstacles, road
boundaries, and target positions combined with a fireworks
optimization algorithm to generate safe and smooth paths
effectively. The motion control is implemented through a
standard PID controller that provides the steering action
needed to realize the considered maneuver. The effectiveness
of this approach is shown by considering lane change and
overtaking maneuvers in straight roads. In the two-layer
solution presented in [26], the upper level exploits a given
reference path to compute the steering command through
an MPC controller that accounts for dynamic changes in
driving conditions. The lower level implements the steer
actuator control using a PID controller whose parameters
are updated online through a recursive algorithm based
on neural networks. In this approach, the driving scenario
is predetermined, and trajectory modifications cannot be
introduced to perform, e.g., overtaking slower vehicles
traveling in the same lane. In all the methods presented above,
the attention is mainly focused on lateral maneuvers without
a thorough analysis of robustness issues in the presence of
plant uncertainty.

In this paper, we introduce a two-layer architecture for
SAE automated driving level 3 in highway scenarios that aims
at

1) managing the lateral and longitudinal maneuvers as
well as their combination that may occur in the
considered driving scenario;

2) handling robustness issue in the presence of parametric
and dynamic uncertainty of the vehicle.

In the proposed solution, the path planner of the higher
level is based on the approach described in [27], where a
dynamic tuning of the APF parameters manages the relevant
maneuvers based on the current driving scenario. An MPC
control algorithm that includes the maneuver objectives
described by suitable APF in the cost function computes
the path way-points and the corresponding target vehicle
speed. The low-level controller computes the steering and
acceleration actions needed to track the path computed at
the higher level. A finite state machine (FSM) manages
the switching among the considered maneuvers. An original
decoupled robust architecture based on H∞ methodology is
introduced to control the lateral and the longitudinal vehicle
dynamics. Since the higher-level control is working at a
slower rate, a suitable path interpolator based on Bezier
curves is included to generate the trajectory to be tracked
by the motion controller implemented at the lower level. The
main features of the proposed approach are summarized and
highlighted below.

• The proposed path planner architecture can handle at the
same time both lateral and longitudinal maneuvers by
choosing suitable combinations of APF functions whose
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parameters are adapted online based on the scenario
acquired by the vehicle onboard sensors.

• The actual traffic conditions are considered by an FSM,
which selects the most suitable maneuver to perform.

• Obstacle dynamic is explicitly considered in the
path-planner MPC model to generate collision-free
trajectories.

• The original decentralized motion control architecture
can guarantee robust stability in the presence of
parametric and/or dynamic uncertainty of both lateral
and longitudinal vehicle dynamics.

• Both the control levels can be designed independently,
allowing a more flexible management of the interaction
between the path planning task and the automated
driving functions when either different planners or
motion control functions are already implemented in the
existing control hardware and exploit different sampling
times.

To show the advantages of the proposed architecture, we com-
pare its performance with respect to a single-level approach
based on an MPC controller designed including APFs in the
cost function and a two-layer structure that exploits linear
quadratic (LQ) methodologies for the motion controller. In
both cases, extensive simulation tests that include sensitivity
analysis are included to show the effectiveness of the method.
The main contributions of this paper can be summarized as
follows.

1) To propose a two-layer architecture that exploits the
potentials of MPC and APF in path generation and
H∞ methodologies for motion control to effectively
manage robustness issues in both longitudinal and
lateral driving maneuvers.

2) To show the advantages of two-layer with respect to
one-layer solutions that employ a similar approach.

3) To introduce extensive simulation tests that include a
wide set of maneuvering situations performed in the
considered scenario and to show the potential of the
method in handling robustness issues through a suitable
sensitivity analysis.

The paper is organized as follows. Section II defines
the main settings of the considered automated driving
problem and the two-level architecture. Section III introduces
the high-level controller by describing the APF functions
employed in the MPC path planner and how they are
customized according to the specific maneuvers to be
realized. Details on FSM are included as well. In Section IV,
the path interpolation procedure is introduced. Section V is
devoted to describing the structure and the design settings
of the low-level motion controller. Extensive simulation tests
that show the effectiveness of the proposed approach during
the execution of the relevant driving maneuvers and in the
presence of model uncertainty are presented in Section VI.
Comparisons with other approaches are introduced as well
to highlight the advantages of the proposed method. Some
concluding remarks end the paper.

II. PROBLEM FORMULATION
We consider an autonomous vehicle, denoted as the host
vehicle (HV), traveling in a highway scenario according to
the SAE automation level 3, see [28]. In particular, the HV
is requested to perform standard highway maneuvers such as
velocity regulation, either in the presence or the absence of
a preceding vehicle, overtaking and returning while keeping
the center of the lane in both straight and curved roads. Thus,
emergency maneuvers are not considered in this context.
We assume the HV is equipped with a complete sensor
configuration as described in the list below.

• Vehicle dynamic sensor for acquisition of the relevant
longitudinal and lateral variables.

• Front camera to detect and reconstruct lane edges.
• Surround-view cameras to detect lateral scenarios such
as vehicles in adjacent lanes.

• Front radar (long and short-range) to detect front
vehicles’ relevant variables such as the relative distance
and speed.

• Inertial Measurements Unit (IMU) for the most relevant
inertial measurements.

• Differential Global Positioning System (DGPS) to
locate the vehicle in the world coordinate.

We introduce the two-layer hierarchical control architecture
reported in Fig. 1 to handle the automated driving functions
for the considered highway application. It consists of the two
functional blocks described below.

1) High-level controller, which includes:

a) a path planner, implemented by an MPC
algorithm based on APF and a kinematic single
track model of the vehicle, that generates every
200 ms the way-points of the cartesian path
needed to perform the requested maneuver;

b) a trajectory planner, starting from the way-points
provided by the path planner, that employs the
Bezier curve interpolation method to obtain at
a rate of 10 ms the trajectory to be tracked by
the vehicle in terms of the desired speed and
acceleration, cartesian position, and desired yaw
rate.

2) Low-level controller that implements the motion
control unit and aims at providing the vehicle with
suitable acceleration and steering actions needed to
accomplish the requested maneuver. Such acceleration
and steering action are obtained through a decentralized
control architecture, including a longitudinal and
lateral controller. Robustness issues in the presence of
model uncertainty are managed as well.

Using a two-layer architecture can bring some advantages
in the context of practical implementation with respect to a
single-layer one. Single-layer approaches are based on the
same principles, but path planning and motion control are
performed simultaneously, employing more complex models
to describe the vehicle dynamics. Here, as described in
Section III, a simpler model is used in the path generation

86472 VOLUME 12, 2024



M. Canale, V. Razza: Automated Driving Control in Highway Scenarios

FIGURE 1. The proposed two-layer hierarchical control architecture.

phase leading to a more efficient solution of the underlying
MPC optimization problem in terms of complexity and
computation time. In this context, the trajectory tracking
performed by the low-level controller can be implemented
more effectively to account for possible plant uncertainty
in the control design, as it will be explained in Section V.
Moreover, since each architecture layer can be seen as a
standalone block, the path and trajectory generation level
can be easily interfaced with commercial motion control
modules (see, e.g., [29]), already implemented in the vehicle
Electronic Control Unit board.

III. HIGH-LEVEL CONTROLLER
In this Section, we provide details about the high-level control
architecture introduced in Section II. First, we describe
the vehicle model employed in this context. Then, details
on how Artificial Potential Fields (APF) are employed to
characterize the most relevant maneuvers during highway
automated driving and how to include them in a suitable
path planner formulation based on Model Predictive Control
(MPC) methodologies. Finally, we show how Bezier curve
interpolation methods can be customized to obtain an
effective trajectory planner.

A. VEHICLE MODEL
Small steering angles characterize the maneuvers of the
considered driving scenario. In this context, the single-track
kinematic model reported in Fig. 2 adequately describes
the lateral behavior for path generation purposes (see, e.g.,
[17]). In fact, the use of more complicated models may
lead to more complex MPC controllers. The schematic of
such vehicle model is reported in Fig. 2, together with the
frame (x,y) that defines the vehicle behavior and the local
frame (X ,Y ) employed to formalize the interaction with the
highway scenario.

FIGURE 2. Single-track kinematic model schematic and frames.

Equation (1) introduces the single-track kinematic state
equations. 

ẋ(t) = v(t) cos(ψ(t))
ẏ(t) = v(t) sin(ψ(t))

ψ̇(t) =
v(t)
L

tan(δ(t))

v̇(t) = a(t)
δ̇(t) = ωδ(t)

(1)

In (1), x, y and ψ represent the pose of the HV rear axle, v
is the longitudinal speed, δ is the steering angle while L is
the wheelbase. The state vector ξ defined in (2) includes the
relevant variables of model (1).

ξ = [x,y,ψ,v,δ]T (2)

The longitudinal acceleration a = v̇ and the angular speed
ωδ = δ̇ are the inputs of the system.

B. ARTIFICIAL POTENTIAL FIELDS FOR AUTOMATED
DRIVING
Artificial Potential Fields (APF) allow effective automated
driving thanks to their capability to generate virtual forces,

VOLUME 12, 2024 86473



M. Canale, V. Razza: Automated Driving Control in Highway Scenarios

either attractive or repulsive, that affect the vehicle motion,
see, e.g., [30]. In the following subsections, we describe
how suitable combinations of APF can be employed to
handle typical maneuvers in highway scenarios such as
lane keeping, overtaking and returning, and distance-tracking
with respect to a preceding vehicle. In particular, we show
how the standard parameters of APF functions like height
and width can be tuned on the basis of the maneuver
to be performed and according to the acquired sensors
data.

1) APF FOR LANE KEEPING AND LANE CHANGE
The lane-keeping function is activated when the HV should
track the lane center. Such a task can be implemented through
the combined action Pℓ of two APF defined by a 2nd order
Gaussian function Pℓl and Pℓr centered at the left and the
right borders of the lane, respectively, and providing a pulling
action towards the lane center, as described in (3) and shown
in Fig. 3.

Pℓ = Pℓl +Pℓr (3)

where

Pℓi = P0 exp
(

−
di
γ0

)4

, i= l,r (4)

with

di =
√
(X −X0i )2 + (Y −Y0i )2, i= l,r . (5)

In (4), P0 and γ0 represent the height and width of the field,
respectively, while di is the Euclidean distance between the
vehicle and the left and right edges of the lane located at
(X0l ,Y0l ) and (X0r ,Y0r ) respectively. ParametersP0 and γ0 are
chosen to make the vehicle track the lane center to prevent
lane escaping and avoid overtaking when not allowed. The
field heightP0 is set to a sufficiently high value while the field
widths γ0i , i= l,r are obtained by assigning a suitable value
Pℓi (dtar) i = l,r to the field functions at the target distance
dtar =

wL
2

being wL the lane width. According to (4) and (5),
γ0 can be computed as

γ0i = 4

√√√√√ −dtar

log
(
Pℓi (dtar)
P0

) . (6)

For example, Fig. 3 shows the resulting APF combination
for a road with curvature radius R = 500 m and lane width
wL = 3.65 m. The other parameters are P0 = 100, Pℓi (dtar) =

0.1, i = l,r . In Fig. 3, the road boundary is the right lane
represented by a straight line. The red line is the center of
the lane where the functions Pℓi , i= l,r are minimal.
Lane change maneuvers such as overtaking and returning

are handled through the combination of two repulsive fields,
as in the case of lane keeping. Considering an overtaking
maneuver, i.e., a lane change to the left, the first field is
centered on the right line, while the second field is suitably
shaped to damp and limit the vehicle motion as it enters the

FIGURE 3. Lane keeping APF. The black dashed lines represent the lane
boundaries, and the background color is relative to the APF value (i.e.,
blue is the lowest, and yellow is the highest APF value).

new lane. As soon as the vehicle enters into the destination
lane, the high-level logic switches the working mode to lane-
keeping, and the vehicle is driven to the lane center. The actual
implementation employs quadratic Gaussian fields as in lane
keeping with minor changes. In particular, a part overlaps
the destination lane since the first field pushes the vehicle to
the new lane. Then, γ0 is obtained as in (6) with dtar = wL .
Fig. 4 shows an example of the APF employed to perform
an overtaking maneuver. Similar considerations hold for the
returning maneuver.

2) APF FOR OBSTACLE VEHICLES
Obstacle vehicles (OV), i.e., vehiclesmoving ahead of theHV
that can not be overtaken because the left lane is not empty,
are managed by an appropriate combination of an attractive
and a repulsive APF. A single-track model, similar to the
one introduced in (1), describes the OV kinematic behavior.
In this context, we assume that information on the obstacle
pose (XO,YO,ψO) and velocity vO is achieved either directly
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FIGURE 4. Example of lane change PF built to move on the left line. The
red star represents the vehicle position, the black lines are the lane
boundaries and the red line is the minimum APF value within the road
boundaries.

or indirectly by the considered onboard sensors. Obstacle
APFs are designed to regulate the velocity v of the HV in
order to keep a target distance dtar,o from the OV. Such a target
distance is defined as

dtar,o =

 d0 + tHvi, v≤ vO

d0 + tHvP+
(v− vO)2

2adec
, v> vO

(7)

where adec is the desired magnitude of the HV deceleration,
d0 represents a safety distance including the vehicle size, vO
is the obstacle speed and tH is the time headway, defined as
tH =

dO
v , being dO the relative distance between HV and OV.

The distance-approaching maneuver is obtained thanks to
a suitable interaction between

1) a repulsive field that performs a smooth deceleration;
2) an attractive field that implements the target position

tracking.
Given the pose (XO,YO,ψO) of the OV in the local HV frame,
the first-order Gaussian function reported in (8) describes the
repulsive APF considered above.

Po,r = P0 · exp

(
−

(
(X̃ − X̃O)2

γ 2
X

)
−

(
(Ỹ − ỸO)2

γ 2
Y

))
(8)

where [
X̃
Ỹ

]
= T ·

[
X
Y

]
,

[
X̃O
ỸO

]
= T ·

[
XO
YO

]
(9)

and

T =

[
cosψO sinψO

−sinψO cosψO

]
. (10)

In (8), γX and γY define the Gaussian function sizes along the
coordinate axes X and Y , respectively, while P0 stands for the

function height. Similarly as in (6), γX and γY are computed
as

γX =

√√√√√ −dtar,o,X

log
(

P0
Po,r (dtar,X )

) ,γY =

√√√√√ −dtar,o,Y

log
(

P0
Po,r (dtar,Y )

)
(11)

A reasonable choice for the field parameter in case of a
semi-straight road is dtar,o,X = dtar,o, see (7). Notice that
dtar,o,X depends on the relative speed between HV and OV.
dtar,o,Y , is chosen according to the OV width. Moreover,
Po,r (dtar,X ) = Po,r (dtar,Y ) = P̄o is selected.
The attractive APF function considered above is chosen as

Po,a = P0 ·

(
1− exp

(
−

(
(X̃ − X̃ ′

O)2

γ 2
X

)
−

(
(Ỹ − Ỹ ′

O)2

γ 2
Y

)))
(12)

where (X̃ ′
O,Ỹ ′

O)=(XO − dtar, YO). Parameters in (12) are
tuned through the same procedure described for (8). An
example of the repulsive (8) and the attractive fields (12) can
be found in [27].

C. MODEL PREDICTIVE CONTROL PATH PLANNER
Here, we introduce how MPC methodologies effectively
implement the path planning task. In such a context, the
vehicle model (1) is discretized through the forward Euler
method and using sampling time Ts = 200 ms. The obtained
discretized model is reported in (13).

x(k+1) = x(k)+Ts v(k) cos(ψ(k))
y(k+1) = y(k)+Ts v(k) sin(ψ(k))

ψ(k+1) = ψ(k)+Ts
v(k)
L

tan(δ(k))

v(k+1) = v(k)+1v(k)
δ(k+1) = δ(k)+1δ(k)

(13)

where 1v(k) = Ts a(k) and 1δ(k) = Tsωδ(k) represent the
speed and steering angle finite increments respectively. The
control input of (13) is

u(k) =
[
1v(k) 1δ(k)

]T
. (14)

Considering (2) and (14), the state equation (13) is repre-
sented in the compact nonlinear form

ξ (k+1) = f (ξ (k),u(k)) (15)

The MPC path planner is designed by considering the
objectives described below.

1) Track a constant speed vdes in the absence of a
preceding vehicle.

2) Track a (speed-depending) distance from a preceding
vehicle when overtaking is not allowed.

3) Keep the center of the lane when traveling on a curved
road.

4) Perform overtaking of a slower vehicle and returning to
the rightmost lane when overtaking is completed.
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Remark 1: It is worth noting that the goal of the designed
control structure is to reach the SAE level 3 automation
level, where no emergency maneuvers are considered. The
assumed sampling time Ts = 200ms is sufficient for theMPC
motion planner to schedule a suitable trajectory in highway
scenarios. The effective vehicle input, i.e., steering angle and
acceleration, is computed by the lower layer controller, which
works at a higher frequency to track the desired trajectory
precisely.

The cost function J introduced in (16) accounts for all
the control objectives listed above as a weighted sum of the
relevant contributions.

J (U (k))=̇
k+Np∑
i=k

(∥Po(i)||2O+∥Pℓ(i)||2L +∥v(i)− vdes||2Q

+∥1v(i)||2R1 +∥1δ(i)||2R2 ) (16)

where

U (k) =


1v(k) 1δ(k)

1v(k+1) 1δ(k+1)
...

...

1v(k+Np−1) 1δ(k+Np−1)

 (17)

The cost function J (U (k)), introduced in (16), is defined over
a prediction horizon Np and depends on a sum of terms,
each describing how the control objectives are treated. More
specifically:

• ∥Po(τ )||O is the weighted 2-norm related to the obstacle
field that implements the distance-keeping functionality.

• ∥Pℓ(τ )||L is the weighted norm of the lane field
responsible for either the lane keeping or the lane
changing feature.

• ∥v(τ ) − vdes||Q is the weighted 2-norm of the speed
tracking error that accounts for the achievements of the
target speed.

• ∥1v(τ )||R1 and ∥1δ(τ )||R2 are the weighted 2-norm of
the two inputs increments, needed to handle the control
action effort.

Weight matricesO, L,Q,R1, andR2 are chosen to regulate the
desired trade-off among all the control objectives. Typically,
a trial and error procedure is employed to tune the entries of
such matrices. Given the cost function (16), the underlying
optimization problem for MPC design is formulated as

min
U (k)

J (k)

s.t. (15)

0 ≤ v(i) ≤ vdes, i= 0, . . . ,Np−1

− 1̄vTs ≤1v(i) ≤ 1̄vTs, i= 1, . . . ,Np−1

− δ̄ ≤ δ(i) ≤ δ̄, i= 0, . . . ,Np−1

− 1̄δ Ts ≤1δ(i) ≤ 1̄δ Ts, i= 1, . . . ,Np−1

Y0l ≤ y(k) ≤ Y0r , i= 1, . . . ,Np−1

|1ψ(k)| ≤ 1̄ψ (k), i= 1, . . . ,Np−1, (18)

where 1ψ(k) = ψ(k)−ψ(k−1) and 1̄ψ (k) = Tsµg/v(k) is
the limit of the yaw angle increment, beingµ the road friction
coefficient and g the gravity acceleration. Notice that, since
the optimization is performed with respect to the rates1v and
1δ, an implicit integral action is included in the control input
computation. In (18), constraints on the δ and 1δ account
for physical limitations of the steering actuator; in this case
we impose δ̄ = 25◦ and 1̄δ = 0.47 ◦ s−1. Limitations on v
and 1v introduce a suitable speed limitation and comfort
performance during acceleration maneuvers. In particular,
vdes is either the user set-speed or the velocity limit for
the road regulations, while 1̄v = 2.5 ms−2. The two latter
constraints in (18) account for the stability of the generated
trajectory. As to the prediction horizon, a value Np = 15 is
chosen, corresponding to a prediction time Tp = NpTs = 3 s.
Furthermore, a control horizonNc = 8 is introduced to reduce
the number of optimization variables in the optimization
problem. The remaining manipulable inputs are set asU (i)=
U (Nc), i= Nc+1, . . . ,Np−1.
Remark 2: The control input is computed by predicting the

relevant variables over the time horizon Np. In particular:
• The kinematic variables of HV are obtained through (13)
represented in the local frame of the HV.

• The values of the center of the lane involved in the
APF (4) are provided by the vision system, which
updates the information at every sampling instant.

• The prediction of the OV kinematic variables is
obtained through a suitable discretized single-track
model expressed in the OV coordinate.

The control input is then computed according to the
receding horizon principle as the first time component of the
optimizer U∗(k) = arg minU (k) J (k). In particular, at a given
sampling time k , the optimal vehicle speed and the steering
angle are provided as

v(k) = v(k−1)+Ts1v(k)

δ(k) = δ(k−1)+Ts1δ(k) (19)

The previously described MPC procedure allows us to
generate the waypoints of an optimal geometric path and the
required longitudinal speed needed to perform the requested
driving maneuver. In particular, based on the solution to the
optimization problem (18), at every sampling time Ts, the
MPC path planner provides

1) the optimal target way-point coordinate x∗(k +

1),y∗(k + 1) obtained by applying the first time
component of the optimizer

U∗(k) =
[
1v∗(k) 1δ∗(k)

]
(20)

to the model (13) starting from the previous step
solution x∗(k),y∗(k);

2) the longitudinal speed target vtar obtained as

vtar = v∗(k+1) = v∗(k)+1v∗(k). (21)

Remark 3: The MPC-based trajectory planner is based on
the discretized system equations (1), i.e., the single-track
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kinematic model. The only physical vehicle parameter is the
wheelbase L, whose uncertainty is related to the production
tolerance that is typically negligible and does not affect
significantly the path planning procedure. Robust stability
issues due to the vehicle uncertain parameters are managed
by the lower-layer controller described later in Section V.

The path way-points and the reference speed described
above are obtained at a rate of Ts = 200 ms. The low-level
motion controller runs at a sampling time of Tms = 10 ms.
Thus, the way-point and speed interpolation procedures must
be applied to obtain a suitable trajectory reference to be
tracked by the motion controller at the prescribed rate.
Section IV describes the details of how trajectory generation
is performed through way-point and speed interpolation.

D. BEHAVIORAL LOGIC
The transition between one driving task and another, e.g.
between lane keeping and overtaking, depends on the
driving environment that is detected by the on-board sensors.
A switching logic must be is introduced to decide when the
HV has

• to track a target speed or regulate the relative distance
with respect to a preceding OV;

• to keep the center of the lane when no lane change
maneuver is permitted;

• to overtake in the presence of a slower preceding OV and
the left lane is free;

• to return after an overtaking maneuver when the right
lane is free.

To manage the transition among the different driving
functions, we introduce the finite-state machine (FSM)
reported in Fig. 5. In the FSM of Fig. 5, red ellipses are the

FIGURE 5. Path planner finite state machine diagram.

states of the path planner while black rectangles define the
conditions for state switching. State transitions are described
by quantitative switching rules. As an example, we consider
the transition between the task Lane Keeping / Speed Tracking
and Lane Keeping / Distance Tracking. This case occurs when
a preceding OV, e.g., a truck, is running in the same lane
at a lower speed with respect to the HV, and overtaking

is prevented because of the presence of another OV in
the left lane. Supposing that the Lane Keeping function is
always active, the transition Speed Tracking (ST)→Distance
Tracking (DT) is governed by the hysteresismechanism based
on the relative distance dO between HV and OV and defined
in (22).

mode →

{
ST → DT if dO < dtar −dm1

DT → ST if dO > dtar +dm2

(22)

where dtar is a suitable target distance that depends on
the relative speed between HV and OV and dm1 , dm2

are appropriate hysteresis thresholds introduced to avoid
chattering during the switching ST ↔ DT.

On the basis of the selected driving task, the MPC con-
troller formulation described in (18) must be set accordingly.
In this regard, the contributions in the cost function (16)
should be suitably chosen. As an example, during Lane
Keeping / Speed Tracking task, the cost function (16) must
include the terms described below.

1) ∥Pl∥L , that accounts for the lane keeping task and its
relevant field function is obtained as in (3) and (5);

2) ∥v− vdes∥Q, that describe the speed tracking perfor-
mance;

3) ∥1v∥R1 and ∥1δ∥R2 , that penalize the input rates to
obtain smooth control actions.

The weight matrices L, Q, R1, and R2, are chosen to set
the desired performance trade-off. In general, for each task
described in the FSM of Fig. 5 there is the corresponding
formulation of the MPC problem.

IV. PATH INTERPOLATION AND TRAJECTORY
GENERATION
As described in Section III, the output of the MPC
path-planner is the one-step-ahead prediction of the path
way-point and a constant reference speed value vref, both
generated at the planner sampling time Ts = 200 ms while
the low-level motion controller is running at Tms = 10 ms.
This means that between every run of the path-planner
there are twenty runs of the motion control. Thus, to obtain
effective and smooth path tracking, a suitable interpolation
procedure is implemented to generate twenty trajectory
target points between the present vehicle position and speed
and those provided by the path-planner. The following
Subsections describe how desired speed and path way-points
are interpolated.

A. SPEED REFERENCE INTERPOLATION
The speed reference sequence vref for the motion controller
is obtained through a linear interpolation between the speed
measured at the present planner sample time v0 and the target
value vtar as described in (23).

vref(t) =

∫ t

0

1
Ts

(vdes − v0) dτ,vref(0) = v0 (23)
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B. WAY-POINTS INTERPOLATION
The use of a linear approach for target position interpo-
lation leads to non-smooth trajectories that significantly
affect the comfort performance of the resulting automated
driving system. In such a context, polynomial curves are
a more appropriate solution to obtain regular paths to be
tracked by the motion controller. In particular, Bezier curves
are demonstrated to be an effective tool for trajectory
computation (see, e.g., [31] and [32]). In fact, such an
approach based on Bernstein polynomial basis can generate
the needed trajectory reference guaranteeing smooth sharp
borders and perfect fitting of starting and ending points. As a
matter of fact, the Bezier method applied for interpolating
the way-points (x∗(k),y∗(k)) and (x∗(k + 1),y∗(k + 1)),
see (20), may lead to non-smooth solutions. Thus, to improve
the smoothness properties of the interpolated trajectory,
we compute, at first, an interpolated trajectory that includes
nT ≤Np way-points obtained as the vehicle positions (x∗(k+

i),y∗(k+ i)), i= 0, . . . ,nT ≤Np within the prediction horizon.
Then, as reference trajectory, we consider the first tract that
includes the first 20 samples that belong to the obtained curve.
ABezier curve of order nT that interpolates nT +1way-points
is described by the parametric expression introduced in (24).[

x̃(υ)
ỹ(υ)

]
=

nT∑
i=0

(
nT
i

)
υ i (1−υ)nT−i

[
x∗(k+ i)
y∗(k+ i)

]
(24)

In (24), υ =
t
Ts

∈ [0,1] is the time-dependent parameter
and (x̃(υ), ỹ(υ)) are the coordinates of the generic point
of the curve. In particular, (x̃(0), ỹ(0)) = (x∗(k),y∗(k))
and (x̃(1), ỹ(1)) = (x∗(k + nT ),y∗(k + nT )). In general, the
coordinates of the jth point of the curve is given by
(x̃( j

nT−1 ), ỹ(
j

nT−1 )).
As already observed, the trajectory to be tracked

is obtained by computing Ts
Tms

= 20 points of the

curve (24) between (x̃(0), ỹ(0)) and (x̃( 1
nT−1 ), ỹ(

1
nT−1 )) as

(x̃( κ
20(nT−1) ), ỹ(

κ
20(nT−1) )),κ = 1, . . . ,20.

Remark 4: It is well known that the Bezier curves do
not cross the way-point employed for its definition (24),
except for the first and the last., see e.g. [31]. However,
since, in general, small steering angles and almost constant
speed values characterize the considered application, the
difference between the actual target and its approximation in
the interpolating Bezier curve is usually negligible. In Fig. 6,
we compare the trajectory target computed by the planner
and the approximated ones, showing the small difference
between the real and interpolated targets.

The high-level controller must provide the yaw rate
reference ψ̇ref to the motion controller as defined in (25)

ψ̇ref =
vx
ρ

(25)

where

ρ(υ) =

˙̃x(υ) · ¨̃y(υ)− ˙̃y(υ) · ¨̃x(υ)

( ˙̃x(υ)2 + ˙̃y(υ)2)
3
2

(26)

FIGURE 6. Bezier interpolating curve. In red are the trajectory points from
the high-level MPC controller and, in blue, the Bezier interpolating curve.
The data is collected from the simulation example described in Section VI.

is the road curvature (see, e.g., [33]), computed by evaluating
the first and the second derivative of (24) with respect to
parameter υ. From ψ̇ref, we get

ψref(t) =

∫ t

0
ψ̇ref(τ )dτ, ψref(0) = ψ0, (27)

where ψ0 is the yaw angle measured at the present planner
sample time.

V. LOW-LEVEL CONTROLLER
The low-level controller aims to regulate vehicle dynamics to
track the reference trajectory computed at the higher level.

The longitudinal behavior is described by the kinematic
relationship between the desired acceleration ades to be
tracked and the actual longitudinal speed vx is (see, e.g., [1])

Glong(s) =
vx(s)
ades(s)

=
1

s(1+ τ s)
. (28)

In (28), the time constant τ depends on the characteristic
of the vehicle driveline and on the dynamics of the actuator
devices, such as the throttle body, the engine and brake circuit,
see e.g., [1] for details. The lateral dynamics are accounted for
by considering the single-track state equation (30) where the
state variables are chosen as the lateral speed vy, the yaw rate
ψ̇ , the lateral deviation with respect to the trajectory center
computed by the path planner

ey = (ỹ− y)cos(ψref)− (x̃− x) sin(ψref) (29)

and the yaw rate deviation defined as eψ̇ = ψ̇ref − ψ̇ . The
manipulable input is the steering angle δ while the yaw rate
reference ψ̇ref acts as a measurable disturbance.

v̇y
ψ̈

ėy
ėψ̇

= A


vy
ψ̇

ey
eψ̇

+B1 δ+B2 ψ̇des (30)
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where

A=


−
cf +cr
mvx

−vx −
cf lf −cr lr

mvx
0 0

cr lr−cf lf
Jψ vx

−
cr l2r +cf l

2
f

Jψ vx
0 0

1 0 0 vx
0 1 0 0

 (31)

and

B1 =


cf
m
0
cf lf
Jψ
0

 , B2 =


0
0
0
1

 . (32)

In (30), the symbols cf and cr represent the front and the
rear cornering stiffness coefficients, m and Jψ are the vehicle
mass and the yaw moment of inertia respectively, while lf
and lr are the front and the rear semi-wheelbase. Since in the
considered autonomous driving application, the longitudinal
velocity vx is varying during the considered maneuvers,
it results that the longitudinal and the lateral dynamics
described by (28) and (30) are coupled. In this regard,
a combined longitudinal/lateral approach to the vehicle
dynamics control can be used. Several solutions have been
employed in such a context, leading to a nonlinear controller.
For example, MPC methodologies are used in [18] and [22],
while sliding mode approaches are considered, e.g., in [34].
Linear Parameter Varying solutions are discussed in [35].
In this paper, a robust decentralized approach is introduced to
obtain a linear control architecture. In particular, we consider
a decoupled longitudinal controller based on (28) and a robust
lateral controller based on (30) considering fixed the value
of vx and, at the same time, imposing robust stability in the
presence of variations of vx and other relevant parameters of
model (30).

A. LONGITUDINAL CONTROLLER
The longitudinal controller is represented by the one degree of
freedom architecture reported in Fig. 7 and aims at regulating
the longitudinal velocity vx to track the reference speed
vref provided by the path planner. The control input is ades,
which is realized by a suitable regulation of the throttle and
brake actuators that is not described here. The design of

FIGURE 7. Longitudinal control architecture.

the cascade controller Clong(s) is performed considering the
plant transfer function Glong(s) with the nominal value of
the delay τ = 500 ms. The design procedure is developed
in the frequency domain through loop-shaping techniques by
imposing robust stability in the presence of a variation of the
time constant τ within±10% of its nominal value, null steady
state tracking error for a linear ramp velocity reference signal

and nominal closed-loop bandwidth of about 15 rad/s. The
resulting Nichols diagram is reported in Fig. 8.

FIGURE 8. Nichols diagram of the longitudinal control loop transfer
function Llong = ClongGlong. We compare the nominal loop transfer
function (blue) with the uncertain functions (gray), where τ has variations
within ±10% of its nominal value. The red dashed line represents the
−3 dB constant magnitude locus for the complementary sensitivity
function, and ωb is the nominal closed-loop transfer function bandwidth.

B. LATERAL CONTROLLER
The lateral controller aims at minimizing the lateral deviation
ey during lane-keeping and overtaking maneuvers. Robust
stability must also be guaranteed in the presence of longi-
tudinal speed and relevant parameter variations. The design
is performed by considering the transfer functions Gδ,ey (s)
and Gδ,ψ̇ (s) that describe the relationship between the input
δ and the outputs of interest ey and ψ̇ obtained from the
model (30) with the nominal value of the longitudinal velocity
vx = 110 km/h and the other physical parameters set to the
nominal values reported in Table 1.

TABLE 1. Lateral model parameters nominal values.

To account for perturbation of the physical parameters
of the lateral dynamics model (30), we consider that the
longitudinal speed vx varies between 80 and 130 km/h, i.e.,
the range of velocities allowed in typical highway scenarios.
Moreover, we suppose that the relevant parameters, i.e., the
cornering stiffness coefficients cf and cr and the vehicle mass
m, are affected by an uncertainty of 10%. The perturbation on
the mass induces a variation on the polar moment of inertia
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Jψ that can be computed, as explained in [36], supposing that
the 30% is concentrated on the front axle and the 70% on the
rear axle.

FIGURE 9. Lateral control architecture.

FIGURE 10. Nichols diagram of the lateral control inner loop transfer
function L

ψ̇
. We compare the nominal loop transfer function (blue) with

the uncertain parameter functions (gray). The red dashed line represents
the −3 dB constant magnitude locus for the complementary sensitivity
function, and ωb is the nominal closed-loop transfer function bandwidth.

The nested architecture reported in Fig. 9, where
Gψ̇,ey (s) = Gδ,ey (s) · G−1

δ,ψ̇
(s) and ey,ref = 0, implements

the lateral controller. The lateral control design consists
of a two-step procedure. In the first step, the inner loop
controller C ψ̇lat(s) is obtained to pre-stabilize the yaw rate
dynamics described by Gδ,ψ̇ (s). The second step is in charge
of guaranteeing robust stability of the overall architecture
through the controller Cy

lat(s). A loop-shaping procedure

is employed to design the inner loop controller C ψ̇lat(s) to
obtain stability in the presence of the described parameter
perturbations and imposing a closed loop bandwidth greater
than the one of the outer loop. Fig. 10 displays the obtained
uncertainty bounds of the open loop function Lψ̇ (s) =

C ψ̇lat(s)Gδ,ψ̇ (s) in the Nichols plane showing the achievement
of the design objectives.

The outer loop controller Cy
lat(s) is designed to obtain

robust stability of the lateral control system introduced in
Fig. 9. An H∞ approach is adopted considering a plant

transfer function

Gp
lat(s) = Qψ̇ (s)Gψ̇,ey (s) (33)

where

Qψ̇ (s) =
Gδ,ψ̇ (s)

1+Gδ,ψ̇ (s)C
ψ̇

lat(s)

To account for the parameter variation in the control
design, we introduce the unstructured multiplicative uncer-
tainty described by 1m,lat

1m,lat(s) =
G̃p
lat(s)−Gp

lat(s)

Gp
lat(s)

(34)

where G̃p
lat(s) represents the perturbed plant transfer function.

The multiplicative uncertainty (34) induces a multiplicative
model set of the form

G(Gp
lat, (s),0δ,ey )

=
{
Gp
lat(s)(1+1m,lat(s)) : |1m,lat(jω)| ≤ |0m,lat(jω)|

}
.

(35)

Such a model set is computed through uniform gridding
of the considered vehicle parameter values and is reported
in Fig. 11. As overbound of the multiplicative uncertainty
1m,lat(s) the low order real rational function0m,lat(s) reported
in (36), is employed.

0m,lat(s) =
0.22(s2 +42.42s+900)
s2 +28.59s+408.9

. (36)

The closed-loop performance is described by the nominal

FIGURE 11. Comparison of the multiplicative uncertain functions
magnitude 1m,lat(s) (gray) with the magnitude of the over-bounding
function 0m,lat(s) (red).

sensitivity function Slat,ψ̇ (s) of the lateral deviation ey with
respect to the yaw rate reference disturbance Slat,ψ̇ (s) and
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the closed loop complementary sensitivity function Tlat(s),
defined as

Slat,ψ̇ (s) =

Gδ,ψ̇ (s)Gψ̇,ey (s)C
ψ̇

lat(s)

1+Gδ,ψ̇ (s)
(
Gψ̇,ey (s)C

y
lat(s)+C ψ̇lat(s)

)
Tlat(s) =

Gp
lat(s)C

y
lat(s)

1+Gp
lat(s)C

y
lat(s)

. (37)

An H∞ control synthesis method is adopted to handle
robust stability in the presence of the model uncertainty
described in (35) and, simultaneously, disturbance rejection
and bandwidth requirements. More specifically, the lateral
controller transfer function Cy

lat(s) is designed through the
following H∞ optimization problem

Cy
lat(s) = arg min

∥Tlat(s)0m,lat(s)∥∞<1
∥W−1

S (s)Slat,ψ̇ (s)∥∞, (38)

where

WS (s) =
22s

s2 +0.0707 s+0.0025
(39)

represents a proper real rational transfer function that
describes the desired requirements on Snom

lat,ψ̇
(s) in terms of

closed-loop bandwidth and steady-state disturbance rejection
for ey when ψ̇des is a step function The controller Cy

lat(s)
is computed through the MatLab function hinfopt, and
a model order reduction procedure is performed before its
implementation. We have implemented all the controllers
transfer functions, i.e., Clong, C

ψ̇

lat, and C
y
lat, by discretization

using the Tustin method and sampling time Tms .

VI. SIMULATION RESULTS
In this section, we demonstrate the efficiency of the proposed
approach through a simulation example.

A. EXECUTION ENVIRONMENT
The simulation is performed using MatLab and Simulink
environments. Specifically, we utilized the Automated Driv-
ing Toolbox to simulate the highway road and the Vehicle
Dynamics Blockset to describe the vehicle dynamics. The
underlying MPC optimization problem was solved using the
MatLab function fmincon, with a maximum peak of 0.17 s,
using a computer equipped with 16 GB of RAM and an Intel
i7-12700H processor.

B. COMPARISON AMONG CONTROL TECHNIQUE
To show the effectiveness of the proposed two-layer control
architecture, denoted here as MPC-H∞, we compare its
performance with respect to

• a single-layer architecture based on a nonlinear
single-layer MPC controller indicated as MPC-SL;

• a two-layer architecture denoted as MPC-LQ where a
standard LQ control law as described in [1] replaces
the lateral controller introduced in sub-section V-B and
the path planner is the same MPC APF based controller
described in subsection III-C.

In particular, the architecture MPC-SL embeds both the
path planner and the motion controller and provides the
required inputs directly to the HV. The design is performed by
considering the dynamical single tack model (30) augmented
by the longitudinal dynamics described by (28). As a
consequence, the vehicle model becomes nonlinear. The
underlying optimization problem employed to compute the
control move is similar to (16), where the same APFs
account for lateral and longitudinal maneuver performance.
The optimization is performed with respect to the steering
angle δ and the vehicle acceleration a. Constraints on the
lateral acceleration ay are also included to guarantee closed-
loop stability. Because of the nonlinear characteristics of the
optimization problem, a sampling time of 100 ms is chosen
for such MPC-SL architecture.

As to the two-layer MPC-LQ architecture, the LQ con-
troller is designed by considering the cost function introduced
in (40) that aims at minimizing the lateral and the yaw rate
deviations ey and eψ̇

JLQ =

∫
∞

0
(qy e2y(τ )+qψ̇ e

2
ψ̇
(τ )+ rδ δ2(τ )dτ ) (40)

where qy, qψ̇ and rδ are suitable positive weights. To improve
the nominal steady-state performance of ey, a feed-forward
contribution based on the knowledge of ψ̇des is added as an
additional control action of the LQ controller.

C. MANEUVERS DESCRIPTION
We have designed a 3.8 km long three-lane highway road
scenario to simulate all possible situations that may occur in
standard conditions. The width of each lane is 3.65 m. Fig. 12
shows the shape of the considered scenario. The simulation
is composed of three consecutive sections to test different
driving situations.

FIGURE 12. Road profile of the testing scenario. The simulation starts
from the top-left vertex of the path.

In the first section, the road path bends to the right with
a minimum radius of 500 m, the minimum curvature radius
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FIGURE 13. Vehicle positions during the first section of the simulation.
The orange vehicle moves 70 km/h ahead of the HV (blue). The yellow
vehicle is preventing the overtaking maneuver.

allowed on Italian Highways. The HV starts on the rightmost
lane at 100 km/h. Another vehicle is placed 90 m ahead
on the same lane, moving at 70 km/h. On the second lane,
a vehicle moves between 75 and 80 km/h, preventing the HV
from performing the overtaking maneuver. Fig. 13 shows the
vehicles’ positions in this simulation stage. Until the central
lane is empty, the HV has to follow the preceding vehicle,
regulating the speed to maintain the right safety distance
while traveling on the bending path. The objective of this first
section of the path is to demonstrate the ability of the HV
to perform the lane-keeping maneuver together with distance
tracking from a slower vehicle ahead.

The HV can start the overtaking maneuver as soon as the
vehicle in the second lane leaves the space. It is worth noting
that the vehicle on the second lane is moving at 80 km/h,
while the HV objective speed is set at 120 km/h. Thus, this
second section of the path leads to a double overtaking, with
theHVmoving to the third and leftmost lane. The path section
is completed when the HV vehicle moves correctly to the
third lane, where a vehicle moving at 100 km/h is moving
ahead. We show a snapshot of the vehicle positions during
this stage in Fig. 14. In this second path section, we test the
ability of the controlled system to perform the lane-change
maneuver while maintaining the distance from preceding
vehicles.

Finally, in the last section of the path, the preceding
vehicle on the third lane moves to the second one. This
allows the HV vehicle to reach the objective speed, complete
the overtaking maneuver, and return to the second lane.
The second lane is free till the end of the simulation, while the
rightmost is still occupied by a truck moving at 70 km/h (see
Fig. 15). As soon as the truck is overtaken, the HV moves
to the first lane. Here, we demonstrate the speed-tracking
ability while performing lane-change and lane-keeping
maneuvers.

In such a driving scenario, the HV lateral performance
are evaluated considering the position error εyss during steady
state LK operation and the maximum lateral deviation εymax
in transient phases such as overtaking maneuvers. Similar
indices are considered for distance tracking maneuvers, i.e.,

FIGURE 14. Vehicle positions during the second section of the simulation.
The HV (blue) overtakes the orange car in the first lane. On the third lane,
the distance from the purple vehicle is enough to begin the second
overtaking maneuver of the yellow car.

FIGURE 15. Vehicle positions during the final section of the simulation.
The HV (blue) moves on the second lane, while a slower truck (green)
travels on the rightmost lane.

εxss and εxmax to account for longitudinal position errors at
steady state and during the transient of the approaching
maneuver respectively. Velocity tracking errors εvxss and εvxmax
are evaluated as well.

D. SIMULATION RESULTS IN NOMINAL CONDITIONS
This simulation is performed considering the nominal values
of the vehicle parameters.

Fig. 16 shows the vehicle lateral position with respect to
the rightmost lane border along the considered 3.8 km path.
The simulation starts with the vehicle not exactly centered
in the lane, leading to small initial oscillations. The first
section of the path, when the HV performs the distance-
keeping maneuver, is about 900 m long. After this, the double
overtaking maneuver is performed. After 1050 m from the
starting point of the simulation, the HV moves to the second
lane to perform the first overtaking and immediately starts
the successive overtaking maneuver. The second section ends
when the HV is 1600 m from the initial point. At last, the HV
performs the final returning maneuver to the rightmost free
lane. In Fig. 16, we can observe quite a good performance of
the lateral behavior of the HV. Let us consider the MPC-H∞

HV. We see that
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FIGURE 16. Vehicle lateral position along the designed scenario, together with the lanes limits (thick black) and center
(dash-dotted). The dark red, blue, and green lines show the MPC-H∞, MPC-SL, and MPC-LQ nominal trajectories, respectively.
Light color lines are the trajectories for uncertain vehicle parameters.

FIGURE 17. Steering angle δ along the trajectory. The dark red, blue, and green lines show the MPC-H∞, MPC-SL, and MPC-LQ
nominal inputs, respectively. Light color lines are the inputs for uncertain vehicle parameters.

1) in the first phase, when a slower car ahead induces
a speed reduction of about 30 km/h, the HV can
effectively keep the center of the lane in the right bend;

2) the lateral position error is about 4 cm from the lane
center in all the steady state situations;

3) the maximum spatial overshoot is less than 3% with
respect to the lane width during the lane change
transient as happens at about 3000 m from the starting
point when the maneuver is performed at 120 km/h
within 200 m.

The steering angle δ employed to carry out the considered
driving maneuvers is reported in Fig. 17. The plot of δ shows
an even course characterized by small values, i.e., less than
0.5◦ that lead to smooth trajectories that ensure passengers’
comfort, especially during the bend of the first 700 m of the
road.

The MPC-LQ and MPC-H∞ HV trajectories almost
overlap. It is worth noting that these approaches differ only
for the low-level lateral controller. The LQ controller is tuned
to get the best performances along the scenario, where the
HV speed changes from 80 km/h in the first part to 120 km/h
in the last. Thus, the LQ controller has been designed by
linearizing the vehicle dynamic around the average speed
equal to 100 km/h. As the speed increases, the MPC-LQ HV
lateral behavior has worse performances than the MPC-H∞

HV, leading to less damped oscillations in the final first lane
return (see Fig. 16).

The MPC-SL controller shows comparable nominal
performances to the MPC-H∞ HV. Due to the higher
computational effort required by the MPC-SL approach,
we have set the Hc and Hp horizons equal in both the
MPC approaches. Through the same computer and numerical
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FIGURE 18. HV distance from preceding car during the distance-keeping
maneuver. Comparison between the two vehicles’ distance and the safety
distance (black) computed as a function of the preceding vehicle speed.
The dark red and blue lines show the MPC-H∞ and, MPC-SL nominal
trajectories, respectively. Light color lines are the trajectories for
uncertain vehicle parameters.

FIGURE 19. Comparison between the HV and slower vehicle ahead (black)
velocities during the distance-keeping maneuver. The dark red and blue
lines show the MPC-H∞ and, MPC-SL nominal trajectories, respectively.
Light color lines are the trajectories for uncertain vehicle parameters.

solver, the MPC-SL problem is solved in 0.5 s, almost two
times more than the proposed MPC path planner. Moreover,
it is worth noting that the solver time is six times larger
than the MPC-SL sampling time, making this approach
not applicable as it is to a real vehicle. The MPC-SL
controlledAV shows slightly different longitudinal dynamics.
In fact, from Fig. 16, we see that the MPC-SL HV vehicle
performs the lane change maneuvers at different times with
respect to the MPC-H∞ HV. However, the more considerable
longitudinal difference is only 130 m in performing the lane
change. TheMPC-SL shows good performances in the lateral
behavior since the maximum overshoot during the lane
change is 1.5% of the lane width. Fig. 18 compares the

relative distance between HV and the preceding vehicle with
the target value introduced in (7) and proves the achieved
good tracking performance. Similar accuracy is obtained
while tracking the preceding vehicle speed, as shown in
Fig. 19. The plots do not show the MPC-LQ trajectory since
it is equal to the one from the MPC-H∞ HV. The MPC-H∞

approaches the preceding vehicle with a smoother trajectory.
The desired safety distance is reached in 15 s by theMPC-H∞

HV and in 22 s by the MPC-SL HV. The MPC-SL HV shows
large speed oscillations approaching the preceding slower
vehicle, leading to reduced comfort for the HV passengers.

To evaluate the comfort performance, Fig. 20 shows the
G-G diagram of the lateral and longitudinal accelerations
obtained along the simulation. The maximum longitudinal
acceleration achieved by theMPC-H∞ HV is 1.5ms−2, while
the lateral acceleration is always less than 0.25 ms−2. The
lateral acceleration evaluated for the MPC-SL HV reaches
higher values, up to 0.6 ms−2, often in combination of large
longitudinal acceleration phases. On the overall, user comfort
is achieved by both MPC-H∞ and MPC-SL HVs throughout
the simulation since the equivalent acceleration is less than
the preset boundary of 2.5 ms−2. An animation video of the
simulation is available online [37].

FIGURE 20. G-G diagram showing the set of longitudinal and lateral
accelerations estimated during the simulation. The black circle represents
the comfort region. The dark red and blue dots show the MPC-H∞ and
MPC-SL nominal G-G values, respectively. Light color lines are the G-G
values for uncertain vehicle parameters.

E. CONTROL SENSITIVITY ANALYSIS
In this subsection, we perform a sensitivity analysis to test
the robustness properties of the proposed control strategy
in the presence of vehicle parameter variations. Through
uniform gridding of the vehicle parameter ranges described
in Subsection V-B, we have performed 100 simulations to
evaluate the control performances in the proposed highway
scenario. The robustness analysis for theMPC-LQ-controlled
autonomous vehicle led to unstable behavior, even for small
vehicle parameter variations.
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TABLE 2. Comparison of the tested HV control techniques performances along the considered scenario.

In Fig. 16, we show the vehicle’s lateral position with
respect to the rightmost lane. The trajectories in all the tests
almost match the nominal performance. The MPC-H∞ HV
shows lateral displacement trajectories within a range of
18 cm during the lane change maneuvers, while the MPC-SL
HV has larger lateral displacement, up to 40 cm. In steady-
state conditions, the vehicle parameter uncertainty leads to
a lateral error up to 5 mm and 7 mm with respect to the
nominal trajectory while considering, respectively, the MPC-
H∞ and MPC-SL controller. The larger difference in the
trajectory is due to the longitudinal behavior since variations
in the vehicle mass are responsible for different accelerations
when the same longitudinal input is applied. This difference
is evident in Fig. 16 after 2300 m from the starting point of
the simulation when the HV performs the return to the second
lane.

The controller also shows robust performances during the
distance-keeping maneuver. From Fig. 18, we see that the
controller keeps the target distance from the preceding car
despite uncertain parameters. On average, the perturbed
vehicle is farther with respect to the nominal HV: the
maximum error in the relative distance is about 5 cm for both
approaches. User comfort is preserved as well. In fact, in the
G-G plot reported in Fig. 20, the uncertainty still ensures the
comfort performance. The differences are due to the low-level
controller input when applied to cars with different masses
and moments of inertia. In the worst case, the longitudinal
acceleration reaches 1.9 ms−2, while the lateral acceleration
is less than 0.3 ms−2 for the MPC-H∞ HV. The effects of the
uncertain parameters affects the G-G plot for the MPC-SL
HV as well. In this case, the lateral acceleration reaches
1 ms−2, while the longitudinal acceleration is comparable
to the MPC-SL controlled vehicle. The uncertain parameter
values lead to larger activity for the steering angle δ (see
Fig. 17), especially in the bending section of the path, where
the input values are within a 0.8 degrees range. However,
it is worth noting that the applied input allows the HV to
follow the trajectory (Fig. 16) and ensure passengers’ comfort
performance (Fig. 20).
The overall comparison between the three approaches is

reported in Table 2.

VII. CONCLUSION
We presented an original approach for automated driving
in highway scenarios using a two-layer control architecture.
The higher level includes a planner that computes the
road path through an MPC algorithm that exploits a
simplified kinematic model of the vehicle and suitable

APFs combinations to handle the most relevant maneuvers
of highway driving effectively. The motion controller of
the lower level is implemented through a decentralized
architecture to regulate the vehicle longitudinal and lateral
dynamics for the required trajectory tracking. Robust syn-
thesis methods of both longitudinal and lateral controllers
allow the overall automated driving architecture to account
for plant uncertainty. A complete simulation setting that
includes all the relevant highway driving maneuvers such as
lane keeping, distance end speed-tracking, overtaking, and
returning has been built to evaluate the achieved performance.
In particular, a sensitivity analysis has been carried out in
the presence of perturbation of the vehicle model relevant
parameters. The results show that the introduced approach
achieves quite good robust performance in all the maneuvers
considered regarding path tracking, accuracy, and comfort.
The effectiveness of the proposed approach is shown by
comparing the performance obtained with a single-level
architecture based on an MPC-APF strategy and a two-layer
structure that includes an LQ strategy as a motion controller.
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