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Abstract

The diffusion of artificial intelligence (AI) applications in daily life has motivated the devel-
opment of hardware and software techniques to optimize their execution on edge devices.
Contrary to cloud computing, edge devices enable private and secure data processing, person-
alized algorithms, and lower latency. However, they have limited computational resources
and strict power budgets, which makes the deployment of AI algorithms challenging. As
modern neural network architectures, which are the backbone of AI, become more complex,
it is necessary to develop or adapt the optimization strategies used to reduce computation
energy and latency. A common approach is to remove unnecessary neurons and connections
or to decrease the numeric precision of the data, leveraging the redundancy and intrinsic error
resilience of neural networks. Moreover, the design of specialized hardware accelerators that
leverage the computation patterns of neural networks can reduce the cost of data movement
and energy consumption. While a significant research effort has been devoted to this topic,
the joint optimization of hardware and neural networks is still an open problem. This doctoral
thesis aims to investigate hardware/neural network codesign to optimize the performance of
neural networks on edge devices. In particular, the problem of optimal hardware mapping with
and without compression is addressed, focusing on reducing the cost of data movement during
the inference. The hardware mapping performed across multiple layers is also discussed. It is
achieved by shaping the communication and computation patterns so that several layers can
reuse the same data. Moreover, the thesis presents a methodology for achieving robust and
low-power neural network inference on approximated hardware, leveraging a reconfigurable
multiplier architecture seamlessly embedded in a microcontroller. The topic of error resilience
in safety-critical applications is also addressed. An algorithm to detect and correct errors in
object detection is proposed, mitigating the accuracy degradation in case of logic transients.
The techniques presented in this thesis are evaluated on popular datasets or hardware platforms,
the latter supported by custom simulation tools, showing the effectiveness of the proposed
methodologies.
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Chapter 1

Introduction

Artificial Intelligence (AI) applications are becoming increasingly pervasive in daily life, from
virtual assistants to autonomous vehicles, from smart homes to healthcare. Computer vision
algorithms detect objects in images, speech recognition algorithms transcribe spoken words
into text, and natural language processing algorithms understand and generate human language,
often outperforming human experts. Recently, a new class of AI algorithms, called multimodal
AI models,has emerged. They can process multiple types of data, such as images, text, and
audio, to perform more complex tasks, such as image captioning, video summarization, and
speech translation. All these AI algorithms are based on Neural Network (NN)s, a class of
machine learning algorithms inspired by the structure and function of the human brain, and
are composed of layers of interconnected artificial neurons. When many layers are stacked
together, the neural network is called a deep neural network. The superior performance of
Deep Neural Network (DNN)s comes at the cost of high power consumption due to their high
computational complexity and memory requirements. This makes them challenging to deploy
on resource-constrained devices such as smartphones, drones, and Internet of Things (IoT)
devices. Moreover, the inference latency can be critical in real-time applications, such as virtual
or augmented reality visors or robotics, where the response time is crucial to ensure a seamless
user experience. This has motivated the development of a series of hardware and software
techniques to optimize the execution of NNs on edge devices, such as hardware accelerators,
robust compression techniques, and hardware mapping strategies. As NNs exhibit a high
degree of redundancy, it is possible to remove neurons, cutting interconnections between the
layers, or decrease the numeric precision of the data, reducing the memory required to compute
and store the results and, consequently, the area and power of arithmetic units, all without
impacting the accuracy and functionality of the model. Moreover, the intrinsic computation
patterns of the most common layers used in NNs expose another redundancy: the weight data
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is reused spatially to compute different output values from the same input. The latter allows
the design of specialized hardware accelerators that leverage data reuse at the lowest level of
the memory hierarchy, reducing the cost of data movement and energy consumption. This
is particularly important because memory represents the main performance bottleneck, and
NNs are particularly data-intensive. Consequently, efficient scheduling of the execution on a
hardware accelerator is crucial to minimizing data movement and energy consumption, as the
cost of data movement is orders of magnitude higher than the cost of computation. Additionally,
as IoT devices are increasingly deployed in safety-critical applications, such as automotive,
the resilience to hardware errors and malicious attacks plays a pivotal role in the development
process.

The goal of the research work carried out during the doctorate is to investigate hard-
ware/neural network codesign to optimize the performance of NNs on edge devices [1–9]. This
thesis focuses on some of the published works, in particular: the joint search of hardware
mapping and compression, trading-off accuracy with energy and latency [2, 3], alternative
hardware mapping strategies to reduce the cost of data movement during the inference [4], the
design of an algorithm to detect and correct errors in object detection [6], and the search for high
accuracy and low-power approximation of DNNs and their deployment on microcontrollers [9].
This doctoral thesis is organized as follows:

• Chapter 2 presents the background on NNs, hardware accelerators, compression tech-
niques, hardware mapping, and error resilience strategies.

• Chapter 3 discusses proposed hardware/neural network codesign techniques to optimize
the performance of NNs on edge devices through compression.

• Chapter 4 presents two methodologies to achieve robust neural network inference on
faulty or approximate hardware.

• Chapter 5 concludes the thesis and provides an outlook on future research built upon the
methodologies presented in the previous chapters.



Chapter 2

Background

This chapter introduces the fundamental notions necessary to comprehend this doctoral thesis’s
contributions, implementation details, and design choices. Section 2.1 addresses DNN design
and training. Section 2.2 introduces general-purpose and specialized hardware architectures for
executing DNNs. Section 2.3 presents the optimization techniques applied to the NNs or the
hardware executing them to compress the model and reduce the hardware cost. Section 2.4
discusses the hardware mapping problem and how to execute an efficient inference. Finally,
Section 2.5 introduces the problem of secure and resilient NN inference, addressing hardware
and software vulnerabilities.

2.1 Deep Neural Networks

Machine Learning (ML) is a subfield of artificial intelligence that focuses on developing
algorithms and models that allow computers to learn from data and improve their performance
over time without being explicitly programmed. In traditional programming, humans provide
explicit instructions to computers for solving a particular task. In contrast, ML enables
computers to learn patterns and relationships from data, adapt to new information, and make
predictions or decisions without explicit programming. Deep learning is a subset of ML that
specifically involves NNs with multiple layers, called deep neural networks DNNs. These
networks can learn hierarchical representations of data, allowing them to capture intricate
patterns and features. The term "deep" refers to the depth of the network, which consists of an
input layer, multiple hidden layers, and an output layer. The hidden layers enable the model to
automatically extract hierarchical features from the input data, making DNNs exceptionally
powerful in tasks such as image and speech recognition, natural language processing, and
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more. NNs are computational models inspired by the structure and function of the human
brain. They consist of interconnected nodes, or artificial neurons, organized into layers.
The input layer receives data, the hidden layers process this information through weighted
connections, and the output layer produces the final result. During training, the network
adjusts the weights of these connections based on the error between its predictions and the
actual outcomes, allowing it to learn and improve over time. DNNs extend the capabilities
of traditional NNs by introducing multiple hidden layers. This depth allows them to learn
complex and abstract representations of data, making them well-suited for tasks requiring
sophisticated pattern recognition. Finally, Convolutional Neural Network (CNN)s are a subset
of DNNs specialized in image processing and, therefore, of great interest for computer vision
applications. The research and development of these technologies has led to groundbreaking
advancements in various fields, such as image recognition [10–14], object detection, [15–18],
semantic segmentation [19–21], medical imaging [22], surveillance [23, 24], autonomous
driving [25], and optimization tasks [26, 27]. The execution of DNNs requires substantial
computational resources, and modern frameworks such as TensorFlow [28] and PyTorch [29]
provide tools to streamline the implementation of these processes. Additionally, advancements
in hardware, like Graphics Processing Unit (GPU)s [30] and Tensor Processing Unit (TPU)s
[31], have significantly accelerated the training of DNNs and paved the way for complex and
high task accuracy models, capable of outperforming human experts. These considerations
highlight that the ongoing AI revolution is not only imputable to modern algorithm architectures
but also to the availability of high-performance hardware architectures. Moreover, another
important factor that contributed to the advancement of complex AI algorithms, which require
enormous amounts of data to learn to execute their function, is the availability of large datasets
of labeled objects [10, 32–34]. The ImageNet large-scale visual recognition challenge [32]
has been a driving force in pushing researchers to develop algorithms capable of recognizing
the class and position of objects in images, paving the way for the AlexNet [35], the first
DNN that significantly outperformed any previous traditional approach, and for the subsequent
improvements in DNN model architectures that allowed them to outperform humans in vision
tasks [12, 13].

2.1.1 The Artificial Neuron

An artificial neuron, also known as a perceptron [36], is a fundamental building block of NNs,
inspired by the structure and function of biological neurons in the human brain. The artificial
neuron processes input data and produces an output based on a set of weights and an activation
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function. Figure 2.1 depicts the basic structure of an artificial neuron, which consists of four
main components:

• Inputs (I): These are the features or signals that the neuron receives. Each input is
multiplied by a corresponding weight.

• Weights (W): Each input is associated with a weight, representing the strength of the
connection between the input and the neuron. The weights determine the influence of
each input on the neuron’s output.

• Sum (Σ): The weighted inputs are summed together to produce a weighted sum.

• Activation function (ψ): The weighted sum is then passed through an activation function,
which introduces non-linearity to the model. The activation function determines the
neuron output based on the weighted sum.

W1

W2

W3

I1

I2

I3

Inputs
(axons)

Weights
(Synapses)

Dentrite
(Partial product)

Neuron

I1 x W1

I2 x W2

I3 x W3

Output
(axon)

O
Sum of all

partial products
non-linear
activation

Fig. 2.1 Simplified model of the connections in a neuron. I are the input activations, W are the weights,
and inside the neuron are the sum of all the weighted inputs (partial sums) and the non-linear function.
A final bias (not shown) may be added after the non-linearity.

Mathematically, the behavior of an artificial neuron can be represented as in Equation (2.1).

O = ψ(∑
i

Wi · Ii) (2.1)

Biologically inspired by the human neuron, the activation function loosely resembles the firing
mechanism of biological neurons. Since the input signals of an artificial neuron simulated in a
typical DNN workload are discrete and static, the activation function is only value-sensitive,
and not also time-dependent. In the human brain, a neuron fires or remains inactive based on
the accumulated signals from connected neurons, similar to the artificial neuron’s activation
function, which determines its output based on the weighted sum of inputs. The biological
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Fig. 2.2 A fully connected layer of neuron (left) and a partially connected layer (right). A lower amount
of synapses reduces the complexity without necessarily degrading the neuron’s main function.

neuron integrates with respect to the time of arrival of the signals, and the output is a spike,
contrary to the artificial neuron just described, which produces a continuous output. The
simplified computational model provides a foundation for complex NNs. When multiple
neurons are connected, it is possible to create a layer of neurons as in Figure 2.2 which can be
fully or partially connected.

2.1.2 The Training Process

The learning process focuses on finding the optimal values for the network’s weights (along
with the bias) and is called training. In this case, the term "optimal" refers to the weights that
minimize the error between the predicted output and the ground truth. Following the training
phase, the DNN can execute its designated task by calculating the output using the learned
weights. Using the DNN to process the input with trained weights is commonly known as
inference. When executing the inference, the DNN processes input data and produces a vector
or array of scores, one for each class. The class with the highest score has the highest likelihood
of being the same as the one of the input. The goal of the training process is then to learn the
weights and biases that maximize the score of correct classes and minimize the scores assigned
to incorrect classes, teaching the DNN model to generalize patterns from the training data to
new, unseen data. This doctoral thesis details only supervised training, as it is the technique
used with the majority of computer vision algorithms. Supervised learning is a type of ML
where the algorithm is trained on a labeled dataset, meaning that the ground truth is known,
and is commonly used in tasks such as image recognition, speech recognition, classification,
regression, and many other applications where the goal is to learn a mapping from inputs to
outputs. On the other hand, unsupervised learning involves training an ML algorithm on an
unlabeled dataset, where the algorithm tries to find patterns and relationships within the data
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without explicit guidance in the form of labeled outputs. Figure 2.3 depicts the training process
for supervised learning, which is detailed in the following paragraphs.

Initialization
Forward

propagation

Loss
calculation

Backward
propagation

Parameter
update

Validation
Hyperparameter

tuning

Test
Repeat until the model

performance matches the
 task requirements

Fig. 2.3 The training process. The steps in the loop are repeated until the model’s performance metrics
converge to a point that satisfies the design constraints.

Initialization Proper initialization of weights and biases of the DNN model is essential
to avoid convergence issues and speed-up the learning process, avoiding the saturation of
activations or weights. A commonly used initialization method is Kaiming [37], which consists
of evaluating the mathematical distribution from which random values are sampled to initialize
the weights.

Forward Propagation Pass the training data through the network using the forward propa-
gation process. The input data goes through the layers, and the network produces predictions.
Outside the training process, forward propagation is normally executed by discarding the data
generated within the network once it is no longer necessary to compute other layers or the
predictions. However, during the training, all the intermediate input and output data of each
layer are kept to compute the gradients. As it is impossible to store all the intermediate data
generated by complex DNNs with a dataset of hundreds of thousands (or billions) of input
samples in forward and backward propagation, instead of using the entire dataset in a single
iteration, training is performed on smaller, randomly selected batches of data. These batches are
referred to as mini-batches. During regular inference, the amount of input samples processed
in the forward pass depends on the application and hardware capabilities.



8 Background

Loss Calculation The gap between the optimal scores (1 for the correct class and 0 for the
incorrect classes) and the one computed by the DNN is commonly called loss. Therefore, the
training process has to adjust the weights to minimize the overall loss on all the classes for the
target task with a target dataset. The cross-entropy loss, also known as log loss or logistic loss,
is a loss function commonly used in ML for classification problems [38]. In the DNNs used
in the experiment of this doctoral thesis, the cross-entropy loss function as in Equation (2.2)
is used in the case of classification [13] and object detection [15, 17]. The term L is the loss
vector containing the loss ln computed for each sample in the mini-batch N, for each class of
all the classes C, with the weights wc, xn,c predictions and yn,c ground truths. The fraction of
exponents inside the logarithm is a softmax, which is used to compute the scores between 0
and 1 from the outputs of the last layer of the DNN.

L = [l1, ..., lN ], ln =−
C

∑
c=1

wc log
exn,c

∑
C
i=1 exn,c

yn,c (2.2)

Backward Propagation The backward propagation consists of computing the gradients of
the loss with respect to the model parameters (weights and biases) and applying the chain
rule of calculus to evaluate the partial derivatives. The derivatives measure the effects of each
weight on the overall loss and are used to update the model parameters. For each layer with
learnable parameters, two gradients are computed:

1. The gradient of the loss relative to the weights from the filter inputs (i.e., the forward
activations) and the gradients of the loss relative to the filter outputs.

2. The gradient of the loss relative to the filter inputs from the filter weights and the gradients
of the loss relative to the filter outputs.

Parameter Update The weights and biases are updated using an optimization algorithm,
such as Stochastic Gradient Descent (SGD), adjusting the parameters in the opposite direction
of the gradient to minimize the loss. SGD is a variant of the gradient descent optimization
algorithm that updates the parameters using the gradient computed from a mini-batch of data,
which is the typical choice in DNN training. Equation (2.3) implements the SGD algorithm,
with θt denoting the model’s parameter at the current iteration, γ as the learning rate, and
∇ ·L(θt−1) as the gradient of the loss function computed with the parameters at the previous
iteration. If γ is too low, the step size is small, and the model may take too many iterations
to eventually converge. Conversely, a high γ might cause instability and either induce the
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optimizer to move away (or opposite) from the ideal direction, maximizing the loss, or move
around an optimal minima, failing to reduce even further the loss L. It is possible to tune γ

during the training using a schedule that updates it using the model performance or the iteration
count, such as the cyclical scheduler proposed in [39].

θt = θt−1− γ ·∇ ·L(θt−1) (2.3)

A momentum v(t) is added to enhance the basic SGD algorithm in Equation (2.4) to accelerate
the convergence, especially in scenarios with noisy or sparse gradients, such as the case with
compressed or quantized models. The term β is the momentum hyperparameter and v(t−1)
is the momentum of the previous iteration. It introduces a form of inertia to the optimization
process, helping the model navigate through regions of the parameter space that have flatter
gradients or noisy updates. The momentum accumulates a fraction of the previous gradients
and combines it with the current gradient to determine the direction and magnitude of the
parameter update, removing oscillations and enabling a more efficient convergence.

v(t−1) = β · v(t−2)+(1−β ) · γ ·∇ ·L(θt−1)

θt = θt−1− γ · v(t−1)
(2.4)

An additional regularization technique used during the training to prevent overfitting is weight
decay, which adds a penalty term λ to the original loss as in Equation (2.5), used to obtain
the regularized loss Lreg, which is then substituted to the one used in Equation (2.3) or Equa-
tion (2.4). The purpose of weight decay is to encourage the model to use smaller weights,
which can lead to a simpler and more generalized model. It also has a beneficial effect on
compressed models: it increases the numerical stability in case of sparse gradients and makes
the model resilient to numerical errors [7].

Lreg = L+λ ·∑w2 (2.5)

Validation The model performance has to be evaluated periodically on a separate validation
dataset to tune the hyperparameters, detect and mitigate overfitting/underfitting, and assess
when the model has converged. A separate dataset is necessary to avoid any correlation between
the tuning procedure and the final test results, to preserve the DNN capability to generalize on
new data with the expected performance estimated during the training. Validation enables to
identify and correct the causes of poor performance, which could originate from overfitting or
underfitting. Overfitting occurs when a model learns the training data too well, i.e., memorizes
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the dataset, capturing noise and fluctuations in the data rather than learning the patterns. As
a result, an overfitted model performs well on the training data but poorly on unseen data
(validation or test datasets). Overfitting often happens when the model is too complex relative
to the training data available. Weight decay, model compression, and cross-validation can be
used to mitigate overfitting. On the other hand, underfitting occurs when a model is too simple
to capture the underlying patterns in the data, resulting in poor performance on both the training
and new data. An underfitted model may not have enough capacity to represent the complexities
of the data, and its predictions may be overly generalized or biased. Increasing the model
complexity and the training iterations are a possible solution to reduce underfitting. Finally,
convergence is reached when the model’s performance on the training and validation datasets
stabilizes, indicating that the weights and biases have learned meaningful representations.

Hyperparameter Tuning Hyperparameters are parameters that influence the learning capa-
bilities of a model that are not learned from the data but must be set prior to training and can
be adjusted with a feedback from the validation. These parameters guide the training process
and impact the performance and behavior of the model. Choosing appropriate hyperparameters
is crucial for achieving good generalization on unseen data. It is possible to divide common
hyperparameters used in ML into two groups: one affecting the model architecture and the
other affecting only the learning process. Starting from the latter, the common hyperparameters
involved only in the learning process are:

• Number of epochs: The number of times the entire training dataset is passed forward and
backward through the model during training.

• Batch size: The number of training examples used in a single iteration or mini-batch
during gradient descent.

• Learning rate (γ): control the step size in updating the parameters with optimization
algorithms like the SGD presented in the paragraph above.

• Weight decay (λ ): normalizes the loss function and can prevent overfitting.

• Dropout rate: the probability of randomly dropping out a neuron during training to
prevent overfitting.

Examples of some hyperparameters that define the model architecture are:

• Number of hidden layers: the number of layers in a NN excluding the input and output
layer. Adding more layers can increase the task performance in case of underfitting,
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whereas removing them can prevent overfitting. In the case of model compression,
redundant layers can be removed to reduce the computation while retaining the original
performance.

• Layer dimensions: the weight size of each layer, which determines the number of input
and output features processed and produced. Similarly to the number of hidden layers,
the weight size can be tuned to remove redundant connections.

• Data precision: the numerical precision used in arithmetic operations. Switching from
FP32 (IEEE 754 binary32) to FP16 (IEEE 754 binary16) can double the training perfor-
mance [30, 40] with no sensible accuracy degradation. Runtime selection of the integer
quantization policy can further adjust the numerical precision below 16-bit without
reducing the model performance.

Test The last step is the final test on new unseen data that is neither correlated to the training
or validation dataset. The performance of a DNN model is computed according to metrics of
interest for the target task. In this doctoral thesis, only image classification and object detection
metrics are reported, as only these two tasks are considered in the presented research work. In
image classification, there are two relevant metrics: top-1 accuracy and top-5 accuracy. Top-1
accuracy measures the proportion of test images for which the correct label is the model’s
top prediction; top-5 accuracy measures the same thing but considering the model’s top 5
predictions. In object detection, mean average precision (mAP) is a commonly used evaluation
metric to assess the performance of object detection models. mAP is a comprehensive metric
that measures the accuracy of an object detection model across different levels of confidence
thresholds and for various object classes. It combines precision and recall values calculated
at different thresholds, overlapping the predicted position against the ground truth, therefore
evaluating the Intersection over Union (IoU), to produce a single aggregate score.

2.1.3 Layers Commonly Used in Deep Neural networks

Fully Connected A fully connected layer, also known as a dense layer, is a structure where
every neuron in the layer is connected to every neuron in the preceding layer, as depicted in
Figure 2.2, and are typically used at the last layer of the DNN as classifiers [11–13]. Depicted
in Figure 2.4, the computation consists of each neuron evaluating a weighted sum of its input
and adding a bias to the final weighted sum. The number of output activation Nof is equal to the
number of rows of the weight matrix, each one containing Nif columns, and its shape is again
a vector. The number of input features Nif and output features Nof are the hyperparameters
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of the fully connected layer. The bias vector is optional and has Nof parameters, and requires
Nof additions. The number of multiplications required to compute the output and the memory
footprint of the weights and bias are given by Equation (2.6), using the notation of Figure 2.4.

#mult.= No f ·Ni f

weight mem = (No f ·Ni f +No f ) · precision
(2.6)
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Fig. 2.4 The computation of a fully connected layer with bias can be modeled as a matrix-vector
multiplication as O =WI +B. The rows of the weight matrix contain the weights associated with each
neuron, which are multiplied by the input activations to produce the output.

2D Convolution In a 2D convolutional layer, the neurons are not arranged in a 1D vector,
as in a fully connected layer, but in 3 dimensions: width, height, and depth. While the
fully connected layer processes input activation as features, in the 2D convolution the input
activations are organized in 2D structures called feature maps. The 2D convolution layer is
specialized in image processing because image sensory information is usually organized as an
array of 2D maps, each containing the pixel value associated with a particular channel (feature).
Contrary to fully connected layers, in which each weight is associated with a unique neuron
and input activation, in 2D convolutional layers, the weight maps are reused across the entire
volume of input activations. Each neuron is connected to a local region of the input volume,
which depends on the neuron’s receptive field, i.e., the height and width of the 2D weight maps,
which are Nkx and NKy. There are always the same number of 2D weight maps and Input
Feature Map (ifmap)s, both denoted with Nif. The connections are local in 2D space (along
width and height, Nix and Niy) and full along the 3D dimension (Nif). Finally, the depth of the
weight volume Nof determines the number of Output Feature Map (ofmap) produced by the
convolution, i.e., output channels or output depth. The 2D convolution without bias is depicted
in Figure 2.5, using the notation of Table 2.2.
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Fig. 2.5 The 2D convolution operates on 3D data organized as a stack of 2D feature maps, with the
weights organized in a 4D volume, and produces 3D output activations.

From a computing perspective, computing a convolution means performing a matrix multipli-
cation between a local region of the input volume and a weight map, repeated for all the ifmaps
and weight maps at the same depth along the third dimension. The results from all the repeated
matrix multiplications are summed to produce an output pixel. Then, the same procedure is
applied to another local region of the input volume, sliding the feature map along the height
or width of the input. The step size between adjacent local regions of the input, or the step
size defining how much the weight maps slide at each iteration, is known as the stride. The
vertical stride Sy determines the sliding along the height of ifmaps, whereas the horizontal
stride Sx determines the sliding along the width. The stride determines the subsampling of
the convolutional layer. A convolutional layer with strides Sx and Sy set to 1 will produce an
output volume with the same spatial dimension as the input. A layer with Sx and Sy set to 2
will halve both spatial dimensions, Sx and Sy set to 3 will reduce them to one-third, and so on.
Zero padding is added at the border of ifmaps to control the spatial dimension of the output
activations (Nox and Noy). Px defines the size of horizontal padding, while Py defines it for the
vertical padding. Padding is added to either have the same input and output spatial dimensions
or to preserve integer spatial dimensions in case of strides higher than 1. Finally, the dimension
of each ofmap generated from a convolutional layer can be evaluated as in Equation (2.7),
using the notation of Figure 2.5 and Table 2.2, whereas the number of multiplications and the
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memory footprint of the weights can be computed as in Equation (2.8)

Nox =
⌊

Nix−Nkx+2 ·Sx
Sx

⌋
Noy =

⌊
Niy−Nky+2 ·Sy

Sy

⌋
(2.7)

#Mult.= Nox ·Nkx ·Noy ·Nky ·Ni f ·No f

weight mem = Nkx ·Nky ·Ni f ·No f · precision
(2.8)

Activation Function The activation function is the non-linearity applied after each fully
connected or convolutional layer. The primary purpose of activation functions is to enable
DNNs to learn and represent complex, non-linear relationships between input and output
data. Without activation functions, DNNs would essentially reduce to a single large linear
transformation. Common activation functions used in DNNs are:

• ReLU (rectified Linear Unit): it sets negative inputs to zero while leaving positive inputs
unchanged, as in Equation (2.9). Proposed in [35], it accelerates the convergence of the
optimizer faster than other activation functions, with fewer computation resources. From
a hardware perspective, it requires no complex operation and can be implemented with
just a multiplexer controlled by the sign of the input operand, selecting between 0 and
the input. On the other hand, ReLU can progressively reduce the value of activations
passing through layers and, consequently, zeroing the input and parameter gradients.

ReLU(x) = max(0,x) (2.9)

• Sigmoid: it constrains the input values to the range (0, 1) as in Equation (2.10), making
it suitable for binary classification tasks. However, it suffers from a vanishing gradient
problem that is more severe with respect to the ReLU. Moreover, it requires complex
hardware to support the computation of the exponential. A variation of the sigmoid,
swish, is presented in [41] and used in the EfficientDet [15] implemented in Section 4.1.
It solves the vanishing gradient problem using a learnable coefficient β to scale the input,
outperforming the ReLU at the expense of higher computational complexity.

Sigmoid(x) =
1

1+ e−x Swish(x) = x · x
1+ e−β ·x (2.10)

• Softmax, as in Equation (2.11) is commonly used in the output layer for multi-class
classification tasks, with C classes, as it normalizes the output scores into a probability
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distribution over multiple classes.

So f tmax(xc) =
exc

∑
C
i=1 exc

(2.11)

Pooling Max pooling and average pooling, depicted in Figure 2.6, are typically used after
convolutional layers to downsample the spatial dimensions of feature maps. The pooling layers
reduce the computational complexity of the network and improve its ability to generalize
by capturing the most important features while discarding less relevant information. In max
pooling, each region of the ifmap is divided into non-overlapping rectangular regions, the
maximum value is retained, while the other values are discarded. In average pooling, the
average value of the input features is calculated within the region.
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Fig. 2.6 Example showing the application of max pooling and average pooling. The activations within
the receptive field are downsampled from 4 to 1.

Normalization Activation normalization helps to stabilize and accelerate the training process.
Batch normalization is the most common technique used to address the issue of internal
covariate shift, where the distribution of activations within a layer changes during training,
leading to slower convergence and degraded performance [42]. Batch normalization acts as
a form of regularization by introducing noise during training, similar to dropout, preventing
overfitting and improving the generalization performance of the model. Additionally, it reduces
the sensitivity of the network to the initialization of parameters, making it less reliant on
careful initialization techniques. Presented in Equation (2.12), batch normalization has two
learnable parameters β and γ , and two parameters determined during the training, the mean µ

and standard deviation σ2, which are not learned, but computed on the activations statistic. To
further stress the importance of batch normalization, it is worth mentioning that it was proven
that a randomly initialized DNN, trained by updating only the parameters of each normalization
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layer in the network while freezing the weights and biases of every other layer, was capable of
achieving the same performance of the same DNN trained regularly [43].

norm(x) =
x−µ

σ2 · γ +β (2.12)

2.1.4 Putting it All Together: Typical Feedforward DNN Architectures

The first DNN that outperformed traditional approaches in image classification tasks was
AlexNet [35], which won the ImageNet Large Scale Visual Recognition Challenge in 2012.
Contrary to the previous traditional computer vision algorithms, which were based on a mixture
of handcrafted features and few small convolutional or fully connected layers, AlexNet learned
to extract the features only from the dataset and employed 5 convolutional layers, each one
followed by a ReLU activation function and max pooling, and 3 fully connected layers, depicted
in Figure 2.7. The network was trained on the ImageNet dataset, which contains 1.2 million
images and 1000 classes, dividing the DNN over two GPUs for the training and inference.
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Fig. 2.7 The AlexNet model architecture is built by connecting several feedforward layers. The input is
a 224x224x3 image, the output is vector with 1000 scores, one for each class.
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connecting these blocks, maintaining a direct path from the input to the network output. In case of
feature scaling or downsampling, a convolutional layer or a max pooling layer is used to adjust the
dimensions of the skip connection.
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While this model architecture is no longer state-of-the-art, it laid the foundation for modern
DNNs. It introduced several key concepts still used today, such as ReLU activation functions,
dropout, and data augmentation. The subsequent models, such as VGG [11], GoogLeNet
[12], and ResNet [13], improved upon AlexNet by introducing deeper architectures, data
normalization, residual connections, and more efficient use of computational resources. In
particular, the residual block, depicted in Figure 2.8, is a key component of ResNet and most
of modern DNNs. It was introduced to address the vanishing gradient problem that occurs
when training very deep networks. This results in unusually high training error, which, on
complex datasets like ImageNet, cannot be reduced by applying the techniques presented in
the previous paragraphs in case of underfitting. The direct connection between the input and
output (skip connection) allows the gradient to flow directly through the network, bypassing
the intermediate layers.

2.2 Hardware Acceleration of DNN

DNN hardware acceleration is a key enabler for the deployment of AI applications in a
wide range of scenarios, from data centers to edge devices. It can be achieved by using
general-purpose hardware such as Central Processing Unit (CPU)s and GPUs or specialized
hardware such as TPUs, Field-Programmable Gate Array (FPGA)s, and Application-Specific
Integrated Circuit (ASIC)s. Convolutional and fully connected layers represent the most
computationally intensive operations, consisting of many (thousands or millions) Multiply-
And-Accumulate (MAC) operations, which can be easily parallelized. In the past years, CPUs
and GPUs have included specialized instructions and libraries to accelerate DNN inference and
training, leveraging the available vector processing units used for Single-Instruction Multiple-
Data (SIMD) and single-instruction multiple-threads (SIMT), as shown in Figure 2.9, the
latter being specific to general-purpose GPU [44]. Recent server-grade CPU models now
include specialized neural processing units to offload DNN computations from the main CPU
cores [45, 46]. Similarly, consumer-grade GPUs have been optimized for DNN processing,
with the latest models supporting reduced precision arithmetic and few specialized tensor
processing units (TPUs) [47, 48]. The server-grade GPUs released in the last years have
increasingly included more TPU units, with full and reduced precision arithmetic, to accelerate
large language models with billions of parameters [30, 40], and in Table 2.1 are included in the
TPU column, as their primary design target is tensor processing. Table 2.1 offers a qualitative
comparison of selected hardware architectures that support AI workloads. The term TOPS (tera
operations per second) is used instead of TFLOPS (tera floating point operations per second) to
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compare architectures that do not support native floating point (FP32) arithmetic. This is done
for two main reasons: integer processing can achieve the same task accuracy of FP32 at a lower
cost, and commercial and research hardware is shifting to fully integer DNN acceleration [49].

Architecture HPC CPU GP GPU TPU HP ASIC LP ASIC FPGA
Flexibility High High High Low Low Low

Power >300W >100W >200 ∼700W >10W <1W <10 ∼50W
Performance 0.1 TOPS 10 ∼100 TOPS >1000 TOPS >100 TOPS <0.1 TOPS 1 ∼10 TOPS

Unit cost 2kC ∼10kC 1kC ∼3kC 10kC ∼40kC variable variable variable
Algorithm GEMM GEMM variable variable variable variable
References [45, 46] [47, 48] [30, 31, 40] [50, 51] [52–54] [55–57]

Table 2.1 Qualitative performance comparison of some hardware architectures used in DNN acceleration.
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Fig. 2.9 Parallel compute paradigms with centralized and distributed control.

Regarding the three hardware architecture models depicted in Figure 2.9, the SIMD/SIMT
architectures represent generic CPU and general-purpose GPU/TPU models, where a cen-
tralized control unit is in charge of issuing the instructions to the ALUs, which are usually
organized in a grid or in a tree-like structure, that compute the same instruction on different
data elements/threads and send the results back to a main register file or data memory. On the
other hand, systolic or spatial arrays have a high-level and distributed control embedded inside
each processing unit, which also has its own local memory and ALU. The data is streamed
through the array, and the computation is done in a pipelined fashion, with the results being
sent to the next processing unit in the array.

DNN layers on CPUs, general purpose GPUs, and some TPUs are usually computed with
the generalized matrix-matrix multiplication (GEMM) algorithm, depicted in Figure 2.10 [58].
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GEMM is not used in low-power ASICs and FPGAs, as it is not memory efficient for these
devices due to the data replication in Toeplitz matrices created by expanding the activation and
weight tensors of the convolutional and fully connected layers. For the same reason, the GEMM
algorithm is also not suitable for sparse networks, which are leveraged to reduce data movement
and computation cost by skipping the computation of zeros. Additionally, convolutional
layers exhibit an intrinsic redundancy in the computation of the output feature maps, as the
same weights are used to compute different output pixels due to weight sharing, explained in
Section 2.1. For these reasons, specialized accelerators usually adopt a non-GEMM algorithm
and an array-based compute architecture, such as the one of Figure 2.9, in which the data is
streamed through a set of processing elements (PEs), which can share both input and output
data with local connections, reducing the cost of data movement [52, 59, 60].
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Fig. 2.10 Single channel 2D convolution computed as a matrix multiplication with Toeplitz transforma-
tion. The GEMM algorithm, while regularizing the computation in the presence of stride and padding,
has a memory overhead, plus an additional computation overhead due to the input, weight, and output
tensors transformation, usually done with an im2col conversion.

In this doctoral thesis, the focus is on the acceleration of DNNs on low-power ASICs and
FPGAs, which are becoming increasingly popular for edge AI applications [53, 55, 57, 61].
The number of IoT devices, wearables, smartphones, and other edge devices is increasing,
alongside the amount of sensory data collected [62]. These devices have limited power budgets
and resources and must be able to process data locally, without relying on cloud services, for
privacy, latency, and bandwidth reasons [63]. In this scenario, low-power architectures, efficient
hardware mapping, and model compression techniques are crucial to enable the deployment of
AI applications on edge devices [64].
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2.2.1 Low Power ASIC: Micro-controllers and Edge Accelerators

Low-power ASICs such as Micro-Controller Unit (MCU)s and reconfigurable accelerators
are designed to be energy efficient and to have a small area, which makes them suitable for
edge devices where the resource budget is limited. MCUs are widely used in embedded
systems, wearables, and IoT devices and are usually equipped with a vectorized Dot-Product
Unit (DPU) embedded in the CPU’s pipeline [53] or a dedicated accelerator [54] to accelerate
DNN inference. The DPU is a specialized unit that can perform a dot product operation on two
vectors and accumulate the result in a single cycle. The instructions to compute the DNN are
compiled and embedded in the code normally processed by the CPU. Executing the inference
on an MCUs with a DPU has the main advantage of allowing the device to be fully flexible
and programmable. However, the DNN processing occupies the CPU pipeline, preventing the
MCUs from processing other tasks. Moreover, energy efficiency is at the lower end of the
spectrum, as data reuse cannot be exploited. In recent years, the highest efficiency in terms of
energy and area has been achieved by using systolic or spatial arrays, depicted on the right in
Figure 2.9, which are composed of a set of Processing Engine (PE) that are connected in a grid
or a tree-like structure, and that can share both input and output data with local connections.
Section 2.4 is dedicated to explaining the efficient mapping on such architectures. A dedicated
accelerator attached to the CPU core, such as the one developed in [54], can be used to offload
the DNN processing from the pipeline.
Coprocessors or memory-mapped accelerators can use the direct memory access unit to access
the main memory without wasting any CPU time except for the few instructions executed to
configure the accelerator [54].

Regardless of the architecture used, edge devices might need to adapt the DNN parameters
to the input data or the environment, which requires online training capabilities [63, 64]. On-
device training can be achieved by adopting several strategies, such as fully-quantized forward
and backpropagation [65], and direct feedback alignment, which removes the necessity to keep
all the intermediate computation that is used to propagate the gradients during the training [66].
This further justifies the need for efficient hardware mapping and model compression to reduce
the memory footprint and energy during the inference to make room for the training phase.

2.2.2 FPGA Accelerators

The flexibility of FPGAs, albeit with higher latency and power consumption than ASICs, makes
them a popular choice for DNN acceleration, as they can be reconfigured to support different
network architectures, and implement custom dataflow and memory access patterns. In this
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regard, some open-source tools and libraries can be used to generate FPGA accelerators for
DNNs, such as FINN-R [57] and BISMO [67], which generates accelerators for quantized or
binary networks for Xilinx FPGAs, and Vitis-AI, which supports both quantized and floating-
point architecture generation for Xilinx Versal FPGAs [68]. Additionally, the NVDLA platform
[55] enables the generation of synthesizable Register-Transfer Level (RTL) and the related
software stack that can be compiled and mapped either on NVIDIA’s edge computing kits
or supported FPGAs. Another relevant FPGA implementation is found in [59], which was
one of the first works that leveraged several optimization strategies seen in the next section,
such as loop tiling and unrolling. This work is particularly relevant as it shows that the best
optimization approach must consider the entire accelerator hierarchy instead of focusing only
on the processing elements or the memory hierarchy, as the search for the best communication
pattern and the best computation pattern are not orthogonal, as also proven in [52].

2.3 Model Compression

Model compression is a set of techniques that aim to reduce the size of a DNN model, the
number of parameters, and the computational complexity while preserving the accuracy of the
original model. The main goal of model compression is to enable the deployment of DNNs on
low-power devices with limited memory and computational resources and to reduce energy
consumption during inference. This section addresses three main techniques: reduced numerical
precision (quantization, binarization), weight pruning, and Approximate Computing (AxC).

2.3.1 Reduced Numerical Precision

Quantization

DNNs are usually trained with FP32 numerical precision, which requires 32 bits to represent
a single parameter and the availability of high-performance floating point arithmetic units.
While FP32 is necessary for training, it is not strictly required for inference, as the model
can be quantized to lower precision, such as FP16, INT8, or even binary [69–73]. Therefore,
quantization is the process of mapping the FP32 weights and activations of a DNN to a lower
precision format, such as INT8. The quantization process can be done offline, during the training
phase, or online, during the inference phase, and can be applied to the weights, activations,
or both. Conversely, dequantization converts an integer number back to a real number. There
are two main approaches to DNN quantization: post-training quantization and quantization-
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aware training. Post-training quantization is a simple and fast technique for quantifying the
weights and activations of a pre-trained model to a lower precision format without necessarily
retraining the model. The DNN’s weights can be finetuned after quantization to recover from
the accuracy degradation, as done in Section 4.1 for EfficientDet quantized to 16-bit. On the
other hand, quantization-aware training consists of training the model with quantized weights
and activations from the beginning, including the numerical error in the loss calculation, the
backward pass, and, therefore, the parameter update. The DNN then learns to minimize
the quantization error while learning to extract the features. The latter approach is done in
Section 4.2 to quantize several DNNs to 8-bit with no accuracy degradation compared to the
FP32 baseline.

Affine quantization Scale quantization

maxmin

-127 127

zero

0

FP32

INT8

maxmin

-127 127

zero

0

Fig. 2.11 Scale and affine quantization with INT8 precision. The maximum representable range is
asymmetric for affine quantization and symmetric for scale quantization. The 8-bit integer range is
[−127,127].The value -128 is not used to preserve symmetry.

In this thesis, only uniform integer scale and affine quantization are presented and are
depicted in Figure 2.11, as they are implemented and used in the research work presented
in Section 4.1 and Section 4.2. Scale quantization maps real values to integers with a scale
transformation, as shown in Equation (2.13), while affine quantization maps real values to
integers with a scale and a zero transformation, as shown in Equation (2.14). In both equations,
q is the precision, s is the scale, z is the zero, x is the real value, and xq is the quantized value. In
Equation (2.13) α is assumed to be the maximum absolute real value, while in Equation (2.14)
α and β are the maximum and minimum real values, respectively. The former does not preserve
the zero value, but it is faster than affine quantization, and it is found to lead to approximately
the same performance [74].

s =
2q−1

α

xq = clip(round(x · s),−2q−1,2q−1−1)

x =
xq

s

(2.13)
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s =
2q

α−β

z =−round(β · s)−2q−1

xq = clip(round(x · scale+ z),−2q−1,2q−1−1)

x =
xq− z
scale

(2.14)

Alternative Arithmetic Implementations

Relevant alternative arithmetic implementations with reduced precision include binary, ternary,
and Winograd convolution. Binarized NNs (BNNs) have weights and activations quantized
to 1 bit, which can be either 0 or 1, encoding the values -1 and + 1- [71–73]. With binary
arithmetic, multiplications and accumulations can be executed as single-bit operations using
and, xnor, and bit-count. For each datatype, the memory footprint can be reduced by up to
32x compared to FP32, while the hardware complexity can be reduced even further, as the
arithmetic operations can be implemented with simple logic gates. Naturally, BNNs do not
leverage general-purpose hardware and necessitate specialized accelerators [56]. Similarly to
BNNs, ternary NNs (TNNs) have weights and activations quantized to 3 values, -1, 0, and +1,
and can be implemented with a combination of binary operations and multiplications by 0. In
both BNNs and TNNs, the conversion of a single datum from FP32 to binary or ternary, named
binarization, can be done with a deterministic (1 if positive or zero, -1 otherwise) or stochastic
policy (based on a Sigmoid).

Winograd convolution is a technique that reduces the number of multiplications and addi-
tions required to compute a convolutional layer by transforming the kernel and the Ifmap to a
smaller domain, where the convolution can be computed with fewer operations [75]. Unlike
weight pruning, Winograd convolution does not reduce the number of operations by reducing
the number of parameters of the model. Instead, it introduces a memory overhead to store the
transformed arrays. The Winograd convolution is particularly useful for small kernels (which
are also the most used in CNNs), such as 3x3, and for small batch sizes, as the memory overhead
is proportional to the kernel size and the batch size. A downside of the Winograd algorithm is
that it is particularly sensitive to quantization errors, and the transformation introduces a small
numerical error. A quantized- and Winograd-aware training scheme [76] and the utilization
of a complex number system [77] have been proposed to mitigate the error introduced by the
quantization and the transformation without introducing a relevant resource overhead.
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2.3.2 Weight Pruning
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Fig. 2.12 Comparison between structured and unstructured pruning, single weights or weight maps
barred in red are not used in the computation.

Weight pruning is a technique for reducing the memory footprint and computational
complexity of a DNN by removing the connections (weights) that are considered irrelevant
to the task while preserving the model’s accuracy. Pruning can be done by removing small
magnitude weights, by measuring the importance of the weights performing a sensitivity
analysis and removing those with the lowest influence over the output, or by other means. It can
be done during the training, a strategy adopted in several neural architecture search methods [78,
79] or after, as a post-processing step, usually paired with fine-tuning [2, 80]. Pruning can be
done offline (static) or online (dynamic): offline pruning removes the connections permanently
before the model is deployed, while online pruning removes the connections during the
inference phase based on a threshold or a policy. Online pruning has a computational overhead
compared to offline pruning, as an evaluation of redundant or low-magnitude connections has
to be performed at runtime, but it can be used to dynamically adapt the model to the input data.

Weights can be set to zero, increasing the sparsity of the model, or removed changing the
architecture, which is only possible in the case of structured channel pruning. Structured means
that the weights are set to zero or removed in groups. As depicted in Figure 2.12, structured
pruning can be done at different levels of granularity by removing entire channels (structured
channel pruning), entire kernel maps (structured kernel pruning), or single weights (unstructured
pruning). These methodologies are the easiest to leverage in hardware, as the regularity of the
sparsity pattern can be exploited to reschedule the computation and communication, avoiding
not only the computation of the zeroed weights with data-gating but also unnecessary memory
accesses. Unstructured pruning, on the other hand, removes individual weights and is more
difficult to support efficiently in hardware, as the irregularity of the sparsity pattern can lead
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to memory fragmentation and inefficient data movement. However, it also has the highest
granularity and selectivity, possibly achieving the best tradeoff between compression and task
accuracy.

2.3.3 Approximate Computing

AxC in quantized DNNs is the usage of approximate arithmetic units to compute the MACs,
using inexact multipliers and adders, which have fewer logic gates than the exact counterparts
and, therefore, have a smaller area and power [81]. Approximate Multiplier (AxM)s are usually
based on Dadda or Wallace trees [82] implemented with approximate and exact compressors
placed in the part of the architecture dedicated to the partial products’ reduction [83]. Two main
approaches are relevant to this thesis: fixed and reconfigurable approximate units. Logic gates
of fixed AxMs are removed at design time, either with hand-crafted [83] or automated [84]
strategies. By removing actual transistors, it is possible to reduce latency, dynamic and static
power consumption, and the area, achieving the best trade-off between these hardware metrics
and the multiplication error. On the other hand, reconfigurable AxMs leverage data-gating to
enable or disable approximate compressors, lowering the dynamic energy only, introducing
an area, energy and latency overhead due to the control logic. However, the main (and
only) advantage of reconfigurable over fixed AxMs is that one single runtime reconfigurable
architecture can be used to support algorithms with different error resilience and adapt to
different tasks or input data [9], without requiring to replicate the resources [85].

Several error metrics are used in literature to quantify the approximation error of inexact
multipliers. In this thesis, the Mean Relative Error Distance (MRED) is used, computed as in
Equation (2.15), to evaluate and compare the performance of the AxMs used in Section 4.2 and
proposed in [8, 9]. In Equation (2.15), N is the number of possible combinations of input values
(N = 22q with q-bit values), ôi and oi are the ith approximate and exact results, respectively.
This metric is adopted in this thesis and previously published works [8, 9] because it is the most
commonly used in related literature and allows for reliable comparison of the performance of
different AxMs.

MRED =
1
N

n

∑
i=1

|ôi−oi|
|oi|

(2.15)

2.3.4 Optimization Strategies Proposed in Literature

It is possible to organize and classify previous works on pruning, quantization and approxima-
tion in three categories according to the optimization strategy, whether hardware evaluation is
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Fig. 2.13 Constraints and optimization loops for hardware-agnostic, pseudo-hardware-aware, and
hardware-modeling techniques.

included, and if so, how it is implemented. The three categories, also summarized in Figure 2.13,
are hardware agnostic, pseudo-hardware-aware, and hardware-modeling:

• Hardware agnostic: the compression effectiveness is evaluated only as the trade-off
between the reduced memory footprint and computational complexity with the accuracy
degradation. No information on the target hardware architecture is necessary with this
strategy. The main advantage of this strategy is that it has the fastest execution time, as
no additional computation is required besides the retraining of the DNN. However, the
major weakness is that the compressed model might not be optimized for any specific
hardware platform, and performance bottlenecks are neither discoverable nor resolvable.
Approximation optimization cannot be done with this strategy, as the hardware constraints
are not known, and a simulation/modeling of the hardware is necessary.

• Pseudo-hardware-aware: low-level proxy metrics, such as memory footprint or number
of multiplications, or Look-Up Table (LUT)s hardware estimates are used to extract
performance metrics such as computation cycles and overall energy. The former does
not require any real hardware measurements, as computational complexity and memory
size can be evaluated independently from the target accelerator. The latter requires the
execution of a reference DNN model on a target hardware to extract baseline performance
metrics, which are then scaled with the compression ratio. Memory size, maximum
theoretical throughput, and other factors are used as constraints during the compression.
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This approach improves on hardware agnostic and it has the second fastest execution
time, but has one major weakness: it does not account for compile-time optimizations
due to reduced memory requirements and operations. The latter results in sub-optimal
performance estimation during the evaluation of the accuracy/performance. Moreover,
the generation of LUT requires readily available hardware that cannot be changed later
to avoid invalidating the compression strategy. Of the contributions presented in this
doctoral thesis, MARLIN [9] falls in this category for what concerns approximation
optimization.

• Hardware-Modeling: it leverages the deterministic nature of DNNs and hardware accel-
erators to evaluate the inference’s performance without simulation, estimating the overall
data movement and energy/latency cost associated to it. This approach requires a careful
definition of the hardware model and scheduling algorithm, plus extensive validation
with different hardware architectures. However, it has multiple advantages compared to
the other methods: it can predict real-world performance within reasonable margins of
error, it allows factoring in the compile-/scheduling-time optimization, it can be used for
design space exploration to modify the architecture, and it can be used to analyze memory
or computation bottlenecks. The execution time is slower than hardware-agnostic and
pseudo-hardware-agnostic, but can still be negligible compared to the DNN training time
for a single epoch. Of the contributions presented in this doctoral thesis, Hw-Flow[2],
Hw-Flow-Q[3], and Hw-Flow-Fusion[4] fall in this category, as they leverage multiple
abstraction levels of hardware models to estimate various performance metrics.

Pruning Techniques

Hardware-agnostic Hardware-agnostic pruning techniques include early works such as
[86, 87], in which it is proven that there are redundant neurons that can be removed without
reducing the task accuracy and, in some cases, can even improve it. Recent works searched
for a policy to select which weights can be removed, for instance, using weight magnitude
[88], geometric median heuristic [89], saliency functions [90], or low-rank filter-sharing based
on auto-encoders [91]. In [92], unstructured pruning is applied to remove weights with a
magnitude below a user-defined threshold inside the kernel maps, and then compressed sparse
row/column formats are used to store the sparse maps efficiently.

Pseudo-hardware-aware Structured filter pruning based on the amount of computational
complexity and model parameters is done in [93], in which the redundancy of individual kernel
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maps is evaluated with a Lasso regression, with the compression ratio selected heuristically. In
[94], the pruning policy is performed with Reinforcement Learning (RL) agents assigned to
each layer that receive at each step a single kernel map as state and determine the pruning policy
with the produced action. The reward is a cost function based on the accuracy and low-level
metrics, such as computational complexity and overall memory footprint. Contrary to these
works above, which include minimal hardware information, other works such as [80, 95, 96]
use LUTs with hardware metrics measured from a real hardware accelerator running different
DNN models, with metrics generated with interpolation in case of small modifications of the
DNN or accelerator. In particular, [95, 96] perform a layer-wise pruning action, making the
strategy susceptible to sub-optimal solutions, as inter-layer dependencies are ignored. On the
contrary, the strategy proposed in [80] performs the pruning action on the entire DNN, with
an RL-agent selecting the sparsity ratio of each layer during each step, with a single episode
composed of as many episodes as the number of layers.

Hardware-modeling The authors of [97] propose to use a hardware model to measure energy
metrics to tune the pruning strategy. This results in an optimized pruning action compared to
[80, 95, 96], with estimated hardware metrics that are closer to real-world performance and
reflect the benefits of the different scheduling, which is a consequence of changing the DNN
size. Nonetheless, the number of computation cycles, comprehensive of all memory transfer,
the overall latency, and data movement are not evaluated or used during the compression and
do not influence the sparsity rate. The pruning agent of Hw-Flow [2] improves on [97] by
including all relevant hardware metrics and scheduling in the performance estimates, which
include energy, latency, and Computation-To-Communication (CTC), the latter accounting for
memory bottlenecks, which are the main limitation in data-intensive workloads.

Quantization

Hardware-agnostic Several quantization strategies aimed at reducing only the memory
footprint without information on the underlying hardware have been proposed. In [92], weight-
only 8-bit quantization is performed after clustering is applied to share multiple connections
between the same weights. Huffman coding is then used to further compress the quantized
weights. While this approach paved the way for the application of multiple compression
techniques (quantization, clustering, pruning, encoding), achieving a 35x compression ratio for
AlexNet and 49x for VGG-16, it is not hardware-aware and does not consider any constraints
during the compression. Moreover, the activations are not quantized, therefore the need for
FP32 arithmetic is still present. Weight quantization has been further explored in [69] and [98],
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with the former quantizing all the DNN layers except the first and last ones by bounding them
between [0,1], using the straight-through estimator proposed in [99] to achieve quantization-
aware training. The work of [98] improves on [69] by solving the accuracy degradation issues
of the first and last layers. Activation quantization has been successfully implemented in
[70], adopting a parameterized activation function based on a ReLU [100] with a learnable
clipping factor α , that bounds the quantized activations between [0,α], achieving an optimal
trade-off between model size and accuracy with sub-4bit compression and improving over all
the previous works. Finally, a quantization strategy for both weights and activations is proposed
in [101], in which the selection of the bitwidth, which was the same for every layer of the
DNN in previous works, is done by analyzing the Hessian spectrum of each layer and selecting
the precision that results in minimal accuracy loss while still reducing the memory footprint.
However, the works above still used FP32 operations to process batch normalization layers,
preventing the execution on devices without proper hardware support. This is due to the low
numerical error tolerance of batch normalization parameters, which causes an abrupt accuracy
drop even when switching from FP32 to INT16 quantization. The authors of [102] fold batch
normalization in preceding convolutional layers, adjusting the convolution weights and bias to
account for the normalization learnable parameters γ and β , collecting data statistics during the
full precision training, bounding the normalization’s mean and standard deviation during the
quantized training.

Pseudo-hardware-aware Works such as [78, 103–105] explore quantized DNNs using
different heuristic algorithms, using a LUT approach to evaluate the hardware execution. The
authors of [105] propose an RL-agent that, for each step within each episode, parses the DNNs
and searches a layer-wise quantization policy. The reward function considers only the accuracy
degradation of the quantized DNN, hardware information is included as an external penalty
and adjustment of the RL-agent’s action. By considering all the layers in a single episode, the
RL-agent can discern inter-layer dependencies within the quantization policy and learn the
compression ratio to apply to recurring structures within the DNN architecture. For instance,
the RL-agent of [105], when used with MobileNet [14], quantizes activations with fewer bits in
depth-wise convolutions and more bits in point-wise convolutions when the target hardware
is a low-power edge-device and does the opposite when the target hardware is a powerful
cloud GPU. The same authors proposed to jointly apply quantization and pruning in [78], in
which pre-trained and pre-pruned sub-networks are extracted from a super-network and then
quantized. An accuracy predictor, based on a multi-layer perceptron, is also trained to estimate
the DNN accuracy without testing to speed-up the search process. While these works apply
hardware-software codesign of the DNN model and the accelerator on which will be deployed,



30 Background

their methodology can be enhanced to include mapping and performance bottlenecks evaluation,
by evaluating the effects of quantization on the data movement within the accelerator’s memory
hierarchy. These characteristics are used in the Hw-Flow framework[2–4] to explore the
solution space, but there are several stand-alone tools that support highly accurate hardware
mapping and energy/latency estimation which can be included in the works mentioned above
[106–109].

Hardware-modeling Hardware-modeling quantization strategies are recent and have become
increasingly common with the development of hardware-neural architecture search. The authors
of [1] quantize activations and weights while updating the hardware model on which the DNN
is simulated, using nested genetic agents to search for the optimal quantization and hardware
generation policy, trading-off hardware and model complexity with accuracy. The quantized
DNN is then executed on a real hardware accelerator synthesized on a Xilinx FPGA with the
specifications found during the search. Similarly, in [110] is proposed a framework for a joint
search of the precision of the arithmetic units of a hardware accelerator and the quantization of
the DNN model that will be executed.

Approximation

Pseudo-hardware-aware Most works on AxC applied to DNN processing follow a LUT-
based simulation. This involves generating an LUT containing the output of the AxM for
all possible input combinations, which are then read at runtime to compute the approximate
MACs. Latency and average dynamic power are also estimated and included, considering the
real switching activity occurring during the simulations. These results are usually obtained
with a post-synthesis simulation. Each different multiplier configuration requires a unique
LUT. The LUT-based approach is necessary to support approximate arithmetics simulation in
popular DNN frameworks like Pytorch [29] and Tensorflow [28], using open-source add-ons
such as AdaPT [111], TransAxx [112], TFApprox [113], and TFApprox4IL [114]. This is
the most straightforward implementation of approximate operations, as the multiplication
can be done as a double memory read operation. However, it is not easily scalable, as the
LUT size grows exponentially with the bitwidth of the operands, and it is not flexible, as
the LUT cannot be modified at runtime because they have to be compiled into executable
C++ or CUDA code to leverage the CPU/GPU acceleration. The authors of [115] test a
multi-layer perceptron and a LeNet-5 with 600 non-reconfigurable AxMs. Each approximate
NN is executed using one of the 600 multipliers for every convolutional layer following five
retraining steps, obtaining 600 sets of weights for each retrained model. In [116, 117] is
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suggested that hardware-aware retraining, while being a time-consuming, resource-intensive
strategy, can mitigate the effect of approximation. Mrazek et al. in [85] present ALWANN,
a framework for the approximation of DNNs where the assignment of each layer to an AxM,
among the eight-bit ones in EvoApproxLib [84], is performed through the multi-objective
genetic algorithm NSGA-II. The parameters of each approximate DNN are fine-tuned (updated
w.r.t. the starting model) without retraining. Therefore, for each approximate configuration, a
new set of weights must be used for each convolutional layer. Similarly, in [118] is presented
a methodology to map the layers of a DNN on a group of systolic arrays, each composed of
several instances of one AxM. The arrays are part of the same accelerator, with each region
processing only one layer of the network. Contrary to [85], the weights are not updated;
therefore, the original weights can be used with different approximate configurations. However,
using several static multiplier architectures is not scalable for a general-purpose processor due
to the area overhead; this method also impacts flexibility in a custom array accelerator. In [119],
Tasoulas et al. propose a methodology based on the modification of the bias parameter of each
layer to alleviate the approximation error. Similarly to [85], this approach generates a new set
of weights for each approximate DNN. However, their multiplier features only three runtime
adjustable approximation levels. Moreover, the reconfiguration is handled by chaining two bits
to each weight stored in memory, increasing the storage requirements and energy associated
with data movement.

Hardware-modeling Alternatives to the LUT-based approach propose to model the error
distribution of AxMs and then use it to estimate the overall error of each layer, adding it as
a sort of element-wise bias [120–123]. The advantages of modeling the behavior of AxMs
without LUT are essentially two: the simulation of the approximate operation can be done
as an element-wise operation implemented with native and highly parallelized Pytorch and
Tensorflow GPU operations, and secondly, the approach is scalable as the LUT storage, which
grows exponentially with the bitwidth is not required. These methods are a promising alternative
to enabling the fast simulation of large approximate DNNs, but they are currently limited to
a few multiplier architectures with a Gaussian error distribution. Due to this limitation, fast
LUT-based GPU acceleration that can support any AxM architecture with any error distribution
might be a better trade-off between computational complexity and flexibility than approximate
hardware modeling.
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2.4 Hardware Mapping

Mapping the execution of NNs on hardware accelerators involves strategically organizing the
computation loops within the network to improve performance. This process is also called loop
scheduling due to the presence of multiple nested computation loops in typical NN workloads,
as the convolutional layer algorithm can be written as in Algorithm 1, using the notation of
Table 2.2, with Sx and Sy denoting the horizontal and vertical stride.

Algorithm 1 Convolutional loop pseudocode (with no bias).
1: for each c in Nox do
2: for each r in Noy do
3: for each o in No f do
4: for each b in B do
5: for each i in Ni f do
6: for each x in Nkx do
7: for each y in Nky do
8: out[b][o][r][c]+ = weight[o][i][x][y] · input[b][i][Sx · r+ x][Sy · c+ y]

Input Output Weights Batch
Width/Height/Channels Width/Height/Channels Width/Height

Loop size Nix, Niy, Nif Nox, Noy, Nof Nkx, Nky B
Tile size Tix, Tiy, Tif Tox, Toy, Tof Tkx, Tky Tb

Unroll size Pix, Piy, Pif Pox, Poy, Pof Pkx, Pky Pb
Table 2.2 Notation for loop dimensions, tiling factors, and unrolling factors.

Loop scheduling defines the data computation and communication patterns. It is crucial
for efficiently utilizing the available processing capabilities of hardware accelerators, such
as CPUs[44], GPUs[124], TPUs[31], systolic[59] and spatial arrays[52], to speed-up DNN
inference. Loop scheduling optimizations include:

• Tiling/blocking: Dividing the computation into smaller blocks or tiles to fit the input and
output data into the available on-chip memory. It helps maximize data reuse and reduce
memory access overhead.

• Folding/unfolding: Combining multiple loops (folding) to reduce the memory and compu-
tation resources, or splitting a single loop into multiple loops (unfolding), replicating and
reusing data to reduce loop control overhead and increasing instruction-level parallelism.

• Loop reordering: Reorganizing data access patterns to enhance spatial locality, reducing
memory access latency.
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• Vectorization: Utilizing vector processing units to simultaneously operate on multi-
ple data elements, enhancing parallelism and accelerating execution, typical of SIMD
architectures.

• Pipeline optimization: Structuring the computation to take advantage of pipeline stages
within the hardware, minimizing idle time and improving throughput.

• Parallelization: Identifying and exploiting opportunities for parallel execution of inde-
pendent operations, distributing the workload across multiple processing units.

• Dependency analysis: Analyzing dependencies between different operations to ensure
that parallel execution does not compromise the correctness of the results.
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Fig. 2.14 Hardware model with a memory hierarchy composed of three elements (main memory, on-chip
memory, and RF) and an array of interconnected PEs.

In this doctoral thesis, the focus is on all the techniques above except for pipeline optimiza-
tion, which is strictly dependent on the target hardware architecture and requires knowledge of
low-level hardware details and tuning knobs, which might not be available to the end-user, such
as the case for GPUs and other commercial hardware. The main focus of this doctoral thesis
is also on dataflow architectures, such as [52, 125, 126], often referred to as spatial arrays.
Contrary to systolic arrays, where the computation patterns are fixed and scheduled by a main
control, spatial arrays leverage distributed control units to organize the data processing. Each
PE has its internal control unit and Register File (RF), which stores input and partial results. A
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typical accelerator with a spatial array includes a memory hierarchy, normally composed of
the system’s main memory (off-chip memory, Dynamic Random-Access Memory (DRAM)),
the internal main memory (on-chip memory, Static Random-Access Memory (SRAM)), and
local memory, often implemented as a RF. Finally, point-to-point communication within the
PEs array can be implemented with a Network-on-Chip (NoC), time-multiplexed, or other
interconnection topologies. The overall architecture is depicted in Figure 2.14. The mapspace
on dataflow architectures is considerably larger than the one of systolic arrays because more
hardware settings are exposed and need to be configured [2–4, 106, 107, 109]. The scheduling
is usually done by minimizing cost functions that associate estimated performance metrics with
the total data movement required to execute the workload. These cost functions comprehend
all significant energy and latency contributions due to data movement, such as MAC energy,
memory read/write energy at every level, and communication through the NoC. Frameworks
such as [2–4, 106, 107, 109] create an abstract hardware model of the target accelerator and
search the mapspace by optimizing the aforementioned cost function for energy, latency, or
both. These loop scheduling optimization frameworks aim to fine-tune the arrangement of
communication and computation within loops to extract maximum parallelism and minimize
resource idle time on hardware accelerators, ultimately improving the overall efficiency and
speed of DNN execution. They aim to minimize the inference energy and latency, optimizing
the utilization of the available resources. These goals can be achieved by leveraging the high
redundancy that is present in typical DNN workloads. This doctoral thesis mainly focuses
on convolutional layers since they represent the majority of computation and exhibit high
redundancy due to weight sharing, which means that each kernel map is reused to compute
many matrix multiplications for each corresponding input feature map, with any batch size. The
objective of optimal loop scheduling is to maximize the data reuse with redundant computation,
leveraging four opportunities in the processing of a convolutional loop:

• Input reuse: each input pixel is reused during the convolution to generate Nof fea-
ture maps.

• Output reuse: each output pixel is reused during the accumulation of Nif feature maps.

• Kernel reuse: kernel weights are reused Nox * Noy times over each input feature map.

• Convolutional reuse: each input pixel is reused Nkx * Nky times for a single
Hadamard product at a time.

There is an additional reuse opportunity that consists of reusing the intermediate pixel volume
between layers, and in this doctoral thesis is presented in Section 3.2.



2.4 Hardware Mapping 35

2.4.1 Loop Blocking: Temporal and Spatial Tiling

This section focuses on loop tiling and loop folding/unfolding, adopting a terminology used
in different works, taken from [2–4, 52, 106, 107, 109]. Tiling means to divide in smaller
blocks the computation of a workload. In order to simplify the analysis of the type of loop
optimization performed at a particular memory level, two terms and definitions are borrowed
from Timeloop [107] when referring to tiling and reordering applied to different loops executed
at different levels of the hardware architecture: temporal and spatial. Each memory level
within the hierarchy has a spatial and temporal loop scheduling space, tiling and reordering
can be applied to both spaces and affect the final mapping differently. When tiling is applied
to a temporal level, it defines the amount of data stored in the corresponding level and that
moved between different levels within the accelerators’ memory hierarchy. On the other hand,
when it is applied to a spatial level, it defines the degree of unrolling/unfolding, data sharing,
and replication. In this doctoral thesis, temporal tiling parameters are also called tiling factors
and spatial tiling parameters are also called unrolling factors. Temporal tiling divides the data
volume into sub-volumes at a particular memory level, as depicted in Figure 2.15. For each
temporal tiling level, the memory footprint of the tiled volume identified with the tiling factors
Tb, Tof, Tif, Tox, and Toy is defined as the buffer space required to store I inputs, W weights,
Opartial sums or outputs used during the computation. The memory footprint can be evaluated
as shown in Equation (2.16), precision refers to the bit-width of the datatype.

Imem = Tix ·Tiy ·Ti f ·T b · input_precision

Omem = Tox ·Toy ·To f ·T b ·out put_precision

Wmem = Nkx ·Nky ·Ti f ·To f ·weight_precision

(2.16)

To check if a tiling set for a particular memory level is valid, the sum of the buffered volumes
in Equation (2.16) must be less or equal to the total buffer size. When a tiling factor is equal
to its loop size, the entire loop is accessed at once, and so, at least from a logic point of view,
it can be removed since its index variation does not affect variables that used to depend on it
anymore. This strategy is used in the inter-layer scheduling presented in Section 3.2 to simplify
the data dependency analysis. It is also worth mentioning that in this doctoral thesis and the
related published research work [2–4], the kernel spatial dimensions are never tiled, as the
kernel is always accessed in a single shot. This is because a tiling on the kernel would introduce
a significant reuse degradation, as it can be easily used to compute multiple adjacent output
pixels due to the weight sharing property of convolutional layers.
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Fig. 2.15 Temporal tiling applied to a memory hierarchy that comprises two nested buffers (on-chip)
connected to the main memory (off-chip). The order is: off-chip→ on-chip level 2→ on-chip level 1.

Spatial tiling, or unrolling/unfolding, partitions communication or computation across
multiple buffers or PEs at the same level of the memory hierarchy. Similar to temporal tiling, it
is possible to have nested spatial tiling levels. For instance, in an accelerator such as the one
in Figure 2.14, spatial tiling applied at the on-chip memory would partition the data stored in
the memory banks for the computation and the space allocated to save the results. Continuing
the explanation on spatial tiling at the memory level, in particular in the case of multi-core
architectures such as the two examples depicted in Figure 2.16, partitioning the layer can
improve the throughput by assigning each core a different set of blocks to execute. Partitioning
is done by unrolling a loop of Algorithm 1 and assigning unique and replicated data to each
dedicated memory level. The available cores process a disjoint set of the original partitioned
data, and communication occurs as a parallel broadcast, whereas the shared data is available to
all the cores. The limit between unified and shared/dedicated data in Figure 2.16 corresponds
to the level where a single on-chip memory feeds multiple smaller memories, partitioned data
is saved in dedicated memories, whereas shared data is saved in shared memories.

Two memory-level spatial tiling schemes can be adopted, namely kernel and ofmap partitioning,
depicted in Figure 2.17 and Figure 2.18, based on the analysis presented in [127].

For Kernel partitioning, the weights are divided into different sets, each one with different
output channels but keeping the entire Nif and kernel map (Nkx, Nky) dimensions. ifmaps are
shared between the N cores, ofmap, and weights are partitioned according to the unrolling level
of the output channels. For Ofmap partitioning, ofmap Nox and Noy loops are split between N
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Fig. 2.16 Memory hierarchy with multiple levels of on-chip banks. The hierarchy on the right could
represent a multi-core MCU with a dedicated L1 cache for each core and a shared L2 cache.

cores, each one taking different portions of the feature maps and the entire channel dimension,
as depicted in figure 2.18. In this case, the kernel is shared between the N cores, while ifmaps
are partitioned following the same scheme as the ofmaps. ifmap partitioning on the channel
dimension is avoided as it would cause a communication overhead due to data dependencies
between the partial sums computed in different cores. After the partial convolution of input and
kernel maps is computed on any core, before saving the final ofmaps back to the main memory,
a final evaluation step is required to move all the partial sums generated in all the different
cores into a single one, execute the accumulation and write the results.

Spatial tiling can be applied applied at the PE level unrolling the computation of the data
contained in the memory banks. The unrolling is usually done over one or more spatial
dimensions of the array of Figure 2.14. For instance, considering the hardware model above
and an unrolling factor of 2 over the output channel dimension, half of the array (2 rows and
4 columns or vice-versa) would process in parallel the same input with two different sets of
weights and produce the output of two different regions of the overall output volume. In order
to provide a more meaningful example, a row-stationary dataflow is considered since it is well
documented, and there are open-source tools that can be used to validate this example [52, 107].
To demonstrate the effect of spatial tiling and reordering, only the meaningful constraints and
parameters are reported. The complete constraints can be found in [52, 107], as an analysis
here would be out of the scope of this work. The unrolling factors of Figure 2.19 are influenced
by the temporal and spatial tiling done during the scheduling of the memory hierarchy. The
availability of data ready to be processed defines the size of the PE set allocated and the degree
of unrolling. Intuitively, more on-chip memory above the compute units allows to feed more
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Fig. 2.17 Example of Kernel partitioning. Each core computes a portion of the output channels using the
same input data and a unique set of kernels. No data dependencies are present with this scheme. The
cores should receive a balanced workload requiring the same amount of compute, in order to have a
similar latency and to avoid stalls.

PEs with constant data, but also that the bandwidth requirements increase and the maximum
theoretical performance might not be reached without an adapt interconnect strategy. This
problem can be highlighted using the CTC ratio explained later in this section or by reshaping
both the communication and computation pattern by reordering the nested loops, as detailed in
Section 2.4.2.

2.4.2 Loop Reordering

Loop reordering, when applied to a temporal level, defines the order in which data is accessed at
a specific memory level. When reordering is applied to a spatial level, it defines the dimension
of unrolling over a hardware spatial dimension (height, width). The loop order is correlated
with different reuse opportunities according to the relative position of nested loops. An example
of a generic access pattern on a 3 level memory hierarchy is depicted in Figure 2.20. Some
loop orders like the one adopted in row-stationary, might force zero partial output movement
between the on-chip and off-chip buffer.

Considering Algorithm 1, there are hundreds of permutations of the five outermost loops,
but by analyzing the loop orders that significantly affect the communication, it is possible to
consider only 3 main temporal reordering schemes [128]:

• Output-weight reuse oriented (OWR): reuse the ofmap pixels over the entire output
channel dimension Nif. Weights and ifmaps are read multiple times (Nof/Tof) for
each iteration. Output pixels are moved back to the DRAM only after all the partial
sums have been accumulated. Kernel volume is reused for any batch size. On a multi-
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Fig. 2.18 Example of ofmap partitioning. Each core receives the same set of kernels but a different tile
of the input data. The input is tiled on the horizontal and vertical dimensions and not on the channel
dimension to avoid data dependencies and redundant communication and computation between the
cores. Similarly to the other case, the workload must be evenly partitioned to avoid stalls.

memory hierarchy, this is equivalent to having partial sums stored at a certain memory
level that are moved to another level only once the output channel loop of the current
level has been completed. Weights depend on channel indices and on the indices of
the horizontal/vertical loops of the ofmap. ofmaps depend on the output channel and
batch/horizontal/vertical loops indices, ifmaps depend on the same indices of the ofmaps
plus the input channel index.

• Weight reuse oriented (WR): reuse the kernel maps over the entire ofmap dimension.
This reuse is batch-independent, as the batch loop is below the input and output channel
loop. ifmaps and ofmaps are read multiple times for each iteration. On a multi-memory
hierarchy, this is equivalent to having weights stored at a certain memory level, which are
fetched from the level above only once the ofmap has been cycled at least once. Weights
depend on output/input channels indices only, ofmaps depend on the input/output channel
and batch/horizontal/vertical loops indices, and ifmaps depend on the same indices of
the ofmaps plus the input channel index.

• Input reuse oriented (IR): reuse the same ifmap pixels over the entire output channel
dimension Nof. ofmaps and weights are read multiple times for each iteration. On a
multi-memory hierarchy, this is equivalent to fetching the Input pixels only once from
the memory above for an entire input channel loop execution. Weights depend on
output/input channels indices and on the indices of the horizontal/vertical loops of the
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and Pif = 2. PEs with the same color process the same output channels; the dotted line separates PEs
computing different input channels.

ofmaps. ifmaps depend on the input channel and batch/horizontal/vertical loops indices,
ofmaps depend on the same indices of the ifmaps plus the output channel index.

Switching dynamically between these three schemes allows to schedule the entire DNN
model exploiting the reuse opportunities of different layers. As a trivial example, layers with
a very large kernel can benefit from OWR and WR schedules, whereas layers with large
feature maps and more input channels than output channels will benefit the most with an IR
schedule. For any loop order and set of tiling factors, it is possible to define the fetch and
write occurrences of ifmaps, ofmaps and weights between two connected memory levels within
the hierarchy. Given the reuse schemes IR, OWR and WR it is possible to define the unique
accesses for each of these datatypes, i.e. how many times a pixel/weight is moved across
the memory hierarchy to generate a disjoint set of outputs, by considering which variable is
depending on which loop order, as in Equations (2.17),(2.18), and (2.19), adapted from [59, 60].
Ifetch, Kfetch, and Ofetch are the number of unique fetch operations of the input, weight and
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possible to eliminate 2 write operations and 2 read operations.

output pixels respectively, whereas Owrite is the number of unique write operations.
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The OWR and WR strategies maximally reuse ofmaps and weights respectively, leveraging
batch reuse. These two schemes are the best choice for maximum energy efficiency in case
of large batches, whereas the IR strategy are effective for unitary batch, or more in general in
layers where the input volume is predominant. Finally, the total amount of fetch/write data
is evaluated by multiplying the buffer occupation by the invocation count for each datatype.
Therefore, using again the notation of [59], the total communication volume for the three
schedules is given by Equation (2.20).

comm. volumeIR = Imem · IIR
fetch +Wmem ·KIR

fetch +Omem · (OIR
fetch +OIR

write)

comm. volumeOWR = Imem · IOWR
fetch +Wmem ·KOWR

fetch +Omem · (OOWR
fetch +OOWR

write)

comm. volumeWR = Imem · IWR
fetch +Wmem ·KWR

fetch +Omem · (OWR
fetch +OWR

write)

(2.20)

LT out
x = Nox−Tox ·

( ⌈
Nox
Tox

⌉
−1

)
LT in

x = (LT out
x−1) ·Sx+Nkx

Rx =

⌈
Nox
Tox

⌉
−1

(2.21)

The ifmap fetch volume must be corrected in case of Tix≪ Nix and Tiy≪ Niy, adopting the
set of Equations (2.21), which are used to compute the adjusted ifmap fetch (adj_if_f ), ratio
of Equation (2.22) (for conciseness, only the equations for x are reported, the equations for
y are identical). This correction accounts for smaller tiles LT on each spatial dimension and
the number of repetitions R, and is necessary to estimate the correct communication volume.
The variable repsx (repsy) represents the amount of repeated tiles over the horizontal (vertical)
dimension. The final ifmap fetch then can be evaluated as in Equation (2.23).

ad j_i f _ f = Tix ·Tiy∗Rx ·Ry +LT in
x ·Tiy ·Ry +LT in

y ·Tix ·Rx +LT in
x ·LT in

y (2.22)
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As stated above, spatial reordering defines the dimension on which a particular loop is
unrolled. In this doctoral thesis, the term dataflow is used to identify the unique computation
pattern resulting from a particular spatial order applied at the PE array level, or inside the PEs.
There are three main dataflow schemes that are usually found in research and commercial
hardware architectures: input stationary, weight stationary, and output stationary. The term
stationary indicates which type of data is maximally reused at the PE level, i.e., exhibit the
lowest data movement. Figure 2.20 shows an example where weights are the data type with the
maximum reuse across the hierarchy and also at the PE level, which could represent a weight
stationary implementation. The characteristics of the three dataflows are listed below, with the
considerations on each one extracted from [52, 128–130]:

• Weight stationary: the weights are stored in the PE memory and reused with input
activations that are sourced from other levels of the memory hierarchy, whereas the partial
outputs are accumulated across different PEs. This dataflow is particularly effective for
weight-dominated workloads but also performs well on output-dominated ones.

• Output stationary: partial outputs are accumulated internally on each PE, which com-
putes a unique portion of the output activations. Weights and input activations are
sourced from other levels of the memory hierarchy. The same considerations done on the
effectiveness of weight stationary apply to this dataflow.

• Input stationary: input activations are reused in each PE, weights are sourced from
memory, and partial outputs are stored/sourced to/from other memory levels. This
dataflow is outperformed by the other two due to data communication and replication
overhead due to the data dependency between different neighbor regions of the output,
which depends on overlapping input regions, as already highlighted in the case of ifmap
partitioning.

• Row stationary: a mixture of the three dataflows presented above. Small regions of
input rows of one or more feature maps are reused at the PE level, which also reuses
multiple rows of the weights to produce multiple output pixels.
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2.4.3 Computation-to-Communication Ratio

The peak performance of an hardware accelerator is bounded by either the computational
rooftop, which is the theoretical maximum number of operations per cycle, or the memory
bandwidth, which limits the accelerator’s performance, preventing the processing units from
working at full regime with a constant flow of new data. The CTC ratio defines the amount
of computation attainable with a certain amount of communication and can be increased
by maximizing data reuse and reducing data movement between different memory levels.
Equation (2.24) represents a CTC ratio formula based on the one presented in [131]. γ

represents a bandwidth-correction term to account for the burst-length of the memory transfers,
which penalizes small memory accesses and favours transfers that saturate (fully use) the
burst. The numerator is the number of operations/complexity of a particular workload. The
denominator is the overall memory access with bandwidth scaling for input, weights, and
outputs for a particular workload.

CTC =
2 ·Nox ·Noy ·Nkx ·Nky ·No f ·Ni f

γ ifm · volumeifm + γwght · volumewght · γpsm · volumepsm · γofm · volumeofm
(2.24)

2.4.4 Energy and Latency Models

Typically, loop scheduling frameworks use LUTs with the energy cost of each atomic operation,
i.e., memory access or arithmetic, to produce relevant hardware metrics. The cost of all data
movement at each memory level can be evaluated by accumulating the fetch/write count relative
to each data type, multiplied by the associated energy cost. Below is reported how to evaluate
the overall data movement energy, denoting with i-1 the current memory level and i the one
above, the normalized energy access per operation can be evaluated as in Equation (2.25).

energyi-1 to i
read = energyi

read + energyi-1
write

energyi-1 to i
write = energyi

write + energyi-1
read

(2.25)

The energy of arithmetic operations can be averaged and fused into the write energy of partial
sums. The overall read energy is then estimated by multiplying the total read volume by the
normalized energy per read; the same is done for the write energy. This is repeated for every
level in a memory hierarchy with M levels, with M indicating the DRAM level and with 0 the
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registers inside each PE of the array. The total energy is evaluated as:

Energymemory =
M

∑
i=1

memoryread · energyi-1 to i
read +

M

∑
i=1

memorywrite · energyi-1 to i
write (2.26)

The overall computation latency expressed as the number of cycles can be evaluated by
considering the total number of operations, as in Equation (2.8), the available data on-chip,
and the number of concurrent operations that can be executed. The tiling factors determine
inter-tile cycles, which are the number of data transfers required to compute the output of a
single tile at the array level. The unrolling factors determine the intra-tile cycles, that is, the
number of computation cycles required to compute the output of a single tile using all the data
available at the array level. Using the notation of Table 2.2, the total number of operations is
evaluated as the product of inter-tile and intra-tile cycles, as in Equation (2.27).
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⌉
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⌈
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⌉
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⌉
·
⌈
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Pky

⌉
Total operations = Inter-tile cycles · Intra-tile cycles

(2.27)

2.4.5 Formal Reuse Analysis

Highlighted in Section 2.4.1 and Section 2.4.2, reuse depends on the loop order, the memory
size, and the allocated tiling factors. Considering the case of convolutional layers, if there are
enough input activations and enough free storage for partial sums or output activations, the
same weights can be reused to compute additional outputs. The same applies to weights and
output activations. Reuse can be computed for all three data types at each memory level as the
number of times a datum is accessed at the current level from the lowest level in the hierarchy
until it is removed. To compute the reuse, weight, input activations, and partial sums or outputs
are grouped into two data groups: I inputs (input activations and weights) and O outputs. I
inputs are accessed with a single direction, as they are only read to compute the O outputs,
which in turn can be either read from or written back to the memory. Using an energy model
like the one of Section 2.4.4, it is possible to create the objective functions of Equation (2.28) to
minimize the energy and latency of the accelerator by maximizing the reuse of the data. These
objective functions are originally defined in [52] and are at the core of the loop scheduling
optimization frameworks presented in Chapter 3. The coefficients defining the reuse at each
level are directly taken from [52] and are: a for the reuse at the DRAM level, b for the on-chip
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memory level, c for the array level (neighbor-to-neighbor communication), and d for the RF
level (internal memory of the PE). If there are multiple intermediate memory levels, additional
coefficients can be added to represent the reuse at each level. If another on-chip buffer is added,
a new coefficient, say e, can be added and multiplied with the reuse at each lower level. The
energy cost computed with Equation (2.26) is used in Equation (2.28) to evaluate the energy
cost associated with the reuse. Similarly, it is possible to estimate the overall communication
and computation latency by using the latency cost. To simplify, as has been done in the previous
section, only the equations for the energy are reported. Notice how O outputs can be accessed
twice, once to read and once to write. The same coefficients used for I account for the read and
write operations of the O outputs at each memory level.

I(a,b,c,d) = a ·ENDRAM +ab ·ENon-chip +abc ·ENarray +abcd ·ENRF

O(a,b,c,d) = (2a−1) ·ENDRAM +2a(b−1) ·ENon-chip+

2ab(c−1) ·ENarray +2abc(d−1) ·ENRF

(2.28)

It is possible to define the weight and output stationary dataflows presented previously with the
constraints applied to the coefficients of Equation (2.28). For instance, in the case of an output
stationary dataflow, the a coefficient is set to 1, so that output activations are only stored and
not read from the DRAM, and b is set to 2, so that the output activations are stored from the
array level to the on-chip memory, and then written back to the DRAM.

2.5 Error Resilience

AI algorithms are susceptible to three main computation error sources: numerical error due
to compression, logic transients due to natural phenomena (EM interference), or adversarial
attacks. Compressed DNNs are usually more susceptible to adversarial attacks and logic
transients than full precision models if no particular training or post-processing are employed
[7, 132, 133]. This section focuses on the error resilience to faults and adversarial attacks and
presents some recent related works.

2.5.1 Hardware Errors

Unwanted and uncontrolled numerical errors, in addition to quantization and approximation,
might cause catastrophic accuracy degradation, which is not tolerable in safety-critical applica-
tions. In autonomous driving, for instance, a DNN deployed to unmanned vehicles driven on
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regular roads [134, 135] may be used to detect pedestrians, cars, or trucks [25]. The decisions
made by the guiding system, such as accelerating, braking, or turning, heavily rely on the
accurate identification and localization of these objects. Numerical errors inducing a wrong
output could result in unsafe conditions for the driver, pedestrians, or other objects near the
vehicle. Therefore, applying error resilience techniques to deployed DNNs is imperative to
ensure the reliability and safety of systems operating in real-world environments. As depicted
in Figure 2.21, atmospheric neurons, ionizing particles, voltage/temperature variations, and
other interference may perturb a transistor’s state, generating bit flips in memory or current
spikes in logic circuits that, if latched, lead to an error [7, 136]. The DRAM can also be targeted
by row hammer attacks, which can change the content of any cell [137].
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Fig. 2.21 Possible error sources and injection points in a generic hardware accelerator.

Recent works [133, 7] studied the effects of logic transients on the task accuracy of DNNs,
emphasizing that it is necessary to take a holistic approach to error resilience, considering both
the hardware and software aspects of the system. In particular, the authors of Fidelity [133]
propose a framework that performs the simulation of logic transients in control and datapath
units of a DNN accelerator after the mapping while simulating the computation. The mapping
process extracts tokenized computation and communication patterns, which are used to trace
the propagation of errors in the system and their influence on all subsequent computations.
Contrary to previous works, which focused on bit-flips occurring only on memory elements,
this study broadens the understanding of which parts of the system are more susceptible and if
the best mitigation strategy has to be applied at the hardware or software level. The authors
of [7] followed a similar injection approach to study the effects of bit-flips in activations and
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weights of quantized adversarially robust DNNs, observing that the activations are more error-
prone than the weights and that old DNN architectures without batch normalization are more
susceptible to logic transients. Additionally, quantization is antagonistic to error resilience and
adversarial robustness, but this effect can be mitigated by adopting a strategy that tunes the
scaling factors used to map from FP32 to integer, similarly to what has been proposed in [132].
These studies focused on randomly generated logic transients, but there are also targeted attacks
such as row-hammer [137], which can be used to induce bit-flips in very specific locations
of the DRAM. This opens a backdoor for attackers to search for targeted bit-flips that can
annihilate the DNN’s accuracy, as shown in [138], where 13 targeted bit-flips are induced to
break a DNN with 93 million parameters. However, the possibility of a similar attack occurring
in nature is extremely low. Therefore, the focus of the research work of Section 4.1 is on
random bit-flips, which are more likely to occur in real-world scenarios.

2.5.2 Adversarial Attacks

Introduced in [139], adversarial attacks are a set of techniques that aim to reduce the accuracy
of a DNN by adding a carefully generated noise to input data, as shown in Figure 2.22. What
makes adversarial samples extremely important for safety concerns, if not even more than
standard hardware errors, is that they can be embedded extremely well in the original data,
making them indistinguishable to the human eye. The pixel noise added to the original image
is usually very small and apparently random and is generated by minimizing the difference
between the original and the adversarial sample while maximizing the difference between the
original correct prediction and the target mis-prediction. A perturbation budget ε is used to
limit the magnitude of the noise. Intuitively, a small ε will generate an almost imperceptible
noise, whereas a large ε might add a visible distortion to the image.

Methods to generate adversarial samples x̂ and train the adversarial generator usually
leverage the gradient ∇ of the loss computed with respect to the input data x used to generate
the noise L using the sign of the gradient (FSGM) [140], or a projection of the gradient (PGD)
[141], reported in equations Equation (2.29) and Equation (2.30) respectively. The PGD
attack is more effective than FGSM, as it is built on multiple iterations, but it is also more
computationally expensive and slower to train and requires an additional hyperparameter α . In
both Equation (2.29) and Equation (2.30), the perturbation δ is initialized and updated (learned)
for multiple iterations.

δ = max(min(δ + ε · sign(∇L),ε),−ε)

x̂ = x+δ
(2.29)
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Fig. 2.22 In an adversarial attack, an RGB perturbation is generated and added to the original image,
obtaining an adversarial sample that is indistinguishable from the original, inducing the DNN to predict
a wrong class.

(repeat δ update f or N iterations be f ore adding δ to x)

δ = max(min(δ +α · sign(∇L),ε),−ε)

x̂ = x+δ

(2.30)

The DNN can be trained with adversarial samples to increase the robustness to adversarial
attacks, as shown in Figure 2.23. This is called adversarial training and consists of embedding
adversarial samples alongside standard samples in the training dataset. The perturbation
generator can be based on FGSM, PGD, or any other attacking method. Of course, the
computing overhead of adversarial training is significantly higher than the one of standard
training; therefore, it is also necessary to consider the tradeoff between final task accuracy,
adversarial robustness, and time to train and tune the hyperparameters [142].

Compressed DNNs are found to be more susceptible to adversarial attacks [7, 132]. Pixel
noise in quantized DNNs pushes the activations (computed with the malicious pixels) to other
quantization levels. These activations, in turn, do the same with other subsequent activations,
and so on, in a chain effect in which the number and magnitude of wrong quantization values
are amplified through the DNN [132]. The authors of [132] propose a method to bind the
magnitude of weights and activations so that this amplification effect is turned into a dampening
effect. Other works propose to limit the dynamic range of FP32 and INT values by applying
clipping activations but were only applied to old DNN architectures without batch normalization
and are of limited relevance [7].
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Fig. 2.23 A general adversarial training process consists of producing pixel noise and adding it to
the training data, evaluating the loss, and updating the learnable parameters of both the DNN and the
perturbation generator. Like regular training, the process is repeated for a fixed number of epochs, but
the update of the perturbation generator can happen at a different pace than that of the DNN.



Chapter 3

Edge Inference Optimization with
Compression and Scheduling

Deploying DNNs on embedded devices is challenging due to the high computational complexity
and memory requirements of modern models. The development of specialized hardware
accelerators has been proposed as a solution to improve the energy efficiency and throughput of
DNN inference. However, the design of these accelerators is complex and requires exploring
a large design space to find the optimal configuration for a given DNN model, maximizing
selected performance targets. In the early design phases, the target hardware platform is not
fully defined; the hardware is not available yet, and compilers are not optimized or create
erroneous code. Therefore, a framework that allows the joint exploration of the design space of
the DNN model and the hardware accelerator at different design phases is essential to optimize
the performance of the final system.

This chapter presents a methodology for optimizing DNN models with compression and
scheduling techniques to improve the performance of hardware accelerators. The proposed
methodology is based on the Hw-Flow framework, which provides a multi-level hardware
abstraction model for exploring the mapspace of compressed DNNs on accelerators. Three
optimization strategies based on Hw-Flow are presented, focusing on the last: Hw-Flow-P,
Hw-Flow-Q, and Hw-Flow-Fusion. Hw-Flow-P is a pruning methodology, whereas Hw-
Flow-Q is focused on quantization. uning methodology, whereas Hw-Flow-Q is focused on
quantization. Both methodologies compress NN models and directly impact the performance
of hardware accelerators and that of the DNN. The name Hw-Flow-P is used only in this
chapter to differentiate the compression strategy from the scheduling one, Hw-Flow, which
is also the name of the paper [2]. Finally, Hw-Flow-Fusion is a layer fusion framework that
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uses scheduling techniques to leverage the data reuse between consecutive layers of a DNN to
improve the performance metrics of hardware accelerators based on spatial arrays. Part of the
work presented in this chapter has been previously published in [2–4].

3.1 Optimized Scheduling of Compressed Neural Networks

The goal of the Hw-Flow framework is to provide an exploration methodology and not a
compression technique. All hardware-agnostic or hardware-aware quantization and pruning
techniques discussed in Section 2.3 can be integrated in Hw-Flow.

3.1.1 Design Space Exploration with Multiple Abstraction Levels
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Fig. 3.1 Higher abstraction levels are explored faster than lower ones, but carry less information. The
global optimum, i.e. the point with the best trade-off between accuracy and hardware metrics, is searched
by iteratively refining the design space, removing solutions that are known (or deemed) to be inefficient.
Redesign is done in case of constraints violation.

The idea behind multiple abstraction levels is to explore the design space in a top-down fashion,
traversing the three levels of Figure 3.1: coarse, mid, and fine. These levels could represent
different hardware development stages, from the early design phase, in which the architecture
is not yet defined and only the model’s size is a relevant metric, to the final implementation, in
which the full mapping process is available, and performance bottlenecks are known. Each level
carries more implementation-specific aspects and if the exploration fails to find any suitable
solutions that satisfy the performance targets, the design is re-evaluated at the previous level.
There are two search spaces to explore: the DNN design space and the hardware mapspace.
While progressing towards the fine level, the DNN design space is reduced, as few variations of
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the same compressed model are considered. This means that some quantization and pruning
policies are dropped as they are not among those with the highest efficiency for the current
hardware mapping. Each abstraction level carries different constraints that must be met before
moving to the next level. For instance, the coarse level could require a maximum number of
operations, while the mid level could require a maximum off-chip communication volume. In
case some constraints are not met, a redesign step is done. Previously unexplored policies are
added to the pool of candidate solutions and the exploration is restarted from the last level
that had valid solutions. Conversely, the hardware mapping space increases in complexity
as more details are added to the mapping process while moving towards the fine level. The
hardware feedback at the coarse level comprises the number of MACs and parameters and
can be computed with a simple sum of products for each layer as in Equation (2.8). At the
mid and fine levels, for each layer, it is necessary to evaluate each equation of Section 2.4 for
each combination of tiling factors and relative loop orders to obtain the hardware feedback.
Depicted in Figure 3.2, the exploration starts from the coarse level, where quantization and

Coarse Mid Fine

Redesign / AbstractionRedesign / Abstraction

Optimization / Refinement

Baseline DNN

Compression
agent

Pool of

quantized or

pruned DNNs

Compression
agent

Compression
agent

Overal best

quantized or

pruned DNNs

Pool of 

quantized or

pruned DNNs

Reduced pool of

quantized or

pruned DNNs

Reduced pool of 

quantized or

pruned DNNs

Hw-Flow Hw-Flow Hw-Flow

- precision
- parameters

- # MACs
- Memory footprint

- precision
- parameters

- CTC ratio
- Memory energy
- Mem. latency
- Mem. accesses
- Mem. occupation

- precision
- parameters

- Per-datatype energy
- Per-datatype latency
- Tot. energy and latency
- Resource usage
- Detailed scheduling

Memory size

Partial mem.
hierarchy, size,

bandwidth,
partitioning

PE architecture,
NoC specs.,
supported 
dataflows

No mapping

optimization

-Tiling

-Reordering

- Unrolling

- Interleaving

- Reuse opt.

- Full mapping

Optimization / Refinement

Fig. 3.2 Constraints, hardware details, mapping, and model compression are carried from higher to lower
abstraction levels during each optimization step. In case of redesign, the mapping and compression
policies up to the current level are discarded and new DNNs from the pool are optimized. The DNN
pool contains different compression policies of the same baseline model.

pruning are applied to a single DNN architecture or different DNNs. This stage can be used
to either generate a first pool of different compression policies applied to the same DNN or
to select one DNN architecture from several models. At this stage, the total computation and
memory footprint of the model are evaluated, whereas the task accuracy is provided by the
ML framework executing the training loop and compression agent. No hardware mapping
optimization is performed at this level, as the hardware is not yet defined. The generalized
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quantization or pruning schemes can be selected at this level, such as PACT [70] or geometric
mean [89]. Once the DNN(s) meets the coarse-level constraints, the mid level is evaluated,
assessing the performance of the memory hierarchy from the off-chip memory to the last buffer
level before the array of processing units. At this stage, several combinations of tiling factors
and loop orders are evaluated for each memory level for each layer of the DNN. Section 3.1.2
details how the performance metrics are evaluated and how the memory mapping is carried
out. The mid level results can be used to identify possible performance bottlenecks in the
memory hierarchy. The designer can then modify the hardware architecture, or enforce a
more aggressive compression policy to reduce the data movement of some datatypes. When
the mid-level constraints are met, the fine level, the last stage, is evaluated. The fine level
mapping is based on the results of the mid level and is the most computationally expensive,
as it requires the evaluation of the full hardware mapping, considering additional information
as the number of processing units, the RF size, NoC specifications, and arithmetic units
precision and vectorization. The hardware feedback can again be used to modify the array
and PE architecture, for instance, by increasing the number of processing units to increase the
throughput or decreasing the RF size due to low utilization. The compression policy can also be
modified, for instance, by forcing a lower bitwidth of the weights to reduce the RF occupation.

3.1.2 Optimal Loop Scheduling

Section 2.4 details all the equations used in Hw-Flow to compute the optimal loop scheduling
or hardware mapping. Depicted in Figure 3.3, the hardware mapping process is divided into
two main steps: the memory mapper and the dataflow mapper. The memory mapper uses
the hardware constraints related to the memory hierarchy, in blue in Figure 3.3, to find the
optimal tiling factors and loop orders for each layer, adopting several performance metrics to
evaluate the efficiency of the mapping. The dataflow mapper uses the results of the memory
mapper to find the optimal tiling, unrolling, and interleaving for each layer, considering the
dataflow constraints, in red in Figure 3.3. In case of invalid dataflow mapping, the memory
mapper is re-executed. At each level, the memory and dataflow mapper uses Equation (2.16)
to compute the memory requirements and decide whether the tiling factors are valid or not, if
they lead to a memory occupation that exceeds the available memory size. The loop order can
be selected between one of the three possible orders detailed in Section 2.4.2: IR, WR, and
OWR. The fetch and write operations are computed using Equations (2.17, 2.18, 2.19), while
the CTC is computed with Equation (2.24), and the inter-tile cycles with Equation (2.27). The
overall communication energy is computed by accumulating, for each memory level, the total
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fetch/write energy evaluated with Equation (2.26), using the communication volume evaluated
with Equation (2.20).
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Fig. 3.3 Joint memory and dataflow mapping process. Blue and red colors highlight the constraints and
hardware model used by the memory mapper or the dataflow mapper.

All these metrics are used to create an ordered list of the valid memory mappings according to
the mapping objective set by the user. The best memory mappings are passed to the dataflow
mapper, which builds and explores the low-level mapspace, which includes the set of all possible
dataflows, tiling, unrolling, and interleaving factors for a given layer. Equation (2.16) is again
used to evaluate the memory requirements for the buffering at the register file level, while
variations of Equation (2.17), Equation (2.19), and Equation (2.18) are used to evaluate the
fetch and write operations from the last on-chip memory level to the array level. The dataflow
mappers minimize the data movement by optimizing the objective function of Equation (2.28).
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As the reuse coefficients of Equation (2.28) directly depend on the selected loop order, dataflow,
tiling, unrolling, and interleaving factors, the dataflow mapper can assess the efficiency of the
entire hardware mapping. After that, intra-tile cycles and total computation cycles are evaluated
with Equation (2.27). Finally, a feedback from the dataflow mapper is sent to the memory
mapper, which re-executes the mapping process with different parameters. The cycle repeats
until all valid mappings have been evaluated.

3.1.3 Pruning and Quantization Agents
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Fig. 3.4 Overview of the quantization and pruning methodologies. The hardware estimates are used
to compute the reward for the RL agent used for pruning and the objective functions for the genetic
algorithm used for quantization.
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The mapping process of Section 3.1.2 is used to evaluate the efficiency of the compression
policies generated by the pruning agent of Hw-Flow-P [2] and the quantization agent of Hw-
Flow-Q [3]. The pruning agent is based on a RL algorithm based on a deep deterministic policy
gradient (DDPG) agent [27], while the quantization agent is based on two genetic algorithms, a
single objective genetic algorithm (SOGA), and a multi-objective nondominated sorting genetic
algorithm (NSGA-II). The quantization and pruning processes of Figure 3.4 are not performed
in parallel but are depicted together as they share both the DNN training environment and the
hardware mapping framework.

Pruning Agent The pruning agent of Hw-Flow-P [2], depicted in Figure 3.4, is based on the
work of [80]. The agent receives a state Sl for layer l and generates a pruning mask Al as action.
A reward R is computed based on the accuracy of the model and the hardware estimates and
used to train the agent. The computation of reward and the state information change according
to the abstraction level, allowing the agent to learn the effects on the performance of the pruning
policy that it generates. The state S of Equation (3.1) comprises the layer index l, stride s,
the dimension of the pruned layer ˜No f , ˜Ni f ,Nix,Niy. Hardware estimates are included as
ϕ = [ϕ0, ...,ϕ l, ...,ϕL] for each layer l of a DNN with L layers, each ϕ l containing the chosen
performance metric (i.e., energy, latency, CTC). The term Al−1 is the action performed at the
previous step, i.e., layer.

Sl = {l,s, ˜No f , ˜Ni f ,Nix,Niy,ϕ l,
l−1

∑
i=0

ϕ
i,

L

∑
j=l+1

ϕ
j,Al−1} (3.1)

Two reward protocols are adopted: the balanced and the constrained reward functions, as
defined in Equation (3.2).

R =

{ (
1− ψ∗−ψ

b ) · log(ϕ∗
ϕ
), if balanced

ψ, otherwise constrained
(3.2)

The reward function is formulated to achieve a minimum target accuracy ψ∗ before performance
estimates are optimized. This condition occurs when hardware constraints are not known. The
measured accuracy ψ is compared to the target accuracy ψ∗, and the agent is encouraged to
improve the accuracy when the difference is larger than b. The term b also influences the sign
of the reward. The ultimate goal of the balanced reward, for each pruning action, is to trade-off
the accuracy term (1− (ψ∗−ψ)/b) and the hardware estimate term log(ϕ∗/ϕ). The terms ϕ∗

and ϕ indicate the estimates of the baseline and pruned model, respectively. Adding additional
logarithmic terms makes it possible to include additional performance metrics to the reward
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function. On the other hand, the constrained reward promotes maintaining higher prediction
accuracy ψ after each pruning action. This encourages the agent to prune the model while
minimizing the accuracy degradation with specified hardware constraints. The pruning action
is performed for as many steps as the number of layers composing the DNN, which is then
retrained for a fraction of an epoch to recover from the accuracy loss introduced by the pruning
and tested to extract the task accuracy. The other relevant implementation details and the results
can be found in [2].

Quantization Agent The search space of mixed-precision and layerwise quantization strate-
gies q2L solutions, where q is the set of possible quantization levels and L is the number of
layers. To explore this enormous search space, two genetic algorithms are used: a single-
objective genetic algorithm (SOGA) and a multi-objective genetic algorithm (MOGA), the
latter based on NSGA-II [143]. The SOGA is used when a single objective function is defined
(only task accuracy), while the MOGA is used when multiple objectives are defined (task
accuracy and hardware metrics), using the fitness defined in Equation (3.3). The terms ϕ∗

and ϕ indicate the estimates of the baseline and quantized model, respectively. Similarly, ψ∗

and ψ are the task-related accuracy of the baseline and quantized model, respectively. The
previous conditions correspond to the coarse and mid, fine levels of the abstraction hierarchy,
respectively. Each individual of the population is a quantization strategy, and the fitness of
the individual is evaluated based on the task accuracy and the hardware estimates (only for
MOGA). The quantization strategy is encoded in a genome where each genetic locus contains
the bitwidth values for weights and activations at the corresponding layer. The alleles of the
genetic loci are the set of possible quantization levels supported by the hardware model, there-
fore anything in the range [1,q]. Regarding the genetic operations of mutation and crossover of
Figure 3.4, the mutation operator replaces a single allele at a randomly selected genetic locus,
whereas the crossover operator swaps the bitwidth-to-layer encoding of two fit individuals.
Single-point crossover is used to preserve inter-layer dependencies across segments of the
DNN. There is a higher correlation between the parameters of adjacent layers than between
distant ones. Assuming that only the fittest individuals survive, sequences of quantization
levels that benefit task accuracy and hardware efficiency are more likely to be preserved and
reused in the offspring. Therefore, single-point crossover is a good choice to maintain the
locality of the genetic loci. Mutation then allows the offspring to overcome the local minima
of their parents. The selection process is based on tournament selection for SOGA and on the
crowded-comparison operator for NSGA-II. The sorting operator of Figure 3.4 refers to the
nondominated Pareto sorting of NSGA-II and is used only in the MOGA. At each iteration of
any genetic agent, the population is evaluated after a quick fine-tuning, and the best individuals
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are selected to generate offspring. Once the population of the next generation has been selected,
the process is repeated for n generations. The other relevant implementation details and the
results can be found in [3].

Fρ =

{ (
1− ψ∗−ψ

t ) · log(ϕ∗
ϕ
), if SOGA

ψ,ϕ otherwise NSGA-II
(3.3)

3.1.4 Hw-Flow Framework Validation

The main contribution of the research work carried out by the doctoral candidate in not on
the optimization agents, but on the scheduling and mapping framework. Therefore, only the
experimental results related to the hardware mapping are presented in this section.

The baseline Eyeriss model architecture from [52] is used to validate the Hw-Flow frame-
work, comparing the mapping results against those generated with Timeloop [107]. As Eyeriss
exposes several data movement patterns within the memory hierarchy and complex on-chip data
movement, it is a suitable target for the validation of the Hw-Flow framework. This includes
identifying and avoiding illegal mappings, such as those that violate the memory constraints
or allowed data-movement, and evaluating correct energy and latency estimates. Figure 3.5
shows the normalized energy and latency estimates of the Hw-Flow framework compared to
Timeloop. The energy estimates are consistent with the baseline and Timeloop, showing only a
small discrepancy, while the latency estimates are exactly the same.
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Fig. 3.5 Energy and latency validation with AlexNet and the baseline Eyeriss architecture.

To further validate the Hw-Flow framework, the Eyeriss architecture [52] based on the
variation with 256 PEs and 256KB of on-chip memory, as detailed in [107] is chosen and
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simulated using DNN workloads taken from the DeepBench benchmark [144], to validate
the framework’s ability to handle layers with different geometries. The mapping results and
hardware estimates are again compared with those generated with Timeloop [107], used as
the baseline/ground-truth. Figure 3.6 and Figure 3.7 show the normalized energy and latency
estimates of the Hw-Flow framework compared to Timeloop. The results show that the Hw-
Flow framework is able to reliably estimate the energy and latency of the Eyeriss architecture,
compared to Timeloop [107].
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Fig. 3.6 Validation of the Hw-Flow framework for energy estimates against Timeloop.

3.2 Hw-Flow-Fusion

Hw-Flow-Fusion is the last iteration of the Hw-Flow project and is focused on inter-layer
scheduling, in which the execution of multiple layers of a DNN is mapped to an accelerator
in which the resources are allocated to process them concurrently, during the same inference.
Accelerator based on a spatial array have enough hardware settings and control to support
multiple PE sets to compute the same layer, as demonstrated in [52, 125], and can be enhanced
with an inter-layer scheduling framework that can explore the mapspace of fused layers. Instead
of using dedicated arrays, Hw-Flow-Fusion leverages the PE sets to compute different layers,
reusing the available hardware resources.
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Fig. 3.7 Validation of the Hw-Flow framework for latency estimates against Timeloop.

3.2.1 Inter-Layer Scheduling in Previous Works

In MAGMA [130], multiple layers with no data dependency are scheduled on the same
hardware accelerator. The resource partitioning is done at the array level and determined using
a genetic algorithm. Improving over [130], Hw-Flow-Fusion [4] also considers the memory
partitioning within each processing engine of the array. In DNNFusion [145], the execution
of DNNs on CPUs and GPUs is accelerated by re-writing the computational graph during
the mapping, fusing the execution of arithmetical operations. Contrary to [4, 130, 146, 147],
which focus on reconfigurable dataflow architectures, DNNFusion targets general-purpose
architectures that leverage the GEMM algorithm [58] to compute the convolutional layers.
The concept of executing multiple layers with data dependencies was introduced in [146],
where is proposed an accelerator with a systolic array that can execute the first five layers
of VGG16-E, reducing the volume of data transferred to the DRAM by 95%. A dedicated
on-chip memory is used to store intermediate data to avoid recomputing redundant pixels. This
methodology can be applied only to accelerators customized for a specific DNN, preventing
the same hardware accelerator from being used for a different DNN model. This limitation is
solved in Hw-Flow-Fusion[4] and [147, 148], in which inter-layer scheduling is extended to
dataflow architectures. In DNNfuser [147], transformers are used to fuse and map on a dataflow
accelerator the execution of multiple layers that share the same hardware resources. However,
only a limited number of spatial and temporal tiling factors are considered during the search,
and the reuse strategy, fundamental in [146] to avoid redundant data movement and arithmetic
operations, is not discussed. Additionally, there are no details on the memory used to store
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intermediate pixels and how the computation and communication patterns between fused layers
are modeled. In [148] is presented a framework to map the execution of multiple layers of the
same DNN, using a genetic algorithm to find the energy/latency optimal resource allocation on
a heterogeneous multi-core hardware architecture. The memory system model includes on-chip
and core-to-core communication cost and latency, with the introduction of a custom memory
manager that minimizes congestion and maximizes bandwidth usage.

3.2.2 Proposed Methodology

Inter-Layer Scheduling Concepts and Constraints

Partial sums, generated as the products of input pixels and weights, are usually accumulated
on-chip, then stored in the off-chip memory once the computation of the current layer is
finished, and fetched again when processing the next layer [1, 50–52]. This process repeats
until the last layer of the network. Output pixels from a layer, except the last one, can be
called intermediate pixels, as they are not the original input to the network nor the final output.
It could be possible to fetch intermediate pixels directly from the processing engines or the
on-chip memory, reducing the data movement along the memory hierarchy and generating
the output of the next layer. Intermediate pixels would be directly passed from one layer
to the next, retained in case of data dependency, or discarded when no longer needed. The
computation of DNNs in a specialized accelerator is deterministic; therefore, it is possible
to evaluate when to save or delete any activation (input, intermediate) or set of weights on
a dedicated on-chip buffer that, similarly to [146] has the function of retaining data that is
required in multiple processing steps. Intermediate data exists only on the on-chip memory
and lower memory levels, allowing additional energy saving by reducing the most expensive
data movement, as the cost for DRAM accesses can be 20~30 times higher than that of SRAM
accesses [52, 107]. Moreover, by reducing access to the DRAM, it is also possible to reduce the
communication latency and the impact of bandwidth bottlenecks on the computation [131, 148].
Figure 3.8 depict the normalized communication volume of the data processed in each layer
of ResNet-18 for ImageNet [13] and highlights that pixel volumes dominate the first half of
the DNN, whereas weight volume dominates the second one. As inter-layer reuse can be
applied only to intermediate pixels and requires buffering of intermediate weights, inter-layer
scheduling can increase energy and bandwidth efficiency in some parts of this DNN model
unless other compression techniques such as quantization [3] or pruning [2] are applied to
reduce the memory footprint of weights. In this case, and this work, without compression, only
the execution of the first half of the DNN could be optimized by fusing layers. In contrast,
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the second half would be scheduled using traditional single-layer techniques since inter-layer
reuse would be negligible and require an unacceptable amount of storage to save the weights
of intermediate layers. Moreover, the order of intermediate pixel generation is essential to
keep coherence in the computation without increasing the off-chip communication; therefore,
using different temporal loop reordering in inter-layer scheduling is not possible. As pointed
out in Section 2.4.1, the temporal loop order determines the communication and computation
pattern, meaning that any change would determine a different order of pixel production and
consumption for each layer, breaking the data dependencies.

Fig. 3.8 Normalized data volumes for ResNet-18.
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Fig. 3.9 Tiling multiple layers.

The inter-layer scheduling process starts from a set of output pixels from the last layer of the
fused sequence, defined as the bottom layer, and traces back the computation to the first input
layer, defined as the top layer. Depicted in Figure 3.9, the output tile identifying the output
pixels is propagated across all the layers between the top and bottom ones, with its feature size
increasing each time a layer is traversed. Equation (3.4) defines the feature size transformations
between two adjacent layers, m at the top and m−1 at the bottom, recalling that the input of
layer m−1 is the output of layer m, using the notation of Table 2.2. Only the equations for x
are reported for conciseness, as those for y are identical. Horizontal (vertical) stride is denoted
with Sx (Sy).

To f m = Ti f m-1

Toxm = Tixm-1 = (Toxm-1−1) ·Sxm-1 +Nkxm-1

Tixm = (Toxm−1) ·Sxm +Nkxm

(3.4)

Intermediate buffers store all the intermediate pixels evaluated between consecutive layers,
meaning the output of the preceding layer, which is also the input of the subsequent one. The
processing of any layer scheduled in such a way can start only after enough output pixels have
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been evaluated. It is important to highlight that the presence of batch normalization layers
[42] does not prevent the application of inter-layer scheduling. Batch normalization, outside
training, can be computed with a portion of the output activations, just like convolutional layers.
Additionally, the normalization can be folded into the convolutional layers using the technique
proposed in [102]. Consequently, intermediate buffers can enable the computation activations
or normalization of layers between consecutive convolutional layers without additional storage.
Therefore, ignoring shared buffers and assuming m = M as the top layer and m = 0 as the bottom
one, the required buffer size is evaluated in Equation (3.5). The approach followed in this work
is to create a batch-independent fusion schedule like the one proposed in [146], setting the
tiling factors (notation in Table 2.2) Tif = Nif and Tof = Nof for all the intermediate layers. The
constraint on the channel dimensions increases the buffering requirements of Equation (3.5)
significantly, compared to Equation (2.16), as it forces to save the entire weight volume on-chip,
but eliminates two loops from Algorithm 1 for each layer. Consequently, it is also possible to
maximize weight reuse for any batch size because the buffered weights are reused during the
computation of every Tox ·Toy output pixels (Equation (2.18)).

Fusion bu f f er =
M

∑
m=0

Im
buffer +

M

∑
m=0

W m
buffer +Obottom

buffer (3.5)

The fetch and write invocations of Equation (2.18) can be rewritten for inter-layer scheduling,
recalling that intermediate activations generate no external communication volume. The final
communication volume is evaluated as in Equation (3.6); notice how weights are accessed
precisely once, except for the bottom layer.

Total volume = Itop
buffer · I f etch+

M

∑
m=0

W m
buffer +Obottom

buffer ·Owrite (3.6)

As pointed out in [146], intermediate pixels of adjacent tiles are computed multiple times if not
properly buffered. This redundancy is also found in single-layer scheduling [60]. Figure 3.10
depicts the tile overlapping of a feature map during a convolution. The overlapping depends
on the stride and the spatial dimensions of the tile, feature map, and kernel map. In [146], it
is demonstrated that recomputation can account for up to 10 times the energy estimated with
single-layer scheduling for the entire DNN; therefore, overlapping pixels must be stored in
appropriate reuse buffers. The overlapping regions Ox and Oy, depicted in Figure 3.10, can be
evaluated as shown in Equation (3.7). The next section presents a solution to the re-computing
problem, improving the one proposed in [146], from the observation that some overlapping
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regions are immediately reused during the computation.

Ox = Nkx−Sx Oy = Nky−Sy (3.7)
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Fig. 3.10 Overlapping regions of adjacent tiles happen during regular processing. In case of single-layer
scheduling, these regions would be re-fetched from the main memory.

Optimized Intermediate Pixel Reuse Model

The overlapping regions of Figure 3.10 delimit the tile portions that must be stored and reused
to avoid recomputation. With an appropriate tiling, it is possible to define the exact control
sequence of a memory controller in charge of managing the correct movement of intermediate
results between the processing units and the on-chip memory, similarly to what has been
proposed in [148] to optimize the redundant data sharing. Only one set of the regions of
Figure 3.11 has to be stored and reused and must be accounted for when evaluating the size
of the reuse buffer. Equation (3.8) defines the required reuse storage, the term reuse bufferx

is used when the direction of tile processing is horizontal, as in Figure 3.10, and covers the
contributions of (1,4), (1,2,4,5), (2,5), and (2,3,5,6), whereas reuse buffery is used when the
processing direction is vertical.

reuse bu f f erx = (Nix−Tix) · (Nky−Sy) ·Ni f

reuse bu f f ery = (Niy−Tiy) · (Nkx−Sx) ·Ni f
(3.8)

The reuse model of [146] additionally saves the sequential overlap, requiring the additional
memory reuse overheady and reuse overheadx of Equation (3.9), added to reuse bufferx and
reuse buffery of Equation (3.8) for the horizontal and vertical processing.

reuse overheadx = (Tix− (Nkx−Sx)) · (Nky−Sy) ·Ni f

reuse overheady = (Tiy− (Nky−Sy)) · (Nkx−Sx) ·Ni f
(3.9)
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Fig. 3.11 Overlapping tiles that require buffering. Only one block out of the four marked for reuse has to
be stored to achieve zero recomputation scheduling.

Multi-Tiling for Minimum Reuse Memory with No Recomputation

Multi-tiling is used to schedule the computation of unique pixels without generating redundant
results and, paired with reuse buffers, enables inter-layer scheduling with zero recomputation.
Multi-tiling starts as a normal tiling process by generating a set of output tiles, Tox Toy, and then
evaluating the corresponding input tiles, Tix and Tiy. The procedure is depicted in Figure 3.12:
the output pixels of the top layer are colored based on the data dependencies of the intermediate
layer, which requires them to produce other intermediate results used to compute the output
pixels 1, 2, and 3 of the bottom layer. The computation is traced back using the input/output
relations of Equation (3.4), assuming Nkx = Nky = 3, Sx = Sy = 1. In this example, the first
tile to be evaluated is the one marked as 1|2 in the bottom right square. New pixels marked
with 1, 2, 1|2, 2|3, and 1|2|3 are computed. From Equation (3.7) it is possible to evaluate the
overlapping in the top and intermediate layer and store all the pixels that will be reused during
the computation for output pixel 3, which are all the pixels marked with 2|3 and 1|2|3. Therefore,
to compute the pixel number 3 in the bottom layer, all the intermediate pixels marked with
3 in the preceding layers must be computed. To do so, pixels 2|3 and 1|2|3 are read from the
top-layer reuse buffer and used to generate the intermediate pixels, which are then processed
with the pixels 2|3 and 1|2|3 read from the intermediate layer reuse buffer, to generate the final
output value.
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Fig. 3.13 Multi-tiling covers the computation of new unique pixels. Notice how the tiles on the right
cover the pixels covered for the first time by the tiles on the left.

To reduce the amount of data saved in reuse buffers, only unique pixels are scheduled for
computation to reduce the overlapping. To produce new blocks of unique pixels in intermediate
layers, the tile set must be shaped accordingly to exclude the recomputation of pixels stored
in reuse buffers. If the example of Figure 3.12 is continued over the entire feature map, the
resulting tiles will look like what is depicted in Figure 3.13. These tiles are used to schedule
the computation of new pixels every time they are executed. By comparing the left and right
squares of Figure 3.12, it can be noticed that the tiles only cover pixels generated for the first
time, minus the overlapping with the tiling factors related to previous pixels. To define the
spatial dimensions of these tiling factors, it is necessary to evaluate the three horizontal and
vertical sizes from which the entire set. can be defined Naming the three horizontal sizes X1, X2,
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and X3, and the three vertical sizes Y1, Y2, and Y3, it is possible to define with Equation (3.10)
the tile dimensions and occurrence. The latter, with the terms Xreps and Yreps, represents
the number of times a tile is repeated along the X or Y dimension. The padding correction
is necessary to avoid scheduling nonexistent pixels covering the borders of the feature map.
Finally, it is possible to define the tile sizes in Equation (3.11) using the notation and position of
Figure 3.13. The repetitions depend on the size of Tox and Toy from which this set is generated.
A possible set of tiles comprehends 1, 2, 3, 4, 6, or 9 valid tiles. In the case of nine valid tiles,
the tile matrix Equation (3.12) represents the repetitions across the feature map.

X reps =

(⌈
Nox
Tox

⌉
−2

)
Y reps =

(⌈
Noy
Toy

⌉
−2

)
X1 = Tix−Px Y 1 = Tiy−Py

X2 = Tix− (Nkx−Sx) Y 2 = Tiy− (Nky−Sy

X3 = Tix−2 ·Px−X1−X2 ·X reps Y 3 = Tiy−2 ·Py−Y 1−Y 2 ·Y reps

(3.10)

Tile 1 = X1 ·Y 1 Tile 2 = X2 ·Y 1 Tile 3 = X3 ·Y 1

Tile 4 = X1 ·Y 2 Tile 5 = X2 ·Y 2 Tile 6 = X3 ·Y 2

Tile 7 = X1 ·Y 3 Tile 8 = X2 ·Y 3 Tile 9 = X3 ·Y 3

(3.11)

Tile1 Tile2 Tile3
Tile4 Tile5 Tile6
Tile7 Tile8 Tile9

=

 1 X reps 1
Y reps (Y reps ·X reps) Y reps

1 X reps 1

 (3.12)

Finally, for a convolutional layer, the total MAC computation with standard- and multi-tiling
can be evaluated with Equation (3.13). The total MAC operations for any layer, using the reuse
model presented in this section, is bound to be the same with both standard and multi-tiling.

computestandard = No f ·Ni f ·Nkx ·Nky ·Nox ·Noy

computemulti = No f ·Ni f ·Nkx ·Nky · (
9

∑
n=1

Tilen ·Repetitionsn)
(3.13)

Hardware Resource Partitioning

Mapping frameworks such as [2, 3, 106, 107, 109] search for efficient spatial and temporal
tiling and reordering. Resource partitioning is conducted at the layer level to map the execution
of a single workload, whereas with inter-layer scheduling it occurs at the DNN level, to map the
execution of multiple layers on a fraction of the available resources. This work explores array
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and register file (RF) partitioning, namely spatial and temporal fusion, depicted in Figure 3.14.
The former is similar to spatial tiling at the array level (unrolling, PE set), and the latter is
similar to temporal tiling at the RF level (loop tiling). Since the main focus is the analysis of
inter-layer scheduling opportunities, an analysis of the required high-level and PE-level control
is omitted, as they would be architecture-dependent.
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Fig. 3.14 Resource partitioning is always applied on the on-chip buffer. Partitioning is also applied
on the PE array, for spatial fusion, and on the RFs, for temporal fusion. A hypothetical 2-layer fusion
mapping is depicted, showing allocated memory and array regions. With both single- and inter-layer
scheduling, it is possible to have reduced resource utilization due to spatial/temporal tiling factors that
are not divisors of the dimensions of the array or the memory. PEs partitioned with either spatial or
temporal policies use the on-chip memory to communicate with PEs assigned to other layers.

Spatial Fusion: It is the partitioning of the PE array to compute multiple layers sharing the
same on-chip memory and reuse buffers. This mapping models an accelerator with a PE array
that can be split into smaller regions, or PE sets. Each PE set computes a different layer and
communicates with the on-chip buffer to read and store the data. Each PE set computes the
output of a specific layer and then transmits it to the on-chip memory, which is then read by
another PE set that computes the output pixels of another layer and repeats the same process.
The objective of spatial fusion is to find the size of sub-arrays like those depicted in Figure 3.14.
It is impossible to know the best partitioning beforehand, as any combination of sub-arrays
with any widths and heights could be the best one for the chosen performance metrics. Each
sub-array will execute only one layer within the fusion schedule, so the partitioning must
optimize the resource allocation of each workload. To find the best partitioning for N number
of layers, the Hw-Flow-Fusion evaluates all the N sub-arrays that can fit within the original
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PE array without overlapping, using the area fitter methodology of [149] to remove illegal
solutions. Only sub-arrays of height and width that are even divisors of the PE array dimensions
are searched to reduce the solution space, which is further reduced by removing solutions
known to be illegal for certain dataflows. For instance, with a row-stationary dataflow, it is
possible to remove arrays with a height that is smaller than the horizontal dimension of the
kernel, as they would not have any legal mapping, as detailed in [52]. Finally, each tile set of
each fused layer is mapped for each combination of sub-arrays. Then hardware metrics are
collected and compared to find the most energy/throughput-efficient partitioning. A drawback
of spatial fusion is that the unrolling factors of the fusion schedule are smaller than those of a
single-layer schedule, being constrained by the sub-array sizes, which might result in increased
computation latency.

Temporal Fusion: involves dividing the RF of each PE in the array for each layer of the fusion
schedule. This mapping models an accelerator where the RF within the PEs can store input,
weight, and output pixels for different layers, interleaving their computation. This concept
resembles to CPU multi-threading, enabling a single core (PE) to handle multiple threads
(layers) that share the same cache (RF) and datapath (MAC). When there are insufficient input
pixels to compute a partial sum or output pixel, the execution of a layer is temporarily halted,
and the PE switches to processing another layer with available data in the RF. In theory, this
approach can diminish PE idle time by ensuring a constant flow of tasks to process and is similar
to interleaving, leveraged by dataflows such as row-stationary in [52] and output-stationary
in [126] to compute multiple input or output channels within each PE. Reducing the RF size
available to each layer due to resource sharing, and therefore interleaving capacity, should
not significantly impact the performance [128]. At the same time, unrolling the execution
of each layer over the original array size (compared to spatial fusion) should result in lower
computation latency and higher energy efficiency, as both strictly depend on the number of PEs
and the possibility of having larger spatial tiling factors (not constrained in temporal fusion).
In the hardware model adopted by Hw-Flow-Fusion and [2, 3, 107], the RF of a certain PE is
divided into three sections: one for the weights, one for the inputs, and one for the partial sums.
In inter-layer scheduling, each of these sections has to be partitioned into N sub-sections, one
for each layer. The search space is limited to one combination for each fusion schedule, which
is obtained by dividing the input, weight, and partial sums RF into N sub-sections, respectively.
For instance, the RF of a standard row-stationary model accelerator in [3, 107] is divided into
384 bytes for the weights, 24 for the input pixels, and 36 for the partial sums. In the case of a
fusion schedule with two layers, with N = 2, each layer would have 192, 24, and 36 bytes for
the weights, input pixels, and partial sums, respectively.
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Proposed Inter-Layer Scheduling Framework

The inter-layer scheduling framework HW-Flow-Fusion, depicted in Figure 3.15, is built on
Hw-Flow, presented in Section 3.1, which is used for single-layer scheduling. Valid hardware
resource partitions for spatial and temporal fusion are evaluated as explained in the previous
paragraphs; tile sets are evaluated using Equation (3.10) and Equation (3.12), whereas buffering
requirements are evaluated with Equation (3.5) and Equation (3.8), as explained above.
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Fig. 3.15 Overview of the inter-layer scheduling framework. The framework takes as input a DNN model
with layer types and dimensions, an abstract hardware model with memory and PE array specifications,
and scheduler settings such as the energy/delay model and search resolution. Valid partitions, tile sets,
and sequences of layers are evaluated and marked for single- or inter-layer scheduling. The output
schedule is composed of the mapping parameters and performance metrics.

The process for generating and mapping the sequence of fused layers initiates by assessing
sequences of layers that can be fused within the constraints of the available hardware resources.
Starting with a sequence comprising a minimum of two layers, every combination of tile sets
is examined to verify the validity of the fusion schedule. This involves comparing the total
allocated memory with the buffer size available. A solution is deemed legal and preserved
for subsequent evaluation if the total memory occupation is either less than or equal to the
available memory size. If at least one valid solution exists for the current sequence of layers, a
new adjacent layer is added, and the validity check process starts anew. This iterative process
persists until no valid sets exist for a given sequence. When this happens, the cycle starts again
with a new sequence, beginning with the first layer that could not be fused and progressing to the
subsequent one. Multiple layers can be included in different fusion schedules. For instance, if
the first four layers of a DNN can be fused, this procedure outputs three legal fusion schedules:
one for the first two layers, one for the first three layers, and one with all four layers. This
process continues until the entire DNN has been analyzed and outputs a set of sequences and
single layers, which compose the solution space searched by the scheduling framework. The
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scheduler receives the corresponding layer dimensions, tile sets, and buffer/RF/array partitions
for each sequence of fused layers or single layers. The fused sequences are compared against
each other and against the corresponding singularly scheduled layers. The final mapping
includes only the fusion schedules that improve the target hardware metrics with respect to
singularly scheduled layers. The hardware metrics are evaluated using the same architecture and
energy/delay models of Section 3.1. The energy and delay of each operation (MAC operation,
RF read, NoC transfer, etc.) are multiplied by the total access count specific to that resource.
For instance, the DRAM energy for each operation is multiplied for the write access count
evaluated as Outputwrite in Equation (2.20).

3.2.3 Results

Six hardware configurations of a row-stationary spatial-array accelerator are used in the ex-
periments, with the model architecture and scheduling constraints based on Eyeriss [52] and
Timeloop [107], reported in Tables 3.1 and 3.2. Each configuration is simulated with a batch

Config. PEx PEy on-Chip Buffer (kB) RF (B) Precision
1 32 16 512 512 8
2 32 16 1536 512 8
3 32 32 1536 512 8
4 48 32 1536 512 8
5 32 16 1536 1024 8
6 32 16 1536 1536 8

Table 3.1 Hardware configurations of the Eyeriss models used in the experiments.

size of one and 8-bit data precision. The energy for MAC operations and data movement is
evaluated as in [2, 3]. The MAC energy cost comprehends the contribution of one multiplica-
tion, one addition, two memory read operations to fetch the operands, and one memory write
operation to write the results, all from/to the RF. Any memory transfer comprehends one read
and one write operation between different levels. The on-chip buffer bandwidth is 2 bytes per
cycle per bank, and the DRAM burst length is 8 bytes. Bandwidth efficiency is evaluated with
the refined CTC proposed in Caffeine [131].

Reuse Buffer Comparison and Impact of On-chip Memory on Layer-Fusion

The memory required to fuse multiple layers depends on the constraints Nif = Tif and Nof = Tof,
which force the entire weight volume to stay on-chip. As depicted in Figure 3.17, large on-chip
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Config. MAC 8 bit [pJ] on-Chip Buffer Access [pJ] DRAM Access [pJ]
1 1.75 26.70 200.0

2, 3, 4 1.75 78.16 200.0
5 1.79 78.16 200.0
6 1.83 78.16 200.0

Table 3.2 Energy costs for each hardware configuration.

Fig. 3.16 Reuse buffer comparison. Fig. 3.17 Minimum storage to fuse VGG16 layers.

buffers allow to schedule more layers, but increasing its size is also antagonistic to energy
efficiency [128]. The reuse buffer strategy proposed in this work is compared to [146] using
the same DNN model, a VGG16-E [11], with 16-bit quantization. The first seven layers,
CONV1-CONV2-POOL1-CONV3-CONV4-POOL-CONV5, are scheduled. The proposed
reuse model improves over [146], representing the baseline in Figure 3.16. The additional
buffer memory is evaluated as kB of reuse buffer allocated to achieve zero recomputation. The
reuse model presented in this work outperforms [146], requiring from ~15% to ~22% less
additional memory to fuse the same number of layers and achieve the same communication
volume reduction. The gap widens when the number of fused layers increases, as deeper
layers have more feature maps and the size of each sequential overlap that must be stored with
the reuse model [146] increases. Regarding the reduction of the communication volume of
Figure 3.17, DRAM accesses are reduced by ~60% when fusing the first three layers. There is
almost no difference in memory requirements when fusing two or three and five or six layers
because the third and sixth max pooling layers require no weight memory.

Comparison of Spatial Fusion, Temporal Fusion, and Single Layer Hardware Metrics

The hardware metrics estimated with standard scheduling, here named single-layer, are com-
pared against those estimated with inter-layer scheduling using ResNet-18 and VGG16-E, with
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the hardware configuration 1 of Table 3.1, setting the maximum number of fused layers to two.
Only the valid fusion sequences are compared against single-layer scheduling. The energy
and latency estimates for ResNet-18 and VGG16-E are reported in Figure 3.18, the overall
energy and latency ratios are reported in Table 3.3, adding the contributions for each layer
in the sequence. Only six couples of layers could be fused with this hardware configuration
because the on-chip buffer size limits fusion possibilities once the number of channels starts
to increase in deep layers. For VGG16-E, the buffer size prevents the fusion of any layer
after the sixth. However, there are two max pooling layers that precede two convolutions,
allowing the scheduler to find two additional fusion sequences. For ResNet-18, fusing couples
of consecutive layers up to the twelfth convolutional layer is possible.

Temporal f usion
Single−layer

Spatial f usion
Single−layer

Spatial f usion
Temporal f usion

NN VGG16-E ResNet-18 VGG16-E ResNet-18 VGG16-E ResNet-18
Energy 94% 91% 94% 90% 100% 98%
Latency 61% 66% 114% 118% 188% 180%

Com. volume 49% 47% 49% 48% 100% 101%

Table 3.3 Energy, latency, and off-chip to on-chip communication volume comparison with the sum of
single- and inter-layer scheduling of the sequences of layers reported in Figure 3.18.

Temporal fusion can reduce the energy, latency, and communication volume for almost every
sequence. In contrast, spatial fusion can only improve the energy and communication volume
with a significant increment of the latency. Temporal fusion reduces the overall latency to
66% for ResNet-18 and to 61% for VGG16. Spatial fusion can match or slightly improve the
energy with respect to temporal fusion. The major contribution to the latency is due to the
computation rather than communication, as spatial fusion achieves approximately the same
communication volume as temporal fusion. A rise in the computation latency is normal as
it depends on the unrolling rate and available PE, as demonstrated in [128]. By analyzing
the results of Figure 3.18, it is possible to conduct the same observations in [128] regarding
architectural design choices for high throughput, which is that the number of PEs is more
important than the size of the RF. It is worth recalling that temporal fusion uses the entire
PE array and reduced RF for each layer, whereas spatial fusion uses reduced PE arrays and
the entire RF for each layer. In this experiment, the scheduler found the array partitioning
reported in Table 3.4. The array partitioning search space is limited to sub-arrays with spatial
dimensions that are divisors of the original PE array size, whereas the RF partitions are fixed
to 1

N of the original size, with N being the number of layers in the fusion sequence. Layers
scheduled with spatial fusion are executed using partitions that are half of the original PE array
size, with one exception for the first two layers of VGG16-E, where one quarter of the original
array is assigned to each layer.
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Fig. 3.18 ResNet-18 (top) and VGG16-E (bottom) single layer (SL) vs. temporal fusion (FT) vs. spatial
fusion (FS) on hw config. 1.

Therefore, the communication latency improvement achieved with inter-layer scheduling is lost
for spatial fusion due to the higher computation latency resulting from executing each workload
on fewer PEs concerning the single-layer scheduling approach. The energy consumption of
spatial and temporal fusion is marginally improved with respect to singularly scheduled layers
because only the communication energy is improved with the inter-layer scheduling method
presented in this work. Further investigation of inter-layer scheduling should focus on reducing
data movement between the RF and on-chip buffer by directly forwarding computed output
pixels from one processing engine to another, adopting a low-level memory manager as the one
proposed in [128] or in [148]. The major contributions to the overall energy consumption come
from the data movement within the PE array and the on-chip memory accesses, as demonstrated
in [52, 107]. Moreover, the overall communication volume is halved for both DNNs, a result
that could have been anticipated for VGG16-E by observing Figure 3.17. With CONV1 and
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CONV2 fused, the communication volume is reduced by ~25%, with POOL1 and CONV3 by
~10%, and with layers CONV4 and POOL2 by ~17%. While there are three more couples of
fused layers in Figure 3.18, these six layers dominate the pixel communication volume.

Table 3.4 Resource partitioning found by the scheduler for ResNet-18 and VGG16-E layers. Only PE
array partitions are actually searched, as the RF sizes are fixed during the search.

ResNet-18 VGG16-E

Layer
Spatial Temporal

Layer
Spatial Temporal

PE Array RF PE Array RF
[PEx, PEy] [Wgt, In, Out] [PEx, PEy] [Wgt, In, Out]

CONV1 [16, 16] [192, 12, 16] CONV1 [8, 8] [192, 12, 16]
POOL1 [16, 16] [192, 12, 16] CONV2 [8, 8] [192, 12, 16]

CONV2_1_1 [32, 8] [192, 12, 16] POOL1 [32, 8] [192, 12, 16]
CONV2_1_2 [32, 8] [192, 12, 16] CONV3 [32, 8] [192, 12, 16]
CONV2_2_1 [32, 8] [192, 12, 16] CONV4 [32, 8] [192, 12, 16]
CONV2_2_2 [32, 8] [192, 12, 16] POOL2 [32, 8] [192, 12, 16]
CONV3_1_1 [32, 8] [192, 12, 16] CONV5 [32, 8] [192, 12, 16]
CONV3_1_2 [32, 8] [192, 12, 16] CONV6 [32, 8] [192, 12, 16]
CONV3_2_1 [32, 8] [192, 12, 16] POOL3 [16, 8] [192, 12, 16]
CONV3_2_2 [32, 8] [192, 12, 16] CONV9 [32, 8] [192, 12, 16]
CONV4_1_1 [32, 8] [192, 12, 16] POOL4 [16, 16] [192, 12, 16]
CONV4_1_2 [32, 8] [192, 12, 16] CONV13 [16, 16] [192, 12, 16]

Finally, the improvements in the CTC ratio are analyzed, recalling that it defines the maximum
computation performance achievable with a certain bandwidth. The CTC ratio, defined in
Equation (2.24), can be increased by reusing more data or changing the memory hierarchy,
which might not be possible due to energy/area constraints. By removing the off-chip commu-
nication between intermediate layers and reusing intermediate pixels, inter-layer scheduling
can outperform single-layer scheduling. The CTC ratios are reported in Table 3.5, with a
more noticeable improvement in layers dominated by pixel volumes, such as the first couple
of layers of VGG16-E, and generally in fusion sequences containing a POOL layer at the end.
Equation (2.24) can be helpful to understand the low CTC ratio in deeper layers, recalling that
it also depends on the burst length and, therefore, how much continuous data are read from the
off-chip memory. Moving multiple small sequences of pixels is more inefficient than moving a
few large sequences. As the proposed strategy requires the entire weight volume saved on-chip,
the available intermediate pixel storage shrinks when the weight storage increases in deeper
layers, resulting in smaller tile sizes that can fit on-chip. This effect generates a communication
pattern of small memory read and write operations, increasing the communication latency and
reducing the memory bandwidth efficiency. Additionally, as can be observed in Figure 3.13, the
tile sets used in the processing of pixels around the center of the feature map spatial dimensions
are inherently smaller than the others and might not use all the available on-chip buffer. Cur-
rently, the scheduler selects the biggest tile set with the largest memory footprint to perform the
legality check of the fusion schedule. A possible solution to increase the bandwidth efficiency
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could be to regroup the tile sets with a repetition count higher than one, in particular, referring
to Equation (3.11), tiles 2, 4, 5, 6, and 8.

Table 3.5 CTC ratios for ResNet-18 and VGG16-E for the single- and inter-layer schedules of Figure 3.18.
For single-layer the CTC ratios are reported for each layer, whereas for spatial and temporal fusion the
CTC ratios of the fused sequences of layers are reported.

ResNet-18 VGG16-E
Layers Single Temporal Spatial Layers Single Temporal Spatial
CONV1 3.52

9.62 9.48
CONV1 0.80

58.06 58.06
POOL1 0.03 CONV2 6.97

CONV2_1_1 5.03
14.65 14.65

POOL1 0.05
15.09 15.09

CONV2_1_2 5.03 CONV3 9.50
CONV2_2_1 5.03

14.65 14.65
CONV4 12.91

23.02 23.93
CONV2_2_2 5.03 POOL2 0.053
CONV3_1_1 4.73

10.90 10.80
CONV5 8.53

42.47 42.47
CONV3_1_2 9.95 CONV6 9.68
CONV3_2_1 9.95

9.90 9.90
POOL3 0.05

11.76 11.76
CONV3_2_2 9.95 CONV9 15.95
CONV4_1_1 3.99

5.10 5.05
POOL4 0.05

4.83 4.83
CONV4_1_2 5.12 CONV13 5.58

Hardware Constraints and Scaling on Inter-Layer Scheduling

The simulations in this section aim to understand how layer fusion performance scales with
different hardware resources. In particular, the hardware configurations 3 and 4 of Table 3.1
are used to measure if spatial fusion can leverage the additional PEs by increasing the array
size when fusing, at most, four layers. Similarly, hardware configurations 5 and 6 are used
with temporal fusion for the same purpose, with additional RF memory for each PE. In both
experiments, the on-chip buffer size was set to 1536 kB to increase the solution space explored
by the scheduling framework, relaxing the legality checks done while evaluating the sequences
of layers that can be fused. The results with temporal fusion are reported in Figure 3.19. The
scheduler can fuse at least four layers for configurations 5 and 6, with a minimum RF memory-
per-layer equal to or higher than the one allocated for two layers with hardware configuration
1. No performance scaling is observed when the RF size is increased since the energy and
latency metrics with HW5 and HW6 of Table 3.1 are improved less than 1% for energy, latency,
and CTC ratios, confirming that the RF size does not significantly impact on the performance,
coherently with [128].

Figure 3.20 reports the performance scaling with spatial fusion for ResNet-18 and VGG16-
E. The overall energy difference with single-layer scheduling for both DNNs with the two
hardware configurations is in the range of ±1%. Similarly to the results for spatial fusion



78 Edge Inference Optimization with Compression and Scheduling

Fig. 3.19 ResNet-18 (top) and VGG16-E (bottom) mapped with temporal fusion on hw config. 5 and 6.

of Figure 3.18, no noticeable improvement in energy efficiency was achieved by scaling
the PE array size. On the other hand, the latency was significantly improved, with a 45%
latency reduction between hardware config. 5 and 6 for ResNet-18 and 75% for VGG16-E.
These results again correlate with the observations made in [128] and prove that spatial fusion
can benefit from additional PEs. A larger PE array means that the scheduler can unroll the
execution of each layer over larger partitions, reducing the constraints on the unrolling factors
and resulting in much lower computation latency.

Discussion

The last section of this chapter demonstrates that the proposed inter-layer scheduling framework
can be used to evaluate the performance of different fusion strategies, providing a clear
understanding of the trade-offs between energy, latency, and throughput. Temporal fusion
proved to be the best choice for small accelerators such as the one modeled in the hardware
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Fig. 3.20 ResNet-18 (top) and VGG16-E (bottom) mapped with spatial fusion on hw config. 3 and 4.

config. 1, which is similar to [52, 150] but does not scale with additional resources. In contrast,
spatial fusion is severely limited on small PE arrays; however, it might be the best option to
improve the computing performance on large accelerators, such as those modeled with hardware
config. 3 and 4, which are similar to [50, 51]. The scheduler has yet to be implemented and
tested with real hardware, and the results presented in this chapter are based on simulations.
Therefore, future work should focus on developing hardware accelerators with proper support
for inter-layer scheduling.



Chapter 4

Compressed and Error Resilient Deep
Neural Networks at the Edge

The deployment of DNNs on edge devices has become pivotal for various applications, enabling
advanced functionalities, but also emphasizing the need for efficient model compression
techniques. Two key approaches, pruning and quantization, are used to deploy DNNs on
resource-constrained edge devices [49, 62]. As edge devices play an increasingly pivotal role
in real-time sensory processing and decision-making, it is imperative to address the challenge
of achieving an optimal model compression without compromising robustness to hardware
errors and adversarial attacks [7]. Achieving this balance is crucial to ensure the reliability
and security of edge devices, especially in safety-critical applications, such as automotive
[134, 135]. This chapter addresses the delicate trade-off between model optimization and
preserving the DNN’s robustness to numerical error. Parts of the works presented here have
been previously published in [6, 8, 9].

Section 4.1 presents a low-complexity and architecture-agnostic approach to mitigate
unwanted numerical errors in the computation of CNNs for object detection, such as bit-flips
due to logic transients caused by several natural and artificial sources, leveraging motion
estimation techniques to predict the future position of known objects, restoring the correct
detections and eliminating the wrong ones.

An automated codesign methodology for the deployment of layer-wise approximate DNNs
on IoT devices is introduced in Section 4.2. Shallow and deep DNNs are optimized with a
genetic algorithm that searches for low-energy and high-accuracy configurations, assigning a
different approximation level to each layer. A runtime reconfigurable AxM enables this design
methodology without using redundant arithmetic units.
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4.1 Error Resilient Object Detection with Automated Output
Correction

This section introduces a low-complexity method to detect and correct computation errors
occurring during the inference of CNNs for object detection. This approach utilizes motion es-
timation techniques to forecast the future positions of recognized objects, mitigating temporary
incorrect detections. The errors are identified and removed from the output by leveraging the
spatio-temporal correlation between successive input images and output predictions, restoring
the accurate output that might have been compromised without intervention. Called ERODE
(Error Resilient Object DEtection), this technique is agnostic to the specific CNN model or
hardware architecture executing it. The ERODE framework is designed as a plug-in to seam-
lessly integrate with CNN-based object detection systems, safeguarding task accuracy in the
presence of errors.

4.1.1 Detection and Correction of Inference Errors in Previous Works

Draghetti et al. [136] propose using inter-frame spatio-temporal correlation to identify errors
in CNN inference. The fundamental assumption is that a minimal absolute pixel difference
between consecutive images implies nearly identical inputs, leading to very similar CNN
predictions. Deviations from this condition suggest a potential inference error. However,
reliance on a user-defined threshold for similarity measurement introduces several weaknesses.
Variations in brightness, noise, or camera movement may trigger inaccurate error detection,
requiring an adjustment of the threshold for every different environmental condition. Over-
coming this limitation, ERODE leverages relative pixel differences and established motion
estimation techniques [151, 152], assessing input-output spatio-temporal correlation across
multiple consecutive images without using fixed thresholds. Some parameters, which do not
affect the error-detection capabilities but the system filtering action and selectivity, still require
input from the user. Furthermore, a comprehensive examination of faults during quantized
CNN model inference and their impact on task accuracy is conducted in [7, 133]. These studies
underscore that activation errors significantly influence CNN accuracy more than weight errors.
Additionally, [7, 132] observes that recent CNNs demonstrate inherent resilience to errors,
especially when compressed through quantization for deployment. This study specifically
targets bit-flips in activations, utilizing EfficientDet D0, a modern CNN for object detection
[15], quantized to 16-bit.
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4.1.2 Proposed Methodology

ERODE leverages the spatio-temporal correlation between consecutive images in a video
sequence to update the position of detected objects using motion estimation techniques, ad-
justing the bounding box size and coordinates without processing the image with the CNN.
Additionally, velocity and direction are evaluated to check whether the trajectory of objects is
constant or changes. This set of predictions and additional properties is compared against the
inference results and is used to assess the presence of errors by searching for abrupt changes in
the identified objects’ properties. For example, sudden alterations in the label assigned to a
bounding box that previously held a different label or an instantaneous acceleration of a bound-
ing box that was previously stationary might indicate computation errors during the inference
process. This approach enhances the robustness of object detection by validating predictions
against motion-derived expectations, contributing to error identification and correction.
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Fig. 4.1 The ERODE framework building blocks.

The ERODE framework, depicted in Figure 4.1, comprises three parts: the tracker, the
keep-alive register, and the predictor. The CNN generates the predictions, i.e., the bounding
boxes and the corresponding label, that are passed to the tracker, which assigns a unique ID
to each detected object. ERODE saves the IDs in a data structure called keep-alive register to
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identify the presence of objects through multiple images and selects which objects are relevant,
i.e., persistent. The predictor updates relevant object features (bounding box coordinates,
dimensions, and velocity) using motion estimation techniques [151, 152]. The system’s output
comprises the keep-alive register entries, which substitutes the CNN’s output predictions.

Tracker

The tracking algorithm assigns unique IDs to all the objects in the image, which are used to
observe their behavior in different time instants. In this work, the sorting algorithm [153] is
used to create a correlation between two consecutive CNN outputs, applying the Hungarian
algorithm [154] to solve the assignment problem, using the IoU metric to compute the cost
function. A cost matrix for each detection is generated from previously identified objects
with labels and bounding boxes. The entries of the keep-alive register at n− 1 (previous
time-instant/image) are inserted in the rows, and the new detections made by the CNN at n
(current image) are inserted in the columns. After that, the IoU between rows and column
entries are evaluated. A high IoU proves that the position in the current time instant is similar
to the position in the past; therefore, objects of consecutive images can be assigned with a
unique ID encoded as a positive integer. The ID assignment process is depicted in Figure 4.2,
in the case of two objects present in consecutive frames.

Fig. 4.2 The IDs of old detections (red) are saved in the cost matrix and assigned to the new detections
(yellow) according to the IoU value, prioritizing detections with higher overlapping.

On the other hand, objects with a low or zero IoU are considered new entries and are assigned
with the first positive number available in the keep-alive register. New entries can be either new
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objects identified by the CNN or glitches due to computation errors. Objects of the previous
time instant with no association with those detected in the current one could no longer be
present in the image or not detected due to computation errors.

Keep-alive Register

The decision to assign, add or remove IDs is made considering the features related to every sin-
gle object stored in the keep-alive register. When an object enters the image and is successfully
detected by the CNN, it is immediately stored in the keep-alive register, depicted in Figure 4.3.

ID Class
Bounding box
coordinates

Keep
number

Initial
number

Keep
threshold

1 Pedestrian [15, 50, 20, 20] 0 6 4

2 Truck [431, 118, 554, 67] 3 2 1

n object [Xl, Yt, Xr, Yb] kn in kt

Fig. 4.3 The keep-alive register is a data structure that contains features produced by the CNN and by
ERODE. The two objects in this figure are included to provide a hypothetical utilization.

The keep-alive register is scanned for each detection to see if any objects are already stored. If
the object is found, that entry is updated with the newly detected features; if not, a new entry
is created with the first available ID. The main function of the keep-alive register is to filter
out detections that could result from correct or faulty inference. In order to discern correct
detections from errors, only the objects present in multiple frames are shown in the system’s
output. To do so, three user-defined parameters, the initial number threshold, the keep number
threshold, and the keep-alive threshold, can be set to tune the selectivity of the filtering action
and affect the precision and recall metrics. The initial number threshold sets the minimum
consecutive detections for each object before they are considered persistent or correct and not
glitches due to computation errors, and is the same for all the classes and all the entries in the
keep-alive register. The initial number threshold concept is borrowed from [155] and indicates
the degree of selectivity of the filter: a low threshold means that few consecutive detections are
required to accept the object as an output of the system. The initial number counts the number
of consecutive detections from the first one of the same object, and if it reaches the initial
number threshold, the object can be considered as correctly detected. On the contrary, the
object is deleted from the keep-alive register because it is identified as an error. Any object in
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the keep-alive register can have two different fates when the subsequent detection is performed:
if detected, the algorithm assesses that it is present in the image, and so that the detection is
correct, whereas if it is not detected, it could be due to an error or to the object leaving the
image. Similarly, objects that are not detected for a few frames could no longer be present
in the image or be the result of computation errors. The keep number counts the number of
consecutive frames in which the CNN does not detect an object and is reset to zero each time it
is detected. Therefore, the keep number indicates when a prediction is needed: if it is equal
to zero, the object’s position is given by the detector, on the contrary, it must be evaluated
using the predictor if the value exceeds the keep number threshold. The latter parameter can
be used to reduce the arithmetic operations required by ERODE to process a frame, limiting
the usage of the predictor, trading-off computational complexity with worsened error detection
and recovery capabilities. Since the predicted position is a guess and the object can leave the
image anytime, a limitation on the number of consecutive times a prediction can be used is
given [156]. This limit is set by the keep-alive threshold, a user-defined parameter that sets the
maximum consecutive non-detections before the object is removed from the keep-alive register.
It is dynamically tuned according to the CNN’s output: it is increased for each consecutive
detection and, conversely, decreased for each non-detection.

Predictor

Fig. 4.4 Motion tracking is done using patches of pixels centered around five points of interest with
the same distance from the bounding box’s center. The new position of each patch is evaluated using
diamond search. The relative movement of the patches is used to move and resize the bounding box.
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The predictor is used when an object is undetected for one or more consecutive frames and the
keep number is greater than zero. The predictor updates the position and dimension of known
objects by searching for similarities between the current and previous image, using points of
interest derived as the center of the bounding boxes, ordered in a cross-like shape as depicted in
Figure 4.4. The predictor uses the diamond search algorithm proposed in [152], with a search
window of 15 pixels, to estimate the movement and new coordinates of the bounding boxes for
each entry in the keep-alive register. This motion estimation algorithm was selected due to its
low computational complexity and adaptability to different ranges of motions.

4.1.3 Results

Figure 4.5 details the computing setup and results, which comprises the NN, the error injection
algorithm, the ERODE framework, and the benchmarks.
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Fig. 4.5 The computing setup used in the experiments. The parameters ∆ and ε , not present in the figure,
are used to control the random number generator.

EfficientDet D0 [15] is the detector used to generate the predictions. It is a modern CNN
architecture for object detection, with activations and weights quantized to 16 bits using scale
quantization [74]. The model is retrained for 20 epochs using the hyperparameters detailed
in [15] to recover from the accuracy loss induced by the quantization. The quantized model
has the same accuracy metrics as the original one. The fault-free CNN is then used to generate
the baseline detections set for each image of each sequence of MOT17DET [34], which is a
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dataset of street scenes with images captured with stationary and moving cameras mounted
on the car’s roof or hood. The baseline detection set is used to evaluate the accuracy loss of
the CNN executed with computation errors with and without the support of ERODE, noted
as faulty CNN and ERODE, respectively, in the top and bottom of Figure 4.6. To evaluate
the error recovery capabilities of ERODE, the simulation setup includes a scenario where
errors occur not on each image but with a frequency defined as image error rate ∆. The
image error rate used in the experiment is set to ∆ ∈ [2,3,4,5], which allows testing the
effectiveness of the keep-alive register in filtering wrong detections occurring at different
rates. For instance, a ∆ equal to two means that one every two images will be processed with
faults injected during the inference. Moreover, the activations error rate ε is the percentage
of the total computation volume subjected to bit flips in each frame. The experiments use
ε ∈ [0.001%,0.003%,0.005%]. The selection of which activations are subjected to bit-flips and
which bits are flipped is made by sampling random integer numbers from a uniform distribution,
meaning that each activation within the tensor and each bit within the activation have an equal
probability of being selected. Only one bit can be flipped for each activation. As demonstrated
in [7], bit-flips in the activations induce a higher accuracy degradation than bit-flips in the
weights. Therefore, only faults targeting the activations are analyzed in the experiments. The
number of errors generated for each combination of ∆ and ε is reported in Table 4.1.

Table 4.1 Errors injected during the inference with different rates.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
ε = 0.001% 11538852 7679515 5765075 4599007
ε = 0.003% 35107176 23365070 17540350 13992566
ε = 0.005% 58712628 39075335 29334175 23400923

Faults are uniformly distributed over each convolutional layer of EfficientDet D0, assuming that
computation errors occur during the entire inference. The metrics used to evaluate ERODE’s
effectiveness are: true positive detections with an IoU that is at least 50% with the baseline,
false positive detections that are not present in the baseline, and false negative detections that
are only present in the baseline. Precision and recall are evaluated as in Equation (4.1).

Precision =
T P

T P+FP
Recall =

T P
T P+FN

(4.1)

The keep-alive register has three user-defined parameters that must be set. For these experiments,
the following values are used: keep-alive threshold=10, keep number threshold=5, initial
number threshold=1. The precision variation with different ∆ and ε is depicted in the top of
Figure 4.6. First, it is possible to notice how EfficientDet D0 is very susceptible to computation
errors, as a ε=0.003% is high enough to induce task accuracy loss of 40% compared to the
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baseline for ∆=2 and ε=0.005% further drops the accuracy to 70%. When ∆ is increased,
inference errors occur less frequently, and the overall precision loss is reduced. Similarly, the
same behavior can be seen for the recall results in the bottom of Figure 4.6. The discrepancy
between the precision and accuracy loss could mean that the CNN tends to see non-existing
objects rather than not detecting existing ones. An inspection of a subset of output predictions
highlighted the presence of multiple wrong objects, with a small variation of the bounding
box coordinates of correct objects. When the CNN is supported with ERODE, the accuracy
and recall loss is significantly reduced. By leveraging the keep-alive register, it is possible
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Fig. 4.6 Precision (top) and recall variation (bottom) with different ∆ and ε .

to filter false positives, using the initial number threshold to eliminate detections that occur
only in the ∆ images due to computation errors. Moreover, missed detections are restored
with the predictor after the object is not detected for a number of frames higher than the keep
number threshold. ERODE’s precision degradation could be due to the predictor’s bounding
box estimation, which might not overlap precisely with the ones generated with the baseline
CNN, and to objects no longer present in the frame that persists for a few time instants in the
keep-alive register. Moreover, the initial number threshold could also induce the removal from
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the register of correct objects that are not detected continuously in all images, reducing the
recall by increasing false negatives. This effect can be mitigated by improving the accuracy
of the CNN so that it detects objects more consistently or by decreasing the initial number
threshold. Using an ensemble of differently trained CNNs with the same model architecture
can also increase the baseline accuracy. Given the above, ERODE can be effectively used for
error-resilient object detection, as it can filter out wrong detections and recover information
lost due to computation faults. Finally, the computational complexity is reported in Table 4.2,
estimated as the average number of multiplications and sums required to execute ERODE for
each image. The complexity increases with the error rate as more glitches are generated in the
CNN’s output, resulting in more bounding boxes evaluated by ERODE. The glitches increase
the number of entries in the keep-alive register that must be checked and compared against
pre-existing objects with the tracker, also increasing the cost matrices built for each entry, while
missed detections must be restored by using the predictor to move and resize the bounding
boxes. The computation overhead of Table 4.2 is negligible compared to the number of MACs
required to compute EfficientDet D0, which is ≈ 2.5 ·109 [15].

Table 4.2 Computational complexity averaged over the entire MOT17DET dataset.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5

ε = 0.001%
Products 48 49 49 49

Sums 2565 2599 2611 2619

ε = 0.003%
Products 34 43 47 48

Sums 3394 3064 3519 3267

ε = 0.005%
Products 97 82 79 64

Sums 14963 9166 8984 5915

Discussion

In conclusion, ERODE is an effective and easy-to-integrate CNN plug-in that can mitigate
accuracy and precision degradation in the presence of computation errors. Future work should
include weight faults and explore computation errors induced by adversarial attacks. Unfortu-
nately, adversarial samples are highly effective against CNNs for object detections and there
are multiple types of attack that can invalidate entirely the output in multiple frames [157].
Therefore, it is advisable to search for a joint CNN/software solution in which the robustness
of the CNN is increased while ERODE is adapted to analyze other data apart from the input
images and output prediction to identify unexpected changes within the intermediate activations
generated during the inference.
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4.2 Hardware/NN Co-design for Reconfigurable Approxi-
mate Edge Inference

The superior task accuracy of DNNs comes at the cost of high computational complexity and
memory requirements, thereby presenting challenges in deploying energy-constrained devices,
such as MCU [62, 63]. To tackle the problem of efficient inference at the edge, introduced in
Section 2.2, dedicated DNN hardware accelerators have been developed to optimize energy
efficiency and throughput by reducing the data movement and the cost of arithmetic operations
[1, 50–53, 158]. As detailed in Section 2.3, a considerable research effort has been put into
reducing the size and precision of DNN models, developing pruning and quantization strategies.
In particular, layer-wise quantization leverages the different degrees of robustness and tolerance
to error introduction of DNN layers [1, 3, 105, 159] Similarly to pruning and quantization,
approximation is another optimization technique mainly aimed at reducing the arithmetic
energy [81]. The basic idea is to reduce the computational complexity and cost using operators
that produce inexact results and have a lower switching activity or gate count. However, as
the sensitivity of single layers inside the same model and among different models is highly
variable, designing a multiplier with different approximation levels is fundamental to ensuring
flexibility and adaptability. Several strategies have been explored in the literature to design
hardware supporting layer-wise approximate DNNs [85, 116, 119], leveraging retraining or
parameters fine-tuning to reduce the accuracy degradation. However, previous works rely
on dedicated accelerators and support very few approximation levels [119, 160], limiting
the possibility of finding the optimal error-accuracy trade-off, due to a smaller design space;
other works use several non-reconfigurable multipliers instances in the accelerator’s systolic
array [85, 115, 118]. The latter approach increases the area overhead and prevents the same
hardware from executing DNNs with different parameters or model architectures with the
same energy efficiency or accuracy. Another problem is that such hardware accelerators are
seldom implemented in reality and often are just high-level models simulated with tools such
as [106–109], adapted to include the cost of approximate operations. Since IoT devices have
limited area and power budgets [62, 64] and must be able to adapt to different workloads and
performance targets, it is necessary to adopt a layer-wise approximation strategy that relies on
a single multiplier offering several accuracy levels. Moreover, the hardware platform using this
multiplier should be programmable and reconfigurable to support the deployment of different
DNNs, reusing the same hardware as efficiently as possible without requiring a redesign or
recall of the IoT device. Such flexibility allows choosing which DNN is suited for a particular
scenario, prioritizing the battery life of the edge device or the accuracy of the predictions.
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To achieve low-cost reconfigurable AxC, three components are necessary: a reconfigurable
hardware platform with a compiler that can find an optimal loop scheduling, an AxM that can
be reconfigured runtime, and finally, a hardware-aware design space exploration strategy that
selects the best trade-off between optimal energy consumption and DNN accuracy. These three
components are wrapped up in a single framework named MARLIN and are presented in
Section 4.2.2. The PULP MCU [161] is selected as the target IoT platform with RI5CY [162],
a RISC-V core. The RISC-V core is modified to host a runtime reconfigurable mixed-precision
AxM with 256 accuracy levels that supports different quantization levels. Thanks to a custom
RISC-V toolchain that is approximation-aware, the multiplier can be controlled via instructions
embedded seamlessly in the code at compile time. Regarding the design exploration, a layer-
wise approximation strategy based on NSGA-II is developed. It is applicable to any DNN
topology with convolutional and fully connected layers, with no modification to the model
architecture. The search objective is to reduce the energy of arithmetic operations while
retaining the original task accuracy. During the optimization process, approximate DNNs are
evaluated by their error resilience and energy, assigning a different multiplier configuration
to each layer. The hardware platform composed of the RISC-V core and the AxM, executing
approximate DNNs found with the above strategy, has been synthesized and simulated to prove
the effectiveness and feasibility of this methodology.

4.2.1 Hardware Accelerators and Mapping of Approximate DNNs

DNN accelerators are typically based on a hardware architecture that comprises a memory
hierarchy and an array of interconnected processing engines (PEs) [1, 50–52, 107], similar to
the one depicted in Figure 2.14. The memory hierarchy usually comprises a main memory
(off-chip DRAM), global buffers (on-chip SRAM), and the registers within the processing
engines. The off-chip and on-chip memories are connected through the system’s bus, whereas
the PEs communicate through a network-on-chip. The execution of a DNN is scheduled with
a dedicated mapper that generates the instructions and partitions the resources, minimizing
the energy and latency associated with the data movement, as detailed in Section 2.4. The
complete cost of a multiplication considered by a mapper includes the energy and latency
required to read all the operands, move them through the memory hierarchy, compute and store
the result [52, 107, 163]. The mappers used in [50–52] can be compared to the compilers used
to generate machine code for processors such as RI5CY[162], whose purpose is to optimize
the performance and resource usage, leveraging loop blocking techniques such as temporal
and spatial tiling (also known as folding, unrolling, interleaving, etc.). The approximation
methodology described in Section 4.2.2 is orthogonal to the mapping process as it only modifies
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the energy associated with the arithmetic operations and not the data movement. In [163], a
tool that predicts the energy of approximate DNNs with a mapper based on [107] is presented,
validating the assumption that AxC only modifies the arithmetic energy without affecting the
data movement. Therefore, MARLIN does not influence the mapping and could be easily
integrated into [50–52], similarly to what has been done for DORY in Section 4.2.2. Alternative
hardware architectures for energy-efficient DNN inference at the edge are MCUs such as
[53, 158], with Instruction Set Architecture (ISA) extensions and dedicated DPUs inserted in
the RISC-V pipeline. In this work, PULP [158] is selected as the target platform, a MCU-based
low-power computing platform with a host CPU relying on the RI5CY or zero-riscy cores and
equipped with a multi-core programmable cluster. The motivation for using PULP is twofold:
the RTL and the toolchain are open-source and well-documented [161], and, being a MCU-
based platform, PULP truly represents a low-power IoT device with strict resource constraints
[62]. Additionally, PULP is selected to produce a prototype that can be shared and adapted
without limiting the compatibility of this methodology to the PULP platform, as highlighted
by the fact that the layer-wise approximation strategy and the deployment process detailed in
Section 4.2.2 do not have any hardware dependencies except for any reconfigurable AxM. The
PULP project includes libraries and tools to easily export a DNN model written in PyTorch
to C code compatible with the MCU. The MARLIN framework includes modified versions
of the RI5CY core and software tools, adapted to include the approximation level selection
through Control Status Register (CSR) instructions, whose generation and compilation are
added to the original PULP toolchain. The porting of approximate hardware on a RISC-V-based
platform has also been done in [160]. A limitation of [160] is that the configuration signals,
handled by a control unit external to the core, are generated by the user, thus relying on his
expertise rather than on an automated mechanism. Another problem with this approach is that
the external action is code-dependent, as only some instructions can be executed with inexact
operators. As explained in Section 4.2.2, these limitations are overcome by embedding the
runtime approximation control in the instructions processed by the RISC-V core, leveraging
the flexibility of the PULP platform. Another argument in favor of using a single multiplier
architecture, according to [164] and [165], is that the resilience of a DNN model to adversarial
attacks depends on the AxM adopted. Consequently, using different configurations, including
an exact one, is suggested to achieve higher error tolerance in various scenarios. A single
reconfigurable multiplier architecture such as TEMET [8], applied to [165], would remove the
constraint of using a single fixed AxM, enabling error compensation, used in [85, 118, 119] to
improve the accuracy. Moreover, it can eliminate the limitations of [164], in which 13 different
multipliers are used within each PE to support 13 approximation levels, enabling 21.3 times
more approximation levels with a thirteenth of the multipliers instances.
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4.2.2 Proposed Methodology

Overview

Fig. 4.7 MARLIN framework with hardware support specific for PULP SoC.

The MARLIN framework depicted in Figure 4.7 comprises different building blocks
interacting with one another to determine a flow covering from the model definition up to its
hardware deployment. The first external input required is a valid dataset, such as MNIST or
CIFAR-10, which defines the target task of the DNN model. Given a specific application, there
are often constraints on the minimum acceptable accuracy or the maximum tolerable energy
consumption. Once the training dataset is provided with the specifications, a suitable DNN
model is identified and described with PyTorch [29]. During the definition of the DNN model
architecture and the training process, hyperparameter tuning is crucial to obtain consistent
results and a model that is already robust to numerical errors, leveraging quantization-aware
training or post-training quantization. This phase implies choosing the number of training
epochs, the type of optimizer, the batch size, and other learning parameters. A standardized
representation of the DNN in the form of a data flow graph is required to port the model to
PULP. For this reason, the trained DNN is passed to NEMO [166], which transforms a floating-
point model to an integer one in ONNX format. The precision of the model is fixed at this
point in the procedure, with the added constraint that the bit-width of weights and activations
cannot be above eight bits, either signed or unsigned. Up to this point of the procedure, the
model has no knowledge of the approximation. On the hardware side, a reconfigurable AxM is
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designed and instantiated in MARLIN with a 9x9-bit parallelism. The constraint on 9x9 bits is
required by the PULP toolchain with NEMO and DORY [167], which is detailed later on. As
MARLIN’s optimization software only requires, for each configurable approximation level, a
LUT storing all the possible results for each couple of input operands and the average power
to execute a single multiplication, the multiplier block is interchangeable. A single runtime
reconfigurable approximate unit or several multipliers with fixed approximation levels could be
integrated into the framework with little or no modification. Once this high-level description
of the computational unit is available, the approximate model can be implemented and tested
through the AdaPT library [111]. Any DNN topology built with PyTorch’s convolutional and
fully connected layers can be easily included in MARLIN by changing the layer instances
with the AdaPT ones without modifying the model architecture or retraining. MARLIN
solves the complex multi-objective problem of assigning an optimal approximation level to
each layer through NSGA-II, performing multiple simulations of the model with the selected
configurations to evaluate the accuracy and power consumption. The Pareto front evaluated in
this way will show different optimal trade-offs between accuracy and power, corresponding to
the two fitness functions NSGA-II tries to optimize. The last step that MARLIN performs on
the software side is the generation of the C code to execute the model on the target hardware,
using a modified version of DORY [167]. This is the first part of MARLIN which requires
knowledge of the actual hardware architecture, including a detailed high-level description
of every memory level size and latency to perform memory tiling effectively. For this work,
PULP was selected as the target platform among those supported. DORY receives as an input
the ONNX model generated by NEMO and an additional node-by-node dictionary of the
DNN containing information of the approximation of each layer retrieved by NSGA-II. The
modified DORY tool generates the C code for the provided approximate architecture with the
received configuration. For this purpose, DORY is made aware of the modifications the PULP
platform undergoes. An approximate unit is added to the execution stage of the cluster cores
to approximate all the relevant instructions in the computation of convolutional layers. It is
based on the same reconfigurable multiplier of [8], whose LUTs are used by NSGA-II and
AdaPT. This unit is managed by a dedicated CSR who is in charge of activating, deactivating,
and configuring its approximation level. The final code runs on the PULP platform through
PULP-SDK and can be executed by providing input data read from the external L3 memory
while the weights are stored in L2 or L3 memory. The support of a real hardware RTL on
which the model can run is crucial for validating the proposed co-design methodology. This
allows accurate estimations of the metrics of interest on a complex system.
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Genetic Search of Optimal Inter-Layer Approximation

Algorithm 2 Approximation level selection with NSGA-II
1: ▷ M is the quantized exact model
2: ▷ axx_mult is the AxM
3: ▷ Ng is the number of generations
4: ▷ N p is the population size
5: ▷ Pc is the crossover probability
6: ▷ Pm is the mutation probability
7: ▷ ϑ is the chromosome of L elements, in range [0,A], storing the mult. configuration
8: ▷ f1 (ϑ), f2 (ϑ) are the fitness functions to optimize
9: ▷ Pn is the population at iteration n, with size N p

10: ▷ Initialization
11: L← count(M.Conv) ▷ Number of Conv. layers in the model
12: A← A0 ▷ Number of approximation levels for multiplier
13: P← P0 ▷ Initial population vector randomly set
14: f (P0)← ( f1(P0), f2(P0)) ▷ Initial fitness evaluation
15: ▷ Execution
16: for (n = 0; n < Ng; n++) do
17: Qn← Tournament(Pn,Pc,Pm)
18: retrain_models(M,axx_mult,Qn)
19: f1(Qn)← 1/accuracy(M,axx_mult,Qn)
20: f2(Qn)← energy(M,axx_mult,Qn)
21: f ← ( f1, f2)
22: Rn← Pn +Qn ▷ Total population, size 2N p
23: for each ϑ in Rn do
24: Rank(ϑ)
25: Fi← Fi∪ϑ ▷ Fi are the fronts
26: for each ϑ in Rn do
27: for each φk in f do
28: disϑ ← disϑ +Crowding_distance(ϑ ,φk)

29: Order Rn based on fronts and crowding distance
30: Pn+1← best N p solutions in Rn ▷ Update iteration counter
31: return θbest ▷ Optimum Pareto front is returned

The NSGA-II algorithm is used to solve the multi-objective problem of finding DNN
configurations with different trade-offs between energy and accuracy. NSGA-II is a multi-
objective genetic algorithm that evolves a population of solutions using non-dominated sorting
and crowding distance assignment to classify and rank individuals based on their dominance
and diversity. Crossover, i.e., recombination of different chromosomes, and mutation, i.e.,
variation of a gene, are applied to create offspring solutions, which are then integrated with
the parent population. The selection process favors solutions from less crowded Pareto fronts
and those with higher crowding distances, promoting the front exploration and providing a
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diverse set of non-dominated solutions [143]. The motivations for choosing NSGA-II are its
proven effectiveness in multi-objective optimization and relative ease of implementation and
tuning compared to other alternatives such as reinforcement learning or Bayesian optimization.
NSGA-II generates a set of optimized approximate DNN configurations and selects for each
one which approximation level is more suitable for each convolutional layer. Algorithm 2
details the NSGA-II search flow. Each chromosome has a dimension L, which is the number
of layers composing the DNN. The alleles of each gene are encoded as an integer number
between 0 (exact level) and A, which is the number of approximation levels supported by
the multiplier. Single-point crossover is used to combine chromosomes while maintaining
inter-layer dependencies between approximate configurations, a strategy used in [118] to reduce
the effect of computation errors on the DNN accuracy without retraining. At the beginning
of each iteration, N p approximate DNNs are retrained with 10% of the training split (0.1
epoch). Then, the accuracy is evaluated with the validation dataset. Contrary to previous works
[85, 119], the accuracy of candidate inexact DNNs is not evaluated immediately but after a
quick retraining with a fraction of an epoch. By leveraging partial retraining and validation,
each DNN configuration is evaluated by its resilience to computation errors and the retraining
effort required to recover from such errors. Solutions with faster recovery will have higher
validation accuracy than others that are less fit, using the same number of training samples,
and therefore have an evolutionary advantage. Therefore, retraining (or fine-tuning) is used
to compensate for the error and enhance the design space exploration. For what concerns
the fitness evaluation in Algorithm 2, the inference energy is estimated as in [85, 119] by
multiplying the number of multiplications of each layer of the model M with the average
energy of the AxM when set to the approximation level defined by the corresponding gene
of chromosome ϑ . After evaluating the two fitness functions, the algorithm continues with
mutation, crossover, tournament selection, ranking, and finally, the evaluation of the crowding
distance and the generation of the new front. The cycle starts anew until all the Ng generations
have been evaluated.

Reconfigurable Approximate Multiplier

MARLIN uses a single-cycle AxM architecture to introduce minimum modifications in the
control flow of the RI5CY core. The complete architecture is not discussed in detail in this
section, as it can be found at [8, 9]. The parallel multiplier is based on a Dadda reduction tree
[82], with a modified Baugh-Wooley algorithm [168]. A variation of the truncation mechanism
proposed in [169] is used to handle the dynamic setting of approximation and precision,
allowing easy support of approximate and exact configurations for full and reduced bit-width
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of the operands. Truncation relies on a masking signal to select specific columns of the partial
product matrix to fix at zero to reduce the switching activity, hence dynamic power, of the
logic gates in that section of the matrix at the expense of an incorrect output. An externally
configurable masking signal, noted as a, manages the selection of the approximation level, as
shown in Figure 4.8 for the case of 9-bit inputs and a on eight bits. To enable power saving with
mixed-precision and sub-8bit operands, a precision masking signal p is introduced to perform
data-gating on the partial product matrix using a mechanism similar to the approximation and
can be configured according to the precision of the expected result. The minimum supported
bit-width for the input operands is fixed to two. The precision mask has the length of the
output minus four. Figure 4.8 shows the precision signal on fourteen bits p j covering the
most significant part of the partial products. When a precision mask bit is set to zero, the
corresponding column of the matrix is entirely zeroed.

Fig. 4.8 Precision and approximation configuration management for the proposed multiplier. The
approximation level is selected with the mask a, while the precision is selected with the mask p. a j

indicates the jth bit of the approx_mask signal a, p j the jth bit of the precision_mask signal p, while
ppi j is the jth bit of the ith partial product evaluated according to modified Baugh-Wooley algorithm.

Reconfigurable Approximate RISC-V Core for PULP SoC

The RI5CY core architecture instantiated in the PULP cluster must be adapted to enable runtime
reconfigurable approximation and precision. The first customization to the original pipeline,
necessary to introduce inexact operators in the core, is exposing them in the ISA so that a
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programmer can effectively use them. A possible solution is proposed in [160]: adding custom
instructions that, when decoded, configure the execution stage to use approximate operators.
However, while trivial and easy to implement at low-level, this approach requires an additional
instruction for each inexact arithmetic operation supported by the hardware, defined with a new
custom format capable of encoding the approximation level. Another drawback is related to the
fact that, in this specific case, the C executable code is generated automatically by the DORY
tool. The latter is a specific problem due to the platform selected for the implementation in this
work, but a similar issue can arise with other architectures such as NVDLA [55]. If custom
instructions were used, an expert user would have to replace the standard instructions with the
custom ones, whenever necessary, analyzing the generated C code line-by-line. The same could
be achieved by making the compiler aware of the approximated instructions and where they
are needed, but that would be time-consuming to implement and maintain. The methodology
suggested in this work focuses on flexibility and simplicity by defining a new custom CSR
handling all the control and configuration of approximate operators. This approach is scalable:
a single 32-bit register can manage all the new operations and does not occupy additional
instruction encoding space. It also enables reconfiguration, as part of the register bits control
the approximation and precision level. Finally, it is much more programmer-friendly as it does
not require significant changes in the C code of the microcontroller, except for the addition
of CSR instructions. To achieve these results, the proposed methodology to enable online
configuration of the AxM relies on the following steps:

1. A CSR write instruction sets the precision_mask and approx_mask fields according
to the specification of the layer.

2. Before the computation starts, a CSR set instruction enables the AxM unit with the
control signal approx_mac and the cluster of multipliers of the approximate DPU with
the control signal approx_dot8, which are disabled when the computation is over.

Each CSR instruction takes one clock cycle to execute. In the general case, the last couple of
CSR instructions are executed a number of times which depends on the tiler split performed by
DORY. Being mapping-dependent, estimating the correct number of instructions or providing
a meaningful value is difficult. Their position in the code is optimized to produce minimum
overhead in the control flow, considering the presence of MAC instructions that must produce
the correct result. The usage of three instructions, rather than two, is forced by the specific
organization of the template C files provided by DORY and PULP-NN C library [162]. The
CSR instruction executed more frequently is the one activating the approximate unit. It is
located before the matmul function, whose pseudocode and number of assembly instructions
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Algorithm 3 PULP-NN matmul function pseudocode
1: ▷ ch_in/ch_out input/output channels of the Conv layer
2: ▷ k_x/k_y filter dimension along x/y
3: ▷ im2col is ch_in · k_x · k_y
4: ▷ col_cnt_im2col is im2col & 0x3
5: ▷ chan_le f t is ch_out & 0x3
6: ▷ Initialization
7: Load params. from stack and define variables ▷ 26 instr
8: ▷ Execution
9: for (i = 0; i < ch_out >> 2; i++) do
10: Setup ▷ if first iteration 41 instr, else 6 instr
11: for ( j = 0; j < im2col >> 2; j++) do
12: Setup ▷ 15 instr
13: Multiply and accumulate + save ▷ 15 instr ·(im2col >> 2) + 9 instr
14: if (im2col >> 2 == 0) then; Setup end if ▷ 12 instr
15: while (col_cnt_im2col ! = 0) do
16: Setup ▷ 4 instr
17: Multiply and accumulate + save ▷ 15 instr ·(im2col >> 2) + 2 instr
18: Quantize and save results ▷ 54 instr
19: Setup ▷ 10 instr
20: while (chan_le f t) do
21: Setup ▷ if first iteration 23 instr, else 1 instr
22: for ( j = 0; j < im2col >> 2; j++) do
23: Setup ▷ 6 instr
24: Multiply and accumulate + save ▷ 6 instr ·(im2col >> 2) +4 instr
25: if (im2col >> 2 == 0) then; Setup end if ▷ 6 instr
26: while (col_cnt_im2col ! = 0) do
27: Setup ▷ 4 instr
28: Multiply and accumulate + save ▷ 6 instr ·(im2col >> 2) + 1 instr
29: Quantize and save results ▷ 13 instr
30: Save parameters and return ▷ 24 instr

are reported in Algorithm 3. In a worst-case estimation, a CSR set is performed once for each
matmult function call, providing a quantitative measure of the reconfiguration overhead on the
execution time. The GCC compiler is extended to account for the new approx CSR, whose
fields are given in Figure 4.9. The Xpulp ISA extension [162] provides additional multiply-

[1] approx_MAC
[0] approx_MUL[2] approx_dot8

01231 18 31011

[10:3] approx_mask[31:18] precision_mask
[17:11] unused

Fig. 4.9 The approx CSR configuration.

related instructions compared to the basic ones of RV32M. Some of these, such as MAC and
SIMD dot products, are useful for data-intensive applications such as DNN inference. This
work aims to provide an approximate implementation only for instructions used in convolutional
and linear layers. To select them, an in-depth analysis of the disassembly code produced by
custom convolutions and a complete DNN is performed. The assembly instructions included
in these benchmarks are approximated, together with others for which it is straightforward to
extend support, and are listed in Table 4.3. In this prototype, the approximate pipeline only
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computes 8-bit multiplications, even when the issued instruction expects a 32-bit or 16-bit
operation. This restriction cannot cause any error assuming that DNN layers quantization is
always on 8 bits or below, which is the ordinary case for DORY. The instructions for which
approximate support is provided are split into three subgroups, according to Table 4.3. For
each category, the approx CSR has a configuration bit; when this bit is set, all the instructions
belonging to that group are executed in approximate mode. Besides the custom CSR, a unit
responsible for inexact computation is inserted in the execution stage of the pipeline alongside
the exact multiplier unit, as shown in the high-level block diagram of the approximate core in
Figure 4.10. This design choice requires some trivial modifications in the decoding phase of

Table 4.3 Approximate instructions mnemonics.

MAC MUL DOT8
p.mac mul p.mulsN pv.dotup.b pv.sdotup.b

p.macsN p.muls p.muluN pv.dotusp.b pv.sdotusp.b
p.macuN p.mulu pv.dotsp.b pv.sdotsp.b
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Fig. 4.10 RI5CY pipeline with approximate operations support.

the instruction. Based on some control signals, the decoder has to activate either the correct
or the inexact unit. The arithmetic block that is not selected for the instruction currently in
the decode stage does not perform any operation in the next clock cycle as its inputs are not
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updated, and therefore, it is data-gated. Four instances of the designed multiplier are allocated
in the reconfigurable approximate unit, as in Figure 4.11. They are all used in parallel to
perform SIMD dot products on 8 bits, while only one is activated for MUL and MAC-related
operations.

++

output

operator

Fig. 4.11 RI5CY AxM unit. The leftmost multiplier is in charge of MUL and MAC-related operations.
The shifter is for immediate instructions with the N suffix in Table 4.3. All multipliers work in parallel
to execute dot8 operations and their result is fed to a 32-bit five-operands adder. The sign extension
block handles the split of the 32-bit operands into four 8-bit chunks and their sign extension according
to the decoded instruction.

Approximation in PULP Toolchain

Through NEMO and DORY libraries, the PULP platform offers software support to generate
executable C code tailored to its architecture, starting from a PyTorch DNN model. These
two parts of the toolchain must be adapted to enable the proposed runtime approximation
methodology. NEMO is a PyTorch add-on framework developed as a support tool to transform
an already trained, full-precision DNN into an integer one, performing the quantization and
calibration of the model. The DNN can be quantized and calibrated before passing it to NEMO
by using fake quantization floating point values during the training. DORY is an open-source
tool for optimizing DNN mapping on PULP and other MCUs. Two building blocks of DORY,
the configurable templates and PULP-NN back-end functions, are modified to automatically
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add the approximate CSR instructions in proper points of the C code, while the mapping
optimization is unaffected. Besides an ONNX graph, the modified DORY uses as input a JSON
file containing a layer-by-layer description of the quantization and approximation of the DNN.
Once these parameters become part of the DORY intermediate representation, they are used
to fill hardware-specific template files with the correct CSR setting and generate the C code
for the different layers. Using a JSON dictionary guarantees flexibility, as new items can be
defined for each node in the network. Furthermore, it is general; at this level, every type of
AxM, whether reconfigurable or not, could be available. Moreover, as the precision information
on the layer is kept separate from the approximation level, it is possible to configure the layer
as exact but with reduced precision. This choice allows to save power by leveraging operations
with reduced bit-width rather than with inexact computation.

4.2.3 Results

This section presents the computing setup used to conduct experiments to validate the proposed
methodology, summarized in Figure 4.12. The modified RISCY is synthesized and tested
with the reconfigurable multiplier and relevant hardware metrics of the core and the arithmetic
operator alone are extracted and analyzed. Additionally, the layer-wise approximation strategy
is compared against other state-of-the-art techniques.
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Fig. 4.12 MARLIN framework and computing setup for software simulation.
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Approximate RISC-V Core Characterization

The RI5CY core featuring the approximate extension is synthesized to extract area, delay,
and power estimations using Synopsys Design Compiler and the UMC 65 nm library [170].
The two cores with exact and reconfigurable approximate operators are both synthesized with
clock-gating and without boundary optimizations, using the command:
compile_ultra -no_autoungroup - no_boundary_optimization -timing -gate_clock. .
Table 4.4 compares area and timing values obtained. The delay constraints are satisfied by

Table 4.4 Performance and area comparison for exact and approximate RI5CY and their relative
multiplier units.

Exact RI5CY Approx RI5CY

Area [µm2] (GE)
Exact mult 14842.8 (10k)

Approx mult - 4737.2 (3k)
Total 60621.1 (42k) 67006.8 (47k)

Timing [ns]
Exact mult 4.45

Approx mult - 4.41

both designs, and from the fourth column of Table 4.4, it can be observed that the multiplier
of [8] does not increase the microprocessor critical path, as it is still determined by the exact
multiplier unit. The area overhead of the approximate unit alone is 7.8%, while the total
overhead, considering the additional control logic part and the approx CSR, is 10.5%. The
extra area cost is mainly due to the allocation of four reconfigurable multipliers in order
to manage 8-bit dot products. The area overhead is definitely acceptable as this is the first
prototype of this architecture and it could be further decreased if the four reconfigurable
multipliers replaced the exact ones, which is possible since they also feature a non-approximate
mode, that can be used to process also non NN-specific instructions. The latter would require
no special modification or additional instructions inserted in the compiled code.
The RTL model of the RI5CY is replaced by the gate-level netlist for all cores in the PULP
cluster to enable post-synthesis simulation and power estimation on a demonstrative use-case.
A simple DNN model is designed with PyTorch and used as a benchmark on the MNIST
dataset to verify the correct behavior of the entire framework and to collect power metrics. It
comprises five convolutional layers (with bias), each followed by a ReLU activation function,
and a final linear layer. The entire structure is depicted in Table 4.5. The model is trained for
30 epochs, with a batch size of 32, an initial learning rate of 3 ·10−3, with a step factor of 0.3
every 5 epochs. Quantization-aware training, with scale quantization [74], is used to achieve
the same accuracy as the full precision DNN, using 9-bit for both activations and weights. The
9-bit constraint is given by the DORY and NEMO frameworks; the other results presented
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Table 4.5 Custom NN architecture description.

Layer name Output size Kernel size Output channels # Mult
conv1 28x28 7x7 3 115224
conv2 28x28 5x5 8 470400

max pool 14x14 3x3 8 0
conv3 14x14 3x3 10 141120
conv4 14x14 3x3 16 282240

max pool 7x7 3x3 16 0
conv5 7x7 3x3 24 169344

max pool 3x3 3x3 24 0
linear 1x10 9x24 1 2160

in this paper are for 8-bit quantization. Stochastic gradient descent with momentum 0.9 is
used with a weight decay of 10−3. This particular value for the weight decay was chosen to
desensitize the DNN from the additional numerical error introduced by inexact multipliers,
which adds up to the quantization error. The DNN is run on the PULP platform for a single
input image, i.e., batch size of 1, ten times for each layer-wise approximate configuration. For
this model, the overhead of the CSR instructions execution can be quantified, according to
Algorithm 3, in the worst case, which is the first convolutional layer, as one CSR set instruction
every 403 instruction (0.25%). In the best case, which is the last convolution, the extra cost is
0.026%. The performance overhead due to the CSR switching, and thus of reconfiguration, is
negligible compared to the overall processing. Through Siemens QuestaSim, the VCD dumps
of the entire core and the approximate and exact multiplying units are collected and used as
inputs for Synopsys Power Shell to extract power metrics based on the actual switching activity.
Simulations are performed using the multipliers configurations obtained from the NSGA-II
run that achieve accuracy over 90% with no retraining. The retraining in this experiment is not
important, as these measurements serve only to provide a quantitative analysis of the impact
of the new multiplier architecture and DPU on the original performance and to validate part
of the proposed methodology. For every configuration, a random input for each of the ten
possible categories is fed to the network, meaning numbers from zero to nine for MNIST. The
post-synthesis of the exact RI5CY core is simulated with the same inputs, and the power of
the accurate multiplier unit is collected; all results are averaged. Table 4.6 reports, for the
configurations listed in the first column, the DNN test accuracy and, in the third column, the
power of the multiplier unit (the exact one for the exact configuration in the first row, the
approximate one for all other cases) averaged over the ten simulations. The fourth column
contains the relative energy saving of the multiplier unit measured post-synthesis, while the
last column shows the relative energy saving estimated at the end of the NSGA-II search,
which is carried out as described in Section 4.2.2, but with no retraining. The first row of
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Table 4.6 contains the power estimation of the exact RI5CY multiplier unit, where all operators,
including the multipliers computing dot8 instructions, are described behaviorally, thus leaving
the architecture selection to Synopsys, with the DesignWare library. Consequently, for a
meaningful comparison, the reference model for the NSGA-II relative estimation is the average
energy consumed by a behavioral 9-bit multiplier synthesized by Synopsys Design Compiler,
with the same settings as the AxM. Although the exact multiplier always executes housekeeping
operations, these are a negligible fraction of its overall workload when all DNN multiplications
are mapped on it; thus, their contribution to the average power is minimal. Therefore, since the
number of multiplications of the DNN model is fixed, and so is the time the multiplier stays
active, the relative energy is considered equivalent to the ratio between the average power of
the approximate unit in the modified RI5CY and that of the exact one in the unmodified core.

Table 4.6 Power consumption and energy saving of the multiplying unit with different layer-wise
configurations for the target DNN.

Configuration
Test
Acc
[%]

Average
RI5CY mult
power [µW ]

Relative
RI5CY mult

energy saving

Relative
NSGA-II

energy saving
Exact 98.7 10.46 0% 0%

[0, 0, 0, 0, 0] 98.7 2.606 75% 42%
[59, 31, 15, 12, 3] 98.7 2.509 76% 46%

[59, 31, 15, 31, 31] 98.5 2.474 76% 48%
[255, 63, 15, 31, 11] 97.8 2.412 77% 50%
[255, 126, 3, 63, 63] 91.3 2.403 77% 53%

The fourth column of Table 4.6 shows that the obtained average energy saving on the
multiplier unit is at least 75% when comparing the exact core and the approximate one with all
multipliers configured as accurate (first and second row in Table 4.6). The maximum saving is
77%, which is more than 20% higher than the high-level estimation performed in NSGA-II.
However, the advantage of adopting different approximate configurations is heavily reduced
compared to the initial evaluation. This can be observed by rescaling the energy results in the
fourth and fifth columns of Table 4.6 with respect to the exact configuration of the multiplier
used in this work [8]. The highest estimated energy reduction, with respect to the model using
the exact configuration of the reconfigurable multiplier for all layers, is 7.7%, with an accuracy
loss of 7.4%, while the predicted saving was 20.1%. The cause of the gain drop, obtained by
configuring the multiplier with a higher approximation, has to be addressed to the chosen task
for the network. When the average power of the multiplier is estimated, 100000 random values
with uniform distribution are used as inputs to the multiplier. However, the MNIST dataset
is composed of black numbers on a vast white background, which means that the network
inputs and, consequently, those of the multipliers are not uniformly distributed. Both input
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images and intermediate activations show a high concentration of zeros, contrary to the initial
assumption. The main consequence of most values being zero is that data-gating, which is
the primary source of power saving when approximation is applied, becomes ineffective as
the operands are already zeros and have a low switching probability themselves. A higher
sensitivity of the selected multiplier [8] to zero input operands, compared to the one from the
Synopsys DesignWare library, could also explain the increased relative energy saving in the
example with respect to the estimates used during the NSGA-II search, which based the power
estimations on LUTs. Even acknowledging the difference in the statistics of the operands, the
optimization algorithm is run using the estimated average energy computed with uniformly
distributed inputs, keeping it data-agnostic, as commonly done in state-of-the-art optimization
frameworks, where performance metrics are estimated independently from the statistics of the
dataset [2, 3, 105, 107, 159]. The latter enables the proposed search strategy to generalize to
new data and thus demonstrate the efficacy of the methodology, an approach that was also used
in [85, 116, 119, 163] to estimate the energy reduction with AxMs. Moreover, these results also
demonstrate an important but also foreseeable conclusion: AxC, while a feasible optimization
technique, cannot significantly improve the energy and latency metrics of the whole system.
Consequently, it should be used paired with other techniques, such as pruning or quantization,
to effectively reduce the energy, or as a low-power defense technique against adversarial attacks
[164, 165], or to desensitize the DNN model from hardware errors [6, 136].

Benchmark with CIFAR-10

Six variations of the ResNet model architecture [13] are used to experiment with shallow and
deep DNNs for image classification, testing the effectiveness of MARLIN with CIFAR-10 [10],
a more challenging dataset than MNIST. The implementation of the ResNet models is based
on the original paper, using the same model architecture and hyper-parameters, but with 44k
iterations instead of 64k, substituting the original multi-step scheduling of the learning rate
with a cyclical scheduler [39], ranging between 10−1 and 10−4. The reason for opting for a
cyclical learning rate instead of a stationary one is to achieve faster convergence with fewer
training iterations during the genetic search. Separate quantization-aware and full precision
training are carried out for the INT8 and FP32 models. All the experiments with AxMs use
the INT8 quantized models; the FP32 results are presented only to provide a comparison with
INT8. Scale quantization with the straight-through-estimator is applied to the weights [74],
while the activations are quantized using PACT [70]. Both techniques are applied to generate
fake quantized data used to achieve quantization-aware training, to include the numerical error
introduced with computation with reduced precision in the forward and backward pass of each
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iteration. The loss of an DNN executed in this way will comprehend the normal mis-prediction
error and the quantization error, which are both compensated after one optimizer step.

Table 4.7 Neural Networks Used in the Experiments.

Neural # Conv.
# Mult.

FP32 INT8 Design space
network layers accuracy accuracy size

ResNet-8 7 12.2M 85.33% 85.43% 72 ·1015

ResNet-14 13 26.4M 90.17% 90.32% 20 ·1030

ResNet-20 19 40.6M 91.77% 91.50% 57 ·1044

ResNet-32 31 68.9M 92.65% 92.58% 45 ·1074

ResNet-50 49 111.3M 92.88% 92.60% 10 ·10117

Resnet-56 55 125.5M 93.14% 93.11% 28 ·10131

Table 4.7 reports the DNNs used in the experiments. The INT8 accuracy results are
evaluated using the approximation level 0 of the proposed multiplier, which provides exact
results, for all the layers of each network. The multiplications reported in Table 4.7 are evaluated
for the inference of a single 32x32x3 input image from the CIFAR-10 dataset. The design
space size reported in the rightmost column is evaluated as the number of unique approximate
layer-wise configurations, evaluated as AL

x , with Ax as the number of accuracy levels of the
reconfigurable multiplier, in this case 256, and L the number of layers that can be approximated.

For ResNet-8, ResNet-14, and ResNet-20, the genetic search is run for 80 generations with
a population of 70 individuals, whereas for ResNet-32, ResNet-50, and ResNet-56, the number
of generations is increased to 120. Before the definitive experiments, a tuning of the agent is
performed to select the population and generation values. No statistical analysis or quantitative
evaluations are performed at this point. Then, a single seed is used for all the experiments
presented in this work, to enable data-reproducibility. The results presented in this section are
taken from a single run of the search algorithm, using the same seed for each random number
generator in each experiment (every run for each experiment will generate the same results
for the same generation). The mutation probability Pm and the crossover probability Pc are
set to 0.8. During the search phase, every approximate DNN is retrained with 10% of the
training set and the accuracy is evaluated with the validation set (5000 unseen images from the
training set). The test set is not used during the search phase as it would have biased the results
and negatively affected the genetic algorithm. In this phase, the DNN accuracy influences the
evolution of each individual’s configuration, i.e., the layer-wise approximation; therefore, to
obtain DNN models that can generalize on new unseen data and prove the effectiveness of the
proposed methodology, any correlation with the final test results had to be removed. Finally,
once the Pareto front has been computed, the approximate DNNs are retrained for one full
epoch and evaluated using the test set.The accuracy and energy results of only the dominant
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solution after the full retraining of the Pareto front are reported in Figure 4.13, providing a
visual representation of the energy-accuracy trade-offs this methodology offers. For every
DNN under test, the absolute accuracy difference between Pareto valid. and Pareto test marks
of each configuration is almost always smaller than 1.5%, with even smaller values for deeper
models. Therefore, the validation accuracy could represent a good approximation of the final
results, justifying the choice of using it in the proposed search strategy.
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ResNet-8 Exact ResNet-8 Pareto test ResNet-8 Pareto valid.
ResNet-14 Exact ResNet-14 Pareto test ResNet-14 Pareto valid.
ResNet-20 Exact ResNet-20 Pareto test ResNet-20 Pareto valid.
ResNet-32 Exact ResNet-32 Pareto test ResNet-32 Pareto valid.
ResNet-50 Exact ResNet-50 Pareto test ResNet-50 Pareto valid.
ResNet-56 Exact ResNet-56 Pareto test ResNet-56 Pareto valid.

Fig. 4.13 Top 1% accuracy and normalized energy variation with different ResNet configurations. The
Pareto valid. blue marks represent the validation accuracy evaluated during the genetic search, whereas
the Pareto test orange marks represent the corresponding approximate configuration tested after the final
retraining.

Figure 4.14 depicts the utilization of approximation levels for each DNN layer. It is
possible to notice the presence of peaks around levels with an index equal to or smaller than
2 j−1, j ∈ [0,1,2,3,4,5,6,7,8], corresponding to the Pareto optimal points of the energy/mean
relative error distance (MRED) metric of the multiplier used in this work, which is taken from
[8]. In Figure 4.14, it is shown how the majority of approximation levels are used in the Pareto
front, justifying the choice to maintain power and MRED-dominated configurations as the most
efficient levels might not be optimal ones to achieve a high task accuracy. Moreover, when
concatenated appropriately, some approximation levels, even the Pareto-dominated ones, might
mitigate the effect of computation errors on the final results, a strategy used in [118] to reduce
the accuracy degradation. However, Figure 4.14 also highlights that some approximation levels



4.2 Hardware/NN Co-design for Reconfigurable Approximate Edge Inference 109

are never used in this use case. Future development should add the possibility of pruning
the search space, removing unused solutions or those with the lowest utilization. In these
experiments, to prove that this methodology is effective with an ample search space, low- and
zero-usage solutions are deliberately kept to test the search algorithm in a worst-case scenario
with the highest complexity.

Fig. 4.14 Approximation levels utilization for all the configurations found for each ResNet model.

Table 4.8 Comparison with ALWANN with 0.5% and 1% relative accuracy degradation.

This work ALWANN
Neural Absolute Relative

Energy
Absolute Relative

Energy
network accuracy accuracy accuracy accuracy

ResNet-8 0.5% 85.21% 99.74% 77.62% 83.16% 99.88% 84.31%
ResNet-8 1% 84.59% 99.02% 69.80% Same solutions as ResNet-8 0.5%

ResNet-14 0.5% 89.98% 99.63% 73.32% 85.42% 99.85% 74.34%
ResNet-14 1% 89.50% 99.09% 71.64% 84.77% 99.09% 70.85%

ResNet-50 0.5% 92.14% 99.50% 80.67% 89.08% 99.92% 78.47 %
ResNet-50 1% 91.70% 99.03% 76.67% 88.58% 99.36% 70.02 %

Table 4.8 compares the proposed approach with ALWANN [85] to understand how MAR-
LIN stands against the state-of-the-art. To make a fair comparison, approximate DNNs with
weights updated after a single epoch retraining for MARLIN and weight fine-tuning for AL-
WANN are chosen. For each approximate DNN configuration, in this work and ALWANN,
the total energy is evaluated as the sum of the energy consumed by the AxM unit, as in Ta-
ble 4.6, multiplied by the number of multiplications of each layer of the DNN model. The
same methodology is applied for the comparison with [119]. This enables a fair comparison
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of the arithmetic energy between methodologies with different architecture choices (MCUs
vs. ASIC accelerators). The proposed method can achieve better results for shallower DNNs
such as ResNet-8 and maintain the same relative gains for ResNet-14, whereas it was not
able to achieve higher energy efficiency than ALWANN for ResNet-50. Comparing the ab-
solute accuracy of the DNN models, the approximate ResNet-14 within 1% relative accuracy
degradation outperforms all the ResNet-50 models presented by ALWANN in top-1 accuracy
and, by extension, in energy efficiency, as ResNet-14 has 76.3% fewer multiplications than
ResNet-50. The proposed methodology is competitive, considering that the multipliers used in
ALWANN have better area and power-MRED metrics but are not reconfigurable [84, 85]. The
main advantage of a reconfigurable multiplier against several arrays of fixed multipliers is that
it is possible to improve the energy efficiency of arithmetic operations with a lower area. This
approach, extended to a systolic array, would require a single array with the same multiplier
architecture, whereas ALWANN requires N separate sub-arrays to support N approximation
levels.

Table 4.9 compares MARLIN with the results presented in [119], without including absolute
accuracy metrics, as they are not reported. Similarly to the previous comparison, it is decided to
consider approximate DNNs with one-epoch retraining for MARLIN and approximate DNNs
with weight fine-tuning with and without additional bias for [119]. Compared to the DNNs
with no additional bias, the approximate DNNs configurations found with MARLIN require up
to 13.1% less energy for ResNet-20, up to 13% less energy for ResNet-32, and up to 15.1%
for ResNet-56. When an additional error correction bias is added to the convolutional layer in
[119], MARLIN can still achieve up to 9,8% less energy for ResNet-20, 8.6% for ResNet-32,
and 7,3% for ResNet-56, without increasing the number of parameters and operations. Using
more approximation levels proved to be an effective way to further reduce the inference energy,
as MARLIN had 256 configurations against the 3 used in [119]. It is possible to justify these
results with the traditional weight-update strategy used in this work and the presence of more
approximate configurations. Retraining each configuration is slower and more computationally
expensive than the multiplier-specific fine-tuning of [119] but allows a better adjustment of the
DNN parameters to compensate for the computation errors, resulting in higher accuracy.

Compatibility with Other Accelerator Architectures

Two important modifications are necessary to port MARLIN to other platforms: adapting
the hardware architecture and the mapper to include the multiplier and the configuration
instructions. The former would require an additional 8-bit control signal from the PE control
unit to set the approximation level. The elongated critical path delay due to the approximation
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Table 4.9 Normalized energy comparison with 0.5%, 1%, and 2% accuracy degradation.

Normalized energy
Neural

Ours
[119] [119]

network w/o bias with bias
ResNet-20 0.5% 75.91% 86.1% 83.1%
ResNet-20 1% 74.46% 85.6% 83.0%
ResNet-20 2% 74.46% 85.1% 82.5%

ResNet-32 0.5% 77.21% 85.7% 81.7%
ResNet-32 1% 74.50% 85.7% 81.7%
ResNet-32 2% 74.39% 85.5% 81.4%

ResNet-56 0.5% 79.87% 94.0% 83.0%
ResNet-56 1% 77.12% 86.1% 83.0%
ResNet-56 2% 77.04% 86.1% 83.0%

logic could be a problem for some accelerators, but it is not for [50, 52], which have a critical
path compatible with the proposed multiplier. For what concerns the mapper, recalling the
discussion of Section 4.2.1, a modification similar to what has been done in this work in the
PULP toolchain can be implemented, inserting custom instructions to configure the multiplier,
with negligible impact on the execution time. Since the scheduling does not change, the
number of computation cycles would also be unaffected. Table 4.10 reports the area and the
energy overheads of including and controlling the AxMs in three accelerators, mapping the
19 convolutional layers of the ResNet-20 with 1% accuracy degradation and 74.46% energy
of Table 4.9. The power model of Timeloop [107] is adopted to evaluate the energy used
to communicate to the PEs the approximation level of each layer, assuming one off-chip
to on-chip memory transfer, and then #PEs transfers from the on-chip memory to the PEs’
registers. The configuration energy of the entire DNN is always below 0.002% of the total
energy evaluated with Timeloop. The area overhead of 35% against exact multipliers can be
negligible, considering that they account for less than 10% of the PE area in [50, 52].

Table 4.10 MARLIN’s area and communication overhead applied to other HW accelerators.

Eyeriss [52] DianNao [51] Simba [50]
# PEs 256 256 1024

PE conf. comm. energy [pJ] 2138 1997 2369
(relative) 0.001% 0.001% 0.002%

Mult. area exact [µm2] (GE) 155468 (108k) 155468 (108k) 621875 (432k)
Mult. area approx. [µm2] (GE) 210585 (146k) 210585 (146k) 842342 (586k)

(relative) (+35%) (+35%) (+35%)



112 Compressed and Error Resilient Deep Neural Networks at the Edge

Discussion

The optimization approach of Section 4.2.2 allowed MARLIN to outperform previous works
that relied on parameter fine-tuning [85, 119], leveraging partial retraining. MARLIN was
run on a 32-thread Ryzen 5950X CPU with 64GB DDR4 DRAM and an Nvidia Quadro
RTX A5000 GPU. The GPU was used only during the initial training of the FP32 and exact
INT8 DNNs presented in Table 4.7, while the CPU was used to simulate the approximate
convolutional layers during the training, validation, and test done during the search, as AdaPT
only supports CPU computation [111]. The number of threads used during the computation
was set to 16 for every experiment to compare how MARLIN execution time scales with
different DNN depths. Table 4.11 reports the execution time for the search phase and the
training of the last Pareto front of Figure 4.13. On average, partial retraining is ≈6x faster
than full retraining. Compared to [85], the iteration time during the search phase is reduced by
72.8% for ResNet-8, 92.3% for ResNet-14, and 85.4% for ResNet-50. This speed-up is due to
the increased utilization of CPU threads, as the training loop used in this work processes more
images during each iteration compared to [85].

Table 4.11 MARLIN’s average execution time with 16 threads.

Neural network
Search phase Final training

One iter. Total One iter. Total
ResNet-8 6.8 sec. 10.6 hours 40.9 sec. 24.6 min.

ResNet-14 7.7 sec. 12 hours 79.4 sec. 35.7 min.
ResNet-20 19.6 sec. 30.5 hours 115.7 sec. 90.6 min.
ResNet-32 30.3 sec. 70.7 hours 189.0 sec. 81.9 min.
ResNet-50 47.1 sec. 109.9 hours 296.2 sec. 69.1 min.
ResNet-56 56.9 sec. 132.8 hours 329.2 sec. 93.3 min.

A limitation in finding the optimal trade-off between energy and accuracy is the dimension
of the search space, which determines the search time and requires a carefully tuned search
strategy. This problem is also found in mixed precision layer-wise quantization, in which the
search space is q2L, with q quantization levels for weights and activations, for L layers [105, 3].
Future work should focus on pruning the search space after a number of experiments (i.e.,
NSGA-II generations) to reduce its size, possibly reducing the time to converge. A further
improvement over layer-wise approximation can be proposed by looking at past works on
quantization. In AutoQ [159], channel-wise quantization is used to reduce the inference energy
with less accuracy degradation than [105, 3], proving that DNN resilience to quantization
errors has an intra-layer dependency besides the inter-layer one. Therefore, achieving an
optimal energy-accuracy trade-off is possible by extending AxC in the channel dimension. In
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AutoQ [159], a bit-serial accelerator is required to support channel-wise quantization, whereas,
with MARLIN, the only necessary modification to enable it with the proposed RISC-V core
would be to adapt the CSR instructions inserted by the presented modified version of DORY.
Nonetheless, the main challenge would be efficiently exploring a wider search space.



Chapter 5

Conclusion

Deploying DNNs on edge devices is still challenging due to the high computational complexity
and memory requirements, but several joint optimization techniques presented in this doctoral
thesis can improve performance, increase the system’s battery life, and enable the execution
of complex AI applications. In particular, a methodology for optimizing DNN models with
compression and scheduling techniques to improve the performance of hardware accelerators
was presented in Chapter 3. In Chapter 4, and in particular in Section 4.1, discussed the design
and implementation of an algorithm for correcting errors in object detection, while Section 4.2
presents a framework for the deployment of approximate DNNs with runtime reconfiguration
on MCUs. As the main contributions and discussion of future development for each of the
presented works are already discussed in the respective chapters, this chapter discusses the
general outlook on future development on robust, hardware-aware compression.

Hardware-aware Compression

At the time of writing, the reseach effort of the scientific community is shifting from "tra-
ditional" DNNs to transformers and large language models (LLMs), which are becoming
increasingly popular in the field of natural language processing and computer vision. While
there are successful quantization [171, 172] and pruning [173] strategies developed for vision
transformers and LLMs, reducing the computing requirements from many to few TPUs or HP
GPUs, there is still a performance barrier preventing a "democratization" of large models in
research. Nonetheless, open-source pre-compressed models that can be executed on a single
GPU with 8GB or VRAM are available and can be used as a starting point for further optimiza-
tion [174]. Given the limited resources of edge devices, aggressive sub-8bit quantization and
online pruning could be leveraged to deploy LLMs without incurring in heavy task accuracy
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loss, while preserving the adaptability of the model to different inputs. While the techniques
presented in Section 2.3 can be extended to these models, it is also necessary to optimize
the search strategy. As highlighted in Section 3.1 and in Section 4.2, the search space for
optimal pruning, quantization, and approximation policies is very large and depends on the
model’s size. The number of parameters for the smallest Llama3 model is 4 billion, which is
4705x the number of parameters of ResNet56, the largest model used in the experiments of
Section 4.2.3, which had a design space size of 28 ·10131, without factoring in mixed-precision
quantization, pruning, and optimal hardware mapping. In this context, the general direction
for future development could be to remove time-consuming operations such as the fine-tuning
of the model, simulation or testing of the task accuracy. Accuracy predictors such as the one
used in [78] to estimate the compressed model’s performance and improved hardware mapping
and estimation tools could be used to reduce the iteration time. Efficient search strategies that
iteratively reduce the search space, such as the ones proposed in [2, 3], could be adopted to
further reduce the complexity.

Combining Compression and Error Resilience

Adversarial robustness and error resilience are two different aspects of the same problem:
secure deployment of DNNs. Possible mitigation strategies have been proposed in Section 2.5,
in Section 4.1, and in Section 4.2. A promising research direction worth exploring is including
approximate computing as a defense mechanism against adversarial attacks. As the attacker is
unaware of the approximate nature of the model during the inference, the adversarial samples
generated for the original model may not be effective against the approximate one. This is
because the loss of the exact and approximate models are not the same, and the adversarial
generator needs it to build the perturbation. In [165], the authors show that by increasing
the perturbation budget, it is possible to train an attacker capable of breaking a DNN that
is transferable to different approximate models, potentially making approximate computing
useless. However, the experiments are carried out with a single multiplier used to compute the
entire network, which is not the case for the approximate DNNs presented in Section 4.2. It
is possible that the attacker is not able to generate transferable adversarial samples with the
same efficacy when there are 28 · 10131 unique approximate DNNs compared to the dozens
considered in [165]. In case the perturbation budget is increased, as proposed in [165] to break
the proposed defensive approximation, resulting in a more distorted adversarial sample, filtering
could be used to remove the pixel noise, as proposed in [175]. Therefore, even if approximate
computing alone is not enough to protect the model from adversarial attacks, it could be used
in conjunction with other techniques to increase the robustness of the model.
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