
18 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

GreenShield: Optimizing Firewall Configuration for Sustainable Networks / Bringhenti, Daniele; Valenza, Fulvio. - In:
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - (In
corso di stampa). [10.1109/tnsm.2024.3452150]

Original

GreenShield: Optimizing Firewall Configuration for Sustainable Networks

Publisher:

Published
DOI:10.1109/tnsm.2024.3452150

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992168 since: 2024-09-03T15:03:46Z

IEEE

1

GreenShield: optimizing firewall
configuration for sustainable networks

Daniele Bringhenti, Fulvio Valenza

Abstract—Sustainability is an increasingly critical design fea-
ture for modern computer networks. However, green objectives
related to energy savings are affected by the application of ap-
proximate cybersecurity management techniques. In particular,
their impact is evident in distributed firewall configuration, where
traditional manual approaches create redundant architectures,
leading to avoidable power consumption. This issue has not been
addressed by the approaches proposed in literature to automate
firewall configuration so far, because their optimization is not
focused on network sustainability. Therefore, this paper presents
GreenShield as a possible solution that combines security and
green-oriented optimization for firewall configuration. Specifi-
cally, GreenShield minimizes the power consumption related to
firewalls activated in the network while ensuring that the security
requested by the network administrator is guaranteed, and the
one due to traffic processing by making firewalls to block unde-
sired traffic as near as possible to the sources. The framework
implementing GreenShield has undergone experimental tests to
assess the provided optimization and its scalability performance.

Index Terms—firewall, network sustainability, power consump-
tion

I. INTRODUCTION

In recent years, the sustainability of computer networks
has progressively become a design feature that cannot be
neglected. Specifically, energy-efficient network management
has become crucial for a two-fold motivation: economic and
social [1]. On the one hand, the size of modern networks is
getting so big that network providers have to minimize power
consumption in order to reduce operating expenditures. On
the other hand, nowadays, global awareness about “green”
themes has become pervasive in all sectors, and therefore
also network providers must rightly meet the expectations of
their current and potentially future customers by implementing
energy-oriented strategies.

A primary challenge that arises in sustainable networks
is the management of the impact that cybersecurity has on
power consumption. Providing adequate countermeasures to a
high number of attack classes is undeniably essential in next-
generation networks, where attacks have shorter exploitation
times, are based on highly mutable vectors, and may come
from different simultaneous sources. Defense in depth is a
principle related to security by design, which is often adopted
to safeguard network assets from those attacks. Its main idea
is that different, complementary devices are used as multiple
defense lines [2]. However, in many cases, administrators limit

Daniele Bringhenti and Fulvio Valenza are with the Politecnico di Torino,
Dip. Automatica e Informatica; e-mail: {first.last}@polito.it.

themselves to placing devices of the same type and with dupli-
cated configuration, thinking that would be enough. However,
not only do such architectures not reach the objectives of
defense in depth, but they also introduce a redundancy that
is in sharp contrast with green-oriented network management
strategies because each additionally deployed function con-
tributes to the overall network power consumption.

A network security function for which this issue is in-
creasingly perceived is the distributed packet filtering firewall,
which represents the most commonly used essential defense
mechanism to oppose the most common cyberattacks. The
behavior of a distributed firewall impacts the network green
economy with two contributions. First, by itself, each firewall
composing a distributed filtering architecture is associated with
a different average power consumption, determined by the
simple reason that the function has been activated. Second,
this power consumption can get higher when the firewall must
process a larger amount of traffic.

Such redundancy is mainly due to the the fact that the tra-
ditional approaches for firewall configuration are still manual,
approximate, and trial-and-error. Within the big size of modern
computer networks, human administrators already struggle to
find a configuration that is at least correct, as they commonly
introduce configuration anomalies that alter the expected
firewall behavior [3]. Moreover, they often limit themselves
to create defense lines with identical configurations, failing
in achieving defense in depth, and it is difficult to expect
from them a configuration that is also optimized. To address
these shortcomings, in literature few studies have investigated
approaches relying on network security automation for firewall
configuration [4]. These approaches have often been successful
in avoiding human errors. Sometimes, they have also con-
tributed to reaching optimized firewall configurations, e.g.,
where firewall and rule numbers are minimized. However,
albeit significant, this optimization does not represent a real
turning point for sustainable networks, because it fails to
achieve two essential green objectives. On the one hand,
a fine-grained firewall energy assessment is lacking. In a
network, each firewall implementation is characterized by
different power consumption (e.g., depending on the additional
features it can provide), which must be taken into account
to optimize network-wide energy efficiency. On the other
hand, intermediate network nodes should process the least
amount of traffic as possible to avoid reaching peak power
consumption levels, and this requires allocating firewalls as
near as possible to the sources of the communications. State-
of-the-art proposals do not reach these goals, because they treat
all firewalls in the same way, and often put them in central

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

positions of the network, thus distant from the traffic sources.
In view of all these considerations, this paper proposes

a novel methodology named GreenShield, which provides
sustainable security through an automatic configuration of
distributed packet filtering firewalls with attention to network
sustainability. This methodology achieves automation by fol-
lowing a principle named policy-based management, where
human administrators simply specify their security desires
related to blocked or allowed communications as sentences
named policies, which are expressed with a user-friendly
language, and later are refined into the concrete network
security configuration. Besides, unlike most related work,
GreenShield combines automation with two other features, i.e.,
optimization and formal verification. Specifically, GreenShield
achieves the two aforementioned energy-oriented goals: i) it
activates the firewalls of the distributed architecture in a way
to minimize the overall average power consumption; ii) it
configures the firewalls so as to block communications as
closely as possible to their sources, thus reducing the number
of traffic flows processed by each network middlebox. As
it can be inferred by these goals, from an operational point
of view, the savings achieved by GreenShield are related
to the power consumption during network operation (i.e., in
an already deployed network), and therefore with a constant
environmental impact at the equipment production level, as
the machines are assumed to be already included in the
network topology. Moreover, GreenShield provides formal
assurance that the computed firewall configuration is correct
and compliant with the requests of human administrators,
thus boosting confidence in using this security automation
approach. These two features are embedded in the proposed
methodology by formulating the configuration problem as a
Maximum Satisfiability Modulo Theories (MaxSMT) problem
based on constraint programming.

The definition and implementation of GreenShield stems
from VEREFOO (VErified REFinement and Optimized Or-
chestration) [5]. The idea has been to avoid starting to work
on firewall automation from scratch, in view of the richness
of the related literature. VEREFOO was selected as starting
point of this study because it is the most feature-complete
approach for firewall configuration existing in literature to
date, and the code of its implementation is available as open
source. However, VEREFOO was designed for virtualized
networks and completely neglects the requirements of sus-
tainable networks. Therefore, GreenShield goes beyond that
approach, proposing new formal models that capture the way
firewalls consume power in a network, and introducing new
optimization objectives related to energy savings.

The remainder of this paper is structured as follows. Section
II discusses the related work, highlighting its limitations in
addressing the problem of power consumption in firewall
configuration. Section III describes the GreenShield approach
from a high-level perspective. Section IV presents the formal
models of the network and security policies. Section V for-
malizes the MaxSMT problem on top of those models. Section
VI describes the implementation developed for GreenShield
and shows the results of its experimental validation. Finally,
Section VII draws conclusions and prospects future work.

II. RELATED WORK

This section dissects the related work, focusing on three
classes of studies: policy-based approaches for sustainable
networks (Subsection II-A), green-aware approaches for net-
work security (Subsection II-B), and automated approaches
for firewall configuration (Subsection II-C). After highlighting
their limitations, it discusses the contributions to the state of
the art introduced by the proposal of this paper (Subsection
II-D).

A. Policy-based approaches for sustainable networks

In response to the increasing relevance of green networking
since the beginning of the previous decade [6], policy-based
management may represent an effective solution to address
network sustainability problems. Nevertheless, according to an
exhaustive survey about policy-based approaches for sustain-
able networks [7], sustainability has been rarely taken into
account in the design of policy refinement, i.e., the process in
charge of moving a high-level requirement representation into
the concrete device configuration.

The only study where sustainability is explicitly addressed is
the one described in [8]. There, a methodological approach for
sustainability-oriented policy refinement is illustrated, working
through five different intermediate policy representation levels:
business view (e.g., service level agreements), system view
(e.g., sustainability and performance indicators), network view
(e.g., metrics for network operations related to its technology),
device view (e.g., metrics for device operation), and instance
view (e.g., management information bases). The proposed
refinement is a rule-based transformation because it works
on predefined rules, thus allowing a more precise domain
specificity. At the same time, the general idea presented in
[8] is not concretely applied to and validated with network
security functions such as firewalls.

Other refinement methods could theoretically support sus-
tainability parameters, but they do not explicitly model them.
The most relevant examples are [9] and [10]. The former is a
case-based reasoning approach, where the policies are derived
from the output of a decision tree classification algorithm
applied to an existing system configuration, and they are
later refined taking into account the distribution statistics of
relevant system attributes. The latter is a logic-based approach,
as it uses a variant of Event Calculus for the problem rep-
resentation, and it works on so-called decomposition rules
representing how actions and objects described at a high level
relate to those at a lower level. From a theoretical point
of view, both approaches may be general enough to allow
extensions for the interpretation of policies related to network
sustainability. However, in practice, such extensions, especially
the ones related to network security policies, have not been
proposed in literature, so their applicability to network security
problems is not guaranteed. Besides, their generality would
still represent an obstacle to successfully achieving more
specific green optimization goals, such as positioning a firewall
as nearest as possible to the source of the traffic flows to be
blocked.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

B. Green-aware approaches for network security

The literature has also started to investigate the impact
of network security on energy consumption. This problem
has been deemed relevant for networks of mobile systems,
characterized by a power-constrained nature [11], but also for
traditional computer networks, which are nowadays subject
to an increasing number of cyber attacks, requiring energy-
consuming security mechanisms as defense [12].

In this research field, several analyses have been carried out
to assess the degree of this impact and to evaluate possible
trade-offs between energy saving and security. The study
described in [13] investigates the impact of identifying and
discarding malicious packets in an aggressive way, by moving
the Intrusion Prevention System (IPS) analysis from network
fringes to the central routers. The experimental results of
this investigation show that, through that shift of paradigm
for the IPS analysis, the total energy consumption of the
network is reduced because fewer devices must route packets,
and at the same time, the routing delays are not signifi-
cantly larger than the ones occurring when the analysis is
performed at the destination. Instead, in [14], the energy-aware
optimal placement of Virtual Network Functions (VNFs) is
investigated for softwarized networks. This analysis takes into
account the fact that different additional power consumption
factors may occur depending on the network server and slice
where each VNF is placed, and aims to minimize the overall
consumption while satisfying security constraints related to
vulnerabilities that the position of multiple VNFs in the same
server may create. Then, [15] analyzes already existing energy
optimization techniques and load balancing techniques for
multi-class firewall rules as possible as possible solutions for
resource-limited wireless networks, to assess how they differ
in terms of computation load.

Even if all these studies analyze combinations between
security and energy saving, they address different problems
with respect to our proposal (e.g., IPS analysis, VNF place-
ment, load balancing). Instead, our approach aims to reach
green-oriented objectives in the problem of distributed firewall
configuration, i.e., a problem that has not yet been addressed
in literature, as we will discuss in the remainder of this section.

C. Automated approaches for firewall configuration

Firewall configuration automation has been extensively in-
vestigated in literature, as firewalls are the most commonly
used security function type in computer networks. It is also
a complex problem, because configuring a firewall requires
solving two sub-problems: defining where firewalls should be
allocated (or which ones should be activated, if already placed
in the network) and computing their filtering rules. With only
two exceptions, represented by the approaches discussed in
[5], [16], all state-of-the-art proposals focus on addressing only
one of these two sub-problems.

For what concerns firewall allocation and activation, it rep-
resents a specification of the more general network (security)
service chaining or composition problem [17], from which

the firewall-oriented research line stemmed. In this area, two
relevant studies are [18], [19]. However, the approaches de-
scribed there have limitations independent of the lack of power
consumption optimization. In fact, they can add firewalls to
a network that only has endpoints and routers, neglecting
more complex middleboxes such as NATs, and they cannot
provide their filtering rules. Besides, [18] does not use formal
verification techniques.

For what concerns filtering rule computation, this second
research line was initiated by the study in [20], which, albeit
limited to centralized firewalls, posed the problem of automat-
ing their computation for the first time. Then, it has continued
over the years up to now, initially with some simple extensions,
i.e., with [21] [22], of that original proposal, and then through
a series of alternative proposals that aimed to address the
problem for distributed firewalls, in different scenarios (e.g.,
virtual networks). Some of the most recent studies, i.e., [23]–
[26], also introduce formal verification as a means to provide
assurance about the produced configuration. However, all
of them still have intrinsic limitations. The methodologies
illustrated in [23], [24] can only refactor existing firewall rule
sets. On the contrary, the strategies proposed in [25], [26] limit
themselves to producing correct firewall rules without pursuing
any optimization goal (e.g., rule minimization).

As previously mentioned, the only two studies that address
these two sub-problems simultaneously are [16] [5], which
consequently represent the most advanced ones in this liter-
ature area. [16] have more limitations because it can only
synthesize firewall chains, but it cannot allocate them in a
network graph. Instead, [5] proposes a full-fledged approach,
named VEREFOO, that combines automation, formal verifi-
cation, and optimization to address the firewall configuration
problem in ramified network topologies.

Nevertheless, all the studies mentioned here, including the
state-of-the-art VEREFOO, are not designed to work in sus-
tainable networks. Therefore, their output does not contribute
to minimizing power consumption.

D. Our contributions
In view of the limitations of the previously discussed

studies, the main contributions of this paper to the related
literature are the following:
• To the best of our knowledge, GreenShield is the first

approach in literature to automate distributed firewall
configuration while pursuing green objectives. It thus
represents a bridge between the studies on policy-based
management for sustainable networks, which does not
focus on network security functions, and the studies
on automatic firewall configuration, which overlook its
impact on power consumption.

• Differently from the models proposed in the studies
on policy-based management, most of which were not
designed explicitly for sustainability albeit theoretically
supported, in GreenShield new models for policy refine-
ment have specifically been defined, so as to achieve
concrete green objectives.

• Differently from most related work on firewall config-
uration, GreenShield combines automation with formal

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

𝑚8

𝑓12

𝑓13

𝑒1

𝑒2

𝑓14 𝑚9 𝑓16 𝑚10 𝑒4

𝑒5

𝑓15

𝑒3

𝑚11

𝑓18

𝑒7𝑓17𝑒6

Fig. 1: Example of input Network Graph

TABLE I: IP addresses and roles of the end points

Identifier IP address End point role

𝑒1 230.40.2.0 Sub-network
𝑒2 230.40.3.0 Sub-network
𝑒3 151.11.0.3 Client
𝑒4 84.0.41.1 Server
𝑒5 84.0.41.2 Server
𝑒6 145.132.6.2 Client
𝑒7 145.132.0.3 Client

verification and optimization to address both configura-
tion sub-problems. This combination was only previously
achieved by VEREFOO [5], but without any optimization
related to power consumption, as the optimality goals of
that approach simply consist in the minimization of the
number of firewall instances and of their filtering rules.
Instead, unlike VEREFOO, GreenShield introduces new
formal models related to the way real firewall implemen-
tations consume power when active. It also formalizes
two new optimization objectives (i.e., power consump-
tion minimization, firewall activation near communication
sources).

III. APPROACH

This section provides a high-level overview of GreenShield,
allowing the readers to understand how the proposed method-
ology has been designed and works before delving into the
problem formalization. In particular, the GreenShield approach
is composed of three main phases:

1) the human administrator prepares the two inputs of the
approach (Subsection III-A);

2) the firewall configuration problem is modeled as a
MaxSMT problem (Subsection III-B);

3) the formally correct and optimized output is automatically
produced (Subsection III-C).

A. Inputs of the approach

The input definition is the only manual activity that is
requested for the user. In our vision, this does not impact the
automation of all next operations, because this task is merely
descriptive and does not require computational complex ac-
tivities. More specifically, GreenShield requires the human
administrator to specify two inputs: a network graph and a
set of network security policies.

TABLE II: Function types of the middleboxes

Identifier Function type

𝑚8 network address translator
𝑚9 router
𝑚10 load balancer
𝑚11 traffic monitor

TABLE III: Power consumption of the firewalls

Identifier Power consumption (W)

𝑓12 2330
𝑓13 2330
𝑓14 6100
𝑓15 3550
𝑓16 5270
𝑓17 6100
𝑓18 2330

1) Network Graph: The first input is a Network Graph
(NG) representing the computer network where the distributed
firewall must be automatically configured in a green-oriented
way. A possible example is depicted in Fig. 1.

An NG should provide information about the way network
functions are interconnected to each other, and their associated
configuration, if it already exists. Besides, the nodes com-
posing the NG can be associated with three main categories,
which are described in the following and vary depending on
the functionality they exercise in the NG.
• Nodes of Fig. 1 listed in TABLE I are end points because

they are either the source or destination for the traffic
flows crossing the network. An end point may be a
single network host (e.g., a web server) or a sub-network
representing multiple hosts (e.g., a corporate network to
which the IP address range 230.40.2.0/24 is associated).

• Nodes of Fig. 1 listed in TABLE II, providing service
functionalities such as network address translation, load
balancing, or traffic inspection. Assumptions about ele-
ments belonging to this category are that they cannot
execute firewalling functionalities and that they are not
the source or destination of traffic flows. The administra-
tor must provide a description of these nodes and their
configuration. For example, GreenShield requires to know
how a network address translator located in the input NG
translates the IP addresses of the received packets.

• Nodes of Fig. 1 listed in TABLE III are firewall instances
of the distributed firewalling architecture. Each firewall
is initially in an inactive status, because it has been only
installed in the network but it is currently turned off. For
the sake of simplicity, it is possible to assume that all
traffic flows cross inactive firewalls without being ever
blocked as if they were crossing simple connection links.
All these inactive firewalls are not characterized by any
filtering configuration, as their computation is a specific
task of GreenShield. Instead, each one is associated with
a weight, representing its average power consumption.
This design choice is motivated by the fact that, in this
study, the power consumption optimization is carried

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

TABLE IV: Example set of Network Security Policies

Action IPSrc IPDst pSrc pDst tProto

Allow 230.40.2.∗ 230.40.3.∗ ∗ ∗ ∗
Allow 230.40.3.∗ 230.40.2.∗ ∗ ∗ ∗
Allow 230.40.2.∗ 84.0.41.∗ ∗ 80 ∗
Allow 84.0.41.∗ 230.40.2.∗ ∗ ∗ ∗
Allow 145.132.6.2 145.132.0.3 ∗ 22 ∗
Allow 145.132.0.3 145.132.6.2 ∗ ∗ ∗
Deny 230.40.2.∗ 84.0.41.∗ ∗ ≠80 ∗
Deny 230.40.2.∗ 145.132.6.2 ∗ ∗ ∗
Deny 230.40.3.∗ 145.132.0.3 ∗ ∗ ∗
Deny 151.11.0.3 84.0.41.∗ ∗ ∗ ∗
Deny 151.11.0.3 145.132.6.2 ∗ ∗ ∗
Deny 151.11.0.3 145.132.0.3 ∗ ∗ ∗
Deny 145.132.6.2 145.132.0.3 ∗ ≠22 ∗
Deny 145.132.0.3 84.0.41.∗ ∗ ∗ ∗
Deny 84.0.41.∗ 145.132.0.3 ∗ ∗ ∗

out offline, i.e., when the firewalls are not yet active
and communications are not yet crossing the computer
network. Under these circumstances, it is not possible to
provide an estimate of the traffic load, which could be
done only with online algorithms, and whose impact will
be taken into account in our model in a different way, as
it will be explained in Section V.
The weights associated to the firewalls may be different,
because each firewall implementation has different energy
requirements, as it can be easily seen in their data sheets.
Considering two examples of the same vendor, Fortinet,
the average power consumption is 2330 W for the 7060E-
8 model, whereas it is more than double, 6100 W, for
the FG-7081F model. Even if all considered firewalls
have the same filtering capabilities (i.e., they are packet
filters that analyze IP 5-tuples), they have different power
consumption because they may have additional different
capabilities (e.g., a firewall may consume more because
it also works as an intrusion detection system, or it
filters traffic with higher speed). Moreover, as firewalls
that consume less power are commonly more expen-
sive, administrators may have only a limited subset of
them available in their network. Besides, when providing
information about firewalls, the administrator can also
specify the requirements of forcing the status of some of
these firewalls to active. This request may be advanced
when, for example, the administrator strictly wants some
firewalls to be used in the final configuration. Clearly, this
decision may lead to a less globally optimized solution,
as some firewalls cannot be left turned off because of this
requirement, and therefore the solution space is reduced.

2) Network Security Policies: The second input is a set
of Network Security Policies (NSPs), describing which traffic
flows must be discarded because potentially malicious, and
which other ones must be able to reach their destination to
guarantee the availability of some end-to-end communication
services. A possible example is depicted in TABLE IV.

Each NSP is characterized by an action and a condition. The
action specifies how the firewalling architecture must manage
packets satisfying the condition, and it also discriminates
NSPs into two classes. In particular, an isolation NSP is
characterized by a deny action, while a reachability NSP is

characterized by an allow action. Instead, the condition is used
to identify the packets to which the action must be applied. As
this study deals with packet filtering, the condition specifies
the IP 5-tuple of the prohibited or allowed flows. As possible
(partial) values of the IP 5-tuple fields, the ∗ symbol can be
used to specify value aggregation. For example, the value
230.40.2.∗ used as source or destination IP address of the
policy condition represents the address range 10.22.34.0/24.
Instead, the value ∗ used as source or destination ports express
all possible numbers that field may have, i.e., from 0 to 65535.

B. Firewall configuration problem formalization

After receiving these inputs from the administrator, Green-
Shield uses them as the basis for defining a partial weighted
MaxSMT problem. This formalization is a constraint satis-
faction problem, composed of first-order constraints stating
which relations should hold among some decision variables,
and its resolution consists in determining if it is possible to
satisfy all those constraints simultaneously. In greater detail, a
partial weighted MaxSMT problem is a generalization of the
traditional SMT problem. The partiality of this formulation de-
rives from the differentiation of two kinds of constraints: hard
and soft. Hard constraints must always be satisfied to have a
correct solution, whereas soft constraints are relaxable because
their satisfaction is not mandatory. Instead, its weighted nature
consists in the fact that each soft constraint is associated with
a weight, and the goal is to maximize the sum of the weights
assigned to the satisfied soft constraints. From here on, for the
sake of conciseness, the term MaxSMT will be used to refer
to partial weighted MaxSMT.

This formulation allows GreenShield to achieve both the
features that we wanted to introduce in this automatic method-
ology, i.e., formal verification and optimization. For what
concerns formal verification, if a solution can be found for
a MaxSMT problem, the MaxSMT formulation guarantees
that all hard constraints are satisfied in that solution, which
is formally proved correct a-priori without the need of apply-
ing time-consuming a-posteriori formal verification techniques
such as theorem proving or model checking. However, this
correctness-by-construction assurance is implicitly provided as
long as basic components of the constraints (i.e., the input of
the approach) are formally represented so that their formal
models adhere to the characteristics of their real counterparts
and capture all the information that may influence the cor-
rectness of the solution. For what concerns optimization, it is
provided by the partial weighted nature of the adopted formu-
lation. As the soft constraints do not require strict satisfaction,
they are suitable for representing optimality objectives. In this
way, if some of them cannot be satisfied with a solution,
that simply means that not all optimization objectives can be
achieved, but correctness is still guaranteed.

Given these theoretical premises, in GreenShield both the
inputs (i.e., the NG description and the NSRs) are formally
modeled. Here, a primary challenge has been to define models
representing a good trade-off between expressiveness and
complexity, so as to maintain correctness by construction
while avoiding an excessive impact on the performance. For

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

example, for the behavior of the middleboxes in the NG,
only the forwarding and transformation behaviors have been
modeled, as other aspects are not relevant for the enforcement
of isolation and reachability policies. Then, starting from these
models, first-order logic constraints are generated. On the one
hand, hard constraints are used to check for the satisfaction
of all the input NSPs. For each NSP, a hard constraint is
introduced to state that the NSP must be satisfied in the NG
where some firewalls may be activated. At the same time, also
for each middlebox in the NG, a set of hard constraints is
introduced to constrain how it can forward flows, because this
behavior may impact the NSP satisfaction (e.g., a traffic flow
may never be able to reach a destination, thus preventing the
satisfaction of a corresponding reachability NSP). On the other
hand, soft constraints are used to express the two optimization
objectives of GreenShield: the minimization of the average
power consumption of active firewalls and the blocking of
traffic flows that match the condition of isolation NSPs as
nearest as possible to their sources.

In the definition of all these constraints, some predicates
are left respectively free (i.e., they are not bound to specific
values), because solving the firewall configuration problem
actually consists in finding a possible assignment for them.
Examples of free predicates are those modeling the activation
decision of each firewall for which the human administrator
has not imposed a strict requirement, and those representing
the configuration decisions about the filtering rules they should
enforce.

C. Automatic output computation

After the MaxSMT problem has been formulated, Green-
Shield employs an automated solver to search for the existence
of a correct solution and, if so, to produce the solution that
optimizes the green optimization goals as much as possi-
ble. Even if the worst-case computational complexity of a
MaxSMT problem is NP-complete, many MaxSMT instances
can be solved in polynomial time on average using state-of-
the-art solvers, thanks to algorithms and strategies that have
been included in them to reach the best performance. The
proposed MaxSMT problem formulation is also independent
of the specific solver used for its resolution, so any solver
that adheres to the semantics of MaxSMT problems can
be employed without altering the problem formulation or
producing different solutions.

When called by GreenShield, the solver always provides an
answer in a decidable way, i.e., if a solution satisfying all hard
constraints does not exist, the solver informs GreenShield (and
its user) of the problem unsolvability, otherwise it successfully
finds the optimal solution. The decidability nature of the
proposed MaxSMT formulation is motivated by the fact that
we used only a limited subset of theories to create it (i.e.,
the Boolean and integer theories, including only relational
operators, without quantifiers). We were able to avoid more
complex integer theories, like the Peano Arithmetic theory,
which includes the multiplication operation but would make
the MaxSMT problem undecidable, as they were not necessary
to model the inputs of this methodology.

𝑚8

𝑓12

𝑓13

𝑒1

𝑒2

𝑚9 𝑚10 𝑒4

𝑒5

𝑓15

𝑒3

𝑚11

𝑓18

𝑒7𝑒6

Fig. 2: Example of output firewall activation scheme

TABLE V: Example set of output filtering rules for 𝑓12

Action IPSrc IPDst pSrc pDst tProto

1 Allow 220.124.30.1 130.10.0.4 ∗ 80 TCP
2 Allow 40.40.41.∗ 130.10.0.4 ∗ 80 TCP
3 Allow 130.10.0.4 ∗.∗.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

If GreenShield informs the network administrator that the
solver could not find any solution satisfying all the hard
constraints, this means that the firewalls allocated in the
network are not enough to satisfy all NSPs, even if all of
them were activated. For example, there may be no firewall in
the path crossed by a flow that must be blocked on behalf of
an isolation NSP. Subsequently, the administrator can use this
information about the unsolvability of the problem to modify
the inputs. Specifically, the administrator can introduce new
firewalls in multiple places of the NG, as long as each one
of these newly introduced firewalls is located in a position
where the counterpart real implementation may be physically
installable. As multiple new firewalls can be added to the NG
after a failed run of GreenShield, the solution space is bigger,
and the chance of finding a correct solution is higher. In this
way, if it is found in a subsequent re-run of the methodology,
among the newly introduced firewalls, only the activated one
must be really positioned in the physical network.

Instead, if at least a correct solution satisfying the hard
constraints exists, the MaxSMT solver provides GreenShield
with the predicate and variable assignment corresponding to
the solution that maximizes the sum of the weights associated
with the satisfied soft constraints. From this information,
GreenShield automatically extracts the two outputs of the
firewall configuration problem. The first output consists in
the activation scheme, i.e., the decision about which firewalls
must be activated. The second output is represented by the
filtering rules that each firewall must be configured with,
in order to block or allow traffic flows as requested by the
administrator through the NSPs. Replacing a non-activated
firewall with network wires and installing the automatically
computed filtering rules on activated firewalls are operations
that should be performed manually by the administrator, after
the conclusion of the GreenShield execution. Keeping these
operations manual is not restrictive because they are simple
tasks that do not involve any possible decision-making error.
After all, the real objective of GreenShield is to automate the
computation of the activation scheme and configuration, a very
complex operation that would be error-prone, optimized, and
time-consuming if performed manually.

Considering the exemplifying inputs shown in Fig. 1 and

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

TABLE IV, the output activation scheme would be the one
illustrated in Fig. 2. The established distributed scheme is
composed of four firewalls: 𝑓12, 𝑓13, 𝑓15, 𝑓18. For each one,
the corresponding output filtering rule set is also produced.
Here, for the sake of conciseness, only the filtering rule set of
𝑓12 is reported in TABLE V as a representative example. This
solution has been chosen by GreenShield because it is the one
that achieves the two green-oriented optimization objectives
the most. For instance, in the computed activation scheme,
both firewalls 𝑓12 and 𝑓13 have been selected, instead of having
a single firewall 𝑓14, which would have been enough to enforce
correctly all the input NSPs listed in TABLE IV. This choice
made by GreenShield is based on a dual motivation. First,
the power consumption of 𝑓14 (which may assumed to be
a Fortinet FG-7081F) is higher than the sum of the power
consumptions related to 𝑓12 and 𝑓13 (which may be assumed
to be two Fortinet FG-7060E). Second, 𝑓12 and 𝑓13 are nearer
to traffic sources 𝑒1 and 𝑒2 than 𝑓14, and also than another
candidate 𝑓16. Therefore, they can avoid a higher number of
middleboxes processing traffic that is bound to be filtered
before reaching the destination.

IV. MODEL

This section describes the formal models for the following
elements of the firewall auto-configuration problem: the com-
puter network (Subsection IV-A), network traffic and function
behavior (Subsection IV-B), traffic flows (Subsection IV-C),
security policies (Subsection IV-D), and firewall configuration
(Subsection IV-E). These models will be later used to build
the MaxSMT problem.

A. Network Graph model

The NG is modeled as a directed graph 𝐺 = (𝑁, 𝐿), where
𝑁 is the set of network nodes, and 𝐿 is the set of directed
connections among them. Each 𝑛 ∈ 𝑁 is identified by a
unique non-negative integer number through an association
represented by the index𝑁 : 𝑁 → N0 function. It is also
assigned with a single IP address (e.g., 124.12.0.1) or an IP
address range if the node is a subnetwork (e.g., 10.22.34.∗,
standing for 10.22.34.0/24). Mapping each node to the set
of its IP addresses is modeled as the address : 𝑁 → 2𝐼

function. Instead, each 𝑙 ∈ 𝐿 is simply identified by the two
non-negative integers identifying the extremities of 𝑙, and this
association is represented by the index𝐿: 𝐿 → N2

0 function.
𝑁 is modeled as a union of multiple subsets, where each

subset includes nodes with a different role for the purposes
of the MaxSMT problem formulation: 𝑁 = 𝑁𝐸 ¤∪𝑁𝑀 ¤∪𝑁𝐹 . 𝑁𝐸

is the set of all the end points, which may be the source or
destination of traffic flows that the network administrator may
want to allow or block. 𝑁𝑀 is the set of all the middleboxes,
which are not flow sources or destinations, but are in the
middle of the network and can provide service functionalities
such as network address translation, load balancing, and traffic
monitoring. 𝑁𝐹 is the set of firewalls that are allocated in the
network. Each firewall 𝑛 ∈ 𝑁𝐹 is associated with a weight 𝑤𝑛,
representing the average power consumption when 𝑛 is active
(i.e., it has been powered up).

B. Traffic and network function behavior models

Each 𝑛 ∈ 𝑁 shows a specific behavior toward the received
packets. Packets sharing the same characteristics in terms
of values characterizing their IP 5-tuple fields are grouped
in packet classes, thus avoiding the definition of excessively
specific per-packet models.

A packet class 𝑡, also named traffic in this paper, is modeled
as a disjunction of predicates 𝑞𝑡 ,1 ∨ 𝑞𝑡 ,2 ∨ ... ∨ 𝑞𝑡 ,𝑛𝑡 , where
each 𝑞𝑡 ,𝑖 is a sub-predicate defined over the IP 5-tuple fields.
A packet belongs to a traffic 𝑡 if its IP 5-tuple fields have
values satisfying at least one of the sub-predicates modeling
that class 𝑡. To provide this, each predicate 𝑞𝑡 ,𝑖 is modeled as
conjunction of five predicates, one defined over a specific field
of the IP 5-tuple. For sake of simplicity, each 𝑞𝑡 ,𝑖 is written
as a tuple 𝑞𝑡 ,𝑖 = (IPSrc, IPDst, pSrc, pDst, tProto). Each one
of these predicates may define a grouping condition that is
specific (e.g., a single IP address such as 124.51.40.2 or a
single TCP port such as 80) or more generic (e.g., an IP
address range 192.168.0.0/24, or a port range [100, 140]).

The behavior of a network function has been modeled by
considering how it manages a traffic, i.e., a packet class.
For the purposes of automatic firewall configuration, it is
enough to model two components of network function behav-
ior: the forwarding behavior and the transformation behavior.
The forwarding behavior specifies if a traffic is blocked by
an intermediate node while traveling toward its destination.
Instead, the transformation behavior expresses how a packet
class is modified by a network function. From the modeling
point of view, the forwarding behavior of a network function
𝑛 ∈ 𝑁 is represented by the deny: 𝑁 ×𝑇→B predicate, which
maps a node 𝑛 and a packet class 𝑡 to true if 𝑛 drops all the
packets identified by the predicate 𝑡, to false otherwise. On the
contrary, the transformation behavior of a network function
𝑛 ∈ 𝑁 is modeled by the transform : 𝑁 × 𝑇 → 𝑇 function,
which maps a node 𝑛 and an input packet class 𝑡 to the packet
class that may be produced by 𝑛 as output.

C. Traffic flow model

The traffic and network function behavior models allow us
to introduce the concept of traffic flow. In this study, a traffic
flow 𝑓 ∈ 𝐹, where 𝐹 is the set of all possible flows, represents
how a packet class originated by a source end point is trans-
formed when it crosses a list of network functions. Formally, 𝑓
is modeled as an alternating list of network nodes and packet
classes: 𝑓 = [𝑛𝑠 ,𝑡𝑠𝑎, 𝑛𝑎,𝑡𝑎𝑏, 𝑛𝑏,..., 𝑛 𝑗 , 𝑡 𝑗𝑘 ,𝑛𝑘 , ..., 𝑛𝑝 ,𝑡𝑝𝑑 , 𝑛𝑑].
In this list, 𝑛𝑠 ∈ 𝑁𝐸 is the source end point, 𝑛𝑑 ∈ 𝑁𝐸 is the
destination end point, and all the other nodes are middleboxes
or firewalls, i.e., they belong to 𝑁𝑀∪𝑁𝐹 . Each traffic 𝑡𝑖 𝑗 of this
list is a packet class possibly transmitted from node 𝑛𝑖 to 𝑛 𝑗

in the flow, after 𝑛𝑖 has applied a transformation (which may
also be an identity function, leaving packets at they have been
received) and if 𝑛𝑖 has not dropped it. In fact, when crossing
a node, the traffic can be forwarded, possibly changed, or
dropped. In other words, this formalization allows to express
how packets are modified and steered to pass through in case
they were not stopped, and then the possibility that they could

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

be dropped will be taken into account by formulating tailored
hard constraints in the MaxSMT problem.

Two auxiliary functions will later be used to formalize some
constraints of the MaxSMT problem in relation to traffic flows.
The first function is 𝜋 : 𝐹 → (𝑁)∗, which maps a flow to
the ordered list of network nodes crossed by that flow. This
list includes the destination, but not the source. The second
function is 𝜏 : 𝐹 × 𝑁 → 𝑇 , which maps a flow and a node
to the packet class, belonging to that flow, that is received by
that node as input.

Given this abstract model, the traffic flow entities con-
cretizing it may diverge depending on how single packets are
grouped into classes. Here, we decided to adopt the Atomic
Flow concretization, based on the idea of Atomic Predicates,
originally proposed by the researchers Yang and Lam in [27],
[28] and recently reused by other studies of network man-
agement [29], [30]. According to this concept, each complex
predicate used to model the network can be split into a
disjunction of simpler predicates, named Atomic Predicates,
which are unique, minimal, and disjoint. The uniqueness of
Atomic Predicates allows to assign them with representative
integer identifiers, so that each complex predicate can be
denoted as a set of integers, where each integer is the identifier
of an Atomic Predicate composing the predicate disjunction.

Applying this concept to concretize the generic traffic flow
model means that, after computing the set of Atomic Predi-
cates for all the network predicates, the flow entities, named
Atomic Flows, can be computed so that each packet class
appearing in its alternating list is represented by an Atomic
Predicate. The decision to adopt this grouping strategy has a
two-fold advantage. On the one hand, this strategy provides
a fine granularity for the definition of packet classes, because
each traffic is the minimal one and is disjoint from the others.
On the other hand, as previously explained, each traffic related
to an Atomic Flow can be associated with an integer identifier,
and consequently all operations on packet classes that will be
modeled in the MaxSMT problem will simply work on integer
numbers instead of complex predicates, thus helping to achieve
better performance.

From here on, when we use the term traffic flow in the
remainder of the paper, we will assume that it is an Atomic
Flow concretizing this abstract model.

D. Network Security Policy model
Denoting as 𝑃 the set of all NSPs defined by the adminis-

trator as input, each 𝑝 ∈ 𝑃 is modeled as a tuple 𝑝 = (𝑎, 𝐶). 𝑎
expresses the NSP action, which is “allow” if 𝑝 is a reachabil-
ity policy, “deny” if it is an isolation policy. 𝐶 is a predicate
representing the NSP condition, which allows the identification
of the packet class on which the NSP action must be applied.
As 𝐶 expresses a packet class, it is modeled in the same way
as a traffic 𝑡, i.e., 𝐶 = (IPSrc, IPDst, pSrc, pDst, tProto). More
precisely, 𝐶 provides information on how the matching packet
class appears at the source and at the destination of its crossed
network path. In fact, the predicates IPSrc and pSrc specify
conditions on the traffic generated by the source, while the
predicates IPDst, pDst, and tProto conditions on the traffic
received by the destination.

Among all the flows that may cross a network, we are
interested only in the flows that satisfy the conditions of a
𝑝 ∈ 𝑃. According to the provided model for the condition 𝐶,
a flow 𝑓 = [𝑛𝑠 , 𝑡𝑠,𝑎, ..., 𝑡𝑧,𝑑 , 𝑛𝑑] satisfies 𝐶 if the following
three conditions are fulfilled:

1) Its source and destination 𝑛𝑠 , 𝑛𝑑 have IP addresses match-
ing IPSrc and IPDst respectively: address(𝑛𝑠) ⊆ 𝐶.IPSrc
and address(𝑛𝑑) ⊆ 𝐶.IPDst.

2) the packet class generated by the source 𝑛𝑠 matches
the condition sub-predicates IPSrc and pSrc: 𝑡𝑠𝑎 ⊆
(𝐶.IPSrc, ∗, 𝐶.pSrc, ∗, ∗).

3) The packet class received by the destination 𝑛𝑑 matches
the condition sub-predicates IPDst, pDst, and tPrt: 𝑡𝑧𝑑 ⊆
(∗, 𝐶.IPDst, ∗, 𝐶.pDst, 𝐶.tPrt).

We will denote the subset of flows satisfying 𝑝.𝐶. as 𝐹𝑝 ⊆ 𝐹,
and we will denote the union set of all these flow subsets as
𝐹𝑃 ⊆ 𝐹.

E. Firewall configuration model

The model for the configuration of the distributed fire-
walling architecture is composed of two components: the acti-
vation status of each firewall and their filtering configuration.

For what concerns the activation status, the active: 𝑁𝐹 → B
predicate maps a firewall 𝑛 ∈ 𝑁𝐹 to true if 𝑛 is active, to
false otherwise. For each 𝑛 ∈ 𝑁𝐹 , the administrator has the
faculty to impose that some firewalls must be active in the
final solution of the auto-configuration problem. The active
maps all those firewalls to true. For all the other firewalls, the
active predicate is left free, i.e., there is no imposition on the
Boolean value to which the predicate maps those firewalls. In
fact, we want the Boolean value to be established by the solver
as output.

For what concerns the filtering configuration of each fire-
wall, it is composed of a set of filtering rules and a default
action, that is applied to any packet class that does not
match the condition of any specific rule. The default action
is modeled with the whitelist : 𝑁𝐹 → B predicate maps a
firewall 𝑛 ∈ 𝑁𝐹 to true if it is configured in whitelisting mode
(where the default action is “deny”), to false if it is configured
in blacklisting mode (where the default action is “allow”). The
specific filtering rules are modeled with the rule: 𝑁𝐹 ×𝑇 → B
predicate, which maps a firewall 𝑛 ∈ 𝑁𝐹 and a traffic 𝑡 to
true if 𝑛 is configured with a filtering rule whose condition is
matched by the packets of 𝑡, to false otherwise. We assume
that the actions associated with these specific filtering rules
are the opposite of the default action, i.e., if the firewall
is in whitelisting mode, the filtering rules have “allow” as
action, otherwise they have “deny”. As for the active predicate,
also the whitelist and rule predicates are left free so that the
solver can establish them in a way that optimizes the power
consumption objectives.

V. MAXSMT PROBLEM FORMULATION

This section discusses how the formal models are used to
formulate the constraints of the MaxSMT problem.

In particular, hard constraints are defined to enforce the
satisfaction of the NSPs (Subsection V-A) and to concretize

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

the abstract models for the forwarding behavior of the network
functions (Subsection V-B). In fact, the NSP satisfaction
depends on the forwarding behavior of the network functions,
i.e., it depends on which packet classes each network function
blocks. Therefore, also that behavior must be represented with
hard constraints, so that the automated solver can check if there
is any incompatibility with the hard constraints previously
described for NSP enforcement.

Instead, soft constraints are employed for the representation
of the green optimization objectives related to network sus-
tainability and power consumption (Subsection V-C). Finally,
the MaxSMT problem that is thus formulated is automatically
resolved by a solver employed by GreenShield, and the values
assigned to the open predicates to provide the output to the
network administrator (Subsection V-D).

A. Hard constraints related to security enforcement

All input NSPs must be successfully enforced in a correct
solution for the firewall auto-configuration problem. Therefore,
their satisfaction must be represented with hard constraints.
These constraints differ depending on the type of NSP that
must be enforced.

An isolation NSP 𝑝 ∈ 𝑃 requires that all the traffic flows
of the subset 𝐹𝑝 satisfying its condition 𝑝.𝐶 must not reach
their destination. Therefore, for each flow of that subset, there
must exist at least an active firewall in its path, successfully
blocking the packet class it receives from that flow. This hard
constraint is formulated in (1).

∀ 𝑓 ∈ 𝐹𝑝 . ∃𝑛 ∈ 𝑁𝐹 . (𝑛 ∈ 𝜋(𝑓) ∧ active(𝑛) ∧ deny(𝑛, 𝜏(𝑓 , 𝑛))) (1)

A reachability NSP 𝑝 ∈ 𝑃 requires that at least a traffic
flow of the subset 𝐹𝑝 satisfying its condition 𝑝.𝐶 must reach
its destination. Therefore, there must exist at least a flow of
that subset such that, if there is an active firewall in its path,
that firewall does not block the packet class it receives from
that flow. This hard constraint is formulated in (2).

∃ 𝑓 ∈ 𝐹𝑝 . ∀𝑛 ∈ 𝑁𝐹 . (𝑛 ∈ 𝜋(𝑓) ∧ active(𝑛) =⇒ ¬deny(𝑛, 𝜏(𝑓 , 𝑛)))
(2)

B. Hard constraints related to the forwarding behavior of the
network functions

The forwarding behavior is represented with hard con-
straints, which vary depending on the specific network func-
tion type.

For what concerns the end points in 𝑁𝐸 and the middleboxes
in 𝑁𝑀 , we assume that they never block any packet, because
in the service provided by the NF the role of filtering traffic is
enforced by firewalls. Therefore, the deny predicate is simply
forced to map any node of those two subsets to false. This
hard constraint is formulated in (3).

∀𝑛 ∈ (𝑁𝐸 ∪ 𝑁𝑀).∀ 𝑓 ∈ 𝐹.(deny(𝑛, 𝜏(𝑓 , 𝑛)) = false) (3)

For what concerns the firewalls in 𝑁𝐹 , they may block some
packet classes depending on their filtering configuration. In
particular, a firewall 𝑛 ∈ 𝑁𝐹 blocks a traffic 𝑡 if and only
if the firewall is active and either it is in whitelisting mode
without any allowing rule whose condition is matched by 𝑡, or

it is in blacklisting mode with a denying rule whose condition
is matched by 𝑡. This hard constraint is formulated in (4).

∀𝑛 ∈ 𝑁𝐹 . (deny(𝑛, 𝜏(𝑓 , 𝑛)) = (active(𝑛) ∧ ((a) ∨ (b))))
(a) = whitelist(𝑛) ∧ ¬rule(𝑛, 𝑡)
(b) = ¬whitelist(𝑛) ∧ rule(𝑛, 𝑡)

(4)

The deny, active, and rule predicates appearing in these
constraints are left free, with minor exceptions related to
restrictions imposed by the administrator. In case the adminis-
trator has specified his desire to make a certain firewall 𝑛 ∈ 𝑁𝐹

as active, then the active predicate is simply forced to map that
firewall to true, as shown in the hard constraint formulated in
(5).

active(𝑛) = true (5)

A noteworthy consideration is that the deny predicate is
shared by both the constraints about forwarding behavior and
the constraints about NSP enforcement. Therefore, the solver
will have to search for a predicate interpretation that satisfies
all those constraints (i.e., for each pair of node and traffic, the
solver must establish the Boolean value to which the predicate
maps that pair) in order to produce a correct solution.

C. Soft constraints related to the optimization objectives

GreenShield pursues two optimization objectives:

1) it aims to minimize the overall power consumption related
to firewall activation;

2) it aims to block the packet classes that must be prevented
from reaching their destination as nearest as possible to
their source so that fewer middleboxes must process the
corresponding traffic flows and can consequently avoid
consuming additional power.

These objectives are modeled as soft constraints in the
MaxSMT problem. In this way, the solver will try to satisfy
them as far as possible, but if it cannot satisfy them, it may
still find a correct solution where all hard constraints are
satisfied. For the representation of the soft constraints, we will
use the Soft(𝑓 , 𝑤, 𝑔) notation, where 𝑓 is the formula which
should be satisfied if possible, 𝑤 is the weight representing the
penalty to be paid if 𝑓 cannot be satisfied, and 𝑔 is a string
representing the class of soft constraints to which 𝑓 appears.
As two optimization objectives are pursued, two classes will
be used in this study, named obj1 and obj2, respectively.

For what concerns the first objective, for each firewall
𝑛 ∈ 𝑁𝐹 , a soft constraint is formulated to state that the
active predicate should map 𝑛 to false, if possible. That soft
constraint is associated with the average power consumption
𝑤𝑛 of firewall 𝑛 as weight. This class of soft constraints is
formulated in (6).

∀𝑛 ∈ 𝑁𝐹 . Soft(active(𝑛) = false, 𝑤𝑛, obj1) (6)

If the solver is forced to activate firewall 𝑛 to satisfy some
hard constraints (e.g., the ones about NSP enforcement), 𝑤𝑛

represents the penalty that it must pay to propose that solu-
tion. Consequently, minimizing the overall power consumption
does not necessarily coincide with minimizing the number of
activated firewalls, because a firewall may have an activation

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

Algorithm 1 computation of the weights for the constraint (7)

Input: an isolation policy 𝑝 ∈ 𝑃
Output: the value of all weights 𝑤𝑛, 𝑓

1: for 𝑓 ∈ 𝐹𝑝 do
2: 𝑤𝑐𝑜𝑢𝑛𝑡 ← 1
3: for 𝑛 ∈ 𝜋(𝑓) do
4: if 𝑛 ∈ 𝑁𝐹 then
5: 𝑤𝑛, 𝑓 ← 𝑤𝑐𝑜𝑢𝑛𝑡

6: 𝑤𝑐𝑜𝑢𝑛𝑡 ← 𝑤𝑐𝑜𝑢𝑛𝑡 + 1

weight higher than the sum of the weights of multiple other
firewalls.

For what concerns the second objective, for each flow
𝑓 ∈ 𝐹𝑝 satisfying the condition of an isolation policy 𝑝 ∈ 𝑃, a
number of soft constraints equal to the number of firewalls in
the path 𝜋(𝑓) is introduced in the MaxSMT problem. Each one
of these soft constraints states that the deny predicate should
map the pair composed of a firewall 𝑛 and the input traffic
𝜏(𝑛, 𝑓) to false, if possible. The weights 𝑤 (𝑛, 𝑓) associated with
those constraints start from 1 for the first firewall encountered
in the path 𝜋(𝑓) and are progressively increased by 1 for
each crossed firewall. These weights are computed as shown
in Algorithm 1, and the class of soft constraints using them is
formulated in (7).

∀𝑝 ∈ 𝑃 | 𝑝.𝑎 = deny. ∀ 𝑓 ∈ 𝐹𝑝 . ∀𝑛 ∈ 𝑁𝐹 | 𝑛 ∈ 𝜋(𝑓).
Soft(deny(𝑛, 𝜏(𝑛, 𝑓)) = false, 𝑤 (𝑛, 𝑓) , obj2)

(7)

If the solver can choose which firewall to use to block a certain
traffic flow to satisfy a related isolation NSP, it will prefer
using a firewall nearer to the flow source, because the penalty
to falsify the deny predicate is lower when applied to that
firewall.

For the resolution of the multi-objective problem composed
by the soft constraints of the two classes previously described,
we configure the automated MaxSMT solver to follow a lexi-
cographic priority of objectives, and we declare the constraints
of class obj1 before the others to the solver, so that it gives
higher priority to satisfy the first ones. The design choice of
this relative priority is motivated by the fact that, as it can be
seen from the firewall data sheets, the power consumption of
a firewall has fluctuations related to the traffic load, but these
variations are near to an average value. Therefore, when trying
to optimize the overall power consumption, the most impactful
choice is determining if a firewall must be activated.

D. Output derivation from the problem resolution

After the MaxSMT problem is formulated with all these
constraints, GreenShield invokes the automated solver to
search for the optimal correct solution.

If no solution satisfying all hard constraints exists, the solver
does not produce any output model, i.e., it cannot provide any
meaningful interpretation for the free predicates. GreenShield
informs the network administrator about the problem unsatis-
fiability, so that inputs may possibly be modified accordingly.

Otherwise, the solver proposes the interpretation of the free
predicates that corresponds to the optimal solution for the

firewall auto-configuration problem. From that interpretation,
GreenShield can produce the two outputs.

The first output, i.e., the activation scheme, is derived from
the interpretation of the active predicate. For each firewall 𝑛 ∈
𝑁𝐹 , GreenShield checks if the solver has set active(𝑛) to true
or false. In the former case, that firewall must be activated and
configured to provide the requested security. In the latter, that
firewall must not be activated because it would be redundant,
and this allows to save power consumption.

The second output, i.e., the filtering configuration for each
active firewall, is derived from the interpretation of the
whitelist and rule predicates. For each firewall 𝑛 ∈ 𝑁𝐹 such
that active(𝑛) = true, GreenShield finds out if it is configured in
whitelisting or blacklisting mode by looking at the value that
the solver decided for whitelist(𝑛). Subsequently, it derives the
more specific filtering rules by looking for all rule(𝑛, 𝑡) that
the solver mapped to true. For those instances, GreenShield
computes a firewall rule, whose condition is the matching
packet class 𝑡 and the action is “allow” in case of whitelisting
mode, “deny” in case of blacklisting mode.

It may sometimes happen for very large networks (e.g.,
networks composed of thousands of hosts and middleboxes)
that the correspondingly modeled firewall configuration prob-
lem is solvable, but an optimized solution cannot be found
in acceptable times. In these cases, if the administrator is not
interested in optimization, the soft constraints (i.e., equations
(6) and (7)) may be excluded from problem formulation. As
they have a non-negligible impact on execution time, their
removal can speed up the work of the automated solver, and at
the same time the potentially found solution is correct, because
correctness is independent from optimality.

VI. IMPLEMENTATION AND VALIDATION

A prototype implementation of GreenShield has been de-
veloped in Java, and it exploits Z3 (version 4.8.8), an open-
source off-the-shelf theorem prover by Microsoft Research,
as MaxSMT solver [31]. It also offers REST APIs, through
which exchanged data can be represented in XML or JSON
embedding, and which users can use to request the resolution
of the green-oriented firewall configuration problem.

The GreenShield implementation has undergone optimiza-
tion validation to understand the power consumption saving
that it can achieve with respect to the state-of-the-art alterna-
tive VEREFOO (Subsection V-C), and performance validation
to assess how it scales against parameters such as the numbers
of NSPs and firewalls (Subsection VI-B). All the validation
tests were carried out on a 4-core Intel i7-6700 3.40 GHz
workstation equipped with 32 GB RAM.

A. Optimization validation

In the optimization validation, GreenShield was compared
with VEREFOO in assessing how it can better achieve the two
green-oriented goals that were included in its core design.

1) Minimization of power consumption due to firewall
activation: The first optimization objective is to minimize
power consumption due to firewall activation, by activating
the least energy-consuming combination of firewall instances

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

10 20 30 40 50

10

20

30

40

Number of firewalls and NSPs

To
ta

l
po

w
er

co
ns

um
pt

io
n

(k
W

)

GreenShield
VEREFOO

(a) Total power consumption

10 20 30 40 50

2

4

6

8

Number of firewalls and NSPs

N
um

be
r

of
ac

tiv
at

ed
fir

ew
al

ls

GreenShield
VEREFOO

(b) Firewall activation status

10 20 30 40 50
4

4.2

4.4

4.6

4.8

5

Number of firewalls and NSPs

A
ve

ra
ge

po
w

er
co

ns
um

pt
io

n
pe

r
ac

tiv
at

ed
fir

ew
al

l
(k

W
)

GreenShield
VEREFOO

(c) Average power consumption per firewall

Fig. 3: Optimization related to power consumption due to firewall activation

Number of firewalls/NSPs
10 20 30 40 50

Total power consumption
saving (kW) 1.08 1.22 2.05 3.82 4.33

TABLE VI: Total power consumption savings with Green-
Shield

that still allows satisfying all the NSPs. For the assessment
of this objective, GreenShield and VEREFOO were run on
50 variations of five use cases of progressively increasing
size. There, the total power consumption of the activated
firewalls, the number of activated firewalls, and the average
power consumption per activated firewall were experimentally
estimated as the average of their 50 corresponding values
measured in the 50 use case variations.

Each use case is characterized by two parameters, estab-
lishing its size: the number of firewalls that may be possibly
activated, and the number of NSPs that must be enforced.
In each use case, these two numbers are assigned with the
same value, progressively from 10 to 50, with an incremental
factor of 10. The network topologies used for these validation
tests are artificially synthesized extensions of the topology
already shown in Fig. 1. These extensions have been obtained
by attaching a progressively higher number of sub-graphs
to them. Similarly, NSPs are variations of the exemplifying
ones reported in TABLE IV, and an equality relationship
has been maintained between the numbers of isolation and
reachability NSPs. The 50 variations created for each use case
characterized by a specific number of firewalls and NSPs are
automatically synthesized so that in each one everything is
kept the same, except for the power consumption value of each
firewall, which is randomly selected in the range 2300 and
7000 W. These values were chosen after analyzing the most
common power consumption values of real-world commercial
firewall implementations.

All the findings of this optimization assessment phase are
reported in Fig. 3.

Fig. 3a reports the total power consumption of the solutions
computed by GreenShield and VEREFOO, averaged on the
50 variations of each use case. The differences between the
power consumption values estimated in the output of the two
frameworks are precisely detailed in TABLE VI. As seen

Number of firewalls/NSPs
10 20 30 40 50

Average power
consumption
saving (kW)

0.476 0.545 0.561 0.559 0.573

TABLE VII: Average power consumption savings with Green-
Shield

from the chart and table, GreenShield can provide significant
energy savings with respect to VEREFOO, which is in the
magnitude order of kWs. Besides, this saving progressively
increases with the enlargement of the use case size, thus
showing that GreenShield is even more effective in addressing
big-sized firewall configuration problems. These results were
possible due to the definition of a green-oriented firewall
formal model and the soft constraint class (6). Thanks to them,
GreenShield analyzes all possible solutions satisfying the input
NSPs and selects the one that activates a firewall combination
that minimizes power consumption.

Fig. 3b reports the number of firewalls activated in the
solutions computed by GreenShield and VEREFOO, again
averaged on the 50 variations of each use case. From this
point of view, GreenShield activates a slightly higher number
of firewalls than the number of firewalls VEREFOO decides
to allocate in its solutions. However, this result was expected
because a smaller number of firewalls does not imply higher
energy savings. In fact, as already discussed since Section I,
firewall implementations have highly variable power consump-
tion. Differently from VEREFOO, which lacks any green-
oriented feature, GreenShield takes this consideration into
account and may opt for activating multiple firewalls instead of
a single one, if that has a more significant power consumption
than the combination of the other ones.

Fig. 3c reports the average power consumption per acti-
vated firewall in the solutions computed by GreenShield and
VEREFOO, derived as a ratio between the corresponding
values of Fig. 3a and Fig. 3b. TABLE VII complements these
findings by showing the actual numerical saving achieved by
GreenShield per each firewall. The plots in this chart have a
decreasing trend because the slope of the number of activated
firewalls (used as the denominator) is steeper than the slope of
the total power consumption (used as numerator), as expected.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

10 20 30 40 50

1

2

3

4

Number of NSPs

A
ve

ra
ge

nu
m

be
r

of
flo

w
s

cr
os

si
ng

ea
ch

m
id

dl
eb

ox

GreenShield
VEREFOO

(a) Scenario with equinumerous NSP types

10 20 30 40 50
0

0.5

1

1.5

2

2.5

Number of firewalls and NSPs

A
ve

ra
ge

nu
m

be
r

of
flo

w
s

cr
os

si
ng

ea
ch

m
id

dl
eb

ox

GreenShield
VEREFOO

(b) Scenario with only isolation NSPs

10 20 30 40 50

5

10

15

Number of middleboxes

A
ve

ra
ge

nu
m

be
r

of
flo

w
s

cr
os

si
ng

ea
ch

m
id

dl
eb

ox

GreenShield
VEREFOO

(c) Scenario with varying network size

Fig. 4: Optimization related to minimization of traffic processing

Still, these results show again that GreenShield provides power
savings even for every single firewall, and this saving increases
when the firewall configuration problem gets bigger.

An additional consideration is that the estimated metric in
all the charts of Fig. 3 is power consumption, but also energy
consumption may be analyzed. The two metrics are closely
interconnected, because the consumed energy is computed as
the product of the consumed power and the time in which
the device (here, the firewall) is active. Consequently, if we
contextualize all the findings of 3 into energy consumption,
the advantages introduced by GreenShield are even more
significant. If we consider the use case with 50 firewalls and
50 NSPs, the energy savings will be 4.33 kW per second.
Firewalls are expected to keep active for long time to ensure
the required network defense, so the energy savings will
steadily increase.

2) Minimization of power consumption due to traffic pro-
cessing: The second optimization objective is to minimize
power consumption due to traffic processing, by making
firewalls block undesired flows as nearest as possible to their
sources, and thus by reducing the number of traffic flows cross-
ing each network middlebox, firewalls included. Regarding
the assessment of this objective, the metric of interest has
been the average number of flows crossing each middlebox.
In fact, a middlebox, such as a firewall, consumes less power
if less traffic crosses it. This metric has been evaluated in three
different scenarios.

First, GreenShield and VEREFOO were run again on the
same use cases previously discussed for the assessment of the
first optimization objective. In those use cases, the number of
isolation NSPs was always equal to the number of reachability
NSPs. Fig. 4a shows that, in that scenario, GreenShield
produces solutions that allow each network middlebox to be
crossed by fewer traffic flows than VEREFOO does. The
difference between the two tools is more significant for bigger
problem sizes: when there are 50 NSPs, in the solution com-
puted by GreenShield each middlebox is crossed by around 1.5
flows on average less than in the one computed by VEREFOO.

Second, GreenShield and VEREFOO were run on use
cases based on the same network topologies used for the
first scenario, but with different NSPs. Here, only isolation
NSPs are requested. This second scenario is motivated by
the fact that a flow related to a reachability NSP must cross

multiple middleboxes to reach the destination. Therefore, the
presence of these flows may make the advantages introduced
by Greenshield less evident. In fact, the results derived from
these other tests, reported in Fig. 4b, show that Greenshield
can produce remarkably optimized solutions, as in all analyzed
use cases each middlebox is crossed by on average less than
on traffic flow, a result which could not be achieved by
VEREFOO, for which more than 2.5 flows were needed for
the management of the most complex scenario. This result
also means that almost all the firewalls are activated in a
position representing the first hop in the network for the
communications between end points, thus avoiding that they
cross additional intermediate network nodes (or other firewalls,
such as the ones near the destinations).

Third, keeping the total number of requested NSPs fixed to
50, with equipartition between the two NSP types, other use
cases were used for the optimization validation by varying the
network size and, in particular, by progressively increasing the
number of middleboxes from 10 to 50, with an incremental
factor of 10. For this scenario, the computed results, depicted
in Fig. 4c, show that the difference in terms of the average
number of flows crossing each middlebox is almost constant,
with a value of around 2.5-3 flows. This shows that, even when
the network is more extensive and, consequently, the averages
become lower, GreenShield can still outperform VEREFOO,
maintaining a significant improvement.

All these experimental results confirm that GreenShield
successfully allows each intermediate node, firewalls included,
to be crossed by a limited number of traffic flows, so that it
can consume less power for their processing.

B. Performance validation

The main objectives of the performance validation of the
GreenShield implementation were to understand the impact
of two main factors (i.e., the number of possibly activated
firewalls and the number of NSPs to be enforced) on the
memory usage and computation time, and to evaluate the
behavior of this framework when executed on MaxSMT
problem instances with increasing size, where all parameters
increase in a coordinated way. The network topologies on
which GreenShield has been used for these validation tests
are again artificially synthesized extensions of the topology
already shown in Fig. 1.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

10 20 30 40 50 60 70 80 90 100

4

4.5

5

5.5

Number of NSPs

M
em

or
y

us
ag

e
(M

B
)

(a) Memory usage

10 20 30 40 50 60 70 80 90 100

200

400

600

800

1,000

1,200

Number of NSPs

C
om

pu
ta

tio
n

tim
e

(m
s)

(b) Time validation

10 20 30 40 50 60 70 80 90 100

0

500

1,000

Number of NSPs

C
om

pu
ta

tio
n

tim
e

(m
s)

(c) Box plot

Fig. 5: Scalability validation against the number of NSPs

10 20 30 40 50 60 70 80 90 100

4

4.5

5

5.5

6

Number of firewalls

M
em

or
y

us
ag

e
(M

B
)

(a) Memory usage

10 20 30 40 50 60 70 80 90 100
0

2,000

4,000

6,000

8,000

Number of firewalls

C
om

pu
ta

tio
n

tim
e

(m
s)

(b) Time validation

10 20 30 40 50 60 70 80 90 100

0

0.5

1

·104

Number of firewalls

C
om

pu
ta

tio
n

tim
e

(m
s)

(c) Box plot

Fig. 6: Scalability validation against the number of firewalls

First, the impact related to the numbers of NSPs and
firewalls on the framework behavior has been analyzed, and
the results of this analysis are reported in Fig. 5 and Fig. 6,
respectively. For the tests aiming to assess the impact of the
number of NSPs, the value assigned to that parameter was
progressively increased from 10 to 100 with an incremental
factor of 10, while the number of firewalls included in the
network where those NSPs must be enforced is set constant
to 50. On the contrary, for the tests aiming to assess the impact
of the number of firewalls, their value was similarly increased
from 10 to 100 with an incremental factor of 10, while the
number of NSPs to be enforced in their network is set constant
to 50. Keeping a parameter fixed while varying the other one
was required to understand which one of them has a more
significant impact on GreenShield.

Fig. 5a and Fig. 6a report the trend of the peak memory
usage as the number of NSPs and the number of firewalls
increase, respectively. The highest value measured among all
analyzed cases is 5.9 MB, which is low and almost negligible.
The trend is also linear with respect to both parameters. These
results show that the increase of the NSP and firewall numbers
does not impact the behavior of GreenShield, which needs a
limited amount of memory to be executed successfully.

Fig. 5b and Fig. 6b report the trend of the computation time
as the number of NSPs and the number of firewalls increase,
respectively. In these two charts, each plotted value represents
the average computed over 50 iterations, where the same
network topology and NSPs are kept, and only the IP addresses
of the nodes vary. This variation was required, because the

time performance of the employed MaxSMT solver is known
to vary substantially with the variation of the values of integer
constants. As integers are used in the formulation of our
MaxSMT problem for IP addresses, varying those addresses
in different iterations and computing their average allowed us
to minimize the influence of that variability. As 50 iterations
were executed to compute the average computation time, for
completeness, we report the achieved results in the form of
box plots in Fig. 5c and 6c. The box plots depicted in those
figures graphically show the minimum, 5th percentile, median,
95th percentile, and maximum for the computed results.

A first noteworthy consideration that can be drawn from
the numerical results shown in those charts is that, in the
worst case that was considered, GreenShield takes less than 10
seconds to compute the solution to the firewall configuration
problem. Specifically, the scenario with 100 NSPs and 50
firewalls requires 1.1s, whereas the scenario with 100 firewalls
and 50 NSPs requires 9.3s. In such short times, GreenShield
does not simply find a solution for the problem, but it produces
the optimal one with respect to the two pursued optimization
objectives related to network sustainability. Thanks to the
MaxSMT formulation of the auto-configuration problem, the
solution can also be considered correct by construction. In
comparison, network administrators would take much more
time to write a possible configuration for a distributed firewall,
they may introduce errors, and they may struggle to define the
configuration that minimizes power consumption. Therefore,
GreenShield can go beyond all limitations of traditional con-
figuration approaches.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

10 20 30 40 50

2.5

3

3.5

4

4.5

Number of firewalls and NSPs

M
em

or
y

us
ag

e
(M

B
)

(a) Memory usage

10 20 30 40 50

100

200

300

Number of firewalls and NSPs

C
om

pu
ta

tio
n

tim
e

(m
s)

(b) Time validation

10 20 30 40 50
0

100

200

300

Number of firewalls and NSPs

C
om

pu
ta

tio
n

tim
e

(m
s)

(c) Box plot

Fig. 7: Scalability validation

A second consideration is that the number of firewalls in
the network has a more significant impact than the number of
NSPs. This can be derived from two aspects noticeable in the
charts. On the one hand, solving a MaxSMT problem related
to 100 firewalls and 50 NSPs requires around seven times more
seconds than a problem characterized by inverted numbers of
those parameters. On the other hand, the growth of the plot in
Fig. 6b is more pronounced than the one in 5b. However, the
cases where a distributed firewall has from 50 to 100 instances
just represent worst cases, used in the validation analysis to
stress the Greenshield framework to its limits. Thanks to those
tests, we were able to confirm the feasibility of the proposed
approach for networks of such size.

After examining the separate impact of the two parameters,
we executed other performance tests to see the trends of
memory usage and computation time when the numbers of
NSPs and firewalls increase progressively by the same factor.
Fig. 7 reports the results achieved by incrementing the value
assigned in parallel to those parameters from 10 to 50, by an
addictive factor of 10. Fig. 7a confirms that the memory usage
is negligible, even when GreenShield is used to enforce 50
NSPs in a network with 50 possible firewalls. Similarly, Fig.
7b and Fig. 7c confirm that GreenShield can solve firewall
configuration problems of significant sizes in limited time
(e.g., less than half a second for enforcing 50 NSPs in a
network with 50 firewalls).

In conclusion, even if GreenShield is mainly designed for
green-oriented optimization, its scalability performance is still
much better than what human administrators may achieve
configuring firewalls manually.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented GreenShield, a novel methodology
combining automation, formal verification and optimization
for the automatic configuration of distributed firewalls in
virtual networks. This approach pursues green objectives to
reduce the impact that firewalls activation and filtering behav-
ior have on the overall network power consumption. A proto-
type implementation has been developed following the design
principles of GreenShield, and its validation showed that it
can successfully finds solutions that are more optimized in
terms of power consumption than a state-of-the-art counterpart
approach of the literature.

As future work, we will investigate how to simplify the duty
of the user to provide the input about firewall placement. A
possible way to simplify it would be to make the administrator
only identify the positions where firewalls may be potentially
activated, and then for each one of these positions a sequence
of three firewalls with different power consumption levels
is modeled in the firewall configuration problem. However,
modeling this sequence would increase the solution space, so
it may decrease the execution time of the automated solver.
Therefore, a full investigation of its impact is needed. Another
future work related to firewall placement is to research if
moving non-activated firewalls to replace activated firewalls
may help to decrease the overall power consumption in some
particular cases. Moreover, we plan to extend this study to
other network security functions, such as VPN gateways,
by investigating how their behavior impacts power consump-
tion, and to extend GreenShield to optimize their automatic
configuration. Finally, we will start to investigate another
green-oriented problem, which is about the impact of routing
operations to energy consumption.

REFERENCES

[1] K. Wang, X. Hu, H. Li, P. Li, D. Zeng, and S. Guo, “A survey on
energy internet communications for sustainability,” IEEE Trans. Sustain.
Comput., vol. 2, no. 3, pp. 231–254, 2017.

[2] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[3] E. S. Al-Shaer and H. H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Netw. Serv. Manag., vol. 1, no. 1, pp. 2–10, 2004.

[4] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
network security configuration: State of the art and research trends,”
ACM Comput. Surv., vol. 56, no. 3, pp. 57:1–57:37, 2024.

[5] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated firewall configuration in virtual networks,” IEEE Trans.
Dependable Secur. Comput., vol. 20, no. 2, pp. 1559–1576, 2023.

[6] A. P. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A survey of green
networking research,” IEEE Commun. Surv. Tutorials, vol. 14, no. 1, pp.
3–20, 2012.

[7] A. C. Riekstin, G. C. Januario, B. B. Rodrigues, V. T. Nascimento,
T. C. M. de Brito Carvalho, and C. Meirosu, “A survey of policy refine-
ment methods as a support for sustainable networks,” IEEE Commun.
Surv. Tutorials, vol. 18, no. 1, pp. 222–235, 2016.

[8] T. C. M. B. Carvalho, A. C. Riekstin, M. Amaral, C. H. A. Costa,
G. C. Januario, C. K. Dominicini, and C. Meirosu, “Towards sustainable
networks - energy efficiency policy from business to device instance
levels,” in Proc. of the 14th International Conference on Enterprise
Information Systems, Volume 3, Wroclaw, Poland, 28 June - 1 July, 2012.
SciTePress, 2012, pp. 238–243.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

[9] Y. B. Udupi, A. Sahai, and S. Singhal, “A classification-based approach
to policy refinement,” in Proc of. IM 2007, 10th IFIP/IEEE International
Symposium on Integrated Network Management, Munich, Germany, 21-
25 May 2007. IEEE, 2007, pp. 785–788.

[10] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy re-
finement: Decomposition and operationalization for dynamic domains,”
in Proc. of the 7th International Conference on Network and Service
Management, CNSM 2011, Paris, France, October 24-28, 2011. IEEE,
pp. 1–9.

[11] A. Merlo, M. Migliardi, and L. Caviglione, “A survey on energy-aware
security mechanisms,” Pervasive and Mobile Computing, vol. 24, pp.
77–90, 2015.

[12] U. Chauhan, D. Sharma, S. Mohril, and G. P. Singh, “A survey on
energy-efficient networking and its improved security features,” pp. 11–
17, 2021.

[13] A. Merlo, M. Migliardi, and E. Spadacini, “Balancing delays and en-
ergy consumption in ips-enabled networks,” in 2016 30th International
Conference on Advanced Information Networking and Applications
Workshops (WAINA). IEEE, 2016, pp. 267–272.

[14] O. Akin, U. C. Gulmez, O. Sazak, O. U. Yagmur, and P. Angin,
“Greenslice: An energy-efficient secure network slicing framework.” J.
Internet Serv. Inf. Secur., vol. 12, no. 1, pp. 57–71, 2022.

[15] S. Rajasoundaran, S. Sivakumar, S. Devaraju, M. J. Pasha, and J. Lloret,
“A deep experimental analysis of energy-proficient firewall policies and
security practices for resource limited wireless networks,” Security and
Privacy, p. e450, 2024.

[16] N. Schnepf, R. Badonnel, A. Lahmadi, and S. Merz, “Rule-based
synthesis of chains of security functions for software-defined networks,”
Electron. Commun. Eur. Assoc. Softw. Sci. Technol., vol. 76, 2018.

[17] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in Proc. of IEEE SDN for Future Networks
and Services, SDN4FNS 2013, Trento, Italy, November 11-13, 2013,
2013, pp. 1–7.

[18] M. Yoon, S. Chen, and Z. Zhang, “Minimizing the maximum firewall
rule set in a network with multiple firewalls,” IEEE Trans. Computers,
vol. 59, no. 2, 2010.

[19] M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed
network access controls: A formal framework with refinement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, 2017.

[20] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel
firewall management toolkit,” ACM Trans. Comput. Syst., vol. 22, no. 4,
pp. 381–420, 2004.

[21] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège, “A formal
approach to specify and deploy a network security policy,” in Proc.
of Formal Aspects in Security and Trust: Second IFIP TC1 WG1.7
Workshop on Formal Aspects in Security and Trust (FAST), an event of
the 18th IFIP World Computer Congress, August 22-27, 2004, Toulouse,
France, vol. 173, 2004, pp. 203–218.

[22] P. Verma and A. Prakash, “FACE: A firewall analysis and configuration
engine,” in Proc. of the 2005 IEEE/IPSJ International Symposium on
Applications and the Internet (SAINT 2005), 31 January - 4 February
2005, Trento, Italy. IEEE Computer Society, 2005, pp. 74–81.

[23] N. B. Youssef and A. Bouhoula, “A fully automatic approach for fixing
firewall misconfigurations,” in Proc. of the 11th IEEE International
Conference on Computer and Information Technology, CIT 2011, Pafos,
Cyprus, 31 August-2 September 2011, 2011, pp. 461–466.

[24] K. Adi, L. Hamza, and L. Pene, “Automatic security policy enforcement
in computer systems,” Comput. Secur., vol. 73, pp. 156–171, 2018.

[25] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The mathe-
matical foundations for mapping policies to network devices,” in Proc.
of the 13th International Joint Conference on e-Business and Telecom-
munications (ICETE 2016) - Volume 4: SECRYPT, Lisbon, Portugal,
July 26-28, 2016, 2016, pp. 197–206.

[26] A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev, “Netcom-
plete: Practical network-wide configuration synthesis with autocomple-
tion,” in Proc. of the 15th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2018, Renton, WA, USA, April 9-11,
2018, S. Banerjee and S. Seshan, Eds., 2018, pp. 579–594.

[27] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp.
887–900, 2016.

[28] ——, “Scalable verification of networks with packet transformers using
atomic predicates,” IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 2900–
2915, 2017.

[29] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “Apkeep:
Realtime verification for real networks,” in Proc. of the 17th USENIX

Symposium on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, 2020, pp. 241–
255.

[30] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “A two-fold traffic
flow model for network security management,” IEEE Trans. Netw. Serv.
Manag., 2024.

[31] L. M. de Moura and N. S. Bjørner, “Z3: an efficient SMT solver,” in
Proc. of the Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008, ser. Lecture
Notes in Computer Science, vol. 4963, 2008, pp. 337–340.

Daniele Bringhenti received the M.Sc. degree
(summa cum laude) and the Ph.D. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Torino, Italy, in 2019 and 2022
respectively, where he is currently an Assistant
Professor with time contract. His research interests
include novel networking technologies, automatic
orchestration and configuration of security functions
in virtualized networks, formal verification of net-
work security policies.

Fulvio Valenza received the M.Sc. degree (summa
cum laude) and the Ph.D. degree (summa cum laude)
in computer engineering from the Politecnico di
Torino, Torino, Italy, in 2013 and 2017, respec-
tively, where he is currently a Tenure-Track Assistant
Professor. His research activity focuses on network
security policies, orchestration and management of
network security functions in SDN/NFV-based net-
works, and threat modeling.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3452150

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

