
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Rethinking the compositionality of point clouds through regularization in the hyperbolic space / Montanaro, A.; Valsesia,
D.; Magli, E.. - ELETTRONICO. - 35:(2022). (Intervento presentato al convegno 36th Conference on Neural Information
Processing Systems, NeurIPS 2022 tenutosi a New Orleans, USA nel November 28th through December 9th, 2022).

Original

Rethinking the compositionality of point clouds through regularization in the hyperbolic space

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981372 since: 2023-08-29T13:44:37Z

Neural information processing systems foundation

Rethinking the compositionality of point clouds
through regularization in the hyperbolic space

Antonio Montanaro∗
Politecnico di Torino, Italy

antonio.montanaro@polito.it

Diego Valsesia
Politecnico di Torino, Italy

diego.valsesia@polito.it

Enrico Magli
Politecnico di Torino, Italy
enrico.magli@polito.it

Abstract

Point clouds of 3D objects exhibit an inherent compositional nature where simple
parts can be assembled into progressively more complex shapes to form whole
objects. Explicitly capturing such part-whole hierarchy is a long-sought objective
in order to build effective models, but its tree-like nature has made the task elusive.
In this paper, we propose to embed the features of a point cloud classifier into the
hyperbolic space and explicitly regularize the space to account for the part-whole
hierarchy. The hyperbolic space is the only space that can successfully embed the
tree-like nature of the hierarchy. This leads to substantial improvements in the
performance of state-of-art supervised models for point cloud classification.

1 Introduction

Is the whole more than the sum of its parts? While philosophers have been debating such deep
question since the time of Aristotle, we can certainly say that understanding and capturing the
relationship between parts as constituents of whole complex structures is of paramount importance
in building models of reality. In this paper, we turn our attention to the compositional nature of 3D
objects, represented as point clouds, where simple parts can be assembled to form progressively more
complex shapes. Indeed, the complex geometry of an object can be better understood by unraveling
the implicit hierarchy of its parts. Such hierarchy can be intuitively captured by a tree where nodes
close to the root represent basic universal shapes, which become progressively more complex as we
approach the whole-object leaves. Transforming an object into another requires swapping parts by
traversing the tree up to a common ancestor part. It is thus clear that a model extracting features, that
claim to capture the nature of 3D objects, needs to incorporate such hierarchy.

In the last years, point cloud processing methods have tried to devise methods to extract complex
geometric information from points and neighborhoods. Architectures like graph neural networks
[1] compose the features extracted by local receptive fields, with sophisticated geometric priors [2]
exploiting locality and self-similarity, while a different school of thought argues that simple archi-
tectures, such as PointMLP [3] and SimpleView [4], with limited geometric priors are nevertherless
very effective. It thus raises a question whether prior knowledge about the data is being exploited
effectively.

In this sense, works such as PointGLR [5], Info3D [6] and DCGLR [7] recognized the need to reason
about local and global interactions in the feature extraction process. In particular, their claim is that

∗Code of the project: https://github.com/diegovalsesia/HyCoRe

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/diegovalsesia/HyCoRe

maximizing the mutual information between parts and whole objects leads to understanding of local
and global relations. Although these methods present compelling results for unsupervised feature
extraction, they still fall short of providing significant improvements when finetuned with supervision.

In our work, we argue that those methods do not fulfill their promise of capturing the part-whole
relationship because they are unable to represent the tree-like nature of the compositional hierarchy.
Indeed, their fundamental weakness lies in the use of spaces that are either flat (Euclidean) or
with positive curvature (spherical). However, it is known that only spaces with negative curvature
(hyperbolic) are able to embed tree structures with low distortion [8]. This is due to the fact that the
volume of the Euclidean space grows only as a power of its radius rather than exponentially, limiting
the representation capacity of tree-like data with an exponential number of leaves. This unique
characteristic has inspired many researchers to represent hierarchical relations in many domains,
from natural language processing [9],[10] to computer vision [11] ,[12]. However, the use of such
principles for point clouds and 3D data is still unexplored.

The main contributions of this paper lie in the following aspects:

• we propose a novel regularizer to supervised training of point cloud classification models
that promotes the part-whole hierarchy of compositionality in the hyperbolic space;

• this regularizer can be applied to any state-of-art architecture with a simple modification of
its head to perform classification with hyperbolic layers in the regularized space, coupled
with Riemannian optimization [13];

• we observe a significant improvement in the performance of a number of popular architec-
tures, including state-of-the-art techniques, surpassing the currently known best results on
two different datasets;

• we are the first to experimentally observe the desired part-whole hierarchy, by noticing
that the geodesics in hyperbolic space between whole objects pass through common part
ancestors.

2 Related work

Point Cloud Analysis Point cloud data are sets of multiple points and, in recent years, several deep
neural networks have been studied to process them. Early works adapted models for images through
2D projections [14], [15]. Later, PointNet [16] established new models working directly on the raw
set of 3D coordinates by exploiting shared architectures invariant to points permutation. Originally,
PointNet independently processed individual points through a shared MLP. To improve performance,
PointNet++ [17] exploited spatial correlation by using a hierarchical feature learning paradigm. Other
methods [18], [19], [20], treat point clouds as a graph and exploit operators defined over irregular
sets to capture relations among points and their neighbors at different resolutions. This is the case of
DGCNN [21], where the EdgeConv graph convolution operation aggregates features supported on
neighborhoods as defined by a nearest neighbor graph dynamically computed in the feature space.
Recently, PointMLP [3] revisits PointNet++ to include the concept of residual connections. Through
this simple model, the authors show that sophisticated geometric models are not essential to obtain
state-of-the-art performance.

Part Compositionality Successfully capturing the semantics of 3D objects represented as point
clouds requires to learn interactions between local and global information, and, in particular, the
compositional nature of 3D objects as constructed from local parts. Indeed, some works have
focused on capturing global-local reasoning in point cloud processing. One of the first and most
representative works is PointGLR [5]. In this work, the authors map local features at different levels
within the network to a common hypersphere where the global features embedding is made close to
such local embeddings. This is the first approach towards modeling the similarities of parts (local
features) and whole objects (global features). The use of a hypersphere as embedding space for
similarity promotion traces its roots in metric learning works for face recognition [22]. In addition
to the global-local embedding, PointGLR added two other pretext tasks, namely normal estimation
and self-reconstruction, to further promote learning of highly discriminative features. Our work
significantly differs from PointGLR in multiple ways: i) a positive curvature manifold such as the
hypersphere is unable to accurately embed hierarchies (tree-like structures), hence our adoption of
the hyperbolic space; ii) we actively promote a continuous embedding of part-whole hierarchies by

2

penalizing the hyperbolic norm of parts proportionally to their number of points (a proxy for part
complexity); iii) we move the classification head of the model to the hyperbolic space to exploit
our regularized geometry. A further limitation of PointGLR is the implicit assumption of a model
generating progressive hierarchies (e.g. via expanding receptive fields) in the intermediate layers. In
contrast, our work can be readily adopted by any state-of-the-art model with just a replacement of the
final layers. Other works revisit the global-local relations using maximization of mutual information
between different views [6], clustering and contrastive learning [23], distillation with constrast [7],
self-similarity and contrastive learning with hard negative samples [24]. Although most of these
works include the contrastive strategy, they differ in the way they contrast the positive and negative
samples and in the details of the self-supervision procedures, e.g., contrastive loss and point cloud
augmentations. We also notice that most these works focus on unsupervised learning, and, while they
show that the features learned in this manner are highly discriminative, they are also mostly unable
to improve upon state-of-the-art supervised methods when finetuned with full supervision. These
approaches differ from the one followed in this paper, where we focus on regularization of a fully
supervised method, and we show improvements upon the supervised baselines that do not adopt our
regularizer.

Hyperbolic Learning The intuition that the hyperbolic space is crucial to embed hierarchical
structures comes from the work of Sarkar [8] who proved that trees can be embedded in the hyperbolic
space with arbitrarily low distortion. This inspired several works which investigated how various
frameworks of representation learning can be reformulated in non-Euclidean manifolds. In particular,
[9] [13] and [10] were some of the first works to explore hyperbolic representation learning by
introducing Riemannian adaptive optimization, Poincarè embeddings and hyperbolic neural networks
for natural language processing. The new mathematical formalism introduced by Ganea et al. [10] was
decisive to demonstrate the effectiveness of hyperbolic variants of neural network layers compared
to the Euclidean counterparts. Generalizations to other data, such as images [25] and graphs [26]
with the corresponding hyperbolic variants of the main operations like graph convolution [26] and
gyroplane convolution [12] have also been studied. In the context of unsupervised learning, new
objectives in the hyperbolic space force the models to include the implicit hierarchical structure of the
data leading to a better clustering in the embedding space [12], [11]. To the best of our knowledge,
no work has yet focused on hyperbolic representations for point clouds. Indeed, 3D objects present
an intrinsic hierarchy where whole objects are made by parts of different size. While the smallest
parts may be shared across different object classes, the larger the parts the more class-specific they
become. This consistently fits with the structure of a tree where simple fundamental parts are shared
ancestors of complex objects and hence we show how the hyperbolic space can fruitfully capture this
data prior.

3 Method

In this section we present our proposed method, named HyCoRe (Hyperbolic Compositional Regu-
larizer). An overview is presented in Fig. 1. At a high level, HyCoRe enhances any state-of-the-art
neural network model for point cloud classification by 1) replacing its last layers with layers perform-
ing transformations in the hyperbolic space (see Sec. 3.2), and 2) regularizing the classification loss
to induce a desirable configuration of the hyperbolic feature space where embeddings of parts both
follow a hierarchy and cluster according to class labels.

3.1 Compositional Hierarchy in 3D Point Clouds

The objective of HyCoRe is to regularize the feature space produced by a neural network so that
it captures the compositional structure of the 3D point cloud at different levels. In particular, we
notice that there exists a hierarchy where small parts (e.g., simple structures like disks, squares,
triangles) composed of few points are universal ancestors to more complex shapes included in many
different objects. As these structures are composed into more complex parts with more points, they
progressively become more specific to an object or class. This hierarchy can be mathematically
represented by a tree, as depicted in Fig.2 where a simple cylinder can be the ancestor of both pieces
of a chair or a table. While the leaves in the tree are whole objects, thus belonging to a specific class,
their ancestors are progressively more universal the higher up in the hierarchy they sit.

3

Object
or Part

BACKBONE
HYPERBOLIC

CLASSIFICATION
HEAD

Exp Mobius
layer

Class
scores

Class Loss
LCE

Contrastive Reg.
RContr

Hierarchy Reg.
RHier

Small part:
close to
center

Whole object:
close to
border

Same class:
attract

Different class:
repel

HYBERBOLIC ENCODER

Contrastive Regularizer RContrHierarchy Regularizer RHier

Figure 1: HyCoRe overview. A point cloud classification model is regularized by promoting the
feature space to include compositional information. Hierarchy regularizer: simple parts should be
mapped closer to the center of the Poincarè disk (common ancestors of whole objects). Contrastive
regularizer: parts of the same class should be embedded closer than parts of other classes.

At this point, it is important noting that the graph distance between leaves is determined by the
shortest path passing through the first common ancestor for objects in the same or similar classes,
while objects from significantly dissimilar classes have the shortest path passing through the root
of the hierarchy. In order to ensure that we can embed this tree structure in a feature space, we
need a space that preserves the geometrical properties of trees and especially the graph distance.
In particular, the embedding space must be able to accommodate the exponential volume growth
of a tree along its radius. A classic result by Sarkar [8] showed that flat Euclidean space does not
provide this, leading to high errors when embedding trees, even in high dimensions. On the contrary,
the hyperbolic space, a Riemannian manifold with negative curvature, does support exponentially
increasing volumes and can embed trees with arbitrarily low distortion. Indeed, the geodesic (shortest
path) between two points in this space does pass through points closer to the origin, mimicking the
behavior of distance defined over a tree.

In particular, we will focus on the Poincarè ball model of hyperbolic space. Since hyperbolic space
is a non-Euclidean manifold, it cannot benefit from conventional vector representations and linear
algebra. As a consequence, classical neural networks cannot operate in such a space. However, we
will use extensions [10] of classic layers defined through the concept of gyrovector spaces.

3.2 Hyperbolic Space and Neural Networks

The hyperbolic space is a Riemannian manifold with constant negative curvature. The curvature
determines the metric of a space by the following formula:

gR = (λc
x)

2gE =
2

1 + c∥x∥2
gE (1)

where gR is the metric tensor of a generic Riemannian manifold, λc
x is the conformal factor that

depends on the curvature c and on the point x on which is calculated, and gE is the metric tensor of
the Euclidean space Rn, i.e., the identity tensor In. Note how the metric depends on the coordinates
(through ∥x∥) for c ̸= 0, and how c = 0 yields gR = 2gE , i.e., the Euclidean space is a flat
Riemannian manifold with zero curvature. Spaces with c > 0 are spherical, and with c < 0
hyperbolic.

The Poincarè Ball in n dimensions Dn is a hyperbolic space with c = −1, and it is isometric to other
models such as the Lorentz model. The distance and norm are defined as:

4

85
185

285
385

485

585

685

785
885

1024

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

Figure 2: 3D objects possess inherent hierarchies due to their nature as compositions of small parts.
The hyperbolic space can embed trees and hierarchical structures with lower distortions than the
Euclidean space. The number of points in the embedded part point cloud is highlighted in figure.
Embeddings shown are experimental results projected to 2D Poincarè disk with hyperbolic UMAP.

dD(x,y) = cosh−1

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)
)

)
, ∥x∥D = 2 tanh−1 (∥x∥) (2)

Since the Poincarè Ball is a Riemannian manifold, for each point x ∈ Dn we can define a logarithmic
map logx : Dn → TxDn that maps points from the Poincarè Ball to the corresponding tangent space
TxDn ∈ Rn, and an exponential map expx : TxDn → Dn that does the opposite. These operations
[10] are fundamental to move from one space to the other and viceversa.

The formalism to generalize tensor operations in the hyperbolic space is called the gyrovector space,
where addition, scalar multiplication, vector-matrix multiplication and other operations are redefined
as Möbius operations and work in Riemannian manifolds with curvature c. These become the basic
blocks of the hyperbolic neural networks. In particular, we will use the hyperbolic feed forward (FF)
layer (also known as Möbius layer). Considering the Euclidean case, for a FF layer, we need a matrix
M : Rn → Rm to linearly project the input x ∈ Rn to the feature space Rm, and, additionally, a
translation made by a bias addition, i.e., y+ b with y,b ∈ Rm and, finally, a pointwise non-linearity
ϕ : Rm → Rm.

Matrix multiplication, bias and pointwise non-linearity are replaced by Möbius operations in the
gyrovector space and become:

y = M⊗c(x) =
1√
c
tanh

(
∥Mx∥
∥x∥

tanh−1(
√
c∥x∥)

)
Mx

∥x∥
(3)

z = y ⊕c b = expcy

(
λc
0

λc
y

logc0(b)

)
, ϕ⊗c(z) = expcz (ϕ(log

c
0(z))) (4)

where M and b are the same matrix and vector defined above, c is the magnitude of the curvature.
Note that when c → 0 we recover the Euclidean feed-forward layer. An interesting property of the
Möbius layer is that it is highly nonlinear; indeed the bias addition in hyperbolic space becomes a
nonlinear mapping since geodesics are curved paths in non-flat manifolds.

3.3 Hyperbolic Compositional Regularization

Armed with the formalism introduced in the previous section, we are ready to formulate our HyCoRe
framework, anticipated in Fig. 1. Consider a point cloud PN as a set of 3D points p ∈ R3 with N
elements. We use any state-of-the-art point cloud processing network as a feature extraction backbone
E : RN×3 → Rm to encode PN in the corresponding feature space. At this point we apply an

5

exponential map expcx : Rm → Dm to map the Euclidean feature vector into the hyperbolic space and
then a Möbius layer H : Dm → Df to project the hyperbolic vector in an f -dimensional Poincarè ball.
This is the hyperbolic embedding of the whole point cloud PN , i.e., zwhole = H(exp(E(PN))) ∈ Df .
We repeat the same procedure for a sub-part of PN , which we call PN ′ with a number of points
N ′ < N , to create the part embedding zpart = H(exp(E(PN ′))) ∈ Df in the same feature space as
before.

We now want to regularize the feature space to induce the previously mentioned properties, namely
the part-whole hierarchy and clustering according to the class labels. This is performed by defining
the following triplet regularizers:

Rhier(z
+
whole, z

+
part) = max(0,−∥z+whole∥D + ∥z+part∥D + γ/N ′) (5)

Rcontr(z
+
whole, z

+
part, z

−
part) = max

(
0, dD(z

+
whole, z

+
part)− dD(z

+
whole, z

−
part) + δ

)
(6)

where z+whole and z+part are the hyperbolic representation of the whole and a part from the same point
cloud, while z−part is the embedding of a part of a different point cloud from a different class.

Object A Object B

Common part
ancestor

Geodesic
path

Figure 3: Geodesic path.

The Rhier regularizer in Eq. (5) induces the com-
positional part-whole hierarchy by promoting
part embeddings to lie closer to the center of
the Poincarè ball and whole embeddings to be
closer to the edge. In particular, we use a vari-
able margin γ/N ′ that depends on the number
of points N ′ of the part PN ′ . This means that
shapes composed by few points (hence simple
universal shapes) will be far from the whole ob-
ject representation and with lower hyperbolic
norm (near the centre). On the other hand, em-
beddings of larger parts will be progressively
closer to the edge of the Poincarè ball, depend-
ing on the part size. Since geodesics between two points pass closer to the ball center (Fig. 3), this
structure we impose to the space allows to visit common part ancestors while traversing a geodesic
between two whole objects. This regularization thus mimics a continuous version of a part-whole
tree embedded in the Poincarè ball.

The Rcontr regularizer in Eq. (6) promotes correct clustering of objects and parts in the hyperbolic
space. In particular, parts and whole of the same point cloud are promoted to be close while a part
from a different class is mapped far apart with respect to the other whole. It ensures that the parts of a
point cloud of a different class are far in terms of geodesic distance. δ is a margin hyperparameter to
control the degree of separation between positive and negative samples.

The two regularizations are included in the final loss in this way:

L = LCE + αRcontr + βRhier (7)

where LCE is the conventional classification loss (e.g., cross-entropy) evaluated on the whole objects.
The classification head is a hyperbolic Möbius layer followed by softmax. In principle, one could
argue that LCE could already promote correct clustering according to class labels, rendering Rcontr
redundant. However, several works [10] have noticed that the Möbius-softmax hyperbolic head is
weaker than its Euclidean counterpart. We thus found it more effective to evaluate LCE on the whole
objects only, and use Rcontr as a metric penalty that explicitly considers geodesic distances to ensure
correct clustering of both parts and whole objects.

At each iteration of training with HyCoRe we sample shapes with a random N ′ varying within a
predefined range. A part is defined as the N ′ nearest neighbors of a random point. In future work, it
would be interesting to explore alternative definitions for parts, e.g., using part labels if available but,
at the moment, we only address definition via spatial neighbors to avoid extra labeling requirements.

6

Table 1: Classification results on ModelNet40. *: re-implemented. **: re-implemented but did not
exactly reproduce the reference result.

Method AA(%) OA(%) Training

*PointNet++[17] - 90.5 supervised
*DGCNN[21] 90.2 92.9 supervised
Point Transformer [30] 90.6 93.7 supervised
PA-DGC [31] - 93.6 supervised
CurveNet [32] - 93.8 supervised
**PointMLP[3] 91.2 93.4 supervised
**PointMLP (voting) 91.4 93.7 supervised

DGCNN+Self-Recon. [33] - 92.4 finetuned
DGCNN+STRL [34] - 93.1 finetuned
DGCNN+DCGLR [7] - 93.2 finetuned
*PointNet++ +PointGLR [5] - 90.6 finetuned

PointNet++ +HyCoRe - 91.1 regularized
DGCNN +HyCoRe 91.0 93.7 regularized
PointMLP +HyCoRe 91.7 94.3 regularized
PointMLP +HyCoRe (voting) 91.9 94.5 regularized

Table 2: Classification results on ScanObjectNN.
Method AA(%) OA(%)

DGCNN[21] 77.8 80.3
SimpleView[4] - 80.8
PRANet[35] 79.1 82.1
MVTN[36] - 82.8
PointMLP[3] 84.4 86.1
**PointNeXt[37] 86.4 88.0

DGCNN+HyCoRe 80.2 82.1
PointMLP+HyCoRe 85.9 87.2
PointNeXt+HyCoRe 87.0 88.3

Table 3: Effectiveness of hyperbolic space.
Average Accuracy (%)

Dim 16 64 256 512 1024

DGCNN 76.6 77.5 77.8 76.6 76.3
DGCNN+EuCoRe 78.2 78.9 79.0 78.8 79.0
Hype-DGCNN 76.8 75.9 76.5 76.0 77.5
DGCNN+HyCoRe 79.1 80.0 80.2 80.2 79.7

4 Experimental results

4.1 Experimental setting

We study the performance of our regularizer HyCoRe on the synthetic dataset ModelNet40 [27]
(12,331 objects with 1024 points, 40 classes) and on the real dataset ScanObjectNN [28] (15,000
objects with 1024 points, 15 classes). We apply our method over multiple classification architectures,
namely the widely popular DGCNN and PointNet++ baselines, as well as the recent state-of-the-art
PointMLP model. We substitute the standard classifier with its hyperbolic version (Möbius+softmax),
as shown in Fig. 1. We use f = 256 features to be comparable to the official implementations in the
Euclidean space, then we test the model over different embedding dimensions in the ablation study.
Moreover, we set α = β = 0.01, γ = 1000 and δ = 4. For the number of points of each part N ′, we
select a random number between 200 and 600, and for the whole object a random number between
800 and 1024 to ensure better flexibility of the learned to model to part sizes. We train the models
using Riemannian SGD optimization. Our implementation is on Pytorch and we use geoopt [29] for
the hyperbolic operations. Models are trained on an Nvidia A6000 GPU.

4.2 Main Results

Table 1 shows the results for ModelNet40 classification. In the first part we report well-known
and state-of-the-art supervised models. We retrained PointNet++, DGCNN and the state-of-the-
art PointMLP as baselines, noting some documented difficulty [38] with exactly reproducing the

7

Figure 4: Embeddings produced by the hyperbolic encoder, projected to 2 dimensions with hyperbolic
UMAP. Each color represents a class; small points correspond to parts; large points correspond to
whole objects. Parts are closer to the center, sitting higher in the hierarchy (whole objects at the
border may share a common part ancestor reachable via the geodesic connecting the objects).

Table 4: Classification results when one of
the two regularizations is omitted.

AA(%) OA(%)

DGCNN 77.8 80.3
DGCNN+Rhier 77.9 80.5
DGCNN+Rcontr 79.2 81.6
DGCNN+HyCoRe 80.2 82.1

Table 5: Performance vs. curvature of the
Poincarè Ball

Average Accuracy (%)

Curvature c 1 0.5 0.1 0.01

Hype-DGCNN 76.5 76.9 76.6 76.9
DGCNN+HyCoRe 80.2 79.4 78.7 78.5

official results. In addition, the second part of the table reports the performance of methods [33],
[34], [7] proposing self-supervised pretraining techniques, after supervised finetuning. Concerning
PointGLR [5], the most similar method to HyCoRe, we ensure a fair comparison by using only the
L2G embedding loss and not the pretext tasks of normal estimation and reconstruction.

Finally, the last part of the table presents the results with HyCoRe applied to the selected baselines.
We can see that the proposed method achieves substantial gains not only compared to the randomly
initialized models, but also compared to the finetuned models. When applied to the PointMLP,
HyCoRe exceed the state-of-the-art performance on ModelNet40. Moreover, it is interesting to notice
that the embedding framework of PointGLR is not particularly effective without the pretext tasks.
This is due to the unsuitability of the spherical space to embed hierarchical information, as explained
in Sec. 2, and it is indeed not far from results we obtain with our method in Euclidean space.

Table 2 reports the classification results on the ScanObjectNN dataset. Also in this case, HyCoRe
significantly improves the baseline DGCNN leading it to be comparable with the state-of-the-art
methods such as SimpleView [4], PRANet [35] and MVTN [36]. In addition, PointMLP that holds the
state of the art for this dataset, is further improved by our method and reaches an impressive overall
accuracy of 87.2 %, substantially outperforming all the previous approaches. Although the authors
in [3] claim that classification performance has reached a saturation point, we show that including
novel regularizers in the training process can still lead to significant gains. This demonstrates that the
proposed method leverages novel ideas, complementary to what is exploited by existing architectures,
and it is thus able to boost the performance even of state-of-the-art methods. It is also remarkable that
an older, yet still popular, architecture like DGCNN is able to outperform complex and sophisticated
models such as the Point Transformer, when regularized by HyCoRe.

8

Table 6: Hyperbolic Norms of labeled parts from the whole object up to the single parts.
Table Plane+uprights Legs+uprights Plane Legs Uprights

5.32 4.56 2.08 4.07 2.05 1.99

Aircraft Wings+tail+engines Wings+tail Wings Fuselage Tail
4.98 4.56 4.45 4.22 3.37 2.94

In addition, to further prove that enforcing the hierarchy between parts is useful to build better
clusters, we show in Fig. 4 a 2D visualization with UMAP of the hyperbolic representations for the
ModelNet40 data. Colors denote classes, big points whole objects and small points parts. Besides the
clear clustering according to class labels, it is fascinating to notice the emergence of the part-whole
hierarchy with part objects closer to the center of the disk. Importantly, some parts bridge multiple
classes, such as the ones in the bottom right zoom, i.e., they are found along a geodesic connecting
two class clusters, serving as common ancestors. This can happen due to the fact that some simple
parts having roughly the same shape appear with multiple class labels during training, and the net
effect of Rcontr is to position them midway across the classes.

The tree-likeness of the hyperbolic space can be also be seen in the visualization in Fig. 2 (right).
There we embed shapes with gradually large number of points up to the whole object made by 1024
points. We can notice that the parts are moved towards the disk edge as more points are added.
Furthermore, a quantitative analysis of the part-whole hierarchy is shown in Table 6. Here we
calculated the hyperbolic norms of compositions of labeled parts. We can see that, as the parts are
assembled with other parts, their hyperbolic norms grow, up to the whole object that is pushed close
to the ball edge.

4.3 Ablation study

In the following we show an ablation study focusing on the DGCNN backbone and the ScanObjectNN
dataset. The dataset selection is motivated by the fact that it is a real dataset, able to provide more
stable and representative results compared to ModelNet40.

We first compare HyCoRe with its Euclidean version (EuCoRe) to investigate the effectiveness of the
hyperbolic space. The basic principles and losses are the same, but in EuCoRe distances and network
layers are defined in the Euclidean space. Table 3 shows the results. With Hype-DGCNN we indicate
the hyperbolic version of DGCNN, as represented in Fig. 1, but without any regularization, serving
as a baseline to assess the individual effect of the regularizer. We also test the models over a different
number of embedding dimensions. We can see that EuCoRe only provides a modest improvement,
underlining the importance of the hyperbolic space. We also notice that the hyperbolic baseline
struggles to be on par with its Euclidean counterpart, as observed by many recent works [25], [10].
However, when regularized with HyCoRe, we can observe significant gains, even in low dimensions.
This also leaves an open research question, about whether better hyperbolic baselines could be built
so that HyCoRe starts from a less disadvantaged point.

In Table 4 we ablate HyCoRe by removing one of the two regularizers. We can see that the
combination of the two provides the overall best gain.

In order to study the effect of different space curvatures c, Table 5 evaluates HyCoRe from the standard
curvature 1 down to 0.01. We remark that some works [25],[39], report significant improvements
when c is very low (e.g., 0.001), but this is counter-intuitive since the hyperbolic space then resembles
an almost flat manifold. On the contrary, we do see improved results at higher curvatures.

Since HyCoRe constrains the network to learn the relations between parts and whole object, we claim
that, at the end of the training process, the model should be better able to classify coarser objects.
In Figs. 5a and 5b we show the test accuracy of DGCNN on ModelNet40, when presented with a
uniformly subsampled point cloud and with a small randomly chosen and spatially-contiguous part,
respectively. Indeed, we can notice that HyCoRe provides a gain up to 20 percentage points for
very sparse point clouds, and is also able to successfully detect the object from smaller parts. For
a fair comparison, we also report the baseline DGCNN with training augmented by random crops

9

128 256 512 1024
Number of input points

20

40

60

80

100

Te
st

 O
A

(%
)

DGCNN+HyCoRe
DGCNN+Aug
DGCNN

(a) Subsampled input. HyCoRe is more robust when
the point cloud has coarser sampling.

128 256 512 1024
Part size (points)

20

40

60

80

100

Te
st

 O
A

(%
)

DGCNN+HyCoRe
DGCNN+Aug
DGCNN

(b) Parts with different size. HyCoRe better detects
objects from only a small part.

Figure 5: Test inference of DGCNN on ModelNet40.

of parts. Even though the augmentation is useful to improve accuracy, HyCoRe is more effective
demonstrating the importance of compositional reasoning.

5 Conclusions

Although deep learning in the hyperbolic space is in its infancy, in this paper we showed how it
can successfully capture the hierarchical nature of 3D point clouds, boosting the performance of
state-of-the-art models for classification. Reasoning about the relations between objects and the parts
that compose them leads not only to better results but also more robust and explainable models. In the
future, it would be interesting to explore different ways of defining parts, not based on spatial nearest
neighbors but rather on more semantic constructions. One important extension is to adapt HyCoRe to
segmentation. Since segmentation aims to classify single points and the corresponding parts, contrary
to classification, the parts embeddings should be placed on the boundary of the Poincarè Ball, where
there is more space to correctly cluster them, and the whole objects (made by composition of parts)
near the origin. We could exploit the label of the parts to this end or investigate unsupervised settings
where the part hierarchy emerges naturally.

Acknowledgments and Disclosure of Funding

Computational resources were provided by HPC@POLITO, a project of Academic Comput-
ing within the Department of Control and Computer Engineering at the Politecnico di Torino
(http://www.hpc.polito.it). This research received no external funding.

References
[1] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object detection in a point

cloud,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 1711–1719.

[2] H. Chen, S. Liu, W. Chen, H. Li, and R. Hill, “Equivariant point network for 3d point cloud anal-
ysis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14 514–14 523.

[3] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design and local geometry in
point cloud: A simple residual mlp framework,” arXiv preprint arXiv:2202.07123, 2022.

[4] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, “Revisiting point cloud shape classification
with a simple and effective baseline,” in International Conference on Machine Learning. PMLR,
2021, pp. 3809–3820.

10

[5] Y. Rao, J. Lu, and J. Zhou, “Global-local bidirectional reasoning for unsupervised representation
learning of 3d point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 5376–5385.

[6] A. Sanghi, “Info3d: Representation learning on 3d objects using mutual information maximiza-
tion and contrastive learning,” in European Conference on Computer Vision. Springer, 2020,
pp. 626–642.

[7] K. Fu, P. Gao, R. Zhang, H. Li, Y. Qiao, and M. Wang, “Distillation with contrast is all you
need for self-supervised point cloud representation learning,” arXiv preprint arXiv:2202.04241,
2022.

[8] R. Sarkar, “Low distortion delaunay embedding of trees in hyperbolic plane,” in International
Symposium on Graph Drawing. Springer, 2011, pp. 355–366.

[9] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representations,”
Advances in neural information processing systems, vol. 30, 2017.

[10] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural networks,” Advances in neural
information processing systems, vol. 31, 2018.

[11] Z. Weng, M. G. Ogut, S. Limonchik, and S. Yeung, “Unsupervised discovery of the long-tail in
instance segmentation using hierarchical self-supervision,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 2603–2612.

[12] J. Hsu, J. Gu, G. Wu, W. Chiu, and S. Yeung, “Capturing implicit hierarchical structure in
3D biomedical images with self-supervised hyperbolic representations,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[13] G. Becigneul and O.-E. Ganea, “Riemannian Adaptive Optimization Methods,” in
International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=r1eiqi09K7

[14] H. You, Y. Feng, R. Ji, and Y. Gao, “PVNet: A joint convolutional network of point cloud and
multi-view for 3D shape recognition,” in Proceedings of the 26th ACM international conference
on Multimedia, 2018, pp. 1310–1318.

[15] L. Li, S. Zhu, H. Fu, P. Tan, and C.-L. Tai, “End-to-end learning local multi-view descriptors for
3d point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 1919–1928.

[16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 652–660.

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on
point sets in a metric space,” Advances in neural information processing systems, vol. 30, 2017.

[18] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional neural network for point
cloud analysis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8895–8904.

[19] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 9621–9630.

[20] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution on X-transformed
points,” Advances in neural information processing systems, vol. 31, 2018.

[21] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph
cnn for learning on point clouds,” ACM Transactions on Graphics (TOG), vol. 38, no. 5, p. 146,
2019.

11

https://openreview.net/forum?id=r1eiqi09K7

[22] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep
face recognition,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019, pp. 4690–4699.

[23] G. Mei, L. Yu, Q. Wu, and J. Zhang, “Unsupervised learning on 3d point clouds by clustering
and contrasting,” arXiv preprint arXiv:2202.02543, 2022.

[24] B. Du, X. Gao, W. Hu, and X. Li, “Self-contrastive learning with hard negative sampling for
self-supervised point cloud learning,” in Proceedings of the 29th ACM International Conference
on Multimedia, 2021, pp. 3133–3142.

[25] V. Khrulkov, L. Mirvakhabova, E. Ustinova, I. Oseledets, and V. Lempitsky, “Hyperbolic image
embeddings,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 6418–6428.

[26] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolu-
tional neural networks for web-scale recommender systems,” in Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 974–983.

[27] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep
representation for volumetric shapes,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1912–1920.

[28] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting point cloud
classification: A new benchmark dataset and classification model on real-world data,” in
Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1588–
1597.

[29] M. Kochurov, R. Karimov, and S. Kozlukov, “Geoopt: Riemannian optimization in pytorch,”
2020.

[30] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 16 259–16 268.

[31] M. Xu, R. Ding, H. Zhao, and X. Qi, “Paconv: Position adaptive convolution with dynamic
kernel assembling on point clouds,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 3173–3182.

[32] T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud: Learning curves for point
clouds shape analysis,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 915–924.

[33] J. Sauder and B. Sievers, “Self-supervised deep learning on point clouds by reconstructing
space,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[34] S. Huang, Y. Xie, S.-C. Zhu, and Y. Zhu, “Spatio-temporal self-supervised representation
learning for 3d point clouds,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 6535–6545.

[35] S. Cheng, X. Chen, X. He, Z. Liu, and X. Bai, “Pra-net: Point relation-aware network for 3d
point cloud analysis,” IEEE Transactions on Image Processing, vol. 30, pp. 4436–4448, 2021.

[36] A. Hamdi, S. Giancola, and B. Ghanem, “Mvtn: Multi-view transformation network for 3d
shape recognition,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 1–11.

[37] G. Qian, Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud, M. Elhoseiny, and B. Ghanem,
“Pointnext: Revisiting pointnet++ with improved training and scaling strategies,” arXiv preprint
arXiv:2206.04670, 2022.

[38] “Reproducing PointMLP on ModelNet40,” https://github.com/ma-xu/pointMLP-pytorch/issues/
1, accessed: 2022-05-16.

[39] A. Ermolov, L. Mirvakhabova, V. Khrulkov, N. Sebe, and I. Oseledets, “Hyperbolic Vision
Transformers: Combining Improvements in Metric Learning,” arXiv preprint arXiv:2203.10833,
2022.

12

https://github.com/ma-xu/pointMLP-pytorch/issues/1
https://github.com/ma-xu/pointMLP-pytorch/issues/1

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discussed that the hyperbolic

baseline is generally weaker than its Euclidean counterpart, and that it is unclear if
different definitions for parts could be exploited.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is foundational research and we do not see a direct path towards malicious use of the
specific regularization technique presented in the paper.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provide a
draft version of the code in the supplementary material. The full version along with
detailed instructions to reproduce the experiments will be released upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We use standard datasets and splits well known by the literature
and report all values of the hyperparameters for our tests. Hyperparameters were either
chosen to ensure fair comparisons or by rough cross-validation.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We follow the practice of all existing literature to report
the best value to ensure fair comparisons with existing works.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related work
	Method
	Compositional Hierarchy in 3D Point Clouds
	Hyperbolic Space and Neural Networks
	Hyperbolic Compositional Regularization

	Experimental results
	Experimental setting
	Main Results
	Ablation study

	Conclusions

