
17 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the impact of the stem electrical impedance in neural network algorithms for plant monitoring applications / Barezzi,
M; Cum, F; Garlando, U; Martina, M; Demarchi, D. - ELETTRONICO. - (2022), pp. 131-135. (Intervento presentato al
convegno 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) tenutosi a Perugia, Italy nel 03-
05 November 2022) [10.1109/METROAGRIFOR55389.2022.9965011].

Original

On the impact of the stem electrical impedance in neural network algorithms for plant monitoring
applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/METROAGRIFOR55389.2022.9965011

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980500 since: 2023-07-24T12:37:09Z

IEEE



On the impact of the stem electrical impedance in
neural network algorithms for plant monitoring

applications
Mattia Barezzi∗, Federico Cum∗, Umberto Garlando∗, Maurizio Martina∗ and Danilo Demarchi∗

∗Department of Electronics and Telecommunications (DET), Politecnico di Torino, Torino, Italy

Email: umberto.garlando@polito.it

Abstract—Smart agriculture offers an environmental-friendly
path with respect to unsustainable farming that depletes the
nutrients in the soil leading to a persistent degradation of
ecosystems caused by population growth. Artificial Intelligence
(AI) can help mitigate this issue by predicting plant health status
to reduce the use of chemicals and optimize water usage. This
paper proposes a custom framework to train neural networks and
a comparison among different models to point out the impact and
the importance of the stem electrical impedance in addition to
environmental parameters for plant monitoring applications. In
particular, the paper demonstrates how stem electrical impedance
improves the accuracy of the proposed neural network applica-
tion for plant status classification. The data set is composed of
electrical impedance spectra and environmental data acquired
on four tobacco plants for a two-month-long experiment. In this
paper, we describe the acquisition system architecture, the feature
composition of the data set, a general overview of the developed
framework, and the training of the neural networks showing the
different results considering both the stem impedance and the
environmental parameters.

Index Terms—Smart agriculture, neural networks, plant’s
health status

I. INTRODUCTION & BACKGROUND

Food security is challenged by human population growth
and the reduction of arable lands [1]. Therefore, smart agricul-
ture is trying to improve food production by integrating sensors
and automation technology with the farmer’s knowledge. Sen-
sors typically monitor the environment’s physical quantities.
For example, air humidity, temperature, and light intensity are
commonly monitored environmental parameters. However, the
soil is also crucial: soil moisture or volumetric water content
are typically sensed. Besides, monitoring the plant itself is also
important. In this regard, leaf temperature [2], sap flow [3],
and stem impedance spectroscopy [4] are the most interesting
quantities.
The most helpful information is the status of the plant in
order to understand if the plant is suffering, for example,
due to water stress or the presence of parasitic. Machine
learning can be applied in this field, where the data of the
environment and the plants can be used to train a model that
can be employed to classify the plant status of a living being.
As a starting point, data previously collected can be used
to verify this approach. Furthermore, it is possible to under-
stand which parameters are important to determine the plant’s

status. This evaluation could be carried out as a supervised
problem (also called classification problem) or unsupervised
(also called clusterization problem) but also semi-supervised
or as reinforcement learning are possible choices. The first is
the optimal choice when a given data set can be labeled. In
this way, when a machine is so-called trained, that machine
can recognize to what class belongs a specific combination of
input data. In the agrifood field, the plant is a complex system
where it is possible to recognize the most valuable “top-level”
data summarized as plant health status to optimize a crop.
For example, coarse modeling could be a plant classification
based on leaves condition. Alternatively, a more sophisticated
analysis could be performed, for example, monitoring volatile
organic compounds emitted by the plants and related to their
current status using, for example, optical and electrochemical
ethylene sensors or electrochemical and chemo-fluorescent
jasmonate sensors [5].
A machine learning application for agriculture could be a
binary classification problem (healthy or unhealthy plant) or
a more complex multi-class classification where it is possible
to evaluate several parameters such as watering stress, correct
fertilization, good climate conditions, or, finally, predict the
changes of a defined physical quantity based on other param-
eters. These results are extremely useful in many practical
applications, for example, yield prediction, disease detection,
weed detection, crop quality, and water and soil monitoring
[6].
It is helpful to recall that in the supervised algorithms lie sev-
eral learning models: k-Nearest Neighbor (k-NN) [7], Naive-
Bayes [8], decision tree [9], [10] or random forest, linear and
logistic regression, Support Vector Machine (SVM) [11] and
neural network algorithms are used in many different fields.
Each of them has to be set up in such a way as to adapt
the underlying algorithm to the practical problem and obtain
the best possible performance. In [6], a comparison among
supervised, partially supervised, and unsupervised machine
learning algorithms is explained.
Finally, it needs to consider also the practical technological
scenario [12]: the chosen algorithm should be implemented
on-field, for example, in an IoT (Internet of Things) node
where a critical aspect is related to power consumption. For
this reason, machine learning algorithms are usually trained



on a PC (Personal Computer) or an HPC (High-Performance
Computing) cluster, which is the most time-consuming and
computational-intensive step. Then, the trained model is im-
ported in a low-cost and low-power microcontroller. In this
way, it is also possible to deploy on IoT node fancy models.
Fig. 1 shows a possible development flow of the machine
learning architecture.
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Fig. 1. Block diagram of plants’ health status prediction.

The paper is organized as follows: section II describes
how the data set for this study was extracted, the general
structure of the developed framework, and how the model was
implemented. Then, section III shows the obtained results, and
section IV draws the conclusions.

II. PROPOSED DESIGN

A. Data set

A data set is needed to train a model that can be
used to predict tobacco plants’ health status. A system
has been developed to sense plants’ stem impedance and
their surrounding parameters [13], [14], summarized in Fig. 2.
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Fig. 2. Block diagram of the acquisition system.

The stem impedance module and phase are measured using
an impedance analyzer (Keysight 4294A). The four-probe
technique is applied using two Kelvin clips connected to the
plant’s stem through tiny stainless steel needles. A complete
explanation related to impedance spectroscopy in tobacco
plants is presented in [15]. The impedance analyzer measures
four plants thanks to a multiplexing circuit (MUX) controlled
by a Raspberry Pi (Multiplexing Control) that drive Power
Supply (PS) and Control Signal (CS) lines. Finally, this
appliance was connected to a PC via GPIB (General Pur-
pose Interface Bus), where a LabVIEW program continuously
monitors the measurement procedure and stores the impedance
spectra. A simple User Interface (UI) has been developed to
handle these operations. On the contrary, for the surrounding
parameters of each plant, a sensor node was developed as a
custom board mounted on the top of a Raspberry Pi Zero W.
This sensor node can collect data related to air temperature and
humidity, ambient light, and the soil moisture. The impedance
is measured at a frequency of 10.145 kHz as the working
point that offers the most appreciable variations in tobacco
plants [14].
The system samples every one hour all physical quantities and
provides a .txt file containing the stem impedance module and
phase and four .csv files, one for each analyzed plant. These
data were sent to a PC via wireless communication. In this
way, four different plants are monitored by the autonomous
system, where two of them are watered regularly, and the oth-
ers are left to water stress. This data set contains information
related to the four plants from 24 March 2021 to 4 May 2021
that includes the whole 3516 records.
In addition, a camera is used to monitor the plants: a picture is
taken every 15 minutes in such a way as to check the plants’
status visually. This task is mainly done to label the data set
in the proposed design.
In Fig. 3, a picture taken in April shows plants one and four,
plants that suffer water stress, with yellow leaves, a clear
indication of a bad plant health status.

Fig. 3. Picture of the four plants dated 9 April 2021 11:28:34.

The resulting feature set comprises air humidity, air
temperature, light intensity, soil moisture, time when the data
were sampled, impedance modulus, and impedance phase.



Fig. 4 shows how the model was implemented, considering
the described data set.
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Fig. 4. A machine learning approach using this data set.

A supervised algorithm requires that the data set is labeled:
each item of the data set was manually labeled and set up
to a logical value whether the plant showed a healthy leaf
(green color) or a weakened leaf (yellow color). This is an
early qualitative approach to label data to avoid employing
expensive sensors. Once the model is trained, it can be used
on new samples or in the testing set to evaluate the accuracy
figure of merit of the model (testing accuracy).
The following step is data preprocessing: aggregation,
sampling, dimensionality reduction, feature subset selection,
feature creation, discretization, filtering, or attribute
transformation are possible operations to be performed.
For example, in this data set, soil moisture data were clamped
to -200 kPa when raw data in the data set showed a lower
value than that. This is done because the sensor’s datasheet
states that the maximum appreciable value is -200 kPa.
The column of the time in the input files is in the format
Y Y Y Y −MM −DD hh : mm : ss where Y Y Y Y is the
year, MM is the month, DD is the day, hh is the hour, mm
is the minute, ss is the second. The data were converted to
a numeric format to use this information in the model by
exploiting the DateTime library. In particular, only the hours
and the minutes are considered. The final value corresponds
to the following format number: hh × 60 + mm. Another
fundamental step is normalization: this is performed to weigh
in the same way all features due to the input quantities
having very different ranges. Each feature will converge with
a different step size during the training iterations. Therefore,
all features have to be in the same range of values: data are

normalized to a range from 0 to 1, so it can be expressed
with Eq. 1.

x′ =
x− xmin

xmax − xmin
(1)

Eq. 1 explains x′ that is the normalized value, x that is the ac-
tual value in the data set, xmin and xmax that are, respectively,
the minimum and maximum values of that feature. Section III
shows an example of feature subset selection analysis. This
could be an approach to evaluate the importance of acquired
features in the training of the model.
Finally, data structures of four plants are concatenated, normal-
ized, shuffled, and separated: 80% of the data is the training
set, which will be used to train the model. The remaining 20%
of the data is the testing set, which will be used to evaluate
the test accuracy. Moreover, starting from 3516 samples, 2813
records compose the training set and 703 records the testing
set, respectively.
At this point, a training phase using a machine learning
algorithm is performed, and an optimizer is typically used to
obtain a model file.

B. Framework

The lack of scientific literature resources about neural
networks applied to stem impedance data has required to
develop a novel software in such a way as to perform the
training process systematically. Moreover, a basic structure
was designed and implemented in Python language employing
the PyTorch library that provides a wide set of ready-to-use
functions to train and test neural networks. This toolchain
was chosen since this library is natively object-oriented and
it has comprehensive academic support for machine learning
applications.
A hierarchical structure was designed to give the possibility to
train a model based on a specific hyperparameter configuration
or to find the best model based on a sweep over different neural
network configurations. Fig. 5 shows a simplified scheme of
the developed framework. It was designed starting from the
available data set. The main elements of the framework are:
settings, feature pre-processing, and dispatcher. The remaining
elements in the same figure are the input and output blocks.
The former consists of the data set described in II-A. The
latter includes the trained output model (in .pth extension)
and a set of text files containing helpful information on the
model itself.
The settings element is composed of a set of files that are
a convenient way to set all the hyperparameters needed to
perform neural network training. Besides classical hyperpa-
rameters, such as learning rate, number of epochs, batch size,
loss function, and optimizer, it is also possible to specify which
features have to be employed, the neural network structure or
structures to be trained, and evaluation metrics used to evaluate
a model.
Feature pre-processing element includes a subset of functions
implemented in the PyTorch and DateTime libraries able to
manage the data set, making it suitable for the training phase.
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Attribute transformation, normalization, concatenation, and
shuffling are only some of the possible choices used in the
simulations described in III. The dispatcher is the core of the
developed framework and is in charge of using the settings
specified by the user to activate the training model process. In
particular, two main functions can be chosen: single neural net-
work training and sweep neural network training. In the former
case, a single neural network is trained following the settings
files. In the latter case, multiple networks are trained, varying
some of the hyperparameters. The framework is capable of
sweeping over the number of hidden layers and neurons for
each hidden layer, the number of past samples used to perform
a prediction, and overlap size (subsequent time windows for
a prediction). Finally, a structure was implemented to select
different ranks for future evaluation with other figures of merit.
Each time a model is trained, the last model and the best
model according to the accuracy are saved inside a .pth
model file. Moreover, accuracy results are saved into text files,
and the confusion matrix (a specific table layout that allows
visualization of the performance of an algorithm) for each
model is evaluated. For the case of the sweep search, the
trained models are also ranked based on the test accuracy.

III. RESULTS AND DISCUSSION

An early set of simulations is needed to find the correct
parameters for this data set in the framework. In particular,

the correct learning rate, a sufficient long epoch number, the
appropriate activation functions, and a suitable optimizer. A
good trade-off was found in setting up a learning rate equal
to 0.0001, epoch number equal to 300, the ‘relu’ activation
function in the inner layers, ‘softmax’ activation function in
the output layer, and ‘Adam’ as optimizer. In addition to them,
the number of inner layers and their number of neurons should
be found. A too-complex network leads to overfitting, and, on
the contrary, a too-minimal network leads to underfitting, so
the model is too simple to predict in a good way the plant
health status. Here, it was found as a reasonable trade-off for
a network where there are two hidden layers composed of six
neurons, each of them. The number of input neurons depends
on the number of considered features employed to train the
model. The number of output neurons is fixed to two.
The experiment should highlight the importance of stem
impedance as an additional parameter for the proposed neu-
ral network training. Moreover, comparing a network com-
posed of seven features (all surrounding features plus stem
impedance module and phase) against a network composed of
five features (only surrounding features are considered) could
not be fair.
For this reason, a comparison among different networks has
been performed using the single neural network training
feature of the dispatcher, evaluating the best model for each
attempt computed by the dispatcher itself. A pair of surround-
ing features are removed in each network, always considering
stem impedance features. Differently, for the last attempt (trial
number 11), stem impedance values are not used. In this way,
it is possible to prove the importance of stem impedance
and the fact that a neural network works better considering
both surrounding data and stem impedance. Fig. 6 shows
the results in terms of test accuracy of each trained neural
network described in the legend on the right side of the figure
itself. It is possible to note that neural networks number 3,
6, 8, and 10 show the worst performance (less than 73%)
where, in common, there is no soil moisture feature in the
training phase. Furthermore, this clearly shows the importance
of soil moisture in the model. Another bad performance result
appears when the removed features are the impedance modulus
and phase (neural network number 11). Moreover, the best
networks are related to the presence of both soil moisture
and impedance values removing negligible features such as
temperature, ambient light, or time. In this way, it has been
obtained test accuracy of 82.4% and 83.8%, respectively, in
the neural network numbers 4 and 9.

IV. CONCLUSIONS

This paper compared trained neural networks using the
developed framework that allows great customization in the
simulations. This work shows the importance of stem electrical
impedance related to plant stress events such as watering
events. In addition, it has demonstrated the relevance of soil
moisture in predicting tobacco plants’ health status.
Future work will be related to implementing alternative so-
lutions to increase the accuracy and evaluate other figures of
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Fig. 6. Trained neural network bar graph comparison.

merit, as for example, the F1 score or Matthews correlation
coefficient (MCC) related to the quality of the prediction
allowing for the usage of the model on unknown tobacco
plants. In addition, it is necessary to collect more data from
a broader period and from more plants to train the model,
preventing overfitting. Another consideration can be made
related to the labeling method used for the plants: actual
labeling is based on the color of leaves, but other boundaries
could be set up to decide plant health status.
The final goal is to train a network that is possible to be
implemented on low-cost and low-power microcontrollers to
realize autonomous smart monitoring systems for tobacco
plants. Therefore, the predictions may be used to set the
optimal conditions for the plants automatically to increase
crops and avoid water and fertilizers waste.
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