
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Building the Cloud Continuum with REAR / Galantino, Stefano; Albanese, Elisa; Asadov, Nasir; Braghin, Stefano; Cappa,
Francesco; Colli-Vignarelli, Andrea; Majid, Amjad; Marin, Eduard; Marino, Jacopo; Moro, Lorenzo; Nedoshivina, Liubov;
Risso, Fulvio; Siracusa, Domenico; Fernando Skarmeta Gomez, Antonio; Zuanazzi, Luca. - (In corso di stampa).
(Intervento presentato al convegno NetSoft 2024 - 3rd International Workshop on Edge Network Softwarization - ENS
2024).

Original

Building the Cloud Continuum with REAR

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989397 since: 2024-06-10T11:52:37Z

IEEE

Building the Cloud Continuum with REAR
Stefano Galantino∗, Elisa Albanese∗∗, Nasir Asadov‡, Stefano Braghin§, Francesco Cappa∗,

Andrea Colli-Vignarelli∗, Amjad Yousef Majid††, Eduard Marin∥, Jacopo Marino∗, Lorenzo Moro†,
Liubov Nedoshivina§, Fulvio Risso∗, Domenico Siracusa¶, Antonio Skarmeta‡‡, and Luca Zuanazzi∗∗

∗Dept. of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
†Consorzio TOP-IX, Torino, Italy

‡Technische Universität Berlin, Berlin, Germany
§IBM Research Europe, Dublin, Ireland
∥Telefonica Research, Barcelona, Spain

∗∗RSE Ricerca sul Sistema Energetico, Milano, Italy
††Martel Innovate, Amsterdam, the Netherlands

¶Fondazione Bruno Kessler, Trento, Italy
‡‡Universidad de Murcia, Murcia, Spain

Abstract—The computing continuum combines computational
resources and services from edge to cloud, promising enhanced
efficiency and resilience with respect to the traditional siloed-
based approach. This study presents the REAR (Resource
Advertisement and Reservation) protocol, which tackles the
complexities of managing resources within this continuum. REAR
establishes standardized interfaces to enable interoperability,
enhances resource allocation efficiency, and maintains security
measures for workload execution. The paper details the protocol’s
design, key components, operational workflows, and potential
uses, contributing to the optimization of resource use across the
computing continuum.

Index Terms—Computing Continuum, Resource Management

I. INTRODUCTION

In today’s rapidly evolving technological landscape, the con-
cept of the computing continuum has emerged as a paradigm
that seamlessly integrates a wide spectrum of computing
resources, spanning from far-edge devices to centralized cloud
infrastructure. The consolidation of computational resources in
the continuum opens up unprecedented potential for enhancing
both the efficiency of various applications through dedicated
allocation policies and the resiliency of the infrastructure upon
failures thanks to the geo-distribution of compute resources.

Within the context of the European project FLUIDOS 1,
we argued that the effective utilization of resources within a
continuum is contingent upon their recognition and exposure
as a unified pool. The dynamicity of the continuum can
therefore be fostered by allowing devices to advertise/purchase
(possibly) any type of resource, ranging from traditional
computing resources (e.g., VMs, slices of Kubernetes clusters),
to sensors, actuators, and volumes of data. As a result, devices
can dynamically join the continuum, advertising the locally
available resources and purchasing remote resources when
needed, having access to the entire catalog of possibilities.

This paper proposes REAR (REsource Advertisement and
Reservation), a novel protocol designed to address the chal-

1https://www.fluidos.eu/

lenges associated with resource advertisement and reservation
in the computing continuum. REAR aims to provide a flexible
and scalable framework that enables entities within the contin-
uum to advertise their resources and facilitate the reservation
of those assets by consumers or applications.

REAR addresses three key objectives. (i) Standardization,
defining common interfaces and messages for resource ad-
vertisement and reservation to promote interoperability and
compatibility across heterogeneous computing environments.
(ii) Efficiency, to optimize resource allocation and utilization
by allowing devices to enrich the resource description includ-
ing internal energy metrics, latency considerations, and cost
models. (iii) Security and Trust, incorporating mechanisms for
authentication, authorization, and secure communication to en-
sure the integrity and confidentiality of resource transactions.

Throughout this paper, we will delve into the design prin-
ciples, architectural components, and operational workflows
of our proposed protocol. Additionally, we will discuss the
potential applications and benefits of adopting this protocol
in various domains, including edge computing, the Internet
of Things (IoT), and cloud computing. By presenting this
protocol, we aim to contribute to the ongoing efforts aimed
at realizing the full potential of the computing continuum by
enabling efficient resource management and utilization.

The paper is structured as follows: Sec. II outlines the
motivations for a flexible resource advertisement protocol.
Sec. III reviews current protocols. Sec. IV introduces REAR.
Sec., V and VI detail REAR’s data models and workflows.
Sec. VII evaluates REAR, and Sec. VIII concludes.

II. MOTIVATIONS

Resource discovery plays a pivotal role in distributed con-
tinuum infrastructures to prevent underutilized resources and
inefficient allocation policies. In the following, we outline the
optimizations enabled by the continuum’s resource aggregation
and highlight the requirements for REAR.

1) Support for intent-based allocation: Intelligent, data-
driven applications can leverage the continuum to find the

optimal placement and satisfy user-specified service level
requirements, often referred to as intents. Intent-driven orches-
tration is becoming a popular approach in several scenarios
beyond workload management [1], for instance, to express
user-level requirements for network configurations [2] or to
model network security requirements [3]. Nevertheless, the in-
tegration within real-world scenarios is even more challenging
due to the complexity of modern system architectures, whether
programmable network switches or Kubernetes (K8S).

Such enhanced capabilities require approaches to gather
information not only on existing (local) resources but also
on those offered by other participants in the continuum. This
enables the optimal utilization of available resources account-
ing for requirements beyond traditional computing (i.e., CPU,
Memory) such as economics, latency, and security/compliance
for the deployment and the lifecycle management of appli-
cations. The REAR protocol extends the boundaries of the
local compute resources to implement intent-based allocation
policies. Moreover, such dynamicity allows users to define the
desired application architecture using intents, delegating to the
infrastructure the task of retrieving and connecting services to
the corresponding data sources.

2) Support for carbon-aware allocation: Increasing energy
demand propelled by recent technological trends including the
cloud computing [4], [5] underscore a critical dilemma. While
the societal and environmental benefits of computing make
its expansion both inevitable and desirable, the sustainability
of this growth is questionable due to diminishing returns on
hardware efficiency gains [6]. This scenario necessitates the
exploration of new paradigms for carbon-aware computing.

A promising decarbonization strategy for a computing con-
tinuum advocates for workload scheduling that intelligently
shifts computational jobs in space and time to capitalize on
locations and periods of lower-carbon electricity availabil-
ity [7]–[9]. This location-based approach ensures a genuine
reduction in the carbon footprint of a computing continuum,
bypassing the pitfalls of market-based strategies by focusing
on the true carbon intensity of the grid mix at the time and
place of usage. In addition, hardware-embodied emissions
can be included in the picture as a way to provide a much
more sustainable computing continuum [10], [11]. These are
the emissions from the hardware manufacturing phase and
they complement the operational emissions described above
to provide a more holistic overview of the carbon footprint.
Recent advancements in this field [12] demonstrate that it is
both possible and essential to include embodied emissions in
carbon-aware optimization efforts.

In light of these considerations, the motivation for inte-
grating carbon-aware allocation mechanisms within REAR
becomes even more compelling. By embedding such strategies
into the fabric of the computing continuum, we not only aim to
enhance operational efficiency and collaboration across hetero-
geneous computing resources but also to pioneer a sustainable
approach in such a fluidified cloud-edge continuum.

3) Support for security features: The REAR protocol is
seen as a fundamental component of the computing continuum,

facilitating the dynamic (dis)aggregation of assets (resources,
data, or capabilities) across various domains. This renders the
traditional notion of a static security perimeter obsolete, adher-
ing to the zero-trust approach, where neither asset, provider, or
consumer is inherently trusted. Rather, continuous verification,
authentication, authorization, and monitoring of all assets is
required [13]. In this context, security is not only an integral
component of REAR but is also communicated through it.

In particular, our vision entails mutual authentication and
authorization for each party involved in the advertisement
and reservation process, enabling authorized access to the
offered assets. Given the dynamic nature of such a multi-
party scenario, recent advancements in the field suggest a
shift towards Decentralised Identifiers [14] and Verifiable
Credentials [15] as a lightweight alternative to traditional
centralized authentication. Some research endeavors also ex-
plore integrating this concept with DLT technology, which can
serve as a registration authority and authorization scheme for
distributed services [16].

At the same time, the REAR protocol assumes a crucial role
in conveying the security attributes delivered by the advertised
assets. Let us consider a scenario where a cluster offers a
pool of computing resources for others to expand. In this
instance, the advertised pool might provide dynamic network
policy control, restricting communication solely to services
within the pool and refining the network perimeter in real time.
Additionally, the advertised features may encompass hardware
security capabilities, such as hardware-backed Trusted Exe-
cution Environments (TEEs) on compute nodes, to achieve a
higher degree of workload confidentiality and integrity (which
is particularly relevant for sensitive workloads), and to give
tenants the ability to attest the environment (or enclaves) where
their workloads run. Furthermore, assets could be equipped
with proactive and reactive protection services, such as threat
detection and mitigation systems or cyber deception tools, thus
providing insights into attackers’ tactics and techniques.

4) Use cases: The computing continuum is a viable solu-
tion in geographically distributed sensors connected to local
edge computing devices, and especially relevant for beyond
5G scenarios. Specifically, the continuum allows applications
to be executed near the data sources to reduce latency, enhance
security through on-device data storage, and guarantee func-
tionality even during temporary network isolation. However,
edge devices lack the robust computational redundancy and
resiliency typically offered by a cloud environment. Focusing
on the resiliency of the infrastructure, REAR allows to dynam-
ically acquire the necessary resources from the continuum. As
a result, a failure of an edge device could be tackled by ac-
quiring other resources and seamlessly moving the workload in
the continuum. In addition, security features can be advertised
allowing for the exploitation of resources owned by (possibly)
different administrative domains, or either defining security
and privacy constraints, enormously extending the possible
allocation strategies.

The computing continuum has proven to be a viable solution
also in the case of autonomous driving systems for vehicles,

fleets of drones, robots, or, in general, any scenario that
requires coordination between moving units. In this context,
the objectives for the task allocation can be extremely dif-
ferent, such as reducing the communication latency, reducing
the power consumption by moving the computation from
devices “in operation” toward the devices that are charging,
or moving the computation closer to the data sources. Still,
any optimization requires the resource negotiation protocol to
provide support for intent-based allocation policies, and, as
such, the protocol must be also flexible enough to represent
resources in the continuum so that it can be customized for
the specific use cases.

III. RELATED WORK

Reservation protocols play a key role in multi-user applica-
tions, networking, and distributed systems, managing access to
resources and ensuring efficient and fair resource allocation.
The Resource reSerVation Protocol (RSVP) represents a foun-
dational approach in computer networks, designed to manage
resource reservations in Quality of Service (QoS) enabled
networks for efficient data traffic delivery [17]. MRSVP [18]
has extended the functionality to the context of which mobile
devices perform reservations based on their current and future
locations and RNAP [19], which integrates economic factors
into the reservation process. Additionally, RSVP-TE (Resource
Reservation Protocol-Traffic Engineering) introduces traffic
engineering capabilities, enabling explicit path establishment
for data traffic to optimize network utilization [20]. In our
perspective, these protocols primarily address network-centric
parameters, overlooking the nuanced multi-dimensionality of
computing resources (e.g., CPU, RAM, etc.) and the hetero-
geneity inherent in modern computing platforms (aka the As-
A-Service model).

In the realm of distributed systems, the Service Negotia-
tion and Acquisition Protocol (SNAP) [21] and subsequent
SLA negotiation mechanisms [22] present methodologies for
establishing QoS agreements, emphasizing the importance of
flexible, bilateral negotiation frameworks. Such advancements
illustrate the effort to refine SLA negotiation, catering to the
dynamic needs of clients and servers within distributed archi-
tectures. Furthermore, authors in [23] also describe a brokering
architecture that can make advance resource reservations for
SLAs, and also the need to consider security and privacy for
managing the distributed services [16].

The advent of 5G technology introduces new dimensions
to this landscape, offering telecommunication operators un-
precedented opportunities to leverage their network and com-
puting infrastructures [24], [25]. With 5G, the requirements
for Edge infrastructure intensify [26], necessitating protocols
that support seamless application deployment across diverse
Telco providers and facilitate the federation of Operator
Platforms [27]. Despite the potential, current proposals face
limitations, including (i) a lack of resource price discovery
mechanisms, (ii) limited support for dynamic environments,
and (iii) a focus on containerized applications that may not
fully capture the generality of offered resources/services.

This evolving landscape underscores the imperative for
innovative reservation protocols that can address the multi-
faceted challenges of modern computing environments. Such
protocols must not only accommodate the complex interplay
of network and computing resources but also adapt to the
rapidly changing dynamics introduced by advancements like
5G, thereby ensuring efficient, fair, and economically viable
resource allocation in distributed systems.

IV. ARCHITECTURE

REAR has been designed around the concept of Node,
i.e., a unique computing environment, under the control of
a single administrative entity. The node can be composed
of one or more machines and modeled with a common,
extensible set of primitives that hide the underlying details
while maintaining the possibility to export the most significant
distinctive features (e.g., the availability of specific services,
peculiar HW capabilities). In addition, nodes belonging to
the same administrative entities can be logically grouped in
Domains, allowing for enhanced aggregation policies when
advertising available resources (e.g., a given resource can be
advertised only within the same domain).

Such a hierarchical infrastructure allows for two different
interactions among nodes involved, generically referred to
as consumers and providers, depending on the respective
role: (i) a Horizontal interaction enables the creation of a
resource exchange process among peers, which can share their
resources and services, or part of them, based upon a set of
policies. Horizontal interactions are carried out according to
a peer-to-peer paradigm, hence without the need for any cen-
tralized entity that controls and supervises the entire process.
(ii) a Vertical interaction introduces new concepts such as
aggregation and hierarchical scaling into the picture. Third-
party brokering entities can provide endpoints that customers
and providers can browse and query to obtain aggregated
views of the resources available in one (or more) domain. It
is worth mentioning that such interaction can be recursively
implemented to replicate multi-level hierarchical aggregations.

In the REAR protocol, each node has two different com-
ponents: a resource importer and a resource exporter. The
former is responsible for the discovery of available resources.
Since the number (and type) of resources in the continuum
infrastructure can be potentially huge, the component is also
in charge of filtering the available options based on the data
models presented in Sec. V. The latter advertises the node’s
available resources to the other members of the continuum.
This approach is still compliant with the hierarchical model,
as the resource exporter can perform the advertisement of the
resources of the nodes for which it acts as a broker. In addition,
a dedicated contract manager component keeps track of the
purchased resources in the form of a contract and exposes an
endpoint that enables further logic to be implemented to verify
the Service Level Agreement (SLA) mentioned in the contract
to ensure that it is, in fact, being upheld.

V. DATA MODEL

The REAR data model outlines the various types of re-
sources advertised in the continuum. This model includes
the definition of two terms: Flavor and FlavorType. The
Flavor encompasses the set of information shared among all
possible resources, while the FlavorType is a pointer to another
dedicated structure that specifies the unique characteristics of
each resource. 2 The complexity of the data model requires
a formal, semantic definition of the various components and
their relationships. To enable such reasoning we created two
ontologies3 according to the standard defined by the W3C
consortium, characterizing the relationships between K8S en-
tities, the REAR data model, its relationship with K8S, and
the various properties of the FlavorTypes described later.

A. Flavor
The Flavor data model provides a structured way to rep-

resent and manage different kinds of computing resources
and it includes all the information that is independent from
the chosen FlavorType, hence facilitating interoperability and
standardization across various systems and platforms, enabling
efficient resource advertisement and reservation within the
computing continuum. The Flavor data model includes the
following information:
• FlavorID: A unique identifier for the flavor.
• ProviderID: A unique identifier for the provider of the flavor,

which can be different from the owner in case this flavor is
being advertised by a broker.

• Location: Information about the location of the flavor de-
scribed using the triplet <latitude, longitude, altitude>.

• NetworkPropertyType: The type of network property en-
sured by the provider (e.g., 5G, WiFi, Ethernet).

• Price: Information about the price of the flavor, including
amount, currency, and billing time (e.g., daily, monthly).

• Owner: Information about the owner of the flavor, including
domain, node ID, IP address.

• FlavorType: A reference to a specific FlavorType schema,
allowing for defining details specific to each flavor type.

B. FlavorType
Currently, five FlavorTypes are defined in REAR, which

provides flavor-specific data models that describe the com-
putational resources to be purchased. New FlavorTypes data
models can be added to support more use cases.

1) K8Slice: It identifies a Kubernetes cluster capturing both
its hardware characteristics and various policies related to its
deployment and usage within Kubernetes environments. When
a K8Slice flavor is purchased, the remote resources can be
seen as a logical extension of the local resources, to deploy
general-purpose workloads (with Liqo.io). A K8Slice includes
the following main information:
• Characteristics: Defines the hardware characteristics of the

Kubernetes flavor, including CPU, GPU, Memory, Storage,
and the number of pods that can be deployed.

2Full specification: https://github.com/fluidos-project/REAR-data-models
3https://github.com/fluidos-project/fluidos-ontology

• Properties: Specifies additional properties of the Kubernetes
flavor, including the expected inter-cluster latency, the list of
security standards supported (e.g., GDPR, ISO/IEC 27002),
and the carbon footprint expressed in terms of embodied
and operational emissions.

• Policy: Defines policies related to the Kubernetes flavor,
including the fact that multiple instances of the same Fla-
vorType can be aggregated into a single entity, or partitioned
to obtain only a subset of the resources.

2) VM: The VM FlavorType provides an option to acquire
computing resources in the form of Virtual Machines (VMs).
The VM FlavorType shares most of the characteristics of
the K8Slice previously described, including the possibility to
describe the architecture of the node in which the VM is
running as well as information on the operating system on
the VM. Despite being similar, it is important to model both
FlavorTypes separately as the usage of resources differs. For
instance, a K8Slice needs to communicate with the K8S API
server, while a VM requires an SSH connection.

3) Service: The Service FlavorType enables providers to
advertise services, following the Software-as-a-Service model
(SaaS). Since it is almost impossible to provide a generic
description suitable for all possible services, the Service Fla-
vorType data model follows the same pattern used for the
Flavor and FlavorType data model: the Service FlavorType
provides a high-level description of the Service, including all
the specifications that are independent of the actual service,
whereas the ServiceType details the service-specific character-
istics. Specifically, the Service FlavorType describes:

• Name and Description: Respectively the name and the
human-readable description of the service.

• Tags: A keyword list that summarizes a service’s properties.
• Plan: The plan for the service (e.g., Enterprise, Trial).
• Latency: The expected latency with the consumer.
• ServiceType: The reference to the characteristics of the spe-

cific ServiceType. For instance, a PostgreSQL ServiceType
can include the number of transactions per second or the
number of tables that the user can create.

4) Sensor: The Sensor FlavorType allows for Sensors to be
advertised and (possibly) shared among multiple consumers in
the continuum. The Sensor FlavorType is characterised by:

• SensorType: The type of sensor (e.g., light, humidity).
• SensorModel and SensorManifacturer: Additional informa-

tion on the sensor.
• SamplingRate: The frequency of the measurements.
• Accuracy: The expected accuracy of the measurements.
• MeasurementUnit and SamplingRateUnit: The unit of mea-

sure for both the measurements and the sampling rate.
• AccessType: How the measurements can be accessed from

the consumer (e.g., HTTP, MQTT).

5) Data: The Data FlavorType allows datasets to be shared
and advertised between participants of the continuum. This
means that REAR enables a form of data sharing as recom-
mended by various EU-funded initiatives such as GAIA-X

RETRIEVE FLAVOR

RESERVATION

PURCHASE

PURCHASE FLAVOR (FLAVOR ID)

OK/KO + CONTRACT

LIST FLAVORS

FLAVOR LIST
C

O
N

SU
M

ER

RESERVE FLAVOR (FLAVOR ID)

OK/KO + TRANSACTION ID + TTP

PR
O

VID
ER

Fig. 1. REAR workflow overview, implementable via REST API calls.

Data Spaces4 and IDSA Reference architecture [28]. The Data
FlavorType is characterized by:
• Name and Description: Respectively the name and the

human-readable description of the dataset.
• Tags: keyword list summarizing the dataset properties.
• License: The license(s) regulating the utilisation of data.
• Plan: Dataset usage plan (e.g., Free, Enterprise, Trial).
• Format: The format of the dataset (e.g., CSV, TSV, JSON).

VI. REAR WORKFLOW

REAR defines several messages, which can be classified
as either required or optional (an example is depicted in
Figure 1).

A. List Flavor (required)

This message is sent by the consumer to probe the available
flavors offered by a given provider. Since different FlavorTypes
can be offered by a single provider, the consumer can filter
out possible resources by specifying the desired characteristics
in the List Flavor message, using the FlavorType data model
described earlier. For example, if the consumer wants to pur-
chase VMs, it can retrieve the list of possible VMs offered by a
provider by specifying characteristics of the VM FlavorType,
such as 2 CPUs and 4GB of RAM. The provider will then
reply with a list of VMs that match the requirements, if any.

The List Flavor message thus contains the requested
FlavorType with the desired characteristics and some
form of identification for the consumer with the tuple
<ConsumerID, Region> to allow the provider to generate a
(possibly) customized offer for the consumer.

B. Reserve Flavor (required)

Once the consumer knows the Flavors and their IDs, the
Flavor reservation process is performed through the Reserve
Flavor message, sent by the consumer to inform the provider
about its willingness to reserve a specific flavor. Specifically,
the consumer/provider interaction can be summarized as fol-
lows. After the client has collected the list of available Flavors
offered by the provider, it notifies the intention of reserving
a specific flavor by sending the Reserve Flavor message,

4https://gaia-x.eu/what-is-gaia-x/deliverables/

0 2 4 6 8

8

4

2

1

Elapsed Time (s)

Pr
ov

id
er

s List Flavors
Reserve Flavor
Purchase Flavor
Res. Acquisition

Fig. 2. REAR stages’ timing vs. time to ready purchased resources.

specifying the ID of the Flavor to be reserved. To verify
the consumer identity, the Reserve Flavor message must also
include an authentication token that will be then validated by
a Trusted third-party authentication and authorization service.
Once received, the provider checks if the flavor is still available
and if so it replies with a summary of the reservation process
including the TransactionID and the Time To Purchase (TTP),
i.e., the time by which the Flavor must be purchased. This
allows reserved Flavors to be released in case either the
consumer becomes unreachable, or the subsequent purchase
process exceeds a predefined threshold. If the Flavor is not
available a 404 error message is sent to the consumer.

C. Purchase Flavor (required)

The Purchase Flavor message is sent by the consumer upon
receipt of the provider’s response during the reservation phase
to complete the purchase of an offered flavor. To do so, the
consumer sends the Purchase Flavor message including the
TransactionID (obtained with the Reserve Flavor) and the
identification token to the provider. If authorized, the consumer
will then be prompted to a payment service (either external or
managed by the provider) and, if successful, a copy of the
Contract is returned to the consumer, detailing the purchase
and the information required to access the purchased resource
(e.g., IP address, API endpoint).

D. Subscribe / Refresh / Withdraw Flavor (optional)

Given that each offered flavor may not be always available,
the consumer can notify the intention to receive continuous
updates on a specific set of Flavors using the Subscribe
Flavor message. This internally triggers the creation of a
stateful channel between the consumer and the provider, which
asynchronously sends back updates for any change in the
specified Flavor using the Refresh Flavor message.

If the Flavor is no longer available, the provider can tear
down the communication channel related to the specific Flavor
and notify the consumer that the Flavor can no longer be
purchased using the Withdraw Flavor message.

VII. EXPERIMENTAL EVALUATION

We here report the empirical evaluation of REAR by means
of the testbed created for FLUIDOS5. In the testbed, we
collect metrics from the three different stages of the REAR

5https://github.com/fluidos-project/node

protocol, namely, List Flavors, Reserve Flavor, and Purchase
Flavor to provide a breakdown of the overhead, varying the
number of providers offering flavors of type K8Slice. The
Resource Acquisition phase represents instead the reference
time required to extend the pool of locally available resources
in Kubernetes using the Liqo framework.

Figure 2 details the elapsed time for a generic consumer
before the purchased resources are available and ready to use.
As we can see, the List Flavor message is influenced by
the number of available providers, leading to higher latencies
when the consumer has an extensive list of available providers.
In the worst-case scenario, the consumer must iterate the
entire providers’ list before identifying a suitable resource,
resulting in a linear time complexity θ(n) w.r.t. the provider
list size n. However, the Reserve Flavor and Purchase Flavor
messages maintain stability through the different scenarios.
It is worth noticing that despite any fluctuations, the REAR
protocol’s overhead remains minimal (approximately 30% of
the total time in the worst case), and can be further reduced
by aggregating resources through third-party brokering and
aggregation services.

VIII. CONCLUSIONS

This study presents REAR, a novel protocol designed to
address resource advertisement and reservation in the com-
puting continuum. REAR provides a standardized interface
for messages and data models to promote interoperability and
compatibility across heterogeneous computing environments,
fosters enhanced allocation policies allowing devices to enrich
the resource description and provides security support to en-
sure the integrity and confidentiality of resource transactions.

ACKNOWLEDGMENT

This work was supported by European Union’s Horizon
Europe research and innovation programme under grant agree-
ment No 101070473, project FLUIDOS (Flexible, scaLable,
secUre, and decentralIseD Operating System).

REFERENCES

[1] A. Leivadeas and M. Falkner, “A survey on intent-based networking,”
IEEE Communications Surveys & Tutorials, vol. 25, no. 1, 2022.

[2] B. Martini, M. Gharbaoui, and P. Castoldi, “Intent-based network slicing
for sdn vertical services with assurance: Context, design and preliminary
experiments,” Future Generation Computer Systems, vol. 142, 2023.

[3] A. Chowdhary, A. Sabur, N. Vadnere, and D. Huang, “Intent-driven
security policy management for software-defined systems,” IEEE Trans-
actions on Network and Service Management, vol. 19, no. 4, 2022.

[4] T. Kaur and I. Chana, “Energy Efficiency Techniques in Cloud Comput-
ing: A Survey and Taxonomy,” ACM Computing Surveys, vol. 48, no. 2,
Oct. 2015.

[5] M. Sedlacko, A. Martinuzzi, and K. Dobernig, “A Systems Thinking
View on Cloud Computing and Energy Consumption.” Atlantis Press,
Aug. 2014, iSSN: 2352-538X.

[6] J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of
Historical Trends in the Electrical Efficiency of Computing,” IEEE
Annals of the History of Computing, vol. 33, no. 3, Mar. 2011.

[7] A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen,
K. Smith, M. Cottman, and W. Cirne, “Carbon-Aware Computing for
Datacenters,” Jun. 2021, arXiv:2106.11750 [cs, eess].

[8] Y. G. Kim, U. Gupta, A. McCrabb, Y. Son, V. Bertacco, D. Brooks, and
C.-J. Wu, “GreenScale: Carbon-Aware Systems for Edge Computing,”
Apr. 2023, arXiv:2304.00404 [cs].

[9] T. Sukprasert, A. Souza, N. Bashir, D. Irwin, and P. Shenoy, “Quan-
tifying the Benefits of Carbon-Aware Temporal and Spatial Workload
Shifting in the Cloud,” Jun. 2023, arXiv:2306.06502 [cs, eess].

[10] N. Bashir, D. Irwin, and P. Shenoy, “On the Promise and Pitfalls of
Optimizing Embodied Carbon,” in Proceedings of the 2nd Workshop on
Sustainable Computer Systems, ser. HotCarbon ’23. New York, NY,
USA: ACM, Aug. 2023.

[11] J. Wang, U. Gupta, and A. Sriraman, “Peeling Back the Carbon Curtain:
Carbon Optimization Challenges in Cloud Computing,” in Proceedings
of the 2nd Workshop on Sustainable Computer Systems, ser. HotCarbon
’23. New York, NY, USA: ACM, Aug. 2023.

[12] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks,
and C.-J. Wu, “ACT: designing sustainable computer systems with an
architectural carbon modeling tool,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture. New York, NY,
USA: ACM, Jun. 2022.

[13] C. Buck, C. Olenberger, A. Schweizer, F. Völter, and T. Eymann, “Never
trust, always verify: a multivocal literature review on current knowledge
and research gaps of zero-trust,” Computers & Security, vol. 110, 2021.

[14] World Wide Web Consortium (W3C), “Decentralized Identifiers (DIDs)
v1.0: Core architecture, data model, and representations,” 2022, accessed
on April, 2024.

[15] W3C, “Verifiable Credentials Data Model v1.1,” 2022, accessed on
April, 2024. [Online]. Available: https://www.w3.org/TR/vc-data-model/

[16] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity,” Computer Science
Review, vol. 30, 2018.

[17] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “Rsvp: A
new resource reservation protocol,” IEEE network, vol. 7, no. 5, 1993.

[18] A. K. Talukdar, B. Badrinath, and A. Acharya, “Mrsvp: A resource
reservation protocol for an integrated services network with mobile
hosts,” Wireless Networks, vol. 7, 2001.

[19] X. Wang and H. Schulzrinne, “Rnap: A resource negotiation and pricing
protocol,” Transit, vol. 6, no. B7, 1999.

[20] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“Rfc3209: Rsvp-te: Extensions to rsvp for lsp tunnels,” USA, 2001.

[21] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke, “Snap:
A protocol for negotiating service level agreements and coordinating
resource management in distributed systems,” in Job Scheduling Strate-
gies for Parallel Processing: 8th International Workshop, JSSPP 2002
Edinburgh, Scotland, UK, July 24, 2002. Springer, 2002.

[22] S. Venugopal, X. Chu, and R. Buyya, “A negotiation mechanism for
advance resource reservations using the alternate offers protocol,” in
2008 16th Interntional Workshop on Quality of Service. IEEE, 2008.

[23] E. Elmroth and J. Tordsson, “A grid resource broker supporting advance
reservations and benchmark-based resource selection,” in International
Workshop on Applied Parallel Computing. Springer, 2004.

[24] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[25] R. Dangi, P. Lalwani, G. Choudhary, I. You, and G. Pau, “Study and
investigation on 5g technology: A systematic review,” Sensors, vol. 22,
no. 1, p. 26, 2021.

[26] GSMA, “Gsma operator platform telco edge require-
ments 2022,” 2022, accessed on March, 2024. [On-
line]. Available: https://www.gsma.com/futurenetworks/resources/
gsma-operator-platform-telco-edge-requirements-2022/

[27] GSMA, “Gsma operator platform group – east-westbound interface
apis,” 2023, accessed on March, 2024. [Online]. Available: https://www.
gsma.com/futurenetworks/resources/east-westbound-interface-apis/

[28] I. Otto, S. Steinbuß, A. Teuscher, I. Lohmann, A. Auer, S. Bader,
H. Bastiaansen, H. Bauer, I. Birnstil, and M. Böhmer, “International data
spaces association—reference architecture model—version 3.0,” 2019.

