
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Robust Implicit Networks via Non-Euclidean Contractions / Jafarpour, S; Davydov, A; Proskurnikov, Av; Bullo, F. -
ELETTRONICO. - 34:(2021). (Intervento presentato al  convegno NEURAL INFORMATION PROCESSING SYSTEMS
(NEURIPS) 2021 tenutosi a Virtuale nel Dicembre 6-14, 2021).

Original

Robust Implicit Networks via Non-Euclidean Contractions

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979652 since: 2023-06-28T09:14:28Z

NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)



Robust Implicit Networks
via Non-Euclidean Contractions

Saber Jafarpour1,∗, Alexander Davydov1,∗ , Anton V. Proskurnikov2,3, and Francesco Bullo1

1 Center for Control, Dynamical Systems and Computation, University of California,
Santa Barbara, 93106-5070, USA, {saber, davydov, bullo}@ucsb.edu.

2 Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy;
3 Institute for Problems in Mechanical Engineering, Russian Academy of Sciences,

St. Petersburg, Russia, anton.p.1982@ieee.org

Abstract

Implicit neural networks, a.k.a., deep equilibrium networks, are a class of implicit-
depth learning models where function evaluation is performed by solving a fixed
point equation. They generalize classic feedforward models and are equivalent
to infinite-depth weight-tied feedforward networks. While implicit models show
improved accuracy and significant reduction in memory consumption, they can
suffer from ill-posedness and convergence instability.
This paper provides a new framework, which we call Non-Euclidean Monotone
Operator Network (NEMON), to design well-posed and robust implicit neural
networks based upon contraction theory for the non-Euclidean norm `∞. Our
framework includes (i) a novel condition for well-posedness based on one-sided
Lipschitz constants, (ii) an average iteration for computing fixed-points, and (iii)
explicit estimates on input-output Lipschitz constants. Additionally, we design
a training problem with the well-posedness condition and the average iteration
as constraints and, to achieve robust models, with the input-output Lipschitz
constant as a regularizer. Our `∞ well-posedness condition leads to a larger
polytopic training search space than existing conditions and our average iteration
enjoys accelerated convergence. Finally, we evaluate our framework in image
classification through the MNIST and the CIFAR-10 datasets. Our numerical
results demonstrate improved accuracy and robustness of the implicit models with
smaller input-output Lipschitz bounds. Code is available at https://github.
com/davydovalexander/Non-Euclidean_Mon_Op_Net.

1 Introduction

Implicit neural networks are infinite-depth learning models with layers defined implicitly through a
fixed-point equation. Examples of implicit neural networks include deep equilibrium models [Bai
et al., 2019] and implicit deep learning models [El Ghaoui et al., 2021]. Implicit networks can be
considered as generalizations of feedforward neural networks with input-injected weight tying, i.e.,
training parameters are transferable between layers. Indeed, in implicit networks, function evaluation
is executed by solving a fixed-point equation and backpropagation is implemented by computing
gradients using implicit differentiation. Due to these unique features, implicit models enjoy more
flexibility and improved memory efficiency compared to traditional neural networks. At the same
time, implicit networks can suffer from instability in their training due to the nonlinear nature of their
fixed-point equations and can show brittle input-output behaviors due to their model flexibility.
∗These authors contributed equally.
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It is known that implicit neural networks require careful tuning and initialization to avoid ill-posed
training procedures. Indeed, without additional assumptions, their fixed-point equation may not have
a unique solution and the numerical algorithms for finding their solutions might not converge. Several
recent works in the literature have focused on studying well-posedness and convergence of the fixed-
point equations of implicit networks using frameworks such as monotone operator theory [Winston
and Kolter, 2020], contraction theory [El Ghaoui et al., 2021], and a mixture of both [Revay et al.,
2020]. Despite several insightful results, important questions about conditions for well-posedness of
implicit networks and efficient algorithms that converge to their solutions are still open.

One of the key features of implicit neural networks is their flexibility, which might come at the cost of
low input-output robustness. As first noted in [Szegedy et al., 2014], the input-output behavior of deep
neural networks can be vulnerable to perturbations; close enough input data can lead to completely
different outputs. This lack of robustness can lead to unreliable performance of neural networks in
safety-critical applications. Among several notions of robustness, the Lipschitz constant of a neural
network is a coarse but rigorous measure which can be used to estimate input-output sensitivity of
the network [Szegedy et al., 2014]. For this reason, there has been a growing interest in estimating
the input-output Lipschitz constant of deep neural networks with respect to the `2-norm [Fazlyab
et al., 2019, Combettes and Pesquet, 2020]. However, it turns out that in some applications, the input-
output Lipschitz constants with respect to non-Euclidean norms are more informative measures for
studying robustness. One such application appears in the robustness analysis of neural networks with
large-scale inputs under widely-distributed adversarial perturbations (examples of these adversarial
perturbations can be found in [Szegedy et al., 2014]). For these examples, the input-output `2-
Lipschitz constant does not provide complete information about robustness of the network; a neural
network with small input-output `2-Lipschitz constant can be very sensitive to widespread entrywise-
small perturbations of the input signal. On the other hand, the input-output `∞-Lipschitz constant
provides a different metric which appears to be well-suited for the analysis of widespread distributed
perturbations. Another application is the estimation of input signal confidence intervals from output
deviations, where the input-output `∞-Lipschitz constant of the network provides more scalable
bounds than its `2 counterpart.

Related works

Implicit learning models. Numerous works in learning theory have shown the power of deep
learning models with implicit layers. In these learning models, the notion of layers are replaced
by a composition rule, which can be either a fixed-point iteration or a solution to a differential
equation. Well-known frameworks for deep learning using implicit infinite-depth layers include
deep equilibrium networks [Bai et al., 2019], implicit deep learning [El Ghaoui et al., 2021], and
Neural ODEs [Chen et al., 2018]. In [Kag et al., 2020], a class of implicit recurrent neural networks
is considered and it is demonstrated that, with this architecture, the models do not suffer from
vanishing nor exploding gradients. Implicit layers have also been used to study convex optimization
problems [Agrawal et al., 2019] and to design control strategies [Amos et al., 2018]. Convergence to
global minima of certain classes of implicit networks is studied in [Kawaguchi, 2021].

Well-posedness and numerical algorithms for fixed-point equations. There has been a re-
cent interest in studying well-posedness and numerical stability of implicit-depth learning models.
[El Ghaoui et al., 2021] proposes a sufficient spectral condition for well-posedness and for con-
vergence of the Picard iterations associated with the fixed-point equation of implicit networks.
In [Winston and Kolter, 2020, Revay et al., 2020], using monotone operator theory, a suitable
parametrization of the weight matrix is proposed which guarantees the stable convergence of suitable
fixed-point iterations. A recent influential survey on monotone operators is [Ryu and Boyd, 2016]. A
recent survey on fixed point strategies in data science is given by [Combettes and Pesquet, 2021].

Robustness of learning models It is known that neural networks can be vulnerable to adversarial
input perturbations [Szegedy et al., 2014]. A large body of literature is devoted to improve robustness
of neural networks using various defense strategies against adversarial examples [Goodfellow et al.,
2015, Papernot et al., 2016]. While these strategies are effective in many scenarios, they do not
provide formal guarantees for robustness [Carlini and Wagner, 2017]. However, there has been a
recent interest in designing classifiers that are provably robust with respect to adversarial perturba-
tions [Madry et al., 2018, Wong and Kolter, 2018]. The input-output Lipschitz constant of a neural
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network is a rigorous metric for its worst-case sensitivity with respect to input perturbations. Several
recent works have focused on estimating the Lipschitz constant and enforcing its boundedness. For
example, [Fazlyab et al., 2019, 2020] propose a convex optimization framework using quadratic
constraints and semidefinite programming to obtain upper bounds on Lipschitz constants of deep
neural networks. In [Pauli et al., 2021], a training algorithm is designed to ensure boundedness of the
Lipschitz constant of the neural network via a semidefinite program. Other methods for estimating
the Lipschitz constant of deep neural networks include [Krishnan et al., 2020, Revay et al., 2021,
Combettes and Pesquet, 2020]. For implicit neural networks, a sensitivity-based robustness analysis
is proposed in [El Ghaoui et al., 2021]. Lipschitz constants of deep equilibrium networks have also
been studied in [Pabbaraju et al., 2021, Revay et al., 2020] using monotone operator theory.

Contributions

In this paper, using non-Euclidean contraction theory with respect to the `∞-norm, we propose our
novel framework, Non-Euclidean Monotone Operator Network (NEMON), to design implicit neural
networks and study their well-posedness, stability, and robustness. First, we develop elements of a
novel non-Euclidean monotone operator theory akin to the frameworks in [Bauschke and Combettes,
2017, Ryu and Boyd, 2016]. Using the concept of matrix measure, we introduce the essential notion of
one-sided Lipschitz constant of a map. Based upon this notion, we prove a general fixed-point theorem
with weaker requirements than classical results on Picard and Krasnosel’skii–Mann iterations. For
maps with one-sided Lipschitz constant less than unity, we show that an average iteration converges
for sufficiently small step sizes and optimize its rate of convergence. For the special case of the
weighted `∞-norm, we show that this average iteration can be accelerated by choosing a larger step
size. Additionally, we study perturbed fixed-point equations and establish a bound on the distance
between perturbed and nominal equilibrium points as a function of one-sided Lipschitz condition.
Second, for implicit neural networks, we use our new fixed-point theorem to (i) establish `∞-norm
conditions for their well-posedness, (ii) design accelerated numerical algorithms for computing their
solutions, and (iii) provide upper bounds on their input-output `∞-Lipschitz constants. Third, we
propose a parametrization for matrices with appropriate bound on their one-sided Lipschitz constants
and use this parametrization with the average iteration to design a training optimization problem.
Finally, we perform several numerical experiments illustrating improved performance of NEMON in
image classification on the MNIST and the CIFAR-10 datasets compared to the state-of-the-art models
in [El Ghaoui et al., 2021, Winston and Kolter, 2020]. Additionally, by adding the input-output
Lipschitz constant as regularizer in the training problem, we observe improved robustness to some
classes of adversarial perturbations. We include all relevant proofs in Appendix C.

2 Review material

Matrix measures Let ‖ · ‖ be a norm on Rn and its induced norm on Rn×n. The matrix measure
of A ∈ Rn×n with respect to ‖ · ‖ is defined by µ(A) := limh→0+

‖In+hA‖−1
h , that is, the one-sided

directional derivative of the induced norm in direction of A, evaluated at In. Remarkably, the matrix
measure is a tighter upper bound on the spectral abscissa of A than ‖A‖ and the set of matrices
A ∈ Rn×n satisfying µ(A) ≤ 1 is an unbounded subset of Rn×n strictly containing the compact ball
‖A‖ ≤ 1. We refer to [Desoer and Haneda, 1972] for a list of properties enjoyed by matrix measures.

We will be specifically interested in diagonally weighted `∞ norms defined by

‖x‖∞,[η]−1 = max
i

1

ηi
|xi|, (1)

where, given a positive vector η ∈ Rn>0, we use [η] to denote the diagonal matrix with diagonal
entries η. The corresponding matrix norm and measure are

‖A‖∞,[η]−1 = max
i∈{1,...,n}

n∑
j=1

ηj
ηi
|aij |, µ∞,[η]−1(A) = max

i∈{1,...,n}

(
aii +

n∑
j=1,j 6=i

|aij |
ηj
ηi

)
. (2)

Lipschitz maps Given a norm ‖ · ‖ with induced matrix measure µ(·), a differentiable map
F : Rn → Rn is Lipschitz continuous with constant Lip(F) ∈ R≥0 if

‖DF(x)‖ ≤ Lip(F) for all x ∈ Rn. (3)
For example, for an affine F(x) = Ax+ b, the (smallest) Lipschitz constant is Lip(F) = ‖A‖.
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One-sided Lipschitz maps Given a norm ‖ · ‖, a differentiable map F : Rn → Rn is one-sided
Lipschitz continuous with constant osL(F) ∈ R if

µ(DF(x)) ≤ osL(F) for all x ∈ Rn. (4)

For example, for an affine F(x) = Ax+ b, the (smallest) one-sided Lipschitz constant is osL(F) =
µ(A). Note that (i) the one-sided Lipschitz constant is upper bounded by the Lipschitz constant, (ii) a
Lipschitz continuous map is always one-sided Lipschitz continuous, and (iii) the one-sided Lipschitz
constant may be negative. For a more in-depth review we refer to Appendix A. The notion of one-
sided Lipschitz continuity unifies several important concepts in dynamical systems and optimization
theory. In operator theory, the map F is called a monotone operator if it is one-sided Lipschitz
continuous with respect to the `2-norm with the constant − osL(−F) > 0 [Ryu and Boyd, 2016,
Bauschke and Combettes, 2017]. In control theory, the vector field F is called strongly infinitesimally
contracting if it is one-sided Lipschitz continuous with the constant osL(F) < 0 [Desoer and Haneda,
1972, Lohmiller and Slotine, 1998, Pavlov et al., 2004]. In what follows, we let osL∞,[η]−1(F) ∈ R
denote the one-sided Lipschitz constants with respect to the weighted `∞-norm.

3 Fixed-point equations and one-sided Lipschitz constants

In this section, we show that the notion of one-sided Lipschitz constant can be used to study solvability
of fixed-point equation:

x = F(x), (5)

where F : Rn → Rn is a differentiable map. Let ‖ · ‖ be a norm on Rn, then in view of the Banach
fixed-point theorem, a simple sufficient condition for existence of a unique solution for the fixed-point
equation (5) is Lip(F) < 1. We note that the sufficient condition Lip(F) < 1 depends on the specific
form of the fixed-point equation (5) and can be relaxed by a suitable rewriting of this fixed-point
equation. Given an averaging parameter α ∈ (0, 1] we define the average map Fα : Rn → Rn by
Fα := (1− α)I + αF, where I is the identity map. Using this notion, an equivalent reformulation of
the fixed-point equation (5) is:

x = (1− α)x+ αF(x) = Fα(x). (6)

For α = 1, we have Fα(x) = F(x) and equation (6) coincides with equation (5). For every α ∈ (0, 1),
the map Fα is different from F but equations (5) and (6) are equivalent. Hence, if Lip(Fα) < 1,
then by the Banach fixed-point theorem, the fixed point equation (6) (and therefore the fixed point
equation (5)) has a unique solution x∗ and the sequence {yk}∞k=1 defined by

yk+1 = (1− α)yk + αF(yk), for all k ∈ Z≥0 (7)

converges geometrically to x∗ with rate Lip(Fα). As a result of the parametrization (6), the condition
Lip(F) < 1 for existence and uniqueness of the fixed-point can be relaxed to sufficient conditions

Lip(Fα) < 1, (8)

parametrized by α ∈ (0, 1]. Additionally, if condition (8) is satisfied, then algorithm (7) computes the
fixed point x∗. It can be shown that the condition (8) becomes less conservative as α decreases. The
next theorem shows that in the limit as α→ 0+, condition (8) approaches the condition osL(F) < 1.
Theorem 1 (Fixed points via one-sided Lipschitz conditions). Let F : Rn → Rn be differentiable and
Lipschitz with constant ` > 0 with respect to a norm ‖·‖. Define the average map Fα = (1−α)I+αF
and, for c > 0, the function γ`,c : ]0, c

(c+`+1)(`+1) [→ R by:

γ`,c(α) :=
(

1 + αc− α2(`+ 1)2

1− α(`+ 1)

)−1
.

Then the following statements are equivalent:

(i) osL(F) < 1− c,
(ii) Lip(Fα) = γ`,c(α), for 0 < α < c

(c+`+1)(`+1) .

Moreover, if the equivalent conditions (i) or (ii) hold, then, for condition number κ = 1+Lip(F)
1−osL(F) ,
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(iii) F has a unique fixed point x∗;

(iv) for 0 < α < 1
κ(κ+1) , Fα is a contraction mapping with contraction factor γ`,c(α) < 1;

(v) the minimum contraction factor γ∗`,c = 1− 1
4κ2 + 1

8κ3 +O
(

1
κ4

)
and the minimizing averaging

parameter α∗ of Fα is

α∗ =
κ

1− osL(F)

(
1− 1√

1 + 1/κ

)
=

1

1− osL(F)

( 1

2κ2
− 3

8κ3
+O

(
1

κ4

))
.

The average iteration (6) is often referred to as the Krasnosel’skii–Mann iteration or the damped
iteration [Bauschke and Combettes, 2017]. Compared to [Bauschke and Combettes, 2017, Theorem
5.15], Theorem 1(iv) studies convergence of the Krasnosel’skii–Mann iteration for arbitrary norms,
proposes a weaker convergence condition of the form osL(F) < 1 (hence, F need not be non-
expansive). However, it ensures convergence for only sufficiently small α > 0 and assumes that F is
differentiable (as will be shown, however, the latter assumption can be relaxed).

3.1 Accelerated convergence for weighted `∞ norms

For diagonally weighted `∞ norms, one can strengthen Theorem 1(iv) to prove the convergence of
the average iteration (6) on a larger domain of the parameter α.
Theorem 2 (Accelerated fixed point algorithm for `∞ norms). Let F : Rn → Rn be differentiable
and Lipschitz with respect to the weighted non-Euclidean norm ‖ · ‖∞,[η]−1 . Define the average map
Fα = (1− α)I + αF and pick diagL(F) ∈ [−Lip(F), osL(F)] to satisfy

diagL(F) ≤ min
i∈{1,...,n}

inf
x∈Rn

DFii(x). (9)

If osL(F) < 1, then F has a unique fixed-point x∗ and

(i) for 0 < α ≤ 1

1− diagL(F)
, Fα is a contraction mapping with the contraction factor

1− α(1− osL(F)) < 1;

(ii) the minimum contraction factor and minimizing averaging parameter of Fα are, respectively,

Lip(Fα∗) = 1− 1− osL(F)

1− diagL(F)
= 1− 1

κ∞
, for κ∞ =

1− diagL(F)

1− osL(F)
≤ 1 + Lip(F)

1− osL(F)
,

α∗ =
1

1− diagL(F)
.

Note that diagL(F) is well-defined because of the Lipschitz continuity assumption. Specifically, one
can show that diagL(F) is the minus the minimum over i ∈ {1, . . . , n} of the one-sided Lipschitz
constants of the maps xi 7→ −F(xi, x−i) at x−i = (x1, . . . , xi−1, xi+1, . . . , xn) fixed.

It is instructive to compare the minimum contraction factor in the general Theorem 1 with the
minimum contraction factor for `∞ norms in Theorem 2 and how they depend upon the corresponding
condition numbers κ and κ∞. We note that (i) the relevant condition number diminishes κ ≥ κ∞, and
(ii) the minimum contraction factor Lip(Fα∗) = 1− 1

4κ2 +O(1/κ4) improves to Lip(Fα∗) = 1− 1
κ∞

.
This acceleration justifies the title of this section.

3.2 Perturbed fixed-point problems

In this subsection, we focus on solvability of the perturbed fixed-point equation:

x = F(x, u), (10)

where F : Rn × Rr → Rn is differentiable in x. We define Fu(x) = F(x, u) and Fx(u) = F(x, u).
Given a norm ‖ · ‖X in Rn and ‖ · ‖U in Rr, F is Lipschitz in its first argument with constant
Lipx(F) ∈ R≥0 if

‖F(x1, u)− F(x2, u)‖X ≤ Lipx(F)‖x1 − x2‖X for all x1, x2 ∈ Rn and u ∈ Rr,
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and it is Lipschitz in its second argument with constant Lipu(F) ∈ R≥0 if

‖F(x, u1)− F(x, u2)‖X ≤ Lipu(F)‖u1 − u2‖U for all x ∈ Rn and u1, u2 ∈ Rr,

and it is one-sided Lipschitz in its first argument with constant osLx(F) ∈ R if

µ(DxF(x, u)) ≤ osLx(F) for all x1, x2 ∈ Rn and u ∈ Rr.

The following result, which is in the spirit of Lim’s Lemma [Lim, 1985], provides an upper bound on
the distance between fixed-points of the perturbed equation (10).
Theorem 3 (Perturbed fixed-points). Given a norm ‖ · ‖X in Rn and a norm ‖ · ‖U in Rr, consider a
map F : Rn × Rr → Rn differentiable in the first argument and Lipschitz in both arguments. If F is
one-sided Lipschitz with constant osLx(F) < 1, then

(i) for every u ∈ Rm, the map Fu has a unique fixed point x∗u;

(ii) for every u, v ∈ Rm, ‖x∗u − x∗v‖X ≤
Lipu(F)

1− osLx(F)
‖u− v‖U .

Finally, Theorems 1, 2, and 3 are not directly applicable to activation function that are not differ-
entiable. In Appendix C.3, we show that for specific form of the fixed-point equation (5), where
F = Φ ◦ H and Φ : Rn → Rn is a weakly increasing, non-expansive, diagonal activation function
and H : Rn × Rr → Rn is a differentiable function, all of the conclusions of Theorems 1, 2, and 3
hold by requiring equation (9) to be true almost everywhere.

4 Contraction analysis of implicit neural networks

In this section, we use contraction theory to lay the foundation for our Non-Euclidean Monotone
Operator Network (NEMON) model of implicit neural networks. Given A ∈ Rn×n, B ∈ Rn×r,
C ∈ Rq×n, and D ∈ Rq×r, we consider the implicit neural network

x = Φ(Ax+Bu) := N(x, u), y = Cx+Du, (11)

where x ∈ Rn, u ∈ Rr, y ∈ Rq, and Φ : Rn → Rn is defined by Φ(x) = (φ1(x1), . . . , φn(xn)).
For every i ∈ {1, . . . , n}, we assume the activation function φi : R→ R is weakly increasing, i.e.,
φi(xi) ≥ φi(zi) for xi ≥ zi, and non-expansive, i.e., |φi(xi)− φi(zi)| ≤ |xi − zi| for all xi and zi;
if φi is differentiable, these conditions are equivalent to 0 ≤ φ′i(xi) ≤ 1 for all xi ∈ R.

We are able to provide the following estimates on all relevant Lipschitz constants.
Theorem 4 (Lipschitz and one-sided Lipschitz constants for the implicit neural network). Consider
the implicit neural network in equation (11) with weakly increasing and non-expansive activation
functions Φ. With respect to ‖ · ‖∞,[η]−1 , η ∈ Rn>0, on Rn and ‖ · ‖U on the input space Rr, the map
N : Rn × Rr → Rn is one-sided Lipschitz continuous in the first variable and Lipschitz continuous
in both variables with constants:

osLx(N) = µ∞,[η]−1(A)+ , Lipx(N) = ‖A‖∞,[η]−1 , (12)

Lipu(N) = ‖B‖(∞,[η]−1),U , diagL(N) = mini∈{1,...,n}(Aii)− , (13)

where (z)+ = z if z ≥ 0 and (z)+ = 0 if z < 0; and (z)− = 0 if z ≥ 0 and (z)− = z if z < 0.

We now use these estimates to establish multiple properties of the implicit neural network.
Corollary 5 (Well posedness, input-state Lipschitz constant, and computation). Consider the
model (11), with parameters (A,B,C,D) and with weakly increasing and non-expansive acti-
vation functions Φ. Define the average map Nα := (1−α)I+αN and consider the norms ‖·‖∞,[η]−1 ,
η ∈ Rn>0, on Rn, ‖ · ‖U on the input space Rr and ‖ · ‖Y on the output space Rq . Then

(i) if µ∞,[η]−1(A) < 1, then (11) is well posed, i.e., there exists a unique fixed point,

(ii) the map Nα is a contraction mapping for 0 < α ≤ α∗ :=
(
1 − mini∈{1,...,n}(Aii)−

)−1
with minimum contraction factor Lip(Nα∗) = 1− 1−µ∞,[η]−1 (A)+

1−mini∈{1,...,n}(Aii)−
.
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(iii) the Lipschitz constants from input u to fixed point x∗u and to the output y = Cx∗u +Du are

Lipu→x∗ :=
Lipu(N)

1− osLx(N)
=
‖B‖(∞,[η]−1),U

1− µ∞,[η]−1(A)+
, (14)

Lipu→y :=
‖B‖(∞,[η]−1),U‖C‖Y,(∞,[η]−1)

1− µ∞,[η]−1(A)+
+ ‖D‖Y,U . (15)

5 Training implicit neural networks

Problem setup Given an input data matrix U = [u1, . . . , um] ∈ Rr×m and a corresponding output
data matrix Y = [y1, . . . , ym] ∈ Rq×m, we aim to learn matrices A,B,C,D so that the neural
network (11) approximates the input-output relationship. We rewrite the model for matrix inputs as
Ŷ = CX +DU , where X = Φ(AX +BU). From Corollary 5(i), if each φi is weakly increasing
and non-expansive, the fixed point problem is well-posed when µ∞,[η]−1(A) < 1 for some η ∈ Rn>0.
We consider a training problem of the form

min
A,B,C,D,X

L(Y,CX +DU) + P(A,B,C,D)

X = Φ(AX +BU), µ∞,[η]−1(A) ≤ γ,
(16)

where L is a loss function, P is a penalty function, and γ < 1 is a hyperparameter ensuring the fixed
point problem is well-posed. For η = 1n, we can remove the constraint µ∞(A) ≤ γ in the training
optimization problem (16) using the following parametrization of weight matrix A:

A = T − diag(|T |1n) + γIn. (17)

In Appendix B, we show that parametrization (17) characterizes the set of matrices in Rn×n sat-
isfying µ∞(A) ≤ γ. Using the parametrization (17) in the training problem not only improves
the computational efficiency of the optimization but also allows for the design of implicit neural
networks with additional structure such as convolutions. Suppose u ∈ Rrs2 is a r-channel input
of size s × s and x ∈ Rns2 is an n-channel hidden layer. To define our implicit CNN, we select
the weight matrix A ∈ Rns2×ns2 as the matrix form of a 2D convolutional operator. If we consider
a circular convolution operator, then A is a circulant matrix. Using the parametrization (17), A is
circulant if and only if T is circulant. Therefore, the training problem for implicit CNNs can be cast
as an unconstrained optimization problem using the above parametrization with a circulant T .

Improving robustness via Lipschitz regularization We now focus on learning robust implicit
neural networks with bounded Lipschitz constants via a regularization strategy. Setting both ‖ · ‖U
and ‖ · ‖Y as ‖ · ‖∞ in the input-output Lipschitz bound (15), we get

Lipu→y =
‖B‖(∞,[η]−1),(∞)‖C‖(∞),(∞,[η]−1)

1− µ∞,[η]−1(A)+
+ ‖D‖∞,∞

≤ 1

2

‖B‖2(∞,[η]−1),(∞) + ‖C‖2(∞),(∞,[η]−1)

1− µ∞,[η]−1(A)+
+ ‖D‖∞,∞,

where the inequality provides a convex upper bound for the input-output Lipschitz constant. Therefore,
using the hyperparameter λ > 0, the regularized optimization problem is written as

min
A,B,C,D,X

L(Y,CX +DU) + λ
(1

2

‖B‖2(∞,[η]−1),(∞) + ‖C‖2(∞),(∞,[η]−1)

1− µ∞,[η]−1(A)+
+ ‖D‖∞,∞

)
X = Φ(AX +BU), µ∞,[η]−1(A) ≤ γ. (18)

Certified adversarial robustness via Lipschitz bounds Given a nominal input u ∈ Rr, we
consider any perturbed input v within an `∞-ball of radius ε around u. In this case, we have

‖yu − yv‖∞ ≤ Lipu→y ‖u− v‖∞ ≤ Lipu→y ε. (19)

Then we define margin(u) = (yu)i −maxj 6=i(yu)j , where (yu)i is the logit corresponding to the
(correct) label i for the input u. Then provided Lε ≤ 1

2margin(u), NEMON is certifiably robust to
any perturbed input v within an `∞-ball of radius ε centered at u.
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Backpropagation of gradients via average iteration From [El Ghaoui et al., 2021] we now show
how the average iteration can be used to perform backpropagation via the implicit function theorem.
For simplicity, we assume that each activation function φi is differentiable and consider mini-batches
of size 1, i.e., we have X = x ∈ Rn, U = u ∈ Rr and Ŷ = ŷ ∈ Rq. Let x∗ be the unique solution
of the fixed-point equation (11). Then the chain rule implies

∂L
∂A

= (∇x∗L)x>,
∂L
∂B

= (∇x∗L)u>,

∂L
∂C

= (∇ŷL)x>,
∂L
∂D

= (∇ŷL)u>.

Since L depends explicitly on ŷ, computing ∇ŷL is straightforward. Computing ∇x∗L is more
complicated since X∗ is defined only implicitly. However, it be shown that

∇x∗L = (C(I −DΦA)−1DΦ)>∇ŷL.
Since µ∞,[η]−1(A) < 1, by Lemma 8 we get that µ∞,[η]−1(DΦA) < 1. This implies that the
matrix G := (In − DΦA)−1DΦ ∈ Rn×n exists and is the solution to the following fixed-point
equation [El Ghaoui et al., 2021, Section 6.2]

G = DΦ(AG+ In). (20)
Moreover, µ∞,[η]−1(DΦA) < 1 and Theorem 2 together imply that the fixed-point equation (20) has

a unique solution G∗ and, for every 0 < α ≤ α∗ :=
(
1−mini(Aii)−

)−1
, the average iterations

Gk+1 = (1− α)Gk + αDΦ(AGk + In), for all k ∈ Z≥0
are contracting with the minimum contraction factor 1− α∗

(
1− µ∞,[η]−1(A)+

)
at step size α∗.

6 Theoretical and numerical comparisons

In this section, we provide a comprehensive comparison of our framework with the state-of-the-art
implicit neural networks2.

6.1 Implicit network models

We start by reviewing the existing models for implicit networks in the literature.

Implicit deep learning model. [El Ghaoui et al., 2021] proposes a class of implicit neural networks
with input-output behavior described by (11). It is shown that a sufficient condition for existence
and uniqueness of a solution and convergence of the Picard iterations for the fixed point equation
x = Φ(Ax+Bu) is λpf(|A|) < 1, where |A| denotes the entrywise absolute value of the matrix A
and λpf denotes the Perron-Frobenius eigenvalue. For training, the optimization problem (16) is used
where the constraint µ∞,[η]−1(A) ≤ γ is replaced by ‖A‖∞ ≤ γ [El Ghaoui et al., 2021, Equation
6.3].3 It is easy to see that our well-posedness condition in Corollary 5(i) is less conservative than
λpf(|A|) < 1 and its convex relaxation ‖A‖∞ < 1.

Monotone operator deep equilibrium network (MON). [Winston and Kolter, 2020] proposes
to use monotone operator theory to guarantee well-posedness of the fixed-point equation as well as
its convergence to the solutions. The input-output behavior of the network is described by (11). For
training, the optimization problem (16) is used where the constraint µ∞,[η]−1(A) ≤ γ is replaced
by In − 1

2 (A + A>) � (1 − γ)In. In order to ensure that this constraint is always satisfied in the
training procedure, the weight matrixA is parametrized asA = γIn−W>W −Z+Z>, for arbitrary
W,Z ∈ Rn×n [Winston and Kolter, 2020, Appendix D].4 In the context of contraction theory,

In − 1
2 (A+A>) � (1− γ)In ⇐⇒ µ2(A) ≤ γ,

which is shown in Appendix A. Thus, the parametrization A = γIn −W>W − Z + Z> can be
considered as the `2-norm version of the parametrization described by equation (17). In other words,
the monotone operator network formulation is a Euclidean transcription of the framework we propose
in this paper.

2All models were trained using Google Colab with a Tesla P100-PCIE-16GB GPU.
3The implicit deep learning implementation is available at https://github.com/beeperman/idl.
4The MON implementation is available at https://github.com/locuslab/monotone_op_net.
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6.2 MNIST experiments
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Figure 1: Performance comparison between the NEMON model with µ∞(A) ≤ 0.95, the implicit deep learning
model with ‖A‖∞ ≤ 0.95, and MON with In − 1

2
(A + A>) � 0.05In on the MNIST dataset. The curves

are generated by mean accuracy and mean loss over 5 different runs while light envelopes around the curves
correspond to the standard deviation over the runs. Average best accuracy for the NEMON model is 0.9772,
while it is 0.9721 for implicit deep learning model and 0.9762 for the MON model.

In the digit classification dataset MNIST, input data are 28× 28 pixel images of handwritten digits
between 0-9. There are 60000 training images and 10000 test images. For training, images are
reshaped into 784 dimensional column vectors and entries are scaled into the range [0, 1]. As a loss
function, we use the cross-entropy. All models are of order n = 100, used the ReLU activation
function φi(x) = (x)+, and are trained with a batch size of 300 over 10 epochs with a learning
rate of 1.5× 10−2. Curves for accuracy and loss versus epochs for the three models are shown in
Figure 1. Regarding training times, using the average iteration, NEMON took, on average, 12 forward
iterations, 13 backward iterations, and 9.8 seconds to train per epoch. Using the Peaceman-Rachford
iteration, MON took, on average, 17 forward iterations, 16 backward iterations, and 9.5 seconds
to train per epoch. Using the Picard iteration, the implicit deep learning model took, on average,
10 forward iterations, 5 backward iterations, and 5.8 seconds to train per epoch. We observe that
the NEMON model performs better than the implicit deep learning model and has a comparable
performance to MON.
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Figure 2: On the left is a plot of test error versus Lipschitz constant for the implicit deep learning model with
‖A‖∞ ≤ 0.95 and for NEMON with µ∞(A) ≤ 0.95 and parametrized by the regularization hyperparameter
λ. We define the test error as 1 minus the accuracy. On the right is a plot of accuracy versus `∞ perturbation
of a deterministic adversarial image inversion attack where we additionally include the MON model with
In − 1

2
(A+A>) � 0.05In.

We also study the robustness of the NEMON model compared to the implicit deep learning model
and the MON model on the MNIST dataset. We train various models regularized by the input-output
Lipschitz constant as in (18). Additionally, to verify robustness of the different models, we consider
several adversarial attacks and plot the accuracy versus perturbation of such an attack. In Figure 2,
we consider a continuous image inversion attack [Hosseini et al., 2017], where each pixel is perturbed

9



in the direction of pixel value inversion with amplitude given by the `∞ perturbation. For more
details on this and other types of adversarial perturbations, we refer to Appendix D. We observe that
for λ = 10−5, the regularized NEMON model achieves a two order of magnitude decrease in its
input-output Lipschitz constant compared to the un-regularized NEMON models. In addition, we see
that the implicit deep learning model and the MON model are more sensitive to the continuous image
inversion attack than NEMON. Moreover, as the regularization parameter λ increases, the NEMON
model becomes increasingly robust to this attack.

6.3 CIFAR-10 experiments

In the image classification dataset CIFAR-10, input data are 32×32 color images in 10 classes. There
are 50000 training images and 10000 test images. We compare our proposed NEMON model with a
convolutional structure to a single convolutional layer MON model. Each model used 81 channels.
We train both models with a batch size of 256 and a learning rate of 10−3 for 40 epochs. For training,
using the average iteration, NEMON took, on average, 10 forward iterations, 10 backward iterations,
and 75.0 seconds per epoch to train. Using the Peaceman-Rachford iteration, MON took, on average,
5 forward iterations, 5 backward iterations, and 101.8 seconds per epoch to train.

We focus primarily on the robustness of NEMON and MON with respect to `∞-norm bounded
perturbations on CIFAR-10. To this end, we additionally trained two NEMON models with regu-
larization parameters λ ∈ {10−4, 10−5}. In Figure 3, on the left is a plot of the certified robustness
of each of the models via their `∞-Lipschitz constants. For MON, we got the `∞-Lipschitz bound
using the method in [Pabbaraju et al., 2021] for the `2-Lipschitz bound and using the upper bound
‖u‖2 ≤

√
rs2‖u‖∞. On the right is a plot of the accuracy of different models with respect to the

projected gradient descent attack. We observe that the un-regularized and regularized NEMON
models are more robust to `∞-norm bounded perturbations than is MON.
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Figure 3: On the left is a plot of certified robustness via the Lipschitz constants of MON with the constraint
In − 1

2
(A+A>) � In and NEMON with the constraint µ∞(A) ≤ 0. On the right is a plot of accuracy versus

`∞ perturbation of the projected gradient descent attack.

7 Conclusion

Using non-Euclidean contraction theory, we propose a framework to study stability of fixed-point
equations. We apply this framework to analyze well-posedness and convergence of implicit neural
networks and to design an efficient training algorithm to incorporate robustness guarantees. For
future research, we envision that our framework is applicable to study stability and robustness of
implicit learning models with additional structure such as graph neural networks.
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