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extropy of random variables which is called varextropy and studies several properties of this concept.
Especially, the varextropy measure of residual and past lifetimes, order statistics, record values and
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named varextropy ordering, is introduced and some of its properties are presented.
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1. Introduction

In the context of information theory, entropy was first proposed by Clausius. He
used the concept of entropy to quantitatively express the second law of thermodynamics,
which opened up a new path for the development of thermodynamics [1]. This concept
was continued by Shannon [2] and since then it has been used in several fields, such as
image and signal processing and economics. Let X be an absolutely continuous random
variable with probability density function (pdf) f (x); the differential entropy is a measure
of uncertainty, and is defined by

H(X) = −
∫ +∞

−∞
f (x) log f (x)dx,

where log(·) stands for the natural logarithm with the convention 0 log 0 = 0. Song [3] in-
troduced the concept of varentropy (VE) as an excellent alternative for the kurtosis measure.
In fact, the VE can be used to compare the heavy-tailed distributions instead of kurtosis
measure. Liu [4] studied some properties of VE under the concept of information volatility.
Fradelizi et al. [5] obtained an optimal varentropy bound for log-concave distributions.
The varentropy of a random variable X is defined as

VH(X) = Var(− log f (X)). (1)

Varentropy measures the variability in the information content of X. Recently, Di Crescenzo
and Paolillo [6] studied the varentropy for residual lifetime. Maadani et al. [7] introduced
a method for calculating this measure for the i-th order statistic. An alternative measure of
uncertainty, known as extropy, was proposed by Lad et al. [8]. For an absolutely continuous
random variable X with pdf f (x), the extropy is defined as
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J(X) = E
(
−1

2
f (X)

)
= −1

2

∫ +∞

−∞
[ f (x)]2dx = −1

2

∫ 1

0
f (F−1(u))du,

where F−1(u) = inf{x : F(x) ≥ u} is the quantile function of the cumulative distribution
function (cdf) F. Recently, several authors have paid attention to extropy and its applica-
tions. Qiu [9] discussed some characterization results, monotone properties, and lower
bounds of extropy of order statistics and record values. Moreover, Qiu and Jia [10] focused
on the residual extropy of order statistics. Qiu and Jia [11] explored the extropy estimators
with applications in testing uniformity.

In some situations, one may have two random variables with the same extropy;
then, this problem leads to the well-known question “Which of the extropies is the most
appropriate criterion for measuring the uncertainty?”. For example, the extropy values of
standard uniform and an exponential distribution with the parameter 2 are both equal to
− 1

2 . This question motivates one to investigate the variance of − 1
2 f (X), which is called

varextropy. Varextropy measure indicates how the information content is scattered around
the extropy. It can be shown that the varextropy of the uniform distribution is zero and
for exponential distribution of parameter 2 is 1

12 , so in the uniform distribution, extropy
is more appropriate for measuring the uncertainty, because the uniform distribution has
the least information volatility. In addition to the varentropy, the use of the varextropy is
also required. Some comparative results for these measures varentropy and varextropy
are conducted in the next section. One can observe that the new introduced varextropy
measure is more flexible than the varentropy, in the sense that the latter is free of the model
parameters in some cases.

Aiming to analyze the variability of such information content, in the present paper,
an alternative measure analogous to (1) is proposed which can be used for measuring the
dispersion of the residual and past lifetimes. On the ground of the above remarks, the
motivation of this paper is to investigate the varextropy of random lifetime in reliability
theory. Accordingly, this paper is organized as follows. In Section 2, at first, the definition
of the varextropy measure is given and some of its properties are investigated. Especially,
some of its extensions in residual and past lifetimes, order statistics, record values and
proportional hazard rate models are provided and the approximate formula for varextropy
using Taylor series is proposed. In Section 3, some results on the conditional varextropy
measure are obtained. In Section 4, a new stochastic comparison method, named varextropy
ordering is introduced, and some of its properties are presented. Throughout this paper,
E[·] denotes expectation and f ′ means the derivative of f .

2. Varextropy Measure

Hereafter, we introduce a measure of uncertainty which can be used as an alternative
measure to Shannon entropy. It is known that Shannon entropy measures the uniformity
of f , hence this remark motivated us to consider the varextropy measure.

Definition 1. Let X be an absolutely continuous random variable with cdf F and pdf f . The
varextropy can be defined as

V J(X) := Var
[
−1

2
f (X)

]
=

1
4
E[ f 2(X)]− J2(X). (2)
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Quantile functions Q(u) = F−1(u), 0 ≤ u ≤ 1, are efficient alternatives to the cdf in
modelling and analysis of statistical data, see, for instance, ref. [12]. Let U ∼ U(0, 1), the
corresponding quantile based varextropy of X, be defined as

V J(X) =
1
4

[
E[ f 2(Q(U))]−E2[ f (Q(U))]

]
=

1
4

[∫ 1

0
f 2(F−1(u))du−

(∫ 1

0
f (F−1(u))du

)2
]

.

In the following, a few examples are given to illustrate the varextropy for random variables
from some distributions.

Example 1.

(i) If X is uniformly distributed in [0, a], then V J(X) = VH(X) = 0. As one can see, conceptu-
ally, the varextropy is compatible with varentropy and both take values greater than or equal
to zero. So, when both varextropy and varentropy are zero, they represent certain information,
that is, the event is certain.

(ii) If X follows the Weibull distribution with cdf

F(x) = 1− e−λxα
, x > 0,

then, a direct computation yields

V J(X) =
α2λ2

4λ
2(α−1)

α

[
Γ( 2(α−1)

α + 1)

3
2(α−1)

α +1
−

Γ2( (α−1)
α + 1)

2
2(α−1)

α +2

]
,

VH(X) =
π2

6

(
1− 1

α

)2
+

2
α
− 1.

In particular, when α = 1 one has the exponential distribution with V J(X) = λ2

48 and
VH(X) = 1.

(iii) If X follows a power distribution with parameter α > 1, i.e., f (x) = αxα−1, x ∈ (0, 1), then,
we have

V J(X) =
α3(α− 1)2

4(3α− 2)(2α− 1)2 ,

VH(X) = (α− 1)2ψ̇(α)− (α− 1)2ψ̇(α + 1),

where ψ̇(·) is the trigamma function.
(iv) If X follows a two-parameter exponential distribution with density function

f (x) = λ exp{−λ(x− µ)}, x > µ,

then, we have V J(X) = λ2

48 and VH(X) = 1. In this case, VH does not depend on the
parameters and V J(X) < VH(X) for λ < 4

√
3 .

(v) If X follows the Laplace distribution with density function

f (x) =
1

2β
exp

{
−|x|

β

}
, x ∈ R,

straightforward computations yield V J(X) = 1
192β2 and VH(X) = 1. By comparing the

varextropy of two-parameter exponential and Laplace distributions with β = 1
λ , then varex-

tropy of two-parameter exponential distribution is four times as much as Laplace distribution.
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(vi) If X is beta-distributed with parameters α and β, then

V J(X) =
B(3(α− 1) + 1, 3(β− 1) + 1)

4B3(α, β)
− B2(2(α− 1) + 1, 2(β− 1) + 1)

4B4(α, β)
,

VH(X) = (α− 1)2ψ̇(α) + (β− 1)2ψ̇(β)− (α− 1 + β− 1)2ψ̇(α + β),

where B(·, ·) and ψ̇(·) denote the beta and trigamma functions, respectively.
(vii) If X ∼ N(µ, σ2), then V J(X) = 2−

√
3

16πσ2
√

3
and VH(X) = 1

2 . In this case, the varextropy

depends on the scale parameter σ2, whereas it is independent on the location parameter µ.
From the above examples, it can be seen that the varextropy measure is more flexible than the
varentropy, in the sense that the latter is free of the model parameters in some cases.

In the following, some properties of the varextropy, such as its behaviour for symmetric
distributions or how it changes under monotonic transformations, are considered.

Proposition 1. Suppose X is an absolutely continuous non-negative random variable with mean
µ = E(X) < +∞ and pdf f (x) = F̄(x)

µ , 0 < x < +∞, where F̄(x) = 1− F(x) is the survival

function of X with cdf F. Then, V J(X) = 1
48µ2 .

Proposition 2. Let X̃ be an absolutely continuous random variable with pdf f̃ (x) = x f (x)
µ , x > 0,

where f is a fixed pdf with mean µ = E(X) < +∞. Then, V J(X̃) = 1
4µ2 Var[X f (X)].

Proposition 3. Let X be a symmetric random variable with respect to the finite mean µ = E(X),
i.e., F(x + µ) = 1− F(µ− x). Then, V J(X + µ) = V J(µ− X).

Remark 1. Suppose that X is a continuous random variable with a symmetric density function f
with respect to µ = 0. Then, V J(|X|) = 4V J(X) = Var[ f (X)]. For instance, if X ∼ N(µ, σ2),
from Example 1, one can get the varextropy for the half-normal distribution.

Proposition 4. If Y = h(X) is a strictly monotone function of X, then V J(Y) = 1
4 Var

(
f (X)

h′(X)

)
.

Note that if Y = aX + b, then V J(Y) = 1
a2 V J(X), hence the varextropy is invariant under

translations.

Remark 2. Let X be a random variable with pdf f and let Φ be a convex function. Then the
Φ-entropy is defined by Beigi and Goahri [13] as follows:

HΦ( f ) = E[Φ( f )]−Φ(E( f )).

For the choice of Φ(t) = t2

4 , we get HΦ( f ) = V J( f ).

In the following, by using Taylor series, an approximate formula for the varextropy is
obtained. For this aim, it is enough to approximate E[ f (X)] as follows:

E[ f (X)] ≈ E[ f (µ) + f ′(µ)(X− µ) +
1
2

f ′′(µ)(X− µ)2] = f (µ) +
1
2

f ′′(µ)Var(X). (3)

Theorem 1. Let X be a random variable with pdf f and mean µ = E(X) < +∞. Then

V J(X) ≈ 1
16

( f ′′(µ))2[µ4 − µ2
2] +

1
4
[ f ′(µ)]2µ2 +

1
4

f ′(µ) f ′′(µ)µ3,

where µr = E(X− µ)r < +∞, r = 2, 3, 4.
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Proof. Making use of (2) and (3), then

V J(X) =
1
4

Var[ f (X)] =
1
4
E[( f (X)−E( f (X)))2]

≈ 1
4
E
[

f (µ) + f ′(µ)(X− µ) +
1
2

f ′′(µ)(X− µ)2 −E( f (X))

]2

=
1
4
E
[

f (µ)−E( f (X)) + f ′(µ)(X− µ) +
1
2

f ′′(µ)(X− µ)2
]2

≈ 1
4
E
[
−1

2
f ′′(µ)Var(X) + f ′(µ)(X− µ) +

1
2

f ′′(µ)(X− µ)2
]2

.

Therefore, the stated result follows.

Definition 2. For any random variables X and Y with pdf’s f and g respectively, the maximal
correlation of X and Y is defined by

ρ̃(X, Y) = max
E[( f (X)−E[ f (X)])(g(Y)−E[g(Y)])]√

Var[ f (X)]Var[g(Y)]
= max

Cov( f (X), g(Y))
4
√

V J(X)V J(Y)
.

Note that 0 ≤ ρ̃(X, Y) ≤ 1. Moreover, ρ̃(X, Y) = 0 if, and only if, X and Y are independent. See
Beigi and Goahri [13] for for more details.

Remark 3. If X is a random variable with pdf f and Y = |X|, then ρ̃(X, Y) = 1.

Let (X, Y) denote the lifetimes of two components of a system with joint cdf F(x, y)
and joint pdf f (x, y). It is possible to introduce the bivariate version of extropy, denoted by
J(X, Y), in the following way:

J(X, Y) =
1
4
E[ f (X, Y)] =

1
4

∫ +∞

0

∫ +∞

0
f 2(x, y)dxdy,

see Balakrishnan et al. [14] for further details. Hence, the bivariate V J is given by

V J(X, Y) := V J( f ) =
1
16

Var[ f (X, Y)].

In the case when X and Y are independent random variables, then

V J(X, Y) = V J(X)V J(Y) + V J(X)J2(Y) + J2(X)V J(Y),

and, if in addition, X and Y are identically distributed, then

V J(X, Y) = V J2(X) + 2J2(X)V J(Y) = V J(X)
(

V J(X) + 2J2(X)
)

.

For example, let X, Y iid∼ N(0, 1), then, by using Example 1 and J(X) = − 1
4
√

π
, then

V J(X, Y) = (2−
√

3)2

768π2 + 2−
√

3
128π2

√
3
= 1

768π2 .

2.1. Residual and Past Varextropies

As mentioned in the introduction, several researchers have dedicated their attention
to the study of extropy. Now, we recall the definitions of residual and past extropy. Let X
be a non negative and absolutely continuous random variable, then Xt = [X − t|X ≥ t]
is the residual lifetime with pdf ft(x) = f (x + t)/F̄(t), x > 0 and X[t] = [X | X ≤ t] is
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the past lifetime with pdf f[t](x) = f (x)
F(t) , 0 < x < t. In analogy with the residual entropy,

Qiu [10] defined the extropy for residual lifetime Xt, i.e., the residual extropy at time t, as

J(Xt) = −
1
2

∫ +∞

0
f 2
Xt
(x)dx = − 1

2F2
(t)

∫ +∞

t
f 2(x)dx.

About the past lifetime X[t] = (X|X ≤ t), Krishnan et al. [15] and Kamari and Buono [16]
studied the past extropy defined as

J(X[t]) = −
1
2

∫ +∞

0
f 2
X[t]

(x)dx = − 1
2F2(t)

∫ t

0
f 2(x)dx.

The residual extropy and the past extropy can be seen as expectations. So, the residual and
the past varextropies of X at time t, V J(Xt) and V J(X[t]) are

V J(Xt) =
1
4
E
[

f 2
Xt
(Xt)

]
− J2(Xt),

V J(X[t]) =
1
4
E
[

f 2
X[t]

(X[t])
]
− J2(X[t]).

Example 2.

(i) If X has an exponential distribution, then

V J(Xt) = V J(X[t]) = V J(X),

i.e., it is independent of the lifetime of the system.
(ii) If X follows a power distribution with parameter α > 1, then

V J(Xt) =
α3

4(1− tα)4

[
(1− t3α−2)(1− tα)

3α− 2
− α(1− t2α−1)2

(2α− 1)2

]
,

V J(X[t]) =
α3(α− 1)2

4t2(3α− 2)(2α− 1)2 .

Proposition 5. If Y = aX + b, with X non-negative random variable, a > 0 and b ≥ 0, then

V J(Yt) =
1
a2 V J

(
X t−b

a

)
,

V J(Y[t]) =
1
a2 V J

(
X[ t−b

a ]

)
.

It is observed that the residual varextropy can be written as

V J(Xt) =
Var[ f (X + t)]

4F̄2(t)
,

hence, for all t ≥ 0, the derivative of the residual varextropy is

∂

∂t
V J(Xt) = V J(Xt)

[
2λX(t) +

∂

∂t
log(Var[ f (X + t)])

]
,

where λX(t) = f (t)
F̄(t) is the hazard rate function. Solving the above differential equation

leads to

V J(Xt) = exp
[∫

[2λX(t) +
∂

∂t
log(Var[ f (X + t)])]dt + C

]
,

where C is a constant.
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2.2. Reliability Theory

Hereafter, we consider two non-negative random variables X and Xθ with cdf’s F(x)
and F∗(x), respectively. These variables satisfy the proportional hazard rate model (PHRM)
with proportionality constant θ > 0, if

F̄∗Xθ
(x) = [F̄(x)]θ , x > 0.

For detail on PHRM and some properties of such a model associated with aging notions,
see Gupta and Gupta [17].

Proposition 6. Let X be a non-negative absolutely continuous random variable with cdf F and pdf
f . Then,

V J(Xθ) =
θ3

4
E
[

f 2(F−1(1−U))U3(θ−1)
]
− θ4

4
E2
[

f (F−1(1−U))U2(θ−1)
]
, (4)

where U ∼ U(0, 1).

In reliability theory (n− k + 1)-out-of n systems, k ∈ {1, . . . , n}, are important types
of structures. If X1, X2, . . . , Xn denote the independent lifetimes of the components of a
(n− k + 1) -out-of n system, then the lifetime of this system is equal to the order statistic
Xk:n. Hence, in the following proposition, we obtain an analytical expression for V J(Xk:n).

Proposition 7. Let X1, X2, . . . , Xn be a random sample from an absolutely continuous cdf F(x), then

V J(Xk:n) =
B(3k− 2, 3(n− k) + 1)

4B3(k, n− k + 1)
E
[

f 2(F−1(U1))
]

−B2(2k− 1, 2(n− k) + 1)
4B2(k, n− k + 1)

E2
[

f (F−1(U2))
]
,

where U1 ∼ Beta(3k− 2, 3(n− k) + 1) and U2 ∼ Beta(2k− 1, 2(n− k) + 1).

Remark 4. Let X1:n = min{X1, X2, . . . , Xn} and Xn:n = max{X1, X2, . . . , Xn} denote the
lifetime of the series and parallel systems, respectively. Then,

(i) V J(X1:n) =
n3

4 E
[

f 2(F−1(1−U))U3(n−1)
]
− n4

4 E2
[

f (F−1(1−U))U2(n−1)
]
;

(ii) V J(Xn:n) =
n3

4 E
[

f 2(F−1(U))U3(n−1)
]
− n4

4 E2
[

f (F−1(U))U2(n−1)
]
;

we note that (i) coincides with (4), since the series system is a particular case of PHRM with the
choice of parameter θ = n.

Proposition 8. Let X1, X2, . . . , Xn be a random sample from continuous symmetric distribution
F(x), then

V J(Xk:n) = V J(Xn−k+1:n).

In the following, a few examples are given to illustrate the varextropy for order
statistics Xk:n from some distributions.

Example 3.

(i) If X is uniformly distributed in [a, b], then

V J(Xk:n) =

(
1

b− a

)2(B(3k− 2, 3(n− k) + 1)
4B3(k, n− k + 1)

− B2(2k− 1, 2(n− k) + 1)
4B2(k, n− k + 1)

)
;
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(ii) If X has exponential distribution with parameter θ, then

V J(Xk:n) = θ2
(

B(3k− 2, 3(n− k) + 3)
4B3(k, n− k + 1)

− B2(2k− 1, 2(n− k) + 2)
4B2(k, n− k + 1)

)
;

(iii) If X has Pareto distribution with shape and scale parameters λ and β respectively, then

V J(Xk:n) =
λ2

β2

(
β(3k− 2, 3(n− k) + 2

λ + 3)
4β3(k, n− k + 1)

−
β2(2k− 1, 2(n− k) + 1

λ + 3)
4β2(k, n− k + 1)

)
.

Table 1 gives the numerical values of V J(Xk:n) with n = 10 for the standard uniform
distribution. It can be observed that V J(Xk:n) = V J(Xn−k+1:n), as stated in Proposition 8,
and V J(Xk:n) is increasing with respect to k for k ≥ n+1

2 ( n
2 + 1) when n is odd (even).

Furthermore, it is decreasing with respect to k for k ≤ n+1
2 ( n

2 ). Therefore, the median of
order statistics has a minimum varextropy. It should be noted that, when n is even, both of
the middle random variables of order statistics, are the median.

Table 1. The values of V J(Xk:n) for the standard uniform distribution.

k 1 2 3 4 5

V J(Xk:n) 8.859319 2.225035 1.407279 1.129121 1.027418

k 6 7 8 9 10

V J(Xk:n) 1.027418 1.129121 1.407279 2.225035 8.859319

In reliability tests, some products may fail under stress. In such experiments for
getting the precise failure point, measurements may be made sequentially, and only values
larger (or smaller) than all previous ones are recorded. Let X1, X2, . . . , Xn, . . . , be a sequence
of iid random variables with cdf F(x) and pdf f (x). An observation Xj is called an upper
record (lower record) value if Xj > (<) Xi, ∀i < j. In the following, we obtain varextropy
measures for upper record values.

Proposition 9. Let XUn be n-th upper record value with pdf fn(x) = 1
(n−1)! [− log(1− F(x))]n−1

f (x), then

V J(XUn) =
1
4

Var[ f (XUn)] =
(3n− 3)!

4[(n− 1)!]3
E[ f 2(F−1(1− e−V))]

− [(2n− 2)!]2

4[(n− 1)!]4
E2[ f (F−1(1− e−W))], n > 1,

where V ∼ Gamma(3n− 2, 1) and W ∼ Gamma(2n− 1, 1).

2.3. The Discrete Case

In analogy with (2), the varextropy of a discrete random variable X taking values in
the set {xi, i ∈ I} is expressed as

V J(X) =
1
4

∑
i∈I

P3(X = xi)−
(

∑
i∈I

P2(X = xi)

)2
.

Example 4. Let Y be a Bernoulli random variable having distribution P(Y = 0) = 1 − θ,
P(Y = 1) = θ, with 0 ≤ θ ≤ 1, then the varextropy is given by

V J(Y) = 0.25
[
(1− θ)3 + θ3 − (1− θ)4 − θ4 − 2θ2(1− θ)2

]
.



Entropy 2021, 23, 356 9 of 14

Figure 1 shows the values of V J(Y) as θ varies in [0, 1], it can be seen that 0 ≤ V J(Y) ≤ 0.0156.
Note that for θ = θ∗ = 0.337009, H(Y) = J(Y) = 0.639032 and V J(Y) = 0.0059.
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Figure 1. The values of V J(Y) for Bernoulli distribution.

Example 5. Let X be a discrete random variable such that, for a fixed h > 0,

P(X = h) = p, P(X = 0) = 1− p− q, P(X = −h) = q,

with 0 ≤ q ≤ 1− p ≤ 1. We have

V J(X) = 0.25
[

p3 + (1− p− q)3 + q3 − (p2 + (1− p− q)2 + q2)2
]
.

Now, by using the function fzero of MATLAB, it is found that if p = q = 0.1508, then
J(X) = 0.639032 and V J(X) = 0.0158. Hence, with this choice of parameters, the considered
random variable has the same entropy as the one considered in Example 4 with θ = θ∗, but the
varextropy of X is larger. This implies that the coding procedure is more reliable for sequences
generated by the random variable Y considered in Example 4.

3. General Results on Conditional Varextropy

Henceforward, we investigate some results on the conditional V J of a random phe-
nomenon. Assume that X is a random variable defined on the probability space (Ω,F , P)
and such that E|X| < +∞. The conditional variance of X given sub σ-field G is denoted by
Var(X|G), where G ⊂ F . Here, the definition of the conditional V J of X is given and some
of its properties are discussed.

Definition 3. Let X be a non-negative random variable with pdf f such that E( f 2(X)) < +∞.
Then, for a given σ-field F , the conditional VJ is defined as follows:

V J(X|F ) = 1
4

Var[ f (X)|F ] = 1
4
E[( f (X)−E( f (X)|F ))2|F ].

In the following proposition, the varextropy version of the law of total variance
is given.
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Proposition 10. Suppose that X is a random variable with pdf f , then

V J(X) =
1
4

Var[ f (X)] =
1
4
E[Var[ f (X)|F ]] + 1

4
Var[E[ f (X)|F ]]

= E(V J(X|F )) + 1
4

Var[E[ f (X)|F ]].

It is clear that V J(X) ≥ E(V J(X|F )).

Lemma 1. Let X be a random variable with cdf F and support (0,+∞). If F = {∅, Ω}, then
V J(X|F ) = V J(X).

Proposition 11. Let E( f 2(X)) < +∞. Then, for σ-fields G ⊂ F

E(V J(X|G)) ≤ E(V J(X|F )). (5)

Theorem 2. Let E( f 2(X)) < +∞ and let F be a σ- field. Then E(V J(X|F )) = 0 if, and only if,
f (x) = c, where c is a non negative constant, and X is F -measurable.

Proof. If we assume that E(V J(X|F )) = 0, then V J(X|F ) = 0. Recalling the definition of
V J(X|F ), then Var[ f (X)|F ] = 0. So, f is a constant function and X is F -measurable.
Let us suppose that f (x) = c, where c > 0 is a constant, and X is F -measurable. Again, by
using Definition 3, we have Var[ f (X)|F ] = 0, so the result follows.

From the Markov property of the lifetime random variables X, Y and Z, we have the
following lemma.

Lemma 2. If X → Y → Z is a Markov chain, then

(i) V J(Z|Y, X) = V J(Z|Y).
(ii) E[V J(Z|Y)] ≤ E[V J(Z|X)].

Proof.

(i) By using the Markov property and definition of V J(Z|Y, X), the result follows.
(ii) Let G = σ(X) and F = σ(X, Y), then from (5), we have

E[V J(Z|X)] ≥ E(E[V J(Z|X, Y)|X]) = E[V J(Z|X, Y)] = E[V J(Z|Y)],

and the result follows.

Remark 5. Let (X, Y) denote the lifetimes of two components of a system with joint density
function f (x, y). Another measure of correlation is the maximal correlation ribbon (MC ribbon)
defined in Beigi and Gohari [18]. The MC ribbon is equal to the set of (λ1, λ2) ∈ [0, 1]2 such that
we have

V J( f ) ≥ λ1V J(E[ f |X]) + λ2V J(E[ f |Y]).

4. Stochastic Comparisons

Before proceeding to give the results of this section, we need the following definitions
on stochastic orderings between random variables. For more details on these concepts, one
can see Shaked and Shanthikumar [19].

Definition 4. Suppose that X and Y are two random variables with density functions f and g and
survival functions F̄(x) = 1− F(x) and Ḡ(x) = 1− G(x), respectively. Then,

1. X is smaller than Y in the stochastic ordering, denoted by X
st
≤ Y, if F̄(t) ≤ Ḡ(t) for all t;
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2. X is smaller than Y in the likelihood ratio ordering, denoted by X
lr
≤ Y, if g(t)

f (t) is increasing
in t > 0;

3. X is smaller than Y in the hazard rate order, denoted by X
hr
≤ Y, if λX(x) ≥ λY(x) for all x;

4. X is smaller than Y in the dispersive order, denoted by X
disp
≤ Y, if f (F−1(u)) ≥ g(G−1(u))

for all u ∈ (0, 1), where F−1 and G−1 are right continuous inverses of F and G, respectively;
5. X is said to have decreasing failure rate (DFR) if λX(x) is decreasing in x;

6. X is smaller than Y in the convex transform order, denoted by X
c
≤ Y, if G−1(F(x)) is a

convex function on the support of X;

7. X is smaller than Y in the star order, denoted by X
∗
≤ Y, if G−1F(x)

x is increasing in x ≥ 0;

8. X is smaller than Y in the superadditive order, denoted by X
su
≤ Y, if G−1(F(t + u)) ≥

G−1(F(t)) + G−1(F(u)) for t ≥ 0, u ≥ 0.

In the following, we introduce a new stochastic order based on the varextropy.

Definition 5. The random variable X is said to be smaller than Y in the varextropy order, denoted

by X
V J
≤ Y, if V J(X) ≤ V J(Y).

In the following example, we get some comparisons about the varextropy order based
on the results given in Example 1.

Example 6.

(i) If X ∼ Laplace(0, 1) and Y ∼ Exp(1) , then we have X
V J
≤ Y, since V J(X) = 1

192 and
V J(Y) = 1

48 ;

(ii) If X ∼Weibull(1, 2) and Y ∼Weibull(1, 1) , then we have X
V J
≤ Y, since V J(X) = 0.0129

and V J(Y) = 0.02;

(iii) If X ∼ Exp(λ1) and Y ∼ Exp(λ2) with λ1 ≤ λ2 , then X
V J
≤ Y;

(iv) If X ∼ N(µ1, σ2
1 ) and Y ∼ N(µ2, σ2

2 ) with σ2 ≤ σ1 , then X
V J
≤ Y.

Remark 6. X
V J
≤ Y ⇔ |X|

V J
≤ |Y|, where the equivalence follows from Remark 1.

Since the varextropy is defined as the variance of the pdf multiplied by a constant, it
is known that the uniform distribution is the only one for which the varextropy vanishes.
Then, the following result is obtained.

Proposition 12. If X ∼ U(a, b), then X
V J
≤ Y for any continuous random variable Y.

Proposition 13. Let Xk:n be kth order statistic of standard uniform distribution, then

(i) Xk:n
V J
≤ X1:n and Xk:n

V J
≤ Xn:n for all 1 ≤ k ≤ n.

(ii) when n is even, we have X n
2 :n

V J
≤ Xk:n for all 1 ≤ k ≤ n.

(iii) when n is odd, we have X n+1
2 :n

V J
≤ Xk:n for all 1 ≤ k ≤ n.

Remark 7 (Chernoff [20]). Let X be a random variable with standard normal distribution. If h is
absolutely continuous and h(X) has finite variance, then

Var(h(X)) ≤ E
{
[h′(X)]2

}
. (6)
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From Remark 7, the following result is obtained.

Corollary 1. If X is a standard normal random variable and h(x) = 1√
2π

e
−x2

2 , then

V J(X) ≤ 1
8π
√

27
.

In the following, a lower bound for V J(X) based on Chebyshev inequality is given.

Corollary 2. Let X be a random variable with pdf f (x), then

V J(X) ≥ P(| f (X) + 2J(X)| ≥ 2).

Finally, the following results from Shaked and Shanthikumar [19] are provided.

Proposition 14. If X and Y are two random variables such that X
disp
≤ Y, then X

V J
≥ Y.

Example 7. Let FX(t) = 1 − exp(−2t), t > 0 and GY(t) = 1 − exp(−t), t > 0. Then

X
disp
≤ Y implies X

V J
≥ Y.

Corollary 3. If X
hr
≤ Y, and X or Y is DFR, then X

V J
≥ Y.

Proof. If X
hr
≤ Y, and X or Y is DFR, then X

disp
≤ Y, due to Bagai and Kochar [21]. Thus,

from Proposition 14, the result follows.

Corollary 4. If X
su
≤ Y (X

∗
≤ Y or X

c
≤ Y) and f (0) ≥ g(0) > 0. Then X

V J
≥ Y.

Proof. If X
su
≤ Y (X

∗
≤ Y or X

c
≤ Y) and f (0) ≥ g(0) > 0, then X

disp
≤ Y, due to

Ahmed et al. [22]. So, from Proposition 14, the result follows.

Corollary 5. Suppose that Xk:n and Yk:n are the kth order statistics of two continuous random

variables X and Y, respectively. If X
disp
≤ Y , then Xk:n

V J
≥ Yk:n.

Proof. The proof follows by Theorem 3.B.26 of [19].

Corollary 6. If X
st
≤ Y (X

lr
≤ Y), then X

V J
≥ Y.

Corollary 7. Let X be a non negative random variable having a DFR distribution. If Xk:n
lr
≤ X,

then Xk:n
V J
≥ X.

Corollary 8. Let X be a non negative random variable having a DFR distribution. Then, X1:n
V J
≥ X

and Xn:n
V J
≤ X.

5. Conclusions

In this paper, some properties of VJ were obtained. This measure can be applied for
measuring the information volatility contained in the associated residual and past lifetimes.
Some of its properties based on order statistics, record values and proportional hazard
rate models were considered. Moreover, using Taylor series, the approximate formula for
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V J(X) was proposed. Finally, the conditional V J of a random phenomenon was discussed
and a new stochastic order, named varextropy ordering, was introduced. To continue future
works, we list some properties and advantages of varextropy and its extends, to highlight
the rationality and value of the new method.

(1) V J of a uniform random variable as well as VH are both equal to zero, see Example 1.
(2) The new introduced varextropy measure is more flexible than the varentropy, in the

sense that the latter is free of the model parameters in some cases, see Example 1.
(3) In this case of normal distribution, the varextropy only depends on the scale parameter

σ2, see Example 1.
(4) For symmetric distributions, the V J is unchanged under symmetry, see Proposition 3.
(5) V J of half normal can be easily obtained via V J of normal distribution, see Remark 1.
(6) V J can be approximated using Taylor series, for further details see Theorem 1.
(7) V J is invariant under translations, for further details, see Proposition 4.
(8) The residual V J of an exponential distribution is independent of lifetime model, more

specific explanation can be seen in Example 2.
(9) V J of the PHRM can be obtained from the original model properties, see Proposition 6.
(10) For symmetric distributions, V J of k-th order statistic is equal to V J of (n− k + 1)-th

order statistic from a sample of size n, for further details see Proposition 8.
(11) The median of order statistics has a minimum V J, more specific explanation can be

seen in Section 2.2.
(12) V J of a random variable X is bigger than that of the expected value of conditional V J

of X, see Proposition 10.
(13) If X → Y → Z is a Markov chain, then V J(Z|Y, X) = V J(Z|Y), for further details see

Lemma 2.
(14) For the one-parameter exponential distribution, when the value of parameter increases

then the exponential distribution increases in varextropy order, see Example 6.
(15) For the normal distribution, when the value of scale parameter increases then the nor-

mal distribution decreases in varextropy order independently of location parameter,
see Example 6.

(16) If X is smaller than Y in varextropy order then the result also holds for absolute value
of X and Y and vice versa, see Remark 6.

(17) Based on varextropy order, every continuous random variable is bigger than the
uniform distribution, for further details, see Proposition 12.
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