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1 Introduction

Supersymmetry has proven to be a very powerful tool in string theory. In the supergravity

approximation, supersymmetry can be used as a tool to generate solutions since super-

symmetric solutions obey first-order equations that are derived from the preservation of

some fraction of supersymmetry. However, the ultimate goal is to perform computations

in string theory in non-supersymmetric contexts. For the sake of finding supergravity so-

lutions, such as black holes for instance, the so-called fake supergravity formalism borrows

tricks of supersymmetry to find non-supersymmetric solutions. Fake supergravity was first

introduced in the context of domain wall solutions in [1]. For supersymmetric domain wall

solutions, the first order supersymmetry equations are determined by the superpotential.

The idea of fake supergravity (or fake supersymmetry) is to define a fake superpotential,

not directly related to the superalgebra, whose first-order gradient flow also satisfies the

second-order equations of motion. Apart from being a technical tool, fake supersymmetry

has a physical meaning in the sense that it guarantees the stability of the domain wall

solution. It thus becomes important to understand when a domain wall solution is fake

supersymmetric or not, a question which was raised in [2].

FLRW solutions supported by time-dependent scalars subject to the force derived

from some scalar potential are very similar to gravitational domain wall solutions. In fact
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there exists a one to one map between such solutions [3]. This implies that the notion of

fake supersymmetry should carry over to time-dependent solutions. This is called pseudo-

supersymmetry since time-dependent solutions cannot possess unitary superalgebras.1

Domain walls and FLRW cosmologies are solutions that depend on one coordinate.

The second-order equations of motion take the form of ODE’s that can be derived from an

effective Lagrangian that defines a Hamiltonian system. This suggests a close link between

fake supergravity and the Hamilton-Jacobi formalism, since the latter also defines first-

order equations. Indeed such a link was established in [7] (see also [8–10]). Nonetheless,

it has never been precisely formulated what the difference is between fake supersymmetry

and the Hamilton-Jacobi formalism. It is the aim of this paper to make this precise.

It is important to note that not all domain walls are derived from fake supersymmetry.

Reference [11] gave an explicit example for which one can easily proof that there is no

fake supersymmetry in the standard sense. We will recall and simplify this solution in this

paper and present even simpler examples.

Spherically symmetric stationary black holes are another example of co-homogeneity

one solutions in supergravity that effectively define a Hamiltonian system. It is therefore

not surprising that the fake supergravity formalism can be applied to such black holes as

well. This was initiated in [12] and many other references soon followed that constructed

fake superpotentials for non-supersymmetric extremal black holes (see e.g. [13–15] and the

review [16] for more references). Similarly to domain walls, the relation with the Hamilton-

Jacobi formalism was noted in [17]. Interestingly the existence of first-order gradient flow

equations was then also found for non-extremal black holes in Einstein Maxwell-theory [18]

and extended to more general models in [19]. The most general form for the first-order

equations for non-extremal solutions was found in [20], where it was emphasized that the

flow equations do differ from those for extremal black holes in the sense that the black hole

warp factor appears in a non-trivial way, different from extremal solutions.

The only physical interpretation of the fake superpotential for black holes so far is as a

Liapunov function [21]. A deeper physical meaning of the existence of fake supersymmetry,

similar to the assurance of stability for domain walls, has not been understood. One of the

purposes of this paper is to fill this gap for extremal black holes.

This paper is organized as follows. We recall the concept of fake supersymmetry in

section 2 and the Hamilton-Jacobi (HJ) formalism in section 3. In section 4, we show that

the HJ equations reduce to the standard fake supersymmetry equations if a certain, newly-

found, constant of motion vanishes. We furthermore give a new physical interpretation

of fake supersymmetry in the context of extremal black holes: fake supersymmetry is

necessary for having physically acceptable solutions. We use this in section 5 to uncover

new general properties of the near horizon regions of small black holes, which can be

regarded as an extension of the attractor mechanism for large extremal black holes [22, 23].

We end with a discussion in section 6. Appendix A contains several examples that clarify

the statements in the bulk of the paper.

1For earlier remarks on the first-order formalism in cosmology we refer to [4, 5] and for applications to

bent branes, see [6].
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2 Fake supersymmetry

Fake supersymmetry is a concept that is usually formulated on the level of effective one-

dimensional actions for black hole solutions, domain walls and, through the map between

domain walls and FLRW cosmologies [7], also for the latter, where it is referred to as

pseudo-supersymmetry. We briefly recall these effective actions before we recall the notion

of fake supersymmetry.

Effective actions for black holes. A typical ungauged supergravity is described by N

real scalar fields φi that parameterize a Riemannian target space with metric Gij and M

Abelian vector fields that couple to these scalars. Spherical and static black hole solutions

to such theories are described by the following Ansatz

ds24 = −e2U(τ)dt2 + e−2U(τ)
(

e4A(τ)dτ2 + e2A(τ)dΩ2
2

)

. (2.1)

In the absence of a scalar potential (ungauged supergravity) the function A(τ) is indepen-

dent of the matter content:

extremal: eA(τ) =
1

τ
, (2.2)

non-extremal: eA(τ) =
c

sinh(cτ)
. (2.3)

The constant c is the so-called non-extremality parameter and τ is a reparametrisation of

the usual radial coordinate. When c2 < 0, we find non-physical (‘over-extremal’) solutions

(although the metric is still real for some coordinate range).

Due to spherical symmetry the scalars only depend on the radial direction and the

vector fields can easily be integrated out in terms of the magnetic and electric charges.

The equations of motion are captured by the effective action

S =

∫

dτ
(

4U̇2 +Gijφ̇
iφ̇j − e2UVBH(φ)

)

, (2.4)

where a dot represents a derivative with respect to τ . The black hole potential VBH(φ) is

the term generated by integrating out field strengths and is strictly negative. The solutions

are subject to the following energy constraint

Gijφ̇
iφ̇j + 4U̇2 + e2UVBH = 4c2. (2.5)

Effective actions for domain walls. Domain wall solutions are usually supported by

scalar fields that are subject to a non-trivial scalar potential VDW(φ). The standard Ansatz

for flat domain wall solutions is given by

ds22 = e2
√
3U(z)dz2 + e

2√
3
U(z)

(dx2 + dy2 − dt2) . (2.6)

Consistent with the symmetries one then typically assumes that the scalars depend on z

only. The effective action then becomes one-dimensional

S =

∫

dz
(

4U̇2 −Gijφ̇
iφ̇j − e2

√
3UVDW(φ)

)

, (2.7)
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and is supplemented with a zero energy condition

4U̇2 −Gijφ̇
iφ̇j + e2

√
3UVDW(φ) = 0 . (2.8)

Up to signs and factors of eU there is no difference between extremal black holes and

domain walls from the point of view of the effective action.

There is a simple one to one map between domain walls and FLRW cosmologies. For

Minkowski-sliced domain walls and k = 0 FLRW cosmologies, given by the metric,2

ds22 = −e2
√
3U(t)dt2 + e

2√
3
U(t)

(dx2 + dy2 + dz2) , (2.9)

the map proceeds by flipping the sign of the scalar potential V and replacing z → t in

U(z), φi(z).

The fake superpotential. Supersymmetric domain walls and black holes are a special

subset of solutions that fulfill certain first-order differential equations that follow from the

Killing spinor equations. These equations take the form of flow equations, derived from

the superpotential function W :

φ̇i = ǫeaUGij∂jW (φ) , 4U̇ = aeaUW (φ) , (2.10)

where
Domain walls: ǫ = −1 a =

√
3 ,

Black holes: ǫ = +1 a = 1 .

As is well known, supersymmetric black holes are necessarily extremal. Hence the zero

energy condition for both domain walls and black holes implies a relation for the superpo-

tential function W

ǫGij∂iW∂jW +
a2

4
W 2 = −V (φ) . (2.11)

For supersymmetric solutions, W is the superpotential derived from the Killing spinor

equations. The essence of fake supersymmetry is that any function W that obeys the above

relation (2.11) defines a first-order flow, through (2.10), that can easily be demonstrated to

solve the full second-order equations of motion. Hence solutions that can be found from a

flow governed by a fake superpotential, in a certain sense mimic supersymmetric solutions.

3 Hamilton’s principal function

To introduce the Hamilton-Jacobi formalism in this context, we first write the above effec-

tive actions (2.4), (2.7) in a more formal Hamiltonian system notation. For that we define

the configuration space variables qa = (U, φi) and the corresponding metric

Gab =

(

4 0

0 ǫGij

)

. (3.1)

2We have chosen a similar z parametrization as for domain walls rather than the usual cosmological

time.
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We furthermore define

V(q) = 1

2
e2aUV (φ) , (3.2)

then the effective action is compactly written as

S =

∫

dτ

(

1

2
Gabq̇

aq̇b − V(q)
)

. (3.3)

This action is scaled with a factor 1
2 with respect to the effective actions (2.4), (2.7). The

Hamiltonian is given by

H =
1

2
Gabq̇

aq̇b + V(q) , (3.4)

which is zero for extremal black holes and domain walls and equal to 2c2 for non-extremal

black holes. Now we follow the steps of [17]. The canonical momenta pa are defined via

pa = Gabq̇
b. (3.5)

Let us assume that there exists a local Hamilton-Jacobi (HJ) formulation. We will later

comment on this assumption. HJ implies the existence of new variables P,Q that obey the

following equations in terms of the principal Hamiltonian function (or Hamilton’s principal

function) S(q, P, τ):

∂S

∂qa
= pa ,

∂S

∂P a
= Qa ,

∂S

∂τ
= −H . (3.6)

The P a are constants of motion. If we therefore focus on the appearance of the q’s we

deduce from the Hamiltonian constraint (H = 2c2)

S(q, τ) = W(q)− 2c2τ , (3.7)

and the velocities follow a gradient flow set by W:

pa =
∂S

∂qa
⇒ q̇a = Gab∂W(q)

∂qb
. (3.8)

Combining (3.7) and (3.8), we have

1

2
Gab∂aW i∂bW + V(q) = 2c2. (3.9)

The function W is often called Hamilton’s characteristic function. Note that the Hamilton-

Jacobi equations always coincide exactly with a rewriting of the action as a sum and

difference of squares, up to a total derivative:

S =

∫

1

2
Gab

(

q̇a −Gac∂W
∂qc

)(

q̇b −Gbd∂W
∂qd

)

. (3.10)

It is a basic theorem of analytical mechanics that, locally, one can always define

the first-order Hamilton-Jacobi equations. Typical global phenomena are the existence

of branch cuts such that S can become multi-valued. Barring these subtleties one can

safely claim that there always exists a function S, for any solution.
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4 Fake supersymmetry and Hamilton-Jacobi

In this section we explain the link between Hamilton-Jacobi theory and fake supersym-

metry for domain walls and extremal black holes (H = 2c2 = 0). The condition for fake

supersymmetry is that Hamilton’s characteristic function factorizes as W = eaUW (φ).

We use this observation to make the statement that for regular extremal black holes,

there is always a fake superpotential. We prove this for large black holes, and conjecture

and motivate this for small black holes.

4.1 Fake supersymmetry from Hamilton-Jacobi

When the energy is zero (extremal black holes and domain walls), Hamilton’s characteristic

function obeys (3.9)

1

4
(∂UW)2 + ǫGij∂iW∂jW = −e2aUVDW/BH(φ) . (4.1)

This relation suggests that there could be a simple factorised form for W

W = eaUW (φ) . (4.2)

Exactly this assumption reproduces the (fake) supersymmetry flow equations (2.10) and

the defining relation for W (2.11) from the Hamilton-Jacobi equations (3.8), (3.9). The

rewriting of the action as a sum of squares (3.10) using Hamilton’s principal function then

becomes the usual rewriting as a sum of squares using the (fake) superpotential.

A new conserved quantity. Let us make the condition for having a fake superpotential

more precise. Consider the effective action (3.3) with c2 = 0 (Hamiltonian is zero on-shell).

The Hamilton-Jacobi equations are

4U̇ = ∂UW , φ̇i = ǫGij∂jW . (4.3)

Now observe that

Q ≡ 4

a
U̇ −W (4.4)

is a constant of motion. This follows from:

d

dτ
Q =

4

a
Ü − (∂iW)φ̇i − (∂UW)U̇

= −e2aUVBH/DW(φ)− ǫGijφ̇
iφ̇j − 4U̇2 (4.5)

which is zero by virtue of the energy constraint (H = 0). In the second line we used the

Hamilton-Jacobi equations (4.3) and the U -equation of motion (4Ü = −ae2aUVBH/DW(φ)).

It follows that for non-extremal black hole solutions (H 6= 0) this quantity is not conserved.

Now we consider flows for which Q = 0. Then we can derive that

∂UW = aW , (4.6)

by the Hamilton-Jacobi equations (4.3). If we integrate this equation we find

W = eaUW (φ) . (4.7)
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We therefore find the elegant result

Fake SUSY ⇔ Q = 0 .

For non-extremal black holes (c2 6= 0) it follows straightforwardly that the factorisation

property (4.2) cannot hold, which was one of the central observations of [20]. This is not

that surprising since non-extremal black holes can never be supersymmetric in any possible

supergravity theory.

There is a subtlety to the above statements. The principal function W is by definition

only determined up to a constant. Therefore in principle we could set Q = 0 solution

by solution, by adding a moduli-dependent constant to W. However, there is only fake-

supersymmetry if the parameters can be chosen so that the constant part of Q is solution-

independent, and it can be chosen to be identically zero. We clarify this point in the

appendix, with some explicit examples for which there is no solution-independent way of

getting Q = 0 and there is no fake supersymmetry.

4.2 Fake supersymmetry and regularity

Regular extremal black holes have an AdS2 × S2 horizon. At this horizon one can show

that Q = 0. For that we use that all scalars are fixed at their attractor values

φ(τ = −∞) = φH , ∂iW(φH) = 0 . (4.8)

From the energy condition we then find that

W(U, φH) = 2eU
√

−VBH(φH) , (4.9)

such that Q = 0. Since Q is conserved it is zero throughout the flow and the factorisation

occurs everywhere. Hence we have established that regular extremal flows must be fake

supersymmetric. This is the usual assumption for the flow equations of regular extremal

black holes and here we provided a proof that this is a necessary condition. Note that

when Q = 0, the asymptotic value of W then gives the ADM mass through (4.4):

W(τ = 0) = 4MADM . (4.10)

A second class of extremal black holes that are still of interest are the so-called extremal

small black holes. These are zero entropy black holes, meaning they have vanishing horizon

size.3 Equivalently, the black hole singularity is light-like. Since this can be obtained by

taking a limit of a regular solution we might postulate similarly that also small extremal

black holes are necessarily fake supersymmetric. This limit is not a full proof, and instead

we make this into a conjecture for small extremal black holes.

In summary, we make the following statement: extremal flows with Q = 0 comprise

all black holes with an AdS2×S2 horizon (large black holes) and black holes for which the

horizon coincides with the singularity (small black holes). When Q 6= 0, the solution is

unphysical and has one or more naked singularities (we give such examples in the appendix).

In the next section we will discuss some interesting new features of small black holes in

detail.
3In string theory, these black hole develop a horizon through α

′ corrections.
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5 Small black hole horizons

For an extremal black hole with a macroscopic horizon area, the attractor mechanism

applies: the scalars at the horizon flow to constants that are only functions of the charges.

We prove that for small black holes, a similar story holds. When fake supersymmetry is

valid, the scalars follow a geodesic flow near the horizon, even though there is a scalar

potential.

5.1 Definition of a small black hole horizon

The near-horizon geometry of a small black hole is conformal to AdS2 × S2:

ds2NH = ρα
(

R2
AdS

(

− ρ2dt2 +
dρ2

ρ2

)

+R2
S2 dΩ

2

)

. (5.1)

The constant radii of AdS2 and S2 do not have to be equal. The conformal factor ρα is

a simple consequence of expanding the general conformal factor and keeping the leading

term. One can show that the constant α must be positive. To illustrate this, consider the

D0-D4 STU black hole:

ds2 = −e2Udt2 + e−2U (dr2 + r2dΩ2) , (5.2)

with warp factor

e−2U =
√

H0H1H2H3 . (5.3)

The four harmonic functions H are of the form:

HI = 1 +
QI

r
. (5.4)

When one of the charges is zero, the near-horizon geometry (ρ → 0) is exactly of the

form (5.1), with ρ =
√
r and α = 1.

The small black hole near-horizon geometry can be interpreted as a ‘scaling solution’,

similar to DW and cosmological scaling solutions (see e.g. [24, 25]). The defining property

of a scaling solution is the existence of a conformal Killing vector. Such a vector defines

a local transformation that preserves the metric up to a constant rescaling. For the above

metric (5.1) one can easily verify that the transformation

ρ → eλρ , t → e−λt , (5.5)

leaves the metric invariant up to a constant factor

gµν → eαλgµν . (5.6)

It is useful to contrast this with large black holes. Large black holes (α = 0) interpolate

from Minkowski space at infinity to AdS2 × S2 at the horizon. The general solution can

therefore be understood as a flow between two fixed points. The fixed points themselves

are characterized by a sudden increase in bosonic (and sometimes fermionic) symmetries.

For example, AdS2×S2 realises the conformal group. Small black holes are similar in that

– 8 –
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respect since, at the horizon, the solution is a scaling solution and it is characterised by

the same increase in bosonic symmetries, the only difference is that the symmetries rescale

the metric up to a constant. For a recent discussion on the connection between scaling

solutions and black brane horizons we refer to [26] and for its applications to holography,

see [27].4

5.2 From scaling to Killing and geodesic flows

For scaling solutions, the on-shell action scales with on overall factor as well. Hence, an

equivalent definition of scaling solutions is that each term in the effective action scales in

the same way. What does this imply for the scalar fields? We formalize this, following the

strategy of [25].

Consider the continuous transformation with parameter λ such that

gµν → eλgµν , (5.7)

and the action scales in the same way

S → eλS . (5.8)

The small black hole near-horizon geometries sit in this class. We recall the argument

of [24] that the velocity field of the scalars defines a Killing flow. The scaling of the action

implies that the velocity squared on the scalar tangent space is independent of the scaling

parameter λ:
d

dλ

[

Gijφ̇
jφ̇j
]

= 0 . (5.9)

If the first-order derivative of the scalars with respect to λ defines a vector field: (there is

no explicit λ dependence)

ξi ≡ dφi

dλ
(φ) , (5.10)

then we get that the vector field ξ is Killing since

(LξGij)φ̇
iφ̇j =

d

dλ

[

Gijφ̇
iφ̇j
]

= 0 . (5.11)

Hence we find that for scaling solutions, ξi = φ̇i is a Killing vector field:

∇(iξj) = 0 . (5.12)

The role of fake supersymmetry now becomes clear. When there is a fake superpotential

ξi = Gij∂jW , (5.13)

we find that also

∇[iξj] = ∂[iξj] = 0 , (5.14)

and hence ξi∇iξj = 0: the scalars satisfy a geodesic equation.

4From the extensive literature on scaling solutions it is clear that scaling solutions occur indeed as fixed

point solutions to specific autonomous systems.
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This interesting connection between scaling solutions and geodesics on moduli space

was first made in [28]. If we apply our conjecture that regular small black holes are always

fake supersymmetric, then we find that the scalar fields of regular small black holes follow

a geodesic flow near the horizon.

Even though the action (2.4) has a scalar potential, near the horizon of a small black

hole the flow of the scalars naively seems free since they describe a geodesic. This “paradox”

gets resolved when one realises that the geodesic curve is not an arbitrary geodesic. It is a

very specific geodesic that is such that VBH(φ) scales in exactly the same way as the kinetic

term. Since a generic potential added to some sigma model cannot have such a property,

this simply means that scaling solutions require special potentials, consistent with the fact

that small black holes are solutions to specific sets of charges.

6 Discussion

In this paper we analysed the difference between the first-order Hamilton-Jacobi equations

(which always exist), and the standard fake supersymmetry equations. As we emphasized,

not all extremal black hole flows and domain wall flows are fake supersymmetric. To

our knowledge, the first example where this was shown appeared in [11]. This example

describes an axion-dilaton domain wall. We have given simpler domain wall and black

hole examples in the appendix, which are not fake supersymmetric.5 A common feature

of these examples is the presence of cyclic scalars for which the momentum is a non-zero

constant. It is straightforward to demonstrate that this is the reason why there is no

fake superpotential. The argument proceeds as follows. Denote the cyclic scalar as φc, its

conjugate constant momentum as pc and the other scalars as φi. From the Hamilton-Jacobi

equation

pc = ∂φc
W(φc, φ

i, U) , (6.1)

we find that

W(φc, φ
i, U) = φcpc + W̃(U, φ) , (6.2)

and is hence never of the factorised form W 6= eaUW (φc, φ
i).

This does not necessarily imply that all solutions that fail to be fake supersymmetry

are necessarily having cyclic scalars. That is why we formalised the condition for having

fake supersymmetry in an elegant condition: a certain conserved charge Q has to vanish.

This conserved charge is given by

Q =
4

a
U̇ −W , (6.3)

with W Hamilton’s characteristic function. Since we wrote down a very general Hamilto-

nian system (3.1), (3.2), (3.3) it is non-trivial that one can demonstrate the existence of

a universal conserved quantity, different from the energy. The fact that we were able to

5Note that domain wall examples of sections A.1, A.2 are the same, up to signs, as the black hole

examples of sections A.3, A.4. This was chosen on purpose to show the similarity between domain wall

flows and extremal black hole flows.
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do this is because our Hamiltonian system is not completely arbitrary, the warp factor U

appears in a specific way in the metric on configuration space (3.1) and it factors out in

the potential (3.2).

With this precise formulation of fake supersymmetry (versus Hamilton-Jacobi) we were

able to derive a physical meaning of fake supersymmetry for extremal black holes: it is a

necessary condition for having physically acceptable solutions. For example, the models

with cyclic scalars with non-zero momentum have the same kind of unphysical behavior of

the black hole warp factor as for over-extremal solutions.6 We have presented a rigorous

proof of this for extremal black holes that have a finite horizon (large black holes), and we

have argued, by taking a limit to vanishing horizon size, that the same applies to small

black holes. However it would be more satisfying to have a rigorous proof for small black

holes as well. Perhaps a useful playground to test this conjecture for small black holes is to

investigate solutions in supergravity theories with symmetric scalar manifolds. Then there

is full understanding of the space of solutions [29], simple integration algorithms have been

developed [30] and the link with the first-order formalism has been investigated in detail,

see for example [30, 31].

We furthermore pointed out that the near-horizon geometry of small black holes is of

a universal “scaling form”, which means it is characterised by an increase in symmetries

that do not preserve the metric but rescale it with a constant factor. Using this insight,

we have borrowed techniques from scaling solutions in cosmology [24, 25, 28] to uncover a

general pattern in the behavior of the scalar fields when they flow towards the horizon of a

small black hole. Instead of reaching specific constants, as they do for large black holes, the

scalars start to follow a specific geodesic curve on moduli space. This is counter-intuitive

since the scalars are subject to a non-zero potential. But just as for scaling attractors in

cosmology one has to restrict to specific geodesic curves that are such that the potential

scales in the same way as the scalar kinetic term. This is the extension of the well-known

attractor mechanism for large black holes: the behavior of the scalars near the horizon is

dictated by the increase in symmetry (scaling) and determined by the charges only (the

geodesic is of a specific kind). It should be possible to generalise these results to general

black p-branes in D dimensions, along the lines of [32].

If we come back to the main motivation for studying fake supersymmetry, which is

finding first-order equations of motion to facilitate the search for solutions, then there is

clearly no reason to worry about the existence of a fake superpotential, since the first-

order Hamilton-Jacobi equations always exist locally. However, generically the problem of

finding Hamilton’s principal function that governs the first-order HJ flow equations is as

difficult as integrating the second-order equations once. So from that point of view there

is not much technical gain. What counts, in our opinion, is the physical meaning of having

fake supersymmetry. For domain walls, it guarantees stability of the solution [1], and as

we showed in this paper, for extremal black holes it is a necessary condition for having

physically sound solutions.

6A prototypical example of this phenomenon would be extremal black holes in N = 2 supergravity with

non-constant hypermultiplet scalars.
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It would be interesting to apply the above insights to the Hamiltonian system de-

fined by the so-called baryonic branch of the Klebanov-Strassler background [33]. For

this system there seems an unsettled issue about the existence of first-order gradient flow

equations [34, 35].
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A Examples

In this section, we consider some explicit examples to clarify the notions of the previous

sections. We focus on domain wall solutions and extremal black holes, for two simple types

of effective Lagrangians: the metric scalar U with its potential and a free scalar, and the

metric scalar coupled to an axion-dilaton system, with a potential that depends on U and

the dilaton.

A.1 Domain wall example 1: Λ plus free scalar

Consider gravity coupled to a negative cosmological constant Λ and a free scalar φ. The

effective action is simply

S =

∫

dz
(

4U̇2 − φ̇2 − e2
√
3UΛ

)

. (A.1)

The solution for φ is straightforward

φ(z) = p z + φ(0) , (A.2)

with p a constant, describing the scalar’s momentum. Without loss of generality we consider

it to be non-negative. From the energy constraint we can integrate the equation for U once

U̇ = ±1

2

√

p2 − e2
√
3UΛ . (A.3)

By redefining z we can always fix the sign above. We take the plus sign. The explicit

solution is then given by

e−
√
3U =

√
−Λ

|p| sinh

(

−
√
3

2
|p| z

)

. (A.4)

When p = 0 we find

e−
√
3U = −

√
−3Λ

2
z , (A.5)

and after the coordinate transformation z = −
√
−3Λ
2 ρ3, we find the AdS4 metric in standard

Poincaré coordinates.
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To find W(U, φ) for the general solution we use the above two integrations (A.2), (A.3)

∂φW = −p , ∂UW = 2

√

p2 − e2
√
3UΛ , (A.6)

such that

W(U, φ) = −pφ− 2pU +
2√
3

√

p2 − Λe2
√
3U +

2p√
3
ln
(

√

p2 − Λe2
√
3U − p

)

. (A.7)

When p = 0 we indeed find the factorised form

W(U, φ) =
2√
3

√
−Λe

√
3U . (A.8)

When p 6= 0, W does not factorize and there is no fake supersymmetry in the standard

sense.

The constant of motion Q is

Q = p φ(0)− p√
3
ln(−Λ) . (A.9)

It is clearly moduli dependent for p 6= 0 (appearance of φ(0)). Following the arguments

of section 4, we cannot set Q = 0 in a solution-independent way and this explains why W
does not factorize.

A.2 Domain wall example 2: the Sonner-Townsend model

The first known example of a domain wall (and cosmological) solution, that can not be

derived from a fake superpotential in the usual sense, was found by Sonner and Townsend

in [11]. The domain wall solution is a scaling solution and therefore it represents a fixed

point of a more general domain wall flow, which is not known analytically. We briefly

review this solution and simplify its presentation.

The essential ingredient is again a free scalar, but this time it is an axionic field σ that

couples to the dilaton φ, as follows

L = 4U̇2 − φ̇2 − eµφσ̇2 − Λe2
√
3U+λφ, (A.10)

where the constants µ, λ define the couplings of the model. The target space spanned by

φ and σ is the coset SL(2,R)/SO(2). The SL(2,R) symmetry of the kinetic term is broken

by the dilaton potential. Since the domain wall solution is a scaling solution, the scalars

follow a Killing flow, but the lack of a fake superpotential implies that the Killing flow is

not a geodesic flow, as explained in the section 5.

The scaling Ansatz is

U = a ln z + U0 , φ = b ln z + φ0 , (A.11)

where a, b, U0, φ0 are constants. The axion equation of motion implies

σ̇ =
d

zµb
, (A.12)
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with d a constant. If we furthermore demand the scaling condition, which means that the

σ-kinetic term scales similar to the other terms in the actions, we can fix b

b =
2

µ
. (A.13)

The U and φ equations of motion lead to three algebraic relations amongst the four re-

maining integration constants a, d, U0, φ0:

a = − 1√
3

(

1 +
λ

µ

)

, (A.14)

d2 = 4e−µφ0

(

− 1

µ2
+

λ

3µ

(

1 +
λ

µ

))

, (A.15)

4

(

1 +
λ

µ

)

+ 3Λe2
√
3U0+λφ0 = 0 . (A.16)

The Hamiltonian constraint is automatically fulfilled with these relations. These relations

imply certain sign restrictions on the possible choices for µ, λ,Λ, which we do not discuss.

As in the previous example we can show that a fake superpotential (W factorizes as

W = e
√
3UW (φ, σ)) requires one of the integration constants to be zero (d = 0) and the

system collapses to the single-dilatonic domain wall flow. The expression for W for the

general solution with d 6= 0 is quite involved and not that insightful.

A.3 “Black hole” example 1: Maxwell plus free scalar

Consider Einstein-Maxwell theory with a free scalar added to it. Electric solutions have the

following expression for the field strength F = d(χ(τ)dt) where χ is the electric potential.

Its equation of motion is e−2U χ̇ = q, where q is the electric charge. This means that the

black hole effective potential VBH is simply a constant VBH = −q2. The effective action is

completely analogous to that of section A.1:

S =

∫

dz
(

4U̇2 + φ̇2 + q2e2U
)

. (A.17)

The solution for φ is

φ(τ) = pτ + φ(0) , (A.18)

where p is a constant which we take to be non-negative without loss of generality. From

the energy condition we have that,

2U̇ = ±
√

q2e2U − p2 . (A.19)

The choice of plus and minus sign is a gauge fixing and will determine how the radial

variable τ is related to the usual radius r. The solution (for the plus sign) is

e−U =
|q|
p

sin

(

1

2
p τ

)

. (A.20)

Let us verify that p = 0 gives the standard electric extremal RN black hole. The

solution for U becomes

e−U = −|q|
2
τ + 1 , (A.21)
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where we fixed an integration constant to be 1 for simplification. The coordinate transfor-

mation r = ±
(

1
τ − |q|

2

)

, gives the following metric

ds2 = −
(

1 +
|q|
2r

)2

dt2 +

(

1 +
|q|
2r

)−2

dr2 + r2dΩ2, (A.22)

which we indeed recognize as the standard text book expression for the extremal RN

black hole.

From the first-order equations we can find W to be

W(φ,U) = p φ+ 2
√

q2e2U − p2 − 2p arctan

(

1

p

√

q2e2U − p2
)

. (A.23)

In the limit p → 0 this consistently reduces to

W(φ,U) = 2qeU . (A.24)

For Q we find

Q = p φ(0)− 2pkπ , k ∈ Z . (A.25)

This is only manifestly zero when p = 0. When p 6= 0 it depends on the modulus at infinity

φ(0) and there is no fake supersymmetry.

It is not difficult to verify that the solution has a naked singularity. Moving from

τ = 0 at spatial infinity to finite τ we hit a singularity of the metric at τ = 2π
|p| . Note that

this metric singularity is not lightlike (it is not a horizon). One can easily verify that the

curvature invariant RabcdR
abcd blows up near the metric singularity.

A.4 “Black hole” example 2: dilatonic black hole plus axion

For black hole flows we can have the exact analogy with the Sonner-Townsend domain wall

scaling solution of section A.2. This can be engineered by extending the usual dilaton black

hole solution with an axion σ. The action is

L = 4U̇2 + φ̇2 + eµφσ̇2 − q2e2U+λφ. (A.26)

The derivation follows exactly the same rules as with the domain wall. The scaling Ansatz

is again

U = a ln τ + U0 , φ = b ln τ + φ0 , σ̇ =
d

τ2
. (A.27)

Where the equations of motion imply the following relations between the integration con-

stants:

a = −
(

1 +
λ

µ

)

, (A.28)

b =
2

µ
, (A.29)

d2 = −4e−µφ0

(

1

µ2
+

λ

µ

(

1 +
λ

µ

))

, (A.30)

4

(

1 +
λ

µ

)

+ q2e2U0+λφ0 = 0 . (A.31)
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This is, as far as we know, a new solution, but by itself does not represent a black hole

solution since it is not asymptotically flat. Being a scaling solution one might expect that

it describes the near horizon region of a small black hole. However, our general theorem

about the absence of fake supersymmetry implies that this solution cannot be interpreted

that way. If one extends the solution to the general solution that interpolates to this scaling

solution, one will encounter naked singularities in the bulk.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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