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ABSTRACT 28 

The use of Human-Robot Collaboration (HRC) in assembly tasks has gained increasing attention in 29 

recent years as it allows for the combination of the flexibility and dexterity of human operators with the 30 

repeatability of robots, thus meeting the demands of the current market. However, the performance of these 31 

collaborative systems is known to be influenced by various factors, including the complexity perceived by 32 

operators. This study aimed to investigate the effects of perceived complexity on the performance measures 33 

of HRC assembly. An experimental campaign was conducted in which a sample of skilled operators was 34 

instructed to perform six different variants of electronic boards and express a complexity assessment based 35 

on a set of assembly complexity criteria. Performance measures such as assembly time, in-process defects, 36 

quality control times, offline defects, total defects, and human stress response were monitored. The results 37 

of the study showed that the perceived complexity had a significant effect on assembly time, in-process and 38 

total defects, and human stress response, while no significant effect was found for offline defects and quality 39 

control times. Specifically, product variants perceived as more complex resulted in lower performance 40 

measures compared to products perceived as less complex. These findings hold important implications for 41 

the design and implementation of HRC assembly systems and suggest that perceived complexity should be 42 

taken into consideration to increase HRC performance. 43 

 44 

1. INTRODUCTION 45 

In today's market, manufacturers are required to produce high-value-added 46 

products that meet customer demands at a competitive price, while also complying with 47 

sustainability requirements related to environmental and social aspects. As a result, 48 

manufacturers must offer a wide range of continuously improved products at competitive 49 

prices in order to maintain and increase their market share. Accordingly, balancing high 50 

levels of customer adaptation and cost efficiency is crucial in achieving this goal. Research 51 
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has shown that an increase in product variety can lead to a higher market share and sales 52 

volume, but also increases product complexity and cost [1–3] and requires a flexible 53 

manufacturing system that can adapt to changes in product volumes and types [4]. This 54 

is especially relevant in the automotive and electronic industries, where frequent changes 55 

and an increased number of product variants with more features and functionality are 56 

required to meet customer expectations. Managing a large product assortment and 57 

assembly conditions can be challenging for manufacturers, however, effectively 58 

navigating this complexity can result in a competitive advantage in the industry [5,6]. 59 

One approach to achieving mass customization is the use of a traditional manual 60 

assembly system, which allows human operators to perform all assembly tasks. However, 61 

this approach may result in a decrease in productivity and an increase in costs [7]. On the 62 

other hand, automatic assembly systems offer high production rates and cost savings, but 63 

they may not be suitable for mass customization [8]. Flexible assembly systems using 64 

collaborative robots, or cobots, offer a solution by combining the flexibility of human 65 

operators with the precision and accuracy of robots, typically resulting in increased 66 

productivity and cost savings [4,9].  67 

The collaboration between humans and cobots, known as human-robot 68 

collaboration (HRC), has garnered significant attention in recent years due to the potential 69 

benefits and challenges associated with this approach [10]. Previous research in the 70 

manual assembly field has shown that assembly complexity and its perception can 71 

significantly affect human and process performance [1,11,12]. However, there has been 72 
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limited research on the impact of perceived assembly complexity on the performance of 73 

human-robot collaboration in assembly tasks. Building on these findings, the present 74 

research aims to extend the investigation by examining the effects of varying product 75 

complexity on perceived complexity and assembly performance measures in the context 76 

of HRC assembly. This research allows for an understanding of how the perceived 77 

complexity of human operators in HRC tasks is influenced by the complexity of the 78 

product being assembled.  79 

The main innovative contribution to the field provided by this research is to 80 

examine the impact of perceived complexity on several HRC performance measures that 81 

encompass the entire manufacturing process. These measures, which include 82 

characteristics of the assembly process, the quality control process, and human aspects, 83 

are (i) assembly times, (ii) quality control times carried out after the assembly, (iii) in-84 

process defects (catering for errors due to both human and collaborative robots), (iv) 85 

offline product defects (i.e. defects detected during offline inspection), (v) total 86 

defectiveness (i.e. sum of in-process and offline defects) and (vi) human stress response 87 

during assembly. By considering both process performance and human factors, this 88 

approach provides valuable insights into the relationship between performance measures 89 

and perceived complexity in HRC assembly tasks. 90 

In order to investigate the effects of perceived complexity on HRC performance 91 

measures, the study involved the assembly of six variants of electronic boards with 92 

different levels of complexity. Skilled operators, assisted by cobots, performed the 93 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received February 22, 2023;
Accepted manuscript posted August 12, 2023. doi:10.1115/1.4063232
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063232/7035899/m
anu-23-1122.pdf by U

niversity C
ollege D

ublin, Elisa Verna on 24 August 2023



 

5 

 

assembly tasks in a collaborative setup where both humans and cobots worked together 94 

in the same workspace [13]. This collaborative configuration is commonly observed in 95 

manufacturing environments and facilitates the combination of human dexterity and 96 

adaptability with the precision and repeatability of cobots. The adoption of this 97 

collaborative mode aimed to investigate the impact of perceived complexity on the 98 

performance measures of human-robot collaborative assembly in a real-world context. 99 

To ensure a comprehensive analysis of the effects of perceived complexity, a product-100 

centred approach was adopted. The product itself was modified to create different 101 

assemblies with varying levels of complexity. This approach is often used in the 102 

manufacture of highly customized product variants, where collaboration modes and 103 

parameters remain consistent. By focusing on the product and its complexity variations, 104 

the study aimed to capture the practical implications of perceived complexity on human-105 

robot collaborative assembly performance measures in an industry-relevant context. 106 

The study's results provide insights into the association between performance 107 

measures of human-robot collaboration in assembly tasks and perceived complexity and 108 

offer practical implications for designing and implementing high-performing collaborative 109 

systems. Furthermore, by considering both process performance and human-related 110 

factors, the proposed approach aligns with the goals of sustainable, high-quality, resilient 111 

and human-centric HRC systems within the context of the Industry 5.0 paradigm.  112 

The remainder of the paper is organized as follows. In Section 2, the most recent 113 

research studies on human-robot collaboration are reviewed. Section 3 presents the 114 
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experimental details and methods adopted in the present study. In Section 4, results are 115 

presented and discussed, and the conclusions and future work are outlined in Section 5. 116 

 117 

2. LITERATURE REVIEW  118 

In recent years, there has been a growing interest in the field of Human-Robot 119 

Collaboration (HRC), resulting in a significant increase in research activities and 120 

publications. HRC involves the collaboration between humans and robots working 121 

together in a shared workspace to perform a task, with each partner contributing their 122 

specific skills and abilities [14,15].  123 

The literature on HRC emphasizes the importance of providing technologies that 124 

facilitate natural and smooth interactions between humans and robots. Wang et al. [16] 125 

highlighted the importance of the communicative interface between robots and humans, 126 

to achieve a symbiotic HRC. Inkulu et al. [17] highlighted the prospects and major 127 

challenges of HRC, pointing out that human-robot communication modes, such as 128 

gestures and speech, enable fluent and immediate interaction, although they still need to 129 

be explored in depth.  130 

To date, most research on HRC has focused on safety, communication, and 131 

human-robot interaction. Much attention has been given to safety concerns and the 132 

development of effective safety measures to support HRC. Indeed, safety is a major 133 

concern, especially for robots operating at high speeds and under heavy loads. The 134 

introduction of ISO 10218-1:2011 [18] and ISO 10218-2:2011 [19] defined the main 135 
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hazards that can be encountered when implementing industrial robots in manufacturing 136 

environments. In addition, the subsequent ISO/TS 15066:2016 [20] allowed for greater 137 

robot’s autonomy while working closely with humans. Zanchettin et al. [21] introduced a 138 

metric to assess safety in collaborative manufacturing processes. This metric considers 139 

human-robot distance, robot type and operating speed as critical variables affecting 140 

safety in HRC. In addition, the sharing of space and time between humans and robots can 141 

lead to stress and fatigue issues, which can affect the quality of the output produced and 142 

lead to defects in products and processes. Gervasi et al. [22] have developed a conceptual 143 

framework for evaluating HRC that includes variables such as mental and physical 144 

ergonomics, safety, communication and interaction, team organization, and social 145 

acceptance. Advanced adaptive robotic systems are also needed to improve production 146 

efficiency.  147 

In manufacturing, concepts such as stress, fatigue, mental workload, and 148 

ergonomics have long been addressed [23–25]. Over the years, many tools and methods 149 

have been proposed to assess these factors. Self-reporting instruments include the NASA-150 

TLX [26] and the Subjective Workload Assessment Technique (SWAT) [27]. However, 151 

these tools have been found to be inappropriate and unreliable in manufacturing 152 

environments [28]. Consequently, in recent years, attention has shifted to investigating 153 

the impact of objective physiological measures, such as heart rate variability (HRV) and 154 

electrodermal activity (EDA), on the operator's state during an HRC task [29–32]. Kulić and 155 

Croft [33] investigated how human physiological state, measured by HRV and EDA, can be 156 
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affected by the movements of an industrial robot. In this study, proximity and speed were 157 

shown to have a significant effect on mental stress. Similarly, Arai et al. [34] evaluated the 158 

effect of robot movements, varying operating speed and distance from the operator, on 159 

EDA. Kühnlenz et al. [35] studied the effects on humans through HRV and EDA of different 160 

trajectory patterns of an industrial robot. 161 

Physical and cognitive aspects are critical factors in the design of HRC tasks [36]. 162 

Colim et al. [37] provided guidelines for the design of safe and ergonomic collaborative 163 

workstations. In a repetitive and hazardous assembly task, cobots can be used to reduce 164 

potential risks to the operator and improve human well-being. However, few studies have 165 

investigated the effect of human-robot collaboration on the mental and physical 166 

workload perceived by humans. Khalid et al. [38] investigated the safety of HRC systems 167 

when using high-load robots, defining potential hazards that include physical and mental 168 

strain associated with a collaborative task. Galin and Meshcheryakov [39] analyzed both 169 

human and robot dependent factors that may affect the efficiency of HRC. Among the 170 

human factors, emotional and cognitive aspects were found to be critical for HRC 171 

efficiency. 172 

Overall, while much attention has been paid to safety, communication, interaction 173 

and human physical and cognitive aspects in HRC, there is a lack of research exploring the 174 

impact of task complexity perceived by humans on performance measures. This gap in 175 

the literature provides an opportunity for further research to investigate the relationship 176 

between assembly complexity and performance measures, both process- and human-177 
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related measures, such as production time, defect rates and human-centred measures, 178 

respectively, in HRC settings. 179 

 180 

3. EXPERIMENTAL SET-UP AND METHODS  181 

3.1 Experimental system configuration 182 

An experimental campaign involving six expert operators and a single-armed 183 

collaborative robot, the UR3e from Universal Robots™, equipped with an OnRobot RG6 184 

gripper with two flexible fingers (see Fig. 1) was designed and carried out. The RG6 185 

gripper, produced by OnRobot™, was selected for its versatility and ability to handle a 186 

variety of objects, even of small dimensions. Each operator underwent preliminary 187 

training sessions prior to the assembly trials in order to ensure a consistent level of 188 

proficiency among the participants and to minimise the potential impact of varying skill 189 

levels on the results. These training sessions were designed to familiarize the operators 190 

with the assembly process and equipment. 191 

During the experimental trials, each operator assembled six electronic boards (see 192 

next Section 3.2) in random order with the support of the UR3e cobot.  193 

Manufacturing process consisted of two phases: (i) assembly phase and (ii) quality 194 

control phase. During the assembly phase of each electronic board, the cobot was used 195 

to assist operators in assembly operations by passing appropriate components in a 196 

predetermined sequence. The parts of the electronic boards were placed in a specific 197 

position within the HRC workstation to be picked up by the cobot, since the cobot was 198 
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unable to recognize parts. Future research will focus on the use of visual recognition 199 

systems, integrated with machine learning techniques, to enable the cobot to recognize 200 

parts. The assembly sequence was determined according to circuit theory [40]. In fact, for 201 

the circuit to work, a complete path must exist between the energy source (power) and 202 

the lowest energy point (ground). Furthermore, the current always seeks the path of least 203 

resistance to earth and between two possible paths the current goes through the path of 204 

least resistance. This is because the electrical energy within the circuit is dissipated by its 205 

components, converting the electrical energy into other forms of energy, such as light, 206 

heat and sound. As a result, the strategy for assembling electronic boards was defined 207 

based on the path of the electric current.  208 

During assembly, human operators decided when activating the cobot to pick up 209 

the parts and bring them to the storage area by pressing a button near the workstation. 210 

The cobot used the MoveL movement for vertical actions, such as picking up and 211 

depositing the parts, and the faster MoveJ movement for other actions, such as moving 212 

the parts to the storage area. Table 1 shows cobot and gripper parameters used in the 213 

HRC assembly.  214 

After the assembly phase, in which electronic board variants were assembled 215 

through HRC, a skilled quality controller checked their correct functioning and identified 216 

residual defects during the quality control phase. The advantage of using electronic 217 

boards is the possibility to verify their proper functioning by connecting them to the PC 218 

and running the code. During the quality inspection, the operator who was in charge of 219 
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the assembly of the electronic board was asked to fill a questionnaire on perceived 220 

complexity of the assembly, which will be presented in Section 3.4. In detail, at the end 221 

of each board variant assembly, the operator evaluated perceived complexity by 222 

providing evaluations on some assembly complexity criteria, while at the end of the six 223 

assemblies an overall assessment of the importance of the complexity criteria was given 224 

(as per Section 3.4). Furthermore, during assembly and quality control phase, data on 225 

some performance measures were collected, which will be illustrated in Section 3.3.  226 

 227 

3.2 Product assembled 228 

For the assembly of the six electronic boards, the ARDUINO UNO Starter Kit from 229 

ARDUINO® was used. This kit includes the physical components necessary for assembling 230 

the electronic boards (listed in Table 2) and a software package for programming the 231 

microcontrollers. In Table 2, the type and quantity of each component are indicated for 232 

each product variant (Variant A – Variant F).  233 

These six products have been selected to cover a wide range of product 234 

complexity. According to previous studies [41–43], product variants' total complexity is 235 

obtained according to the structural complexity model as a combination of complexity of 236 

product components (C1), complexity of assembly connections/liaisons (C2) and 237 

complexity of product architecture (C3), according to Eq. (1): 238 

                                                   𝐶 = 𝐶1 + 𝐶2 ∙ 𝐶3                                        (1) 239 Acc
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In this study, the Lucas Method [44], widely used in literature and for several 240 

industrial applications, was applied to define the complexity of product components and 241 

connections (C1 and C2). On the other hand, product architecture complexity (C3) was 242 

derived as the average of singular values of the adjacency matrix of the product [41]. In 243 

Table 2, the product variants are listed according to increasing complexity C. It is 244 

noteworthy that an increase in the number of parts does not necessarily imply an increase 245 

in complexity C. As mentioned above, the products were assembled in random order by 246 

the six operators. Randomizing the order of the six product variants during assembly 247 

minimized the impact of learning effects and increased internal validity. This approach 248 

controlled for potential confounding variables and prevented observed performance 249 

measure differences between product variants from being attributed to increased 250 

operator familiarity or experience with the assembly process or equipment. Thus, 251 

although manufacturing sequence was not explicitly controlled, randomization helped 252 

minimize its potential impact on the results. 253 

Fig. 2 shows three examples of the six electronic boards assembled with the 254 

support of cobot. The first product, Variant A, is the simplest of the six selected products, 255 

Variant C is at medium-level complexity, while the last product, Variant F, is the most 256 

complex. 257 

 258 

 259 

 260 
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3.3 Data acquisition 261 

During the manufacturing process, some human and process performance 262 

parameters were collected, including physiological data from the operators, the number 263 

of total defects (both those occurring during assembly, i.e. in-process defects, and those 264 

detected during offline quality control, i.e. offline defects), the assembly time, and the 265 

time spent on quality control. The selected performance measures were chosen based on 266 

their relevance to the objectives of the study and a thorough literature review that 267 

followed the survey proposed by Coronado et al. [36]. While there are many other metrics 268 

available for evaluating the performance of collaborative systems, the selected measures 269 

were deemed most appropriate for this study due to their widespread use in the 270 

manufacturing industry to evaluate the quality of human-robot interaction and 271 

collaboration, especially in the context of Industry 5.0, and their ease of monitoring 272 

throughout all stages of the production process. 273 

In the first phase of the manufacturing process (assembly phase), information 274 

about assembly time, in-process defects and stress were collected. On the other hand, in 275 

the second phase (quality control phase), information about quality control time and 276 

offline defects was collected. Those parameters, plus the total number of defects (sum of 277 

in-process and offline defects), are the performance measures depicting the overall 278 

manufacturing process. 279 

In the HRC assembly phase, the operator clocked the minutes to complete each 280 

electronic board's assembly. The stopwatch started when the cobot picked up the first 281 
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part and stopped when the operator considered the assembly finished. Even when errors 282 

occurred, the stopwatch was never stopped. In the quality control phase, the operator 283 

recorded the time in minutes spent on quality control. In this case, the time started when 284 

the electronic board reached the quality control station and was stopped when the board 285 

worked properly. The stopwatch was never stopped during the quality control phase. 286 

Regarding in-process and offline defects, a classification was performed as follows: 287 

(i) "Wrong part", i.e. a different component is used instead of the correct one; (ii) "Wrong 288 

position", i.e. the component is placed in the wrong position; (iii) "Part not taken", i.e. the 289 

cobot fails to pick up the part from the columns; (iv) "Slipped part", i.e. the part slips from 290 

the cobot grippers during transport to the operator; (v) "Defective part", i.e. the part is 291 

defective and does not allow the electronic board to function correctly; (vi) "Incorrectly 292 

inserted part", i.e. the part is inserted in the correct position but not properly. Obviously, 293 

for offline defects, the two categories of defects related to cobot errors ("Part not taken" 294 

and "Slipped part") were not present. The assembly operators and the quality control 295 

operator collected in-process and offline defects data for each electronic board, indicating 296 

the number of defects found for each category. 297 

During HRC assembly phase, information on the stress level of the operators was 298 

collected. Physiological data were measured with the Empatica E4 wristband (Empatica 299 

Srl, Milan, Italy), a non-invasive biosensor that records information on ElectroDermal 300 

Activity (EDA) at a frequency of 4 Hz (see Fig. 1). EDA is commonly used as an indicator of 301 

human stress response, being linked to Skin Conductance Response (SCR) [32]. In detail, 302 
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continuous signals of tonic and phasic activity constitute the EDA signal. Changes in Skin 303 

Conductance Level (SCL) are the best indicator of tonic activity, which is defined as long-304 

term fluctuations in EDA that are not explicitly triggered by external stimuli. Instead, 305 

phasic activity describes brief variations in EDA triggered by stimuli typically recognized 306 

and presented externally. Skin Conductance Responses (SCRs), i.e., amplitude changes 307 

from the SCL, can therefore be detected by examining the phasic activity signal. In this 308 

research, the normalized peak amplitude of the SCR was employed as a metric for 309 

measuring the stress levels of operators during the HRC assembly of electronic boards. 310 

For each operator, the Human stress response can be defined as follows: 311 

𝐻𝑢𝑚𝑎𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = [
(

∑ 𝑎𝑤
𝑁𝑃
𝑤=1

𝑁𝑃
) − 𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
] ∙ 100       (2) 312 

where 𝑎𝑤 is the amplitude of the w-th SCR peak, 𝑁𝑃 is the total number of SCR peaks 313 

during the assembly of a certain product variant, 𝑎𝑚𝑖𝑛  and 𝑎𝑚𝑎𝑥  are, respectively, the 314 

minimum and maximum amplitude of SCR peaks obtained during the assembly by each 315 

operator.  316 

In this study, the EDA signal was analyzed using the online EDA Explorer software 317 

[45]. This software cleans the raw signal of any external noise and identifies peaks in the 318 

physiological signal. Fig. 3 shows an example of the software output. The trend of the 319 

physiological signal (expressed in µS) is the blue line and the green vertical lines represent 320 

the peaks identified by the software. In addition, the amplitude of a generic peak (𝑎𝑤) is 321 

shown in red as an example. Furthermore, after assembly, data on perceived complexity 322 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received February 22, 2023;
Accepted manuscript posted August 12, 2023. doi:10.1115/1.4063232
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063232/7035899/m
anu-23-1122.pdf by U

niversity C
ollege D

ublin, Elisa Verna on 24 August 2023



 

16 

 

were acquired through questionnaires submitted to operators, as described in Section 323 

3.4.  324 

 325 

3.4 Perceived complexity assessment 326 

Complexity, a multifaceted concept that has been studied extensively and has 327 

various definitions and measurements depending on context and research goals, can be 328 

assessed objectively, based on inherent task characteristics, or subjectively, considering 329 

both task and performer characteristics [46].  330 

This study proposes a complexity assessment framework based on the 16 331 

complexity criteria developed by Falck and Rosenqvist [47] and later adapted for 332 

industrial manufacturing sectors [48–50]. The complexity assessments were carried out 333 

in collaboration with the company's ergonomist and engineers in the manufacturing 334 

engineering department. In order to ensure easy and quick assembly of the products, 335 

Table 3 provides a brief description of each i-th criterion (i = 1,…,16), expressed for an 336 

easy and fast assembly [50]. For a more detailed description and guidelines for using these 337 

criteria in a practical setting, refer to the papers by Falck et al. [50,51].  338 

For each product j, the importance of each criterion i was determined by asking 339 

each operator k to assign an importance score (Iijk) using a five-level ordinal scale (see 340 

Table 4), based on their perceived relevance for low product complexity. In addition, each 341 

operator was asked to indicate the level of agreement (Vijk) with each criterion i in relation 342 

to the assembled product j, using the five-level ordinal scale shown in Table 5. 343 
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To obtain an estimate of perceived complexity at the individual level, the study 344 

combined the operators' ratings of importance and level of agreement with the 16 345 

criteria. However, as the criteria were expressed using linguistic ordinal scales, a 346 

systematic method was required to process the data. To this end, the Multi-Expert Multi-347 

Criteria Decision Making (ME-MCDM) method developed by Yager [52]  was adopted as 348 

the synthesis approach. 349 

ME-MCDM is a widely used method for aggregating individual operator 350 

evaluations to obtain an overall synthetic linguistic value [52].  It combines linguistic 351 

information provided for non-equally important criteria using maximum, minimum and 352 

negation operators. The logic behind the ME-MCDM method is that the impact of low-353 

importance criteria on the overall aggregated value should be marginal, while high 354 

important criteria should have a significant impact on the definition of the aggregated 355 

evaluation. In the proposed approach, the perceived complexity of the assembly of a 356 

product j expressed by the operator k (PCjk) can be calculated using fuzzy logic as follows 357 

[53]: 358 

                  𝑃𝐶𝑗𝑘 = Min𝑖[Max{𝑁𝑒𝑔(𝐼𝑖𝑗𝑘), 𝑉𝑖𝑗𝑘}]                                   (3) 359 

where 𝑁𝑒𝑔(𝐿𝑥) = 𝐿𝑡−𝑥+1 is the negation of 𝐿𝑥, with 𝐿𝑥 the xth level of the scale and t the 360 

number of scale levels, i.e. 5 in this case. For instance, 𝑁𝑒𝑔(𝐿1) = 𝐿5 and 𝑁𝑒𝑔(𝐿2) = 𝐿4. 361 

The rating process for the perceived complexity of a product involves assigning 362 

values on a five-point ordinal scale, with the highest level representing low complexity 363 

and the lowest level representing high complexity.  This scale is based on the criteria listed 364 
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in Table 3, which are considered to be low complexity criteria. Table 6 provides details on 365 

the five complexity levels used for individual perceived complexity assessment. 366 

To illustrate how this scoring process works, consider a hypothetical product j, and 367 

an operator k, who scores all criteria as L5 – "Indispensable" for importance and L5 – 368 

"Totally agree" for agreement. According to the proposed aggregation method, this 369 

operator's individual perceived complexity 𝑃𝐶𝑗𝑘  for product j would be L5 - "Low", 370 

meaning that the operator finds the product extremely simple and considers all criteria 371 

essential for a simple assembly. Conversely, if the operator rated all criteria importance 372 

as L5 – "Indispensable" and the level of agreement as L1 – "Totally disagree", then his 373 

individual perceived complexity would be L1 – "High". In this case, the operator considers 374 

the product to be extremely complex and considers all criteria to be essential for a simple 375 

assembly. In a different scenario, if the operator assigned L1 – "Totally disagree" for 376 

agreement degrees, but considers all the criteria to be negligible, resulting in L1 – 377 

"Negligible" for importance, the procedure leads to obtain L5 – "Low" for the individual 378 

perceived complexity.  379 

Overall, the perceived complexity assessment process involves assigning 380 

importance and agreement values to specific criteria, which are then aggregated to 381 

determine the individual perceived complexity level of a product assembly. 382 

 383 

 384 

 385 
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3.5 Statistical analysis 386 

The data gathered for the 6 electronic boards assembled by the 6 operators were 387 

collected in a matrix, one line for each product (i.e., 36 rows) with the observed 388 

parameters listed in columns. In detail, the parameters related to performance measures 389 

recorded in the columns were: 390 

• Assembly time; 391 

• Quality control time; 392 

• In-process defects; 393 

• Offline defects; 394 

• Total defects; 395 

• Human stress response (see Eq. (2)). 396 

Furthermore, additional columns were created containing values related to 397 

perceived complexity assessment, as follows: 398 

• Individual importance evaluations of each of the 16 criteria (as per Table 4); 399 

• Individual agreement degree evaluations of each of the 16 criteria (as per Table 400 

5); 401 

• Individual perceived complexity derived according to Eq. (3). 402 

The primary statistical analysis consisted of calculating the main descriptive 403 

statistics for performance measures for each of the six assembled electronic boards (see 404 

Table 7 in next Section 4).  405 

To evaluate if the 16 criteria selected for the analysis compose a suitable set to 406 

assess complexity, a pairwise correlation analysis between the evaluations on the 407 

agreement degrees provided by operators for each product (Vijk) was performed (see 408 

Table 9). Spearman correlation coefficient was adopted being the agreement degrees 409 
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expressed on ordinal scale, and the significance of the correlation was assessed by 410 

analyzing the p-values [54].  411 

Then, a pairwise correlation analysis was performed to obtain a first indication of 412 

the relationships between the agreement degrees of the 16 complexity criteria and 413 

performance measures (as shown in Table 10).  414 

Finally, to examine the relations between the individual perceived complexity 415 

values derived according to Eq. (3) and the performance measures (see Fig. 4), an Ordinal 416 

Logistic Regression (OLR) was adopted, as perceived complexity is an ordinal response 417 

defined using a linguistic scale [55]. The OLR is an ordinal regression model that can only 418 

be applied to data that meet the proportional odds assumption. The coefficients in the 419 

model are estimated using maximum likelihood, computed by using iteratively 420 

reweighted least squares [55]. To analyze and interpret the results of the OLR, two steps 421 

should be followed [54,56]. First, the p-value and coefficients are examined to analyze the 422 

association between the performance measures and individual perceived complexity. The 423 

coefficients are useful for determining whether a change in the predictor variable makes 424 

any of the events more or less likely, and the odds ratios are provided to compare the 425 

odds of two events. Secondly, the p-values for the Goodness-of-Fit Tests, and the 426 

measures of association are examined to determine how well the model fits the data. 427 

Values of measures of association, including the Somers' D, Goodman and Kruskal indices, 428 

and Kendall's index, close to 0 reveal that the model does not have predictive ability. 429 

Results of OLR are reported in Table 11, Table 12 and Fig. 5 of next Section 4.  430 
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All calculations were performed using the software MINITAB®. 431 

 432 

4. RESULTS AND DISCUSSION  433 

Descriptive statistics of performance measures considered in this study are listed 434 

in Table 7, separately for each electronic board assembled (Variant A – Variant F). An 435 

examination of the data reveals that as the complexity of the assembly increases, there is 436 

a tendency for performance measures to worsen as a negative impact on assembly time, 437 

quality control time, defects rates, and human stress response is encountered. 438 

Additionally, as the products move from simple to more complex (i.e., from Variant A – 439 

Variant F), the variability associated with performance measures tends to increase, as 440 

demonstrated by the increase in standard deviation in Table 7. 441 

Table 8 presents the classification of in-process and offline defects obtained for 442 

each of the six assembled product variants, according to the classification provided in 443 

Section 3.3. An analysis of the data shows that in-process defects are more frequent 444 

compared to offline defects. Additionally, within the typology of in-process defects, 445 

"Wrong position" and "Part not taken" demonstrate the highest number of defects; 446 

whereas for offline defects, "Wrong position" is the most prevalent category. These 447 

findings suggest that the manufacturing process is likely facing more issues when the 448 

products are in-line rather than when they are inspected offline. Furthermore, the 449 

frequent occurrence of "Wrong position" both for in-process and offline defects highlights 450 

the need for efficient and accurate placement of parts during the assembly process. 451 
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Table 9 displays the results of the pairwise correlation analysis between the 452 

evaluations of the agreement degrees with the 16 criteria provided by operators for each 453 

product (Vijk). Only the lower triangular part of the matrix is shown in Table 9 because of 454 

the symmetry of the matrix. In detail, the Spearman correlation coefficients are reported 455 

and those that resulted statistically significant at 95% confidence level (thus with p-value 456 

< 0.05) are asterisked. Most statistically significant correlations are positive, showing that 457 

as the score on the degree of agreement of one criterion increases, the other also 458 

increases. For instance, Criterion 1 is moderately correlated with Criterion 2, as operators 459 

agree that few different ways of performing assembly are associated with few 460 

parts/components and details and few operations. On the other hand, only a few of the 461 

correlation coefficients in Table 9 are negative. For instance, there is a moderate negative 462 

correlation between Criterion 12 and 15 indicating that as operators concur with the fact 463 

that the structure is rigid and involves few flexible materials, they perceive a greater need 464 

for adjustments. Conversely, fewer adjustments and modifications are required during 465 

assembly if the structure incorporates soft and flexible materials. The results presented 466 

in Table 9 indicate that the highest correlation coefficient value is 0.731, and there are no 467 

correlations that approach a value of 1. Accordingly, it would not be appropriate to 468 

eliminate certain criteria as redundant when assessing individual perceived complexity. 469 

Table 10 presents the results of the pairwise correlation analysis conducted to 470 

examine the associations between the agreement degree with the 16 complexity criteria 471 

and the data pertaining to performance measures. In detail, for each complexity criterion, 472 
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the evaluations on the agreement degree provided by the six operators for each of the six 473 

products (36 values) are correlated with the six performance measures. Spearman 474 

correlation coefficients statistically significant at 95% confidence level are asterisked. 475 

Almost all the values in Table 10 are negative because as the agreement with the low-476 

complexity criteria increases, operators concur that the product is simple. Therefore, the 477 

simpler the product, the less assembly time, quality control time, defects and stress are. 478 

The results indicate a moderate to strong correlation between several of the complexity 479 

criteria and performance measures. It should be noted that some criteria do not show a 480 

significant correlation with the performance measures (see for example Criteria 9-13 and 481 

Criterion 15). However, many of the correlation coefficients have a p-value very close to 482 

the significance level.   483 

The correlation coefficients and the asterisks on significant correlation in Table 10 484 

help to identify which criteria have a high degree of correlation with performance 485 

measures, providing valuable information to optimize process and design. For example, 486 

assembly time, in-process defects, total defects and human stress response are highly 487 

correlated with Criterion 2, indicating that few parts, details, and operations lead to low 488 

values of those performance measures. Thus, this information can be used to support 489 

decisions towards the design of products or subassemblies with fewer parts, details, and 490 

operations in order to decrease assembly time, defects and human stress. 491 

In addition, Table 10 shows no significant correlations between the agreement 492 

degrees with complexity criteria and both quality control time and offline defects. 493 
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Although these are performance measures of the production process, they appear to be 494 

independent of the operators' perception of the process complexity. This suggests that 495 

factors other than the complexity perception of the operators may have more impact on 496 

quality control time and offline defects. Further research will be needed to understand 497 

the underlying causes of these measures and how they can be improved. 498 

The individual perceived complexity values derived according to Eq. (3) by the ME-499 

MCDM method were obtained by considering both importance of the 16 criteria and the 500 

agreement degrees with the criteria as per Section 3.4. The obtained values range from 501 

"High" to "Rather low", according to the classification provided in Table 5. Accordingly, no 502 

operator considered the assembled products to be extremely simple. Fig. 4 illustrates the 503 

obtained perceived complexity values and the performance measures for the six product 504 

variants. It should be noted that there is a significant amount of variability in the data 505 

shown in Fig. 4. This variability is typical of data obtained through self-reported measures 506 

such as interviews and questionnaires and should be considered when interpreting the 507 

results of this study. 508 

OLR is adopted to model the relationship between quality performances and 509 

obtained perceived complexity. In Table 11, the logistic regression table for assembly time 510 

is provided [56]. 511 

In summary, the results of the analysis presented in Table 11 suggest that there is 512 

a statistically significant association between perceived complexity and assembly time 513 

since the p-value associated with the predictor is less than the significance level of 5%, 514 
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and also since the p-value for the test that all slopes are zero is less than 0.05. The odds 515 

ratio of 1.19 indicates that operators are more likely to perceive products as more 516 

complex as assembly time increases. The positive coefficient associated with assembly 517 

time also confirms this result. In addition, the p-value of goodness-of-fit test is greater 518 

than 0.05, not providing evidence that the model is inadequate. Overall, this suggests that 519 

changes in assembly time are associated with changes in the probabilities of occurrence 520 

of the different levels of perceived complexity, as represented in Fig. 5. The data suggests 521 

that as assembly time decreases, the probability of the operator perceiving the assembly 522 

as "Moderate" or "Rather low" in complexity increases, while an increase in assembly 523 

time leads to an increased probability of the assembly being perceived as "High" or 524 

"Rather high". However, the last data point at the maximum assembly time for “Rather 525 

high” complexity deviates from this trend; further research is needed to determine the 526 

specific cause of this anomaly, as it could be due to operator variability, other factors 527 

affecting complexity perception, an outlier data point, or a combination of these factors. 528 

Considering the measures of association reported in Table 12, high values of 529 

Somers' D, Goodman-Kruskal gamma, and Kendall's tau-a indicate that the model has 530 

good predictive ability [56]. These measures are obtained from the number of 531 

concordant, discordant and tied pairs, which are calculated by forming all possible pairs 532 

of observations (i.e. assembly time values) with the different levels of individual perceived 533 

complexity. For the present case study, 459 total pairs were obtained, since 4 operators 534 Acc
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perceived the assembly complexity as “High”, 13 as “Rather high”, 12 as “Moderate” and 535 

7 as “Rather low”.  536 

Regarding the other performance measures, the association between perceived 537 

complexity and in-process defects, total defects and human stress response resulted to 538 

be statistically significant. Tables and figures reporting the results of OLR for such 539 

performance measures are given in the Appendix (see Tables A1-A6 and Fig. A1-A3). 540 

Conversely, the association with quality control time and offline defects was found to be 541 

not statistically significant, which is consistent with the results of previous correlation 542 

analyses (see Table 10). 543 

 544 

5. CONCLUSIONS  545 

In today's market, manufacturers are required to produce high-value-added 546 

products that meet customer demands and expectations at a competitive price while also 547 

complying with sustainability requirements. One approach to achieving mass 548 

customization is the use of flexible assembly systems that utilize collaborative robots, or 549 

"cobots," which can offer increased productivity and cost savings. However, the use of 550 

human-robot collaboration in assembly tasks can be impacted by the complexity of the 551 

assembly.  552 

This paper focused on the impact of perceived complexity on the performance 553 

measures of human-robot collaboration in assembly tasks. To investigate this issue, the 554 

study used a sample of skilled operators to conduct assembly of six variants of electronic 555 
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boards with different levels of complexity. Performance measures, including assembly 556 

times, quality control times, in-process defects, offline product defects, total 557 

defectiveness and human stress response during assembly, were collected and analyzed. 558 

Furthermore, evaluations on the agreement degrees with 16 complexity criteria and their 559 

importance provided by the operators for each product were gathered to assess 560 

individual perceived complexity. Statistical analysis was conducted on the collected data 561 

to quantify the effects of perceived complexity on the HRC performance measures.  562 

The main findings of the present paper are that as complexity perception 563 

increases, performance measures tend to worsen, with a negative impact on assembly 564 

time, quality control time, in-process defects and human stress response. Furthermore, 565 

for the considered electronic product variants, defects that occurred in-process were 566 

more frequent compared to defects detected offline during the quality inspection. The 567 

study also showed which complexity criteria are statistically significantly associated with 568 

the performance measures, thus providing practical recommendations for engineers to 569 

consider when designing processes that focus on reducing perceived complexity and 570 

improving overall performance measures. It is important to note that, according to these 571 

findings, by reducing perceived complexity, not only the human operators will feel more 572 

comfortable with the task but also the process will be more efficient and less error-prone, 573 

leading to an increase in productivity and a reduction in costs. Finally, the study highlights 574 

that there is no significant association between perceived complexity and the quality 575 

control time and the offline defects, indicating that these measures of performance of the 576 
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production process appear to be independent of the perception that operators have of 577 

the complexity of the assembly process. This information is important for engineers to 578 

consider in designing and implementing HRC systems as it suggests that a reduction in 579 

perceived complexity may not necessarily result in improvements in these specific 580 

performance measures. Further studies will need to be conducted to fully understand the 581 

underlying reasons and identify potential strategies for improving performance measures 582 

related to offline quality control in the HRC assembly process. 583 

The main innovative aspect of this paper is that it considers multiple performance 584 

measures linked to both the production and the quality control process, also taking into 585 

account human factors such as the operator's perceived stress. By evaluating these 586 

measures, this approach allows for a holistic examination of the relationship between 587 

perceived complexity and performance, which can provide valuable insights and 588 

recommendations for manufacturers to optimize processes and improve performance. 589 

This study has some limitations that should be acknowledged. First, the cobot's 590 

involvement in the study was primarily focused on performing pick-and-place operations, 591 

which are relatively simple tasks. As a result, the effect of perceived complexity on the 592 

cobot's performance and its potential interaction with the perceived complexity of the 593 

human operator was not fully explored. Future research should aim to explore different 594 

modes of human-robot collaboration, including scenarios where the cobot performes 595 

more complex tasks while humans provide support and make key decisions. By 596 

considering a broader range of collaboration modes, a more comprehensive 597 
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understanding of the effects of perceived complexity on HRC performance can be 598 

achieved. 599 

Secondly, the results are based on a specific set of electronic board variants and 600 

the subjective concept of perceived complexity may vary among individual operators. 601 

Thus, caution is needed when generalizing the findings to other HRC assembly systems. 602 

Nonetheless, the study's holistic approach provides practical recommendations for 603 

designers and implementers to optimize system performance by considering the 604 

subjective perception of complexity by operators. Further research is needed to validate 605 

the findings in different contexts and with larger sample sizes to ensure greater statistical 606 

power and generalizability. 607 

Additionally, although randomizing the order of the six product variants during 608 

assembly helped increase internal validity by minimizing learning effects, the 609 

manufacturing sequence was not explicitly controlled. Future research should address 610 

this limitation by implementing more systematic control over the manufacturing 611 

sequence, and by investigating learning effects and their relationship with randomization 612 

in more detail. 613 

Finally, based on the derived findings, future work could focus on developing 614 

strategies to mitigate the negative effects of perceived complexity on performance 615 

measures. One potential approach could be to implement training programs for operators 616 

to improve their ability to manage complex product variants. Additionally, improving the 617 Acc
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design of the assembly process, such as using ergonomic fixtures or improving layout [57], 618 

could reduce the complexity of the assembly task and improve performance.  619 

 620 
NOMENCLATURE 621 

HRC Human-Robot Collaboration 

UR3e Cobot produced by Universal RobotsTM 

RG6 Gripper produced by OnRobotTM 

C1 Complexity of product components 

C2 Complexity of assembly connections/liaisons 

C3 Complexity of product architecture 

C Product variants' total complexity 

EDA ElectroDermal Activity 

SCR Skin Conductance Response 

SCL Skin Conductance Level 

aw Amplitude of the w-th SCR peak 

NP Total number of SCR peaks 

amin Minimum amplitude of SRC peaks 

amax Maximum amplitude of SRC peaks 

i Criterions (i = 1,…,16) 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received February 22, 2023;
Accepted manuscript posted August 12, 2023. doi:10.1115/1.4063232
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063232/7035899/m
anu-23-1122.pdf by U

niversity C
ollege D

ublin, Elisa Verna on 24 August 2023



 

31 

 

j Products (j = 1,…,6) 

k Operators (k = 1,...,6) 

Iijk Importance of criterion i, for product j given by operator k 

Vijk Degree of agreement of operator k, for product j on the criterion i 

ME-MCDM Multi Expert-Multi Criteria Decision Making 

PCjk Perceived complexity by the operator k for product j 

Lx xth level of the scale (x = 1,...,5) 

Neg(Lx) Negation of Lx 

OLR Ordinal Logistic Regression 
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Figure Caption List 789 

Fig. 1 Collaborative assembly workstation showing the single-armed cobot UR3e 

(Universal Robots™) with the RG6 gripper (OnRobot™), and product 

components assembled by an operator wearing the Empatica E4 

wristband 

Fig. 2 Example of assembled electronic boards: (a) Variant A, (b) Variant C, (c) 

Variant F 

Fig. 3 Example of EDA signal processed with EDA Explorer 

Fig. 4 Scatterplot of individual perceived complexity versus performance 

measures for the six product variants 

Fig. 5 Probability of occurrence of the levels of individual perceived complexity 

as a function of Assembly time 

Fig. A1 Probability of occurrence of the levels of individual perceived complexity 

as a function of In-process defects 

Fig. A2 Probability of occurrence of the levels of individual perceived complexity 

as a function of Total defects 

Fig. A3 Probability of occurrence of the levels of individual perceived complexity 

as a function of Human stress response 
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Table Caption List 792 

Table 1 Cobot and gripper parameters used in the HRC assembly 

Table 2 Characteristics of the six assembled electronic boards 

Table 3 Complexity criteria of assembly, adapted from Falck et al. [20] to suit the 

electronic platform assembly 

Table 4 Scale levels and semantic meanings for assessing product low-complexity 

criteria importance (Iijk) 

Table 5 Scale levels and semantic meanings for assessing agreement degree with 

low-complexity criteria (Vijk) 

Table 6 Scale levels and semantic meanings for the assessment of perceived 

complexity (PCjk) 

Table 7 Descriptive statistics of performance measures of the six products 

assembled 

Table 8 Classification of in-process (In) and offline (Off) defects for the six 

assembled products 

Table 9 Correlation matrix with Spearman correlation coefficients between the 

agreement degree with the 16 complexity criteria for the six products 

assembled 
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Table 10 Spearman correlation coefficients between the agreement degree with 

the 16 complexity criteria for the six products assembled and the 

performance measures 

Table 11 Logistic regression table for Assembly time. Goodness-of-Fit test p-

value=0.905 

Table 12 Probability of occurrence of the levels of individual perceived complexity 

as a function of Assembly time 

Table A1 Logistic regression table for In-process defects. Goodness-of-Fit test p-

value=0.908 

Table A2 Measures of association between In-process defects and predicted 

probabilities 

Table A3 Logistic regression table for Total defects. Goodness-of-Fit test p-

value=0.493 

Table A4 Measures of association between Total defects and predicted probabilities 

Table A5 Logistic regression table for Human stress response. Goodness-of-Fit test 

p-value=0.855 

Table A6 Measures of association between Human stress response and predicted 

probabilities 
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 793 

Fig. 1 Collaborative assembly workstation showing the single-armed cobot UR3e (Universal Robots™) 794 

with the RG6 gripper (OnRobot™), and product components assembled by an operator wearing the 795 

Empatica E4 wristband 796 
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 809 

Fig. 2 Example of assembled electronic boards: (a) Variant A, (b) Variant C, (c) Variant F 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received February 22, 2023;
Accepted manuscript posted August 12, 2023. doi:10.1115/1.4063232
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063232/7035899/m
anu-23-1122.pdf by U

niversity C
ollege D

ublin, Elisa Verna on 24 August 2023



 

42 

 

 826 

Fig. 3 Example of EDA signal processed with EDA Explorer 827 
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 842 

Fig. 4 Scatterplot of individual perceived complexity versus performance measures for the six product variants 843 
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 854 

Fig. 5 Probability of occurrence of the levels of individual perceived complexity as a function of Assembly time 855 
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 865 

Fig. A1 Probability of occurrence of the levels of individual perceived complexity as a function of In-process defects 866 
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 876 

Fig. A2 Probability of occurrence of the levels of individual perceived complexity as a function of Total defects 877 
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 887 

Fig. A3 Probability of occurrence of the levels of individual perceived complexity as a function of Human stress 888 

response 889 
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Table 1 Cobot and gripper parameters used in the HRC assembly 899 

 Cobot Gripper 

Joint speed [°/s] 200 - 

Joint acceleration [°/s2] 200 - 

Linear speed [mm/s] 200 - 

Linear acceleration [mm/s2] 200 - 

Distance [mm] - 16 

Force [N] - 80 
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Table 2 Characteristics of the six assembled electronic boards 916 

 Variant A Variant B Variant C Variant D Variant E Variant F 

Long wires - 1 2 8 9 13 
Short wires 1 3 5 3 6 4 
Resistors 1 1 4 6 2 2 
Pushbuttons - 2 4 - 2 1 
LED 1 1 - 1 - - 
Phototransistor - - - 3 - - 
Potentiometer - - - - 1 1 
Piezo - - 1 - - - 
LCD - - - - - 1 
Battery snap - - - - 1 - 
DC Motor - - - - 1 - 
H-bridge - - - - 1 - 

N° of parts 3 8 16 21 23 22 

C1 1.39 2.87 5.10 6.35 7.25 6.72 
C2 2.98 5.44 13.84 14.58 21.79 26.02 
C3 0.94 0.90 0.90 0.93 0.83 0.84 
C 4.20 7.77 17.51 19.95 25.35 28.61 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

Table 3 Complexity criteria of assembly, adapted from Falck et al. [47] to suit the electronic platform assembly 929 
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Criterion i Assembly low-complexity criterion Description 

1 Few different ways to perform assembly. 
Complexity is high if the parts can be assembled/executed 
correctly in different ways. Otherwise, complexity is low if there 
is a standardized (accepted) way to perform the task. 

2 
Few parts/components and details and few 
operations. 

If there are few details to assemble, a small number of 
operations on the parts, pre-assembly and module creation 
(integrated assembly), the complexity is low. Otherwise, 
complexity is high if there are many details and partial 
operations. 

3 
Quick and easy operations (no time 
demanding operations). 

Complexity is low if the solutions are easy and quick to assemble 
(not time-consuming). Otherwise, if there are time-consuming 
operations, the complexity is high. 

4 

Clear assembly location of 
parts/components (immediate 
understanding of where to place parts within 
the structure). 

If the assembly position of parts and components is clear, the 
complexity is low, otherwise it is high. 

5 
Good accessibility to the structure during 
assembly. 

If the accessibility to the structure is good (i.e., sufficient for 
hands/tools), the complexity is low, otherwise it is high. 

6 
Fully visible operations (operations do not 
require orientation of the assembly for 
better visibility). 

If the assembly involves visible operations (i.e., in the field of 
view when looking directly at the structure), the complexity is 
low, otherwise it is high. 

7 Ergonomically easy handling of the structure. 
If there are good ergonomic conditions, the complexity is low, 
otherwise it is high. 

8 
Operator-independent operations that do 
not require much experience to be 
performed correctly. 

If additional training (specialized knowledge) is required beyond 
the common introductory sessions, then the complexity is high. 
If the operations do not require additional training, then the 
complexity is low. 

9 
Operations do not have to be performed in a 
certain order. 

If the operations can be performed without following a specific 
order, that is, they are independent of the order of assembly, the 
complexity is low. Otherwise, complexity is high if the operations 
must be performed in a certain order/sequence to complete the 
assembly correctly. 

10 
Unnecessary intermediate visual checks 
during assembly to assess the quality and 
correctness of the structure. 

If no intermediate checks are required during assembly to assess 
the quality and correctness of the structure, the complexity is 
low. Otherwise, complexity is high if visual checks, i.e., careful 
subjective assessment of quality, are required. 

11 
Operations require little precision, accuracy 
and attention. 

If operations do not require precision and accurate assembly is 
not necessary, the complexity is low. 

12 
No need for adjustments and corrections 
(due to errors or inaccuracies) during 
assembly. 

The complexity is low if no adjustments are needed due to errors 
or inaccuracies. Otherwise, the complexity is high. 

13 
Easy to assemble and self-position 
parts/components that can be controlled in 
three dimensions: X, Y, Z. 

If the surrounding environment varies, where the parts and 
components will be assembled, or if the detail to be placed 
depends on the surrounding components, then the complexity is 
high. Examples of when the geometric environment is varied are: 
several holes must overlap, components not joined, and 
components moving relative to each other. 

14 
No detailed instructions are needed and the 
operator can proceed intuitively. 

If no detailed instructions are required, i.e., the operator can 
proceed intuitively to make the assemblies, the complexity is 
low. Otherwise, the complexity is high. 

15 
The structure does not involve soft and 
flexible materials (i.e., it is form-resistant). 

Complexity is low if the components are rigid and compact and 
do not change size or deform during assembly. If the structure 
involves assembling soft and flexible materials, complexity is 
high. 

16 
There is immediate feedback on correct 
assembly (e.g., with a clear click and/or 
compliance with reference points). 

Complexity is low if there is immediate feedback of correct 
assembly, such as through a clear clicking sound and/or 
adherence to reference points. Otherwise, the complexity is 
high. 
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Table 4 Scale levels and semantic meanings for assessing product low-complexity criteria importance (Iijk) 932 

Scale level Importance 

L1 Negligible 

L2 Preferable 

L3 Important 

L4 Very important 

L5 Indispensable 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received February 22, 2023;
Accepted manuscript posted August 12, 2023. doi:10.1115/1.4063232
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063232/7035899/m
anu-23-1122.pdf by U

niversity C
ollege D

ublin, Elisa Verna on 24 August 2023



 

52 

 

Table 5 Scale levels and semantic meanings for assessing agreement degree with low-complexity criteria 949 

(Vijk) 950 

Scale level Importance 

L1 Totally disagree 

L2 Disagree 

L3 Relatively agree 

L4 Agree 

L5 Totally agree 
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Table 6 Scale levels and semantic meanings for the assessment of perceived complexity (PCjk) 967 

Scale level Perceived complexity 

L1 High 

L2 Rather high 

L3 Moderate 

L4 Rather low 

L5 Low 

 968 
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Table 7 Descriptive statistics of performance measures of the six products assembled 984 

Performance measure Product Mean St. dev. Min Max 

Assembly time [min] 

Variant A 1.889 0.627 1.317 2.800 

Variant B 3.928 1.776 1.983 6.967 

Variant C 7.314 1.620 5.833 10.200 

Variant D 9.522 2.238 5.783 12.117 

Variant E 11.719 2.364 8.850 14.800 

Variant F 15.320 4.770 10.430 23.730 

Quality control time [min] 

Variant A 0.125 0.061 0.000 0.150 

Variant B 0.431 0.436 0.150 1.050 
Variant C 0.769 0.961 0.150 2.083 

Variant D 0.656 0.791 0.150 2.083 

Variant E 1.356 1.875 0.150 4.033 

Variant F 2.308 1.633 0.150 5.183 

In-process defects [-] 

Variant A 0.000 0.000 0.000 0.000 

Variant B 0.667 0.816 0.000 2.000 

Variant C 1.000 0.894 0.000 2.000 

Variant D 1.833 0.983 0.000 3.000 

Variant E 3.167 1.602 1.000 6.000 

Variant F 3.667 0.816 3.000 5.000 

Offline defects [-] 

Variant A 0.000 0.000 0.000 0.000 

Variant B 0.333 0.516 0.000 1.000 

Variant C 0.500 0.837 0.000 2.000 
Variant D 0.500 0.548 0.000 1.000 

Variant E 0.500 0.837 0.000 2.000 

Variant F 1.833 1.169 0.000 3.000 

Total defects [-] 

Variant A 0.000 0.000 0.000 0.000 

Variant B 1.000 0.894 0.000 2.000 

Variant C 1.500 1.378 0.000 3.000 

Variant D 2.333 1.211 0.000 3.000 

Variant E 3.667 1.751 1.000 6.000 

Variant F 5.500 1.049 4.000 7.000 

Human stress response [%] 

Variant A 0.000 0.000 0.000 0.000 

Variant B 3.180 2.620 0.330 7.350 

Variant C 7.941 2.447 4.021 11.124 

Variant D 12.00 3.390 7.750 16.650 

Variant E 11.99 2.870 9.210 17.310 

Variant F 24.72 5.740 19.840 34.870 

 985 

 986 

 987 

 988 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received February 22, 2023;
Accepted manuscript posted August 12, 2023. doi:10.1115/1.4063232
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063232/7035899/m
anu-23-1122.pdf by U

niversity C
ollege D

ublin, Elisa Verna on 24 August 2023



 

55 

 

Table 8 Classification of in-process (In) and offline (Off) defects for the six assembled products 989 

 
Wrong 

part 
Wrong 

position 
Part not 

taken 
Slipped 

part 
Defective 

part 
Incorrectly inserted 

part 
Product In Off In Off In Off In Off In Off In Off 
Variant 

A 
0 0 0 0 0 0 0 0 0 0 0 0 

Variant 
B 

0 0 1 1 3 0 0 0 0 0 0 1 

Variant 
C 

0 0 5 2 3 0 0 0 0 0 0 1 

Variant 
D 

0 0 4 3 4 0 0 0 0 0 3 0 

Variant 
E 

0 0 6 3 11 0 2 0 0 0 0 0 

Variant 
F 0 0 11 11 10 0 0 0 0 0 1 0 

Total 0 0 27 20 31 0 2 0 0 0 4 2 
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Table 9 Correlation matrix with Spearman correlation coefficients between the agreement degree with the 16 complexity criteria for the six products assembled 996 

Criterion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1                 

2 0.660*                

3 0.446* 0.575*               

4 0.616* 0.576* 0.467*              

5 0.600* 0.489* 0.465* 0.637*             

6 0.559* 0.526* 0.379* 0.730* 0.731*            

7 0.192 0.345* 0.594* 0.420* 0.249 0.400*           

8 0.301 0.205 0.477* 0.446* 0.231 0.295 0.718*          

9 0.240 0.074 -0.080 0.201 0.344* 0.343* -0.154 -0.138         

10 0.501* 0.265 0.168 0.417* 0.491* 0.577* 0.068 0.173 0.673*        

11 0.085 0.286 0.025 0.259 0.318 0.442* -0.228 -0.433* 0.500* 0.507*       

12 0.516* 0.307 0.252 0.320 0.487* 0.503* 0.093 0.313 0.614* 0.793* 0.277      

13 0.275 0.276 0.496* 0.535* 0.272 0.416* 0.646* 0.633* 0.011 0.325 -0.019 0.212     

14 -0.113 -0.017 0.187 -0.136 0.139 0.072 0.086 -0.163 -0.294 -0.191 0.225 -0.243 0.015    

15 -0.380* -0.117 0.004 -0.081 -0.034 -0.022 0.139 -0.161 -0.563* -0.565* -0.106 -0.619* -0.072 0.493*   

16 0.682* 0.486* 0.320 0.620* 0.529* 0.518* 0.437* 0.460* 0.139 0.448* -0.010 0.441* 0.337* -0.173 -0.211  
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Table 10 Spearman correlation coefficients between the agreement degree with the 16 complexity criteria for the six 998 

products assembled and the performance measures 999 

Criterion 
Assembly 

time 
Quality 

control time 
In-process 

defects 
Offline 
defects 

Total 
defects 

Human stress 
response 

1 -0.354* -0.073 -0.353* -0.107 -0.333* -0.473* 
2 -0.663* -0.183 -0.663* -0.129 -0.579* -0.714* 
3 -0.533* -0.184 -0.571* -0.150 -0.509* -0.579* 
4 -0.252 -0.108 -0.420* -0.100 -0.366* -0.552* 
5 -0.358* -0.067 -0.427* -0.107 -0.389* -0.503* 
6 -0.304 -0.073 -0.302 -0.088 -0.277 -0.465* 
7 -0.222 -0.209 -0.489* -0.157 -0.451* -0.415* 
8 0.027 -0.167 -0.355* -0.082 -0.332* -0.225 
9 -0.017 -0.019 0.142 -0.044 0.099 -0.013 

10 -0.049 0.087 -0.021 0.067 0.013 -0.064 
11 -0.310 0.071 0.002 0.051 0.048 -0.186 
12 -0.208 -0.159 -0.160 -0.129 -0.190 -0.238 
13 -0.033 -0.130 -0.258 -0.122 -0.238 -0.277 
14 -0.352* -0.045 -0.215 -0.120 -0.196 -0.212 
15 -0.106 0.007 -0.252 -0.003 -0.193 -0.153 
16 -0.248 -0.164 -0.446* -0.172 -0.440* -0.435* 
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Table 11 Logistic regression table for Assembly time. Goodness-of-Fit test p-value=0.905 1012 

Predictor Coef. SE Coef. p-value 
Odds 
Ratio 

95% confidence interval 
Lower Upper 

Const(1) -3.87808 0.924815 0.000    
Const(1) -1.57885 0.659122 0.017    
Const(3) 0.208728 0.620473 0.737    

Assembly time 0.174226 0.0671240 0.009 1.19 1.04 1.36 
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Table 12 Measures of association between assembly time and predicted probabilities 1031 

Pairs Number Percent Summary Measures  

Concordant 323 70.4 Somers' D 0.42 
Discordant 132 28.8 Goodman-Kruskal Gamma 0.42 

Ties 4 0.9 Kendall's Tau-a 0.30 
Total 459 100.0  0.42 
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 1050 

Table A1 Logistic regression table for In-process defects. Goodness-of-Fit test p-value=0.908 1051 

Predictor Coef. SE Coef. p-value 
Odds 
Ratio 

95% confidence interval 
Lower Upper 

Const(L1) -3.19119 0.756213 0.000       
Const(L2) -0.958176 0.501900 0.056       
Const(L3) 0.731504 0.503596 0.146       

In-process defects 0.500009 0.210153 0.017 1.65 1.09 2.49 
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Table A2 Measures of association between In-process defects and predicted probabilities 1069 

Pairs Number Percent Summary Measures  
Concordant 263 57.3 Somers' D 0.35 
Discordant 103 22.4 Goodman-Kruskal Gamma 0.44 

Ties 93 20.3 Kendall's Tau-a 0.25 
Total 459 100.0     
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Table A3 Logistic regression table for Total defects. Goodness-of-Fit test p-value=0.493 1088 

Predictor Coef. SE Coef. p-value 
Odds 
Ratio 

95% confidence interval 
Lower Upper 

Const(1) -2.78027 0.700359 0.000       
Const(1) -0.696589 0.490750 0.156       
Const(3) 0.907236 0.511736 0.076       

Total defects 0.258386 0.150963 0.087 1.29 0.96 1.74 
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Table A4 Measures of association between Total defects and predicted probabilities 1107 

Pairs Number Percent Summary Measures  
Concordant 249 54.2 Somers' D 0.25 
Discordant 135 29.4 Goodman-Kruskal Gamma 0.30 

Ties 75 16.3 Kendall's Tau-a 0.18 
Total 459 100.0     
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Table A5 Logistic regression table for Human stress response. Goodness-of-Fit test p-value=0.855 1126 

Predictor Coef. SE Coef. p-value 
Odds 
Ratio 

95% confidence interval 
Lower Upper 

Const(1) -3.28926 0.786844 0.000       
Const(1) -1.11447 0.527668 0.035       
Const(3) 0.602590 0.522103 0.248       

Human stress response 0.0984811 0.0400084 0.014 1.10 1.02 1.19 
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Table A6 Measures of association between Human stress response and predicted probabilities 1145 

Pairs Number Percent Summary Measures  
Concordant 318 69.3 Somers' D 0.41 
Discordant 129 28.1 Goodman-Kruskal Gamma 0.42 

Ties 12 2.6 Kendall's Tau-a 0.30 
Total 459 100.0     
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