
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Guaranteed Torque and Demagnetization Current During Active Short-Circuit Transients of PMSMs / Olson, Gustaf Falk;
Ferrari, Simone; Bojoi, Andrei; Pescetto, Paolo; Peretti, Luca; Pellegrino, Gianmario. - (2024), pp. 1-8. (Intervento
presentato al  convegno 2024 IEEE International Conference on Industrial Technology (ICIT) tenutosi a Bristol (UK) nel
25-27 March 2024) [10.1109/icit58233.2024.10540677].

Original

Guaranteed Torque and Demagnetization Current During Active Short-Circuit Transients of PMSMs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/icit58233.2024.10540677

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989362 since: 2024-06-06T19:58:57Z

IEEE



Guaranteed Torque and Demagnetization Current
During Active Short-Circuit Transients of PMSMs

1st Gustaf Falk Olson
Electric Power and Energy Systems
Royal Institute of Technology, KTH

Stockholm, Sweden
gufo@kth.se

2nd Simone Ferrari
Department of Energy G. Ferraris

Politecnico di Torino
Turin, Italy

simone.ferrari@polito.it

3rd Andrei Bojoi
Department of Energy G. Ferraris

Politecnico di Torino
Turin, Italy

andrei.bojoi@polito.it

4th Paolo Pescetto
Department of Energy G. Ferraris

Politecnico di Torino
Turin, Italy

paolo.pescetto@polito.it

5th Luca Peretti
Electric Power and Energy Systems
Royal Institute of Technology, KTH

Stockholm, Sweden
lucap@kth.se

6th Gianmario Pellegrino
Department of Energy G. Ferraris

Politecnico di Torino
Turin, Italy

gianmario.pellegrino@polito.it

Abstract—Active short-circuit is a standard emergency pro-
cedure applied to three-phase permanent-magnet synchronous
machine drives in battery-electric and hybrid electric drivetrains
to comply with stringent automotive safety standards, such as
the ISO 26262. Unfortunately, the ensuing torque and current
transients can harm the passengers and the driveline itself.
This paper develops and validates a mathematical and graphical
method to determine the safe operating area of pre-fault current
conditions to guarantee that the torque remains within user-
defined acceptable bounds and that the permanent magnets do
not demagnetize during the short-circuit transient. The new
method utilizes an inductance-based dynamic model of the
motor, including magnetic saturation. The proposed methodology
promises to be useful in the design, initial testing, and commis-
sioning of permanent-magnet synchronous machines used for the
propulsion of automobiles.

Index Terms—active short-circuit, cross saturation, demagne-
tization, PMSM, uncontrolled generation.

I. INTRODUCTION

Fail safe operation in electric vehicles (EVs) is a critical
aspect to consider when developing the electric drivetrain in
order to comply with functional safety standards such as the
ISO26262 [1]. An active short-circuit (ASC) is applied in a
permanent-magnet synchronous machine (PMSM) inverter in
response to an imminent or already occurred fault to protect
the application from a catastrophic failure [2]–[5]. In EVs,
for example, a high-level control unit may take this decision
due to battery overheating or a brake failure. An ASC is the
alternative to inverter shutdown, which is the least harmful
inverter-fault condition. However, it cannot be applied for all
speeds due to the risk of harmful uncontrolled generation
(UCG) voltage [6]. The ASC has also been proposed as a
mitigating action to other drive-initiated faults such as single-
phase short-circuits [4]. It is considered a safe state of the
motor and inverter since no current flows at standstill and,
hence, there will be no torque. At a fixed and sufficiently
high speed, on the other hand, the steady-state short-circuit

current (SSC) equals the characteristic current, but the torque
remains low because the SSC is acting predominantly in
the demagnetizing direction. Notwithstanding the SSC, the
transient between regular operation and SSC is critical, be-
cause of the potentially large demagnetization currents and
torque pulsations. Transient short-circuit currents can lead
to irreversible demagnetization of PMSMs and, even more,
of permanent magnet (PM)-assisted synchronous reluctance
machines (SyRs) machines [7]. It can also venture the inverter.
Torque pulsations, on the other hand, may put the driver at
risk and/or cause stresses on mechanical structures unless
appropriate actions are taken [4]. As the ASC constitutes
a deliberately imposed condition with high economic and
safety risks, it requires careful testing and, possibly, imposes
constraints on the machine design to ensure that the potential
damages are limited [4]. However, constraining the design
space is undesirable and should be avoided, if possible.

To date, methods to evaluate the transient short-circuit cur-
rents have been developed [3], [4]. Analytical models at linear
magnetic conditions are declared in [3] and finite element
(FE) simulations accounting for saturation corroborate the
findings. This paper provides useful insights into the transient
behavior of d-current and torque and their dependency on
electrical parameters, initial conditions, and saturation. At
linear magnetic conditions, the d- and q-axis inductances,
Ld and Lq , are constant. For this condition, it is found that
the peak transient d-current decays with the armature time
constant, τa = 2LdLq/(Rs(Ld+Lq)), with Rs being the stator
resistance. Oppositely, the peak transient current increases
with the PM magnetization [5], and the nominal saliency ratio,
ξ = Lq/Ld, for a fixed characteristic current and PM flux
linkage [3]. Generally, it also increases with the loading, which
can be seen as a result of the increased flux linkage magnitude
along the maximum-torque-per-ampere (MTPA) trajectory [5].

Reference [3] further demonstrates that magnetic saturation
significantly impacts the peak demagnetization current and



torque, which emphasizes the importance of modeling the
machine’s (cross-) saturation. To this end, a flux-map-based
evaluation is carried out in [5]. As opposed to [3], it introduces
a general method to compute the current, flux linkage, and
electromagnetic torque trajectories at non-linear magnetic con-
ditions during the ASC transient. When presented graphically,
the results give interpretable evidence as to how the salience,
PM magnetization, and initial loading affect the peak transient
current. A straightforward method to calculate the hyper worst-
case short-circuit current is proposed. However, this value
is overly conservative as it assumes a lossless, undampened
decay of the flux linkages at constant speed.

The aforementioned papers all provide methods to assess the
risk of demagnetization and to estimate the torque pulsations.
To clamp the peak phase-current during an ASC a two-stage
process is proposed in [2]. It is a step taken in the direction
of minimizing the peak demagnetization current during the
transient without using a machine model, but the method
assumes that the process is initiated when the PMSM is at
no-load, which is an optimistic scenario.

Altogether, we conclude that a reliable method to determine
a safe set of initial operating points (i.e. the initial condition
of the ASC) currently is missing. This is one of the main
obstacles to defining a strategy for mitigating the possibly
detrimental effects of ASC transients. The primary goals of
such a strategy should be to guarantee that the peak current
does not exceed the demagnetization current and to constrain
the torque pulsations during the transient. For this reason, this
paper presents a graphical/mathematical method to compute a
set of initial conditions that ensures that the demagnetization
current and a user-defined maximum torque are bounded
during the transient to the SSC. We also outline how it can be
used practically to avoid exceeding these limits. The method
relies on offline calculations using flux maps to account for
magnetic saturation, which has proven to produce accurate
results of the machine states [5]. The identification of the
flux maps through both finite-element analysis (FEA) [8] and
experiments [9] is thoroughly described in the literature.

The remainder of this paper is organized as follows. Sec-
tion II presents the flux-map-based short-circuit model. Sec-
tion III introduces the proposed method for calculating the set
of feasible initial conditions of the ASC transient. Section IV
validates the method versus an open-source simulation soft-
ware whose accuracy in reproducing the ASC transient has
been verified against experiments for the PMSM under test.
Section V concludes the main findings.

II. SHORT-CIRCUIT MODEL BASED ON FLUX MAPS

This section presents the dynamic short-circuit model of
a three-phase PMSM. First, the linear system is introduced
before the flux-map-based non-linear dynamic model is pre-
sented. By selecting the dq-currents as state variables, their
dynamics are easily obtained without the use of inverse flux
maps. Moreover, the electromechanical torque equation is
easily applied. These virtues facilitate the development and
implementation of the ASC strategy presented in the next

section. The section ends by explaining how to calculate the
SSC for both models.

A. State-Space Model: Linear Magnetic Conditions

The linear state-space model in the rotor reference-frame,
(2), emerges from the stator voltage equation (1).

ūdq = Rsīdq +
d
(
Lsīdq + ψ̄r,dq

)
dt

+ ωrJ
(
Lsīdq + ψ̄r,dq

) (1)

dīdq
dt

=

[
L−1
d 0
0 L−1

q

]([
−Rs ωrLq

−ωrLd −Rs

]
︸ ︷︷ ︸

A

īdq

+ ūdq − ēdq

) (2)

Here, ūdq and īdq are the real-valued stator voltage and current
space-vectors, ψ̄r,dq the rotor flux linkage, and ēdq the back
electro-motive force (emf). ωr is the rotor electrical speed,
which is calculated from the mechanical speed, ωm, and pole-
pair number, p, as ωr = pωm. The bold-font letters denote
matrices. Specifically, Rs = diag ([Rs, Rs]) is the stator re-
sistance matrix, Ls = diag ([Ld, Lq]) is the inductance matrix,
and J is a π/2 rad rotation-matrix. Unless the rotor is isotropic,
as in a surface permanent-magnet machine, Ld ̸= Lq .

The presented equations are valid independent of the
adopted definition of the dq-axes orientation. Henceforth, the
PM-convention is adopted in this paper, i.e. the d-axis is
aligned with the flux of the rotor magnets, and the q-axis
is in the direction of minimal reluctance. Hence, the rotor
flux linkage is ψ̄Tr,dq = [ψPM , 0] by definition, where ψPM
denotes the PM flux linkage. It ensues that ēTdq = [0, ωrψPM ].

B. State-Space Model: Non-Linear Magnetic Conditions

To model the non-linearities of the d- and q-axes flux
linkages, ψd and ψq , invoked by the magnetic steel saturation,
flux maps can be identified as functions of īdq [8], [9]. They
constitute lookup tables, which generally can be defined as in
(3), where the boldface symbols represent lookup tables with
the inputs within parentheses.{

ψd = Ψd(id, iq)

ψq = Ψq(id, iq)
(3)

When the machine is subjected to saturation, the stator voltage
equations in (1) need to account for the time derivatives of the
current-inductance products and PM flux. The governing state-
space equation, (4), results from applying the product rule for
derivatives.

dīdq
dt

= L−1
SyR (Aīdq + ūdq − ēdq) , (4)

LSyR =

[
lddid + Ld + ψdd ldqid + ψqq

lqdiq lqqiq + Lq

]
For compactness, the incremental inductances lxy(id, iq) =
∂Lx(id,iq)/∂iy and the PM-flux partial derivatives ψxx(id, iq) =



∂ψPM (id,iq)/∂ix have been introduced. The chord-slope induc-
tances Lx(id, iq) ≜ Ψx(id,iq)/Ix are now functions of the d-
and q-currents. Henceforth, the arguments of the parameter
maps are omitted for better readability.

Deliberately, we choose īdq as our state variables despite
the need to calculate the incremental inductances. However,
flux maps can easily be manipulated to calculate the required
partial derivatives of the chord-slope inductances and PM flux-
linkages numerically from finite differences. The formulation
in (4) is convenient because it allows drawing the phase-
portrait of the currents. It will subsequently be used when
evaluating the ASC transients in the upcoming section.

Finally, the average torque from the time-fundamental cur-
rent in an ms-phase machine can be calculated by performing
element-wise multiplications of the flux maps with the rect-
angular current grids, Id and Iq , defining the (id, iq) domain
over which the flux maps have been identified:

τe =
msp

2
(Ψd ⊙ Iq −Ψq ⊙ Id) . (5)

Over a mechanical period, torque ripple will also manifest due
to the change in the coenergy with the rotor position, θr [10].
Its instantaneous value is declared in (6). The coenergy can be
expressed using either īdq or īabc as the independent current
variable employing an appropriate coordinate transformation.

∆τe(θr) =
∂Wc

∂θr

(
Īdq, θr

)
− τe(Īdq), (6)

Wc

(
Īabc,Θr

)
=

m∑
j=1

∫ Ij

0

ψj(ij ,Θr)dij

C. Steady-State Short-Circuit Current

The SSC at a fixed speed is obtained by setting the current
time-derivative vector and ūdq to zero in (2) for a linear model
and in (4) for a non-linear model. The linear model possesses
the analytical solution in (7).

īdq =

[
−LqψPM/[LdLq+(Rs/ωr)

2]
−ωrRsψPM/(LdLqω

2
r+R

2
s)

]
(7)

This equation gives a useful heuristic rule for distinguishing
between low-speed and high-speed operation. The latter is
characterized by R2

s << LdLqω
2
r . As the speed increases,

the SSC converges to the characteristic current, ich = ψPM/Ld,
aligned with the d-axis to demagnetize the machine. Thus, at
high speed, the SSC is practically independent of the speed.

On the contrary, the SSC for the non-linear model must
be obtained from a numerical method. The Gauss-Newton
method, (8), updates the initial guess, ī(0)dq , of the SSC until
some update condition is met at iteration k. E.g. the iterations

are stopped once ∥∆ī(k)dq ∥2 is below a tolerance threshold.

ī
(k+1)
dq = ī

(k)
dq − J−1

(
ī
(k)
dq

)
f̄
(
ī
(k)
dq

)
︸ ︷︷ ︸

∆ī
(k)
dq

, (8)

f̄
(
ī
(k)
dq

)
= Aīdq − ēdq,

J
(
ī
(k)
dq

)
=

[
−Rs + ωr (iqlqd) ωr (Lq + lqqiq)

−ωr(Ld + lddid + ψdd) −Rs − ωr(idldq + ψqq)

]
Note that the Jacobian, J (̄idq), of the function f̄ (̄idq) in (8)
is obtained analytically and can be supplied to the Gauss-
Newton algorithm rather than estimated from finite differences.
The function f̄ (̄idq) results from setting the time-derivative
and ūdq to zero in (4). The SSC of the non-linear model is
obtained as ī(K+1)

dq when the stopping condition is fulfilled
after iteration k = K.

D. Manipulation of Experimental Inductance Maps

Experimentally identified flux maps are preferable to FEA
generated counterparts from a predictive validity standpoint.
However, experimental maps are typically corrupted by noise,
which may lead to discontinuities and distortions of the derived
apparent inductance maps and their partial derivatives. There-
fore, the inductance maps that are derived from experiments in
this paper have been manipulated to remove these distortions.
To smoothen the Ldq (̄idq)-maps the maps are interpolated
using a shape-preserving piecewise cubic hermite interpolating
polynomial (PCHIP). It is first applied to Ld(̄idq) and Lq (̄idq)
for each value of id whereby any potential outliers that do not
preserve monotonicity of the inductance function are removed.
Then the same type of interpolation is carried out for each
value of iq . In practice, this method gave satisfactory prop-
erties of the resulting inductance maps, especially continuous
partial derivatives in all directions.

Finally, the maps may only encompass parts of the ASC
transient, which typically extends beyond the normal operating
region. Thus, the maps need to be extended into an enlarged
operating area. A linear extrapolation is chosen for this pur-
pose in this paper.

III. ACTIVE SHORT-CIRCUIT: SAFE INITIAL STATES

To comply with safety demands according to the ISO26262
standard and salvage the PMs from demagnetization, two con-
straints on the ASC transient can be acknowledged, namely:
(1) not to exceed the demagnetization current, |id,demag|, and
(2) not to exceed a user-defined maximum torque |τe,max|
at any time during the transient. To that end, we begin by
describing the machine under test (MUT) in Section III-A.
Section III-B reports the speed criterion which warrants an
ASC in place of an inverter shutdown and reviews the MUT’s
demagnetization limit. Section III-C reviews the MUT’s dy-
namics during an ASC. Section III-D treats the demagnetiza-
tion objective, whereas Section III-E elaborates on the torque
objective. Section III-F treats the impacts of speed variations.
Finally, Section III-G discusses how the results can be used
in an actual drive.



Fig. 1: Extrapolated and smoothened apparent inductance
maps: (a) Ld(̄idq) and (b) Lq (̄idq).

TABLE I: Parameters of the BRUSA HSM1-6.17.12.

Phases ms 3 [-]
Pole pairs p 3 [-]
Nominal power PN 70 [kW]
Nominal/Peak speed ωm,N / ωm,pk 3′600 / 12′000 [rpm]
Nominal/Peak torque τN / τpk 130 / 320 [Nm]
Nominal current IN 202 [Apk]
DC-link voltage Vdc 400 [V]
Stator resistance Rs(60

◦C) 48 [mΩ]
Critical UCG speed ωm,UCG 5′600 [rpm]

A. Machine Under Test

The MUT in this study is the 70 kW commercial three-
phase interior PMSM BRUSA HSM1-6.17.12 [11] shown
in Fig. 2, and whose nameplate parameters are declared in
Table I. It is used as a working example from this section
onwards. Its apparent inductances, Fig. 1, are derived from
experimentally identified flux maps and have been smoothened
and extrapolated as described in Section II-D. The incremental
inductances are found from the partial derivatives of these
maps using finite differences.

B. Uncontrolled Generation and Demagnetization Limits

Inverter shutdown is the state when all inverter switches are
turned off. This state is preferable to an ASC as long as the
induced back-emf is lower than the reflected DC-link-voltage,
2Vdc/π. Exceeding this voltage causes the anti-parallel diodes
of the switches to turn on, resulting in UCG [6]. The critical
speed, listed in Table I, for this condition is

ωm,UCG =
2

π

Vdc
pψPM

. (9)

Fig. 2: The BRUSA HSM1-6.17.12 machine under test.

As seen, ωm,UCG exceeds the nominal speed of the MUT and
roughly corresponds to the speed at its maximum continuous
power [11]. Although not quantified, this feature has been
highlighted in the datasheet [11]. It means that the inverter
can be shut down from all feasible speeds at both maximum
and rated continuous torque without entering UCG. Therefore,
inverter shutdown will in practice be preferred over an ASC
for this machine, unless operated in field-weakening.

The machine’s PMs demagnetize, at least partially, if the
current trajectory during an ASC transient passes the demag-
netization limit. This boundary is determined by the type of
PMs mounted in the machine’s rotor and their temperature
[10, Ch. 3.7.4]. A positive d-current may also demagnetize
the PMs but, in principle, this current is much larger than the
negative demagnetization current. Therefore, it can normally
safely be ignored.

The MUT’s demagnetization limit is not declared in the
datasheet and has not been experimentally characterized.
Under the assumption that the machine has been designed
such that its PMs do not demagnetize when short-circuiting
the terminals at nominal speed and maximum torque when
operated at MTPA, a coarse lower limit can be calculated
by simulating the motor dynamics using (4) and retrieve the
minimum d-current during the transient. Doing so results in
the estimation |id,demag| > 651A. The experimental flux maps
of the MUT have been identified in the ranges −240A < id <
80A and −45A < iq < 45A. Therefore, it is necessary to
extrapolate the maps to calculate both the MTPA and the ASC
trajectory starting from maximum torque and rated speed.

In summary, the machine appears to have been designed
to withstand much higher demagnetization currents than the
installed inverter limits (see Table I). To provide a working
example, we therefore set a fictive demagnetization limit of
id,demag = |−250|A. Furthermore, we will evaluate a relatively
low speed of 500 rpm. This corresponds to R2

s/(LdLqω
2
r) =

1.017 at the SSC, which is at the border where the SSC is little
affected by the speed. The chosen speed and fictive demagneti-
zation limit will together confine us within the experimentally
determined flux-map region with only minor excursions into
extrapolated areas. Altogether, we emphasize that the proposed
methodology for calculating the ASC demagnetization safe
operating area (SOA) of the MUT in this paper only should
be considered a proof-of-concept.

C. Phase Portrait of the ASC Transient

Once the ASC is initiated, there is no degree of freedom
left for the drive to control the dynamics of the system (4).
I.e., the back-emf is the only driving force when ūdq = 0.
Consequently, the trajectory of the current vector can solely
be influenced by controlling its initial value, īdq(0). We shall
now define what an acceptable ASC transient is and investigate
how to determine initial values that result in such transients.

The flux maps of the considered PMSM together with the
stator resistance completely characterize the electromechanical
energy conversion of the machine. Hence, the ASC phase
portrait in Fig. 3 is drawn by applying (4) at ūdq = 0. It



depicts the time-derivative vector field of īdq at a fixed speed,
500 rpm, and temperature, 60 ◦C, without solution curves. For
illustrative purposes, the vectors have been complemented by
four colormaps, according to the following scheme:

• Yellow: did/dt ≥ 0 and diq/dt ≥ 0.
• Orange: did/dt ≥ 0 and diq/dt < 0.
• Violet: did/dt < 0 and diq/dt ≥ 0.
• Blue: did/dt < 0 and diq/dt < 0.

When plots of the demagnetization limits, id,demag, and ma-
chine/inverter current limit, Imax, are superimposed along with
the SSC at a specific speed, the phase portrait constitutes
a constrained domain of currents and their dynamics. The
MTPA trajectory of the PMSM is also added to illustrate the
typical operating points under field-oriented control (FOC). By
following it from the origin, it can be verified that the current
derivative vectors increase in magnitude and rotate slightly
in the counter-clockwise direction. This causes the current to
take a wider spiraling trajectory towards the SSC, resulting
in a larger transient current as illustrated by the dotted brick-
colored infeasible example trajectory. Consequently, the tran-
sient demagnetization current increases with loading. This is
consistent with the findings of [3], obtained using Monte Carlo
simulations of 2500 randomly generated machine designs, and
later confirmed analytically in [5].

D. Demagnetization Limit SOA

To not exceed the demagnetization boundary, it is required
that did/dt(|id,demag|, iq) ≥ 0 if the trajectory touches the
demagnetization boundary at any time instance. Therefore, we
search for the points did/dt(|id,demag|, iq) = 0 along the line
id = id,demag in the phase-portrait to determine the safe and
un-safe regions of the phase-plane.

A visual inspection of Fig. 3 suggests that sgn (did(Id,iq)/dt)
changes solely at one point along the lines (Id, iq) for constant
id = Id. I.e. the blue and purple areas interface either the
orange or yellow areas only once. This is not a requirement
but is in principle an effect of the stable spiral that the lossy
system dynamics in (4) constitute where the currents spiral
monotonically to the SSC [5].

Next, the solutions (id,demag, iq,demag) are set as initial values
of an ordinary differential equation (ODE) solver to step
backward in time. The inductance maps are interpolated to
supply a more accurate derivative to the ODE solver. The
resulting innermost trajectories denote new boundaries that,
together with the demagnetization and inverter/machine cur-
rent limit, define a SOA, drawn in green in Fig. 3. The
boundary and interior of the SOA constitute feasible initial
points during the operation of the drive and guarantee that
id(t) > −id,demag, t > 0 once the ASC is initiated, provided
the system spirals monotonically to the SSC.

It is assumed that the current can exceed the in-
verter/machine current limit during the ASC transient. Typi-
cally, this course is fast and will settle to the SSC within some
hundreds of milliseconds, with a temporary overcurrent only
lasting a fraction of that time. Indeed, Choi and Jahns show
that the time constant of the magnetizing current during an

ASC is τASC = 2Ld/(Rs(1+ξ)) for an unsaturated machine [3].
For the MTPA currents at rated speed and torque of the MUT,
its per-unit parameter values are Rs = 0.042 and Ld = 0.9
with a saliency of ξ = Lq/Ld = 5. The time-constant is
τASC = 7, corresponding to 6.3ms at fs = 180Hz. It is within
the lower range of time constants evaluated in [3].

E. Torque Limit SOA

The procedure to delimit the SOA for the torque follows
the same line of thought as delimiting the SOA for the
demagnetization current but involves more calculations. We
recall that the SOA is the set of initial conditions īdq(0) that
results in a current trajectory obeying |τe(t)| ≤ τe,max, t > 0
at a fixed speed and temperature.

Fig. 4 plots the iso-torque lines of the MUT. Each quadrant
of the īdq state-space contains a delimiting iso-torque curve,
±τe,max, which must not be exceeded during the ASC transient.
The requirement for all īdq resulting in |τe(̄idq)| = τmax is
formally equivalent to:{

∇τe(̄idq) · dīdqdt ≥ 0, if τe < 0

−∇τe(̄idq) · dīdqdt ≥ 0, if τe > 0
. (10)

Eq. (10) constitutes a gradient condition illustrated in Fig. 5.
∇τe is always perpendicular to the iso-torque line, meaning
that it will not be infringed at the next time-step, provided the
current derivative-vector points inwards from the curve. Eq.
(10) expresses this constraint by requiring that the angle φ
between ±∇τe(̄idq) and dīdq/dt is in the interval [−π/2, π/2].

We can now formulate a procedure for finding the torque
SOA. Fig. 4 is provided as a reference with τe,max = 100Nm,
corresponding to 28% of the MUT’s peak torque.

1) Find the set of īdq along one of the iso-torque curves
±τe,max that obeys (10), corresponding to the blue solid
markers in Fig. 4. If no such points exist, τe,max should
be increased.

2) Step forward and backward from the first and last point
obeying (10) (circled in sky blue) until a torque or
demagnetization limit is intersected.

3) The generated trajectories, the current-limit circle and
demagnetization limits constitute new boundaries.

4) Simulate from the next iso-torque line until all four
have been evaluated. The innermost, most restrictive,
among all boundaries is retained and updated between the
simulations so that an enclosing boundary always exists.

The intersection of the calculated torque and demagnetization
limits constitutes the ultimate SOA shaded in dark blue.

It is seen that the demagnetization limits enclose the safe
torque region entirely. Consequently, the torque constraint is
the limiting factor for the SOA in this example. A relaxed
torque constraint or a higher speed (see Section III-F), how-
ever, would eventually infer that the demagnetization limit
determines at least segments of the SOA boundaries.

F. Effects of Speed Variations

The speed impacts the SOA by altering its boundaries.
Higher speeds correspond to a stronger driving force (back-



Fig. 3: Phase-portrait at ωm = 500 rpm with the SOA (green) honoring the demagnetization and machine/inverter current limit.

Fig. 4: Phase portrait at ωm = 500 rpm with the SOA of the demagnetization limits (light shade) and the torque (dark shade).
A square marks the SSC and the MTPA-trajectory is solid in sky blue. The iso-torque lines are labeled with τe in Nm.

φ

−∇τe(̄idq,0)
dīdq
dt (̄idq,0)

|τe(̄idq)| = τe,max > 0

Fig. 5: Illustration of the gradient condition, (10), for the
torque constraint.

emf), causing the SOA to shrink, as shown in Fig. 6 for (a)
demagnetization and (b) torque boundaries. The demagnetiza-
tion plot indicates a rapid reduction in the SOA from ωm =
500 rpm to ωm = 1000 rpm, with a smaller decrease from
ωm = 1000 rpm to ωm = 2250 rpm, attributed to the resistive

voltage drop’s greater impact at low speeds. In contrast, the
torque plot shows a mild influence of speed on the torque
SOA. As the ASC primarily is used at high speeds where UCG
is prohibitive, the combined SOA remains relatively constant
for applicable speeds. Considering a broader speed range,
however, the demagnetization limit has a more pronounced
effect on SOA boundaries compared to the torque boundaries
as speed increases.

In practical scenarios, speed variations are expected during
the ASC transient. The vehicle’s inertia greatly impacts these
fluctuations and in a heavy vehicle, they are likely to be
small. While the vehicle decelerates, SOA boundaries remain
conservative estimates. Initially, a speed decrease is probable,
but not guaranteed once the ASC begins. This is illustrated in
Fig. 7 which plots the torque’s time-derivative in state space
during an ASC of the MUT. Orange areas signify decreasing
torque, whereas blue areas indicate increasing torque. For



(a) Demagnetization limits.

(b) Torque limits. Circles indicate the largest id for which (10) holds
at each considered speed.

Fig. 6: SOA boundaries for different speeds. The phase por-
traits are drawn for ωm = 2250 rpm.

Fig. 7: Time derivative of the torque in state-space with
demagnetization SOA (blue dashed), MTPA trajectory (sky
solid), and SSC (navy square) at ωm = 500 rpm.

most initial operating points within the SOA and all points
on the MTPA trajectory, the torque decreases at the start of
the transient. As a result, a forward-moving vehicle then loses
thrust, enters braking, or applies more braking torque during
the first part of the ASC, leading to a likely speed decrease
unless on a sufficiently steep downhill. Conversely, torque
initially increases if the ASC starts in blue areas. Avoiding
such situations is possible by excluding areas with positive
torque derivatives from the SOA; a consideration mentioned
in this paper without integrating such constraints.

G. Pre-ASC Control Strategy

The ISO26262 standard defines the fault tolerant time
interval (FTTI) as the total elapsed time between a fault’s
occurrence and the initiation of a hazardous event due to
the same fault [1]. Consequently, the system must detect it
and enter a fail-safe state, possibly transitioning through an
emergency operation, within the FTTI [1]. Modern current
controllers are typically designed for rise times in the order of
milliseconds [12]. In fact, a common recommendation to en-
sure the robustness of a model-based FOC using space-vector

modulation is to select the rise time larger than 5 ln 9/(2πFs)

for a sampling frequency of Fs [12]. This translates into
a switching frequency of at least 1.75 kHz for a desired
rise-time of 1ms; a rather undemanding figure for state-of-
the-art drives using silicon IGBTs or MOSFETs [12], [13].
These numbers indicate that the regulator can be designed to
bring the current vector to a desired reference within a few
milliseconds before entering the safe state. Thus, the initial
state of the uncontrolled ASC, īdq(0), should be selected
within the computed SOA.

IV. SIMULATED VALIDATION USING SYR-E

The open-source Synchronous Reluctance-Evolution (SyR-
e) platform provides a combined machine design and simu-
lation environment based on FEMM® and MATLAB®. It is
freely available from [14]. SyR-e uses flux maps and their
inverses to simulate dynamic machine models. Its accuracy
has been validated multiple times against FEA simulations and
experiments. Particularly, [5] thoroughly validates the accuracy
of the flux-map-based model of the BRUSA motor in SyR-e
subjected to an ASC versus experiments. Therefore, SyR-e is
used in this paper to verify the current and torque trajectories
of the non-linear inductance-based model of the MUT, (4),
which determines the SOA.

Fig. 8 compares the time-domain current and torque of the
model (4) with the subscript traj to those produced by SyR-
e with the subscript SyR-e. The imposed speed is fixed to
500 rpm and the initial current vector is īTdq(0) = 0⃗ A.

Fig. 8a demonstrates that the current waveforms are prac-
tically identical throughout the entire transient and at steady
state. Notice that the minimum d-current for which the flux-
maps were identified is −240A. Consequently, the flux maps,
the apparent inductances, and the incremental inductances
were extrapolated linearly and independently of one another
beyond this value. The plot in Fig. 8b similarly compares
the electromagnetic torque to that computed in SyR-e. Once
again, the results are practically indistinguishable. We remark
that the torque calculation in both SyR-e and the inductance-
based model both implement (5) and, therefore, do not include
possible torque ripple.

Fig. 9 displays another time-domain comparison between
SyR-e and the inductance-based dynamic model. Now, the
initial condition is īTdq(0) = [−198.0, 23.1] A which is
at the intersection between the current-limit circle and the
torque SOA in Fig. 4. Importantly, and as intended, the torque
and current do not violate the limits imposed by the SOA,
indicating that the proposed method accurately generates the
torque, current, and demagnetization bounded ASC SOA.

Provided the stellar accuracy of the SyR-e model of the
BRUSA motor demonstrated in [5], the conducted simulations
give confidence in the accuracy of the SOA calculations using
the proposed non-linear inductance-based transient model.

V. CONCLUSION

This paper introduces a rapid and interpretable mathemat-
ical/graphical approach for determining the SOA of initial
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Fig. 8: Time-domain waveforms for the predicted trajectories
compared to the output from SyR-e for īTdq = [0, 0] A.

conditions before applying an ASC to three-phase PMSMs.
The SOA is defined by the set of initial īdq leading to
ASC transients respecting demagnetization current limits and
a user-defined maximum torque. Commanding the current
vector into the SOA prior to applying the ASC prevents PM
demagnetization, and ensures passenger safety. The method
relies on a dynamic non-linear model based on flux maps,
identifiable experimentally or through FEA. A few offline
dynamical simulations suffice to determine the entire SOA
at a fixed speed, minimizing computational load. Our method
improves on [5] by computing the complete map of safe initial
conditions with less conservative boundaries. Speed variations’
impact on the SOA is discussed using presented graphical
methods. Validation in the open-source simulation platform
SyR-e for a 70 kW commercial PMSM with experimentally
identified flux maps affirms accuracy. The method is expected
to be particularly useful in the development, initial testing, and
commissioning of PMSMs in automobiles where functional
safety standards must be fulfilled. Future research aims to
experimentally validate the method on a real drive line.
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