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Abstract 
This paper introduces an innovative framework for efficient analysis of composites manufacturing 
processes and phenomena. The method combines sparse probabilistic characterizations, multi-fidelity 
simulation schemes, and limited experiments to train surrogate machine learning (ML) models. Guided 
by a probabilistic technique, Spatially Weighted Gaussian Process Regression (SWGPR), predictive 
models are constructed from multi-fidelity data to perform rapid and accurate manufacturing 
assessments. This study demonstrates the effectiveness of the framework in accurately predicting 
process-induced deformations (PIDs) for L-shaped composite parts using minimal experimental efforts. 
The method introduced in this work aims to offer a cost-efficient and broadly applicable framework for 
potentially mitigating PIDs and solving other composites manufacturing problems. 
 
 
1. Introduction 
While carbon fiber-reinforced polymer (CFRP) composites have seen widespread use throughout the 
aerospace industry, manufacturers continue to face several challenges. One such challenge is the 
prediction and control of process-induced deformations (PIDs) in composite parts [1–3]. During 
autoclave processing, residual stresses form due to complex material and manufacturing phenomena [3]. 
Upon demolding, some of these stresses may be released through deformations such as angle alterations 
at transition points (e.g., spring-in) or warping of initially flat sections, as schematically illustrated in 
Figure 1  [4]. Consequently, these PIDs may induce joining gaps during assembly, prolong production 
timelines, and compromise the final structure’s mechanical efficiency [5]. 
 
Despite having a general understanding of PIDs, manufacturers often struggle to accurately predict 
deformations in composite parts. These difficulties primarily stem from limitations of traditional 
prediction methods, typically classified into three categories: low-fidelity simulation (e.g., 1D/2D FE), 
high-fidelity simulation (e.g., 3D FE), and experimentation. One of the most notable constraints in these 
methods is the trade-off between fidelity/accuracy and time/cost [6], [7]. To address this trade-off, one 
common approach entails generating a relatively large simulation dataset alongside a smaller 
experimental dataset. Efforts are then made to calibrate the simulation data or its framework by linking 
the virtual and real-world domains using deterministic techniques (e.g., least-squares). However, due to 
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challenges and costs associated with acquiring large data, the virtual-to-real linkage and calibration 
attempts often rely on inadequate data, resulting in imprecise manufacturing evaluations. 
 
 

 
 

Figure 1. Schematic example of process-induced deformations (PIDs) in an L-shaped composite part. 
 
 
Given the challenges previously discussed, there exists an opportunity to explore alternative methods 
for more efficient analysis of composites processing. This paper presents a versatile framework for this 
purpose, building upon recent research [6] and following the subsequent workflow for a case study on 
PIDs of L-shaped composite parts made from Toray’s T800S/3900-2B material system. First, the 
evolution of select thermo-mechanical properties are characterized using a limited amount of Dynamic 
Mechanical Analysis (DMA) testing and the probabilistic machine learning technique, Gaussian Process 
Regression (GPR). The surrogate material property models are then utilized as inputs in a low-fidelity 
finite element (FE) simulation scheme to efficiently compute PIDs for composite parts within a design 
space. The low-fidelity virtual data is then mapped to theory-guided domains and utilized to train 
additional GPR models that predict PIDs. Next, these GPR models are iteratively calibrated by 
incorporating high-fidelity 3D simulation data and limited experimental data. In each retraining 
iteration, simulation data is assigned point-specific noises based on a Gaussian distance-decay weighing 
mechanism, creating a probabilistic model with a data-driven uncertainty structure. The method 
introduced in this work offers an alternative and flexible framework for solving problems and potentially 
mitigating PIDs in composite parts.   
 
2. Material and Methods 
 
2.1.  Process Specifications 
In this section, we outline the processing conditions for the case study evaluated in this work. The 
composite material utilized was Toray T800S/3900-2B unidirectional (UD) prepreg with a resin weight 
content of 35.5%, a primary structural material in major aircraft such as the Boeing 787 [8], [9]. Figure 
2 illustrates the geometry and terminology used to characterize composite parts in this study. Prior to 
processing, each part had an L-shaped configuration with eight T800S/3900-2B plies, a flange length of 
154.2 mm, a width of 50.8 mm, a corner radius of 15.875 mm, and a corner angle of 90°. All parts were 
processed according to the Manufacturer’s Recommended Cure Cycle (MRCC) of heating to 180 °C at 
2 °C/min, holding at 180 °C for 120 minutes, then cooling to room temperature at 2 °C/min. The curing 
process was conducted under a combined autoclave and vacuum pressure of approximately 0.7 MPa. 
 
After curing and demolding, L-shaped parts may deform into a wide range of configurations with diverse 
spring-in and warpage magnitudes and directions (e.g., Figure 2) [6], [10]. In this study, positive spring-
in values indicate angle enlargements between flanges, while negative values denote angle enclosures. 
Similarly, positive and negative warpages represent concave-down and concave-up flange distortions, 
respectively. The maximum warpage (௫) for each part corresponds to the greatest absolute out-of-
plane deformation along the flange. In this study, the 1 and 0° directions represent the longitudinal fiber 
orientation, while 2 and 90° denote the transverse fiber orientation, and 3 pertains to the out-of-plane 
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fiber dimension. Finally, directions x, y, and z signify the longitudinal, transverse, and out-of-plane 
dimensions of the L-shaped laminates. 
 
 

 
 

Figure 2. Geometry and terminology used to characterize L-shaped composite parts. 
 
 
2.2.  Low-fidelity Simulation 
In this section, we outline a low-fidelity numerical model employed to predict PIDs in L-shaped parts. 
Inspired by Takagaki et al.’s analytical approach [11], the model uses the in-situ shear and bending 
moduli of a laminate, free strains during the curing process, and geometric parameters of L-shaped parts 
as inputs to estimate incremental stresses and deformations during processing. In this work, input 
properties were obtained by simulating the degree of cure (DoC) and glass transition temperature (Tg) 
of the composite using Dykeman’s model [12], then computing thermo-mechanical properties using 
surrogate models from bi-material beam (BMB) testing, as outlined in Section 2.4.1. [13]. The Cure 
Hardening Instantaneously Linear Elastic (CHILE) assumption was then applied to predict the final 
corner spring-in, tip spring-in, and maximum warpage of the L-shaped parts [14]. The entire curing and 
deformation analysis was performed using a custom Python [15] code. An overview of the thermo-
mechanical equations and algorithms employed in the code can be referenced in [6]. 
 
2.3.  High-fidelity Simulation 
This section provides a concise overview of a high-fidelity simulation approach employed for predicting 
PIDs, while more comprehensive details are available in [16]. The high-fidelity framework utilizes a 
refined 1D kinematic model based on the Carrera Unified Formulation (CUF) [17], [18] and CHILE 
assumptions [14], enabling efficient layer-wise (LW) modeling and precise 3D representations of 
residual stresses and PIDs. The model incorporates bending and shear moduli (E and G), Poisson’s ratio 
(ν),�coefficient�of�thermal�expansion�(α),�and�cure�shrinkage-induced�strain�(Δεcs) in each of the three 
principal directions, sourced from published literature and a BMB validation test [9], [12], [16], [19]. 
Following each high-fidelity simulation, geometric analyses were conducted to derive corner spring-in, 
tip spring-in, and maximum warpage at the center and edge of each laminate. 
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2.4.  Experimentation 
 
2.4.1. Thermo-mechanical Characterization 
This section summarizes the procedures used to characterize thermo-mechanical properties for inputs 
into the low-fidelity simulation scheme. The characterization was achieved through a bi-material beam 
(BMB) test in a TA Instruments Dynamic Mechanical Analyzer (DMA) 850 [3], [13]. The experimental 
setup involved a 12.7 mm (w) × 60 mm (l) beam with four layers of 90-degree prepreg bonded on top 
of a steel shim, supported by a 3-point bend fixture in the DMA. Additionally, a small hole was cut 
through all the prepreg layers in the center of the beam, and a steel ball was placed in the hole atop the 
steel shim.  
 
During DMA testing, the BMB specimen was subjected to a temperature cycle, a static force of 0.1 N, 
and a� continuous� sinusoidal� displacement�with� an� amplitude� and� frequency�of� 150�μm�and� 0.1�Hz,�
respectively [13]. The DMA measured the applied force, displacement, and phase angle at discrete time 
steps, which were then used to calculate the evolution of the beam’s effective stiffness and the prepreg’s 
storage modulus using available closed-form solutions [13]. Lastly, the computed modulus values were 
combined with pseudo viscoelastic (PVE) Laminated Plate Theory (LPT) and the measured out-of-plane 
beam deflection (i.e., cure shrinkage- and thermal-induced) to determine free strain evolutions in the 
prepreg throughout the curing process [2], [20], [21]. 
 
2.4.2. Composites Manufacturing 
This section outlines the procedures employed to generate experimental PID data. The process involved 
manufacturing L-shaped parts utilizing an autoclave, followed by quantifying PIDs using laser 
profilometry. A 6.35 mm-thick A-36 steel tool covered with a layer of fluorinated ethylene propylene 
(FEP) release film served as the layup mold. Three parts with dimensions specified in Figure 2 were 
evenly laid up across the width of the tool, vacuum sealed using standard bagging procedures, then 
placed in an autoclave and subjected to the MRCC. Then, the cured L-shaped parts were demolded from 
the tool and 2D spatial profiles were acquired at three locations utilizing a Keyence LJ-X8400 laser 
scanner. Schematic illustrations detailing the layup and laser scanning procedures can be found in [10]. 
After obtaining the scans, the profiles were superposed onto plots displaying the premeasured tool 
profile at the corresponding location and a custom Python [15] code was utilized to extract spring-in and 
warpage values at the center and edges of each part. 
 
2.5.  TGML Methodology 
In this section, we outline a framework for the efficient analysis of composites manufacturing and 
prediction of PIDs. The methods presented here extend recent research [6], where more comprehensive 
details are provided. The main objective of this study is to further enhance predictive efficiency through 
the inclusion of a sparse characterization phase. The effectiveness of the approach will be evaluated 
through a case study focused on predicting PIDs for L-shaped parts with eight-ply layups consisting 
solely of zero- and ninety-degree plies.  
 
The prediction process (Figure 3) starts with characterizing the evolution of the composite’s thermo-
mechanical properties solely under the processing conditions of interest, which in this study is the 
MRCC [9]. After completing a BMB test (Section 2.4.1.) under MRCC conditions, the probabilistic 
machine learning technique, Gaussian Process Regression (GPR), is used to train models for predicting 
the composite’s dynamic modulus and free strains throughout the cure cycle [22]. Once the modulus 
and free strain models are trained, the fastest available data source (i.e., low-fidelity simulation) is 
employed to generate virtual PID data, including all nine elements of the extensional (A), coupling (B), 
and bending (D) stiffness matrices, tip spring-in, corner spring-in and maximum warpage for all 28 = 
256 cross-ply laminations [11], [23]. 
 
Following the creation of the low-fidelity dataset, optimal feature representations (i.e., input parameters) 
for the laminates are defined, where the objective is to obtain similar input parameters yielding 
comparable PID outputs (i.e., smoothness). To achieve this, we utilize stiffness coefficients obtained 
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from low-fidelity simulations as inputs [10]. As prior studies have established connections between 
CLPT and PIDs [11], [24], [25], utilizing stiffness coefficients aims to offer physics-based guidance to 
the model and enhance its accuracy, forming the basis of our “theory-guided” machine learning 
framework.  
 
 

 
 
Figure 3. Flowchart of efficient composites manufacturing analysis method using sparse 
characterization, multi-fidelity simulation, and theory-guided machine learning. 
 
 
Since training a model with a large input-to-output ratio presents several challenges, stiffness 
coefficients must be refined to an optimal number. In this work, the refinement is achieved using the 
Focused Bayesian Information Criterion (FBIC) [6], which evaluates input subsets by maximizing the 
likelihood function on training data while penalizing the number of parameters and computational time 
required for model fitting: 
 

ܥܫܤܨ = െ2 ln(̂ܮ) + ݐ݇� lnሺ݊ሻ (1) 
 
where ̂ܮ is the model’s maximized likelihood function, ݇ is the number of parameters, ݊ is the number 
of datapoints, and ݐ is the model’s computational training time. To effectively employ (1), we first apply 
the constraint ݇  = 3, limiting evaluations to two-input subsets and enabling the models to be visualizable 
as 3D surfaces. GPR models are then trained on all possible subsets (e.g., A11 and B22) to predict low-
fidelity simulated PIDs [26]. Subsequently, the FBIC is computed for each GPR model and the most 
optimal (i.e., lowest) subsets for each PID type are determined.  
 
After constructing GPR models, a calibration process begins by iteratively substituting low-fidelity 
simulation data with high-fidelity simulation and experimental data (Figure 3e). The key assumption of 
this phase is that certain simulation data may be detrimental to the model’s accuracy due to numerical 
simplifications, while experimental data will exclusively enhance GPR performance. To incorporate 
these assumptions, noise levels are assigned to the model’s simulation data based on their proximity to 
experiments in the design space following: 
 

ݓ = ݁−ௗೕ
మ ଶ(ℎ×ௗೕ,ೌೣ)మൗ  (2) 

 
ߙ = ln�ሺ1 ⁄�ሻݓ  (3) 

 
݂ሺݔሻ�~�࣡࣪ሺ݉ሺݔሻ, ݇ሺݔ, ሻ′ݔ +  ሻ (4)ܫሺ݀ሻߙ
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where ݓ is the weight of each lower-fidelity (i.e., simulation) datapoint, ݀  is the Euclidean distance 
between a lower-fidelity and experiment, ℎ is a decay factor reflecting the uncertainty in a data source, 
݀,௫ is the maximum distance between two datapoints in the domain, ߙ is the variance of Gaussian 
noise surrounding a datapoint, ݂(ݔ) is a function to be predicted, ࣡࣪ is the Gaussian Process, ݉(ݔ) is 
the mean function, ݇(ݔ,  ,is an array of distance-dependent noise levels (݀)ߙ ,is the kernel function (′ݔ
and ܫ is the identity matrix. During model fitting, ߙ values determined from ℎ and ݀  are added to the 
kernel matrix’s diagonal, introducing point-specific noise to each simulation datapoint. This establishes 
a multi-scale uncertainty structure, enabling GPR to treat multi-fidelity points differently, placing 
greater “trust” in and near experiments while mitigating the impact of “bad” virtual data. In other words, 
a GPR model with a spatially weighted uncertainty structure is established, as illustrated in Figure 4.  
 
 

 
 

Figure 4. (a) Gaussian distance-decay weight and uncertainty, (b) Gaussian noise, and (c) SWGPR 
predictions for different low-fidelity uncertainty levels. 
 
 
In this work, we define ℎ values for each virtual data source as equal to the inverse of the number of 
material properties used as inputs: ℎ = 1/3 = 0.33 for low-fidelity and ℎ = 1/15 = 0.07 for high-fidelity 
simulation. Subsequently, the TGML prediction scheme progresses to its final phase (Figure 3e), where 
an experiment with parameters surrounded by the highest uncertainty is conducted and substituted for 
its corresponding low-fidelity datapoint, while other virtual points are weighed per (2) and (3). The 
SWGPR model is then retrained to predict PIDs and identify new locations with the highest uncertainty. 
Next, the parameters for which SWGPR is most uncertain are fed into the high-fidelity simulation 
scheme, PIDs are predicted, and the model is retrained. If the addition of high-fidelity simulation data 
improves accuracy, the process repeats with the high-fidelity simulation scheme. However, if accuracy 
remains unchanged or decreases, the process halts and another experiment is added to the model. The 
high-fidelity simulations may then be reinstated until its next accuracy plateau or until the model meets 
accuracy requirements. In this study, SWGPR accuracy is evaluated at each calibration step by 
comparing its predictions to experimental PID values from six testing laminates with diverse layups [6].  
 
3. Results and Discussions 
In this section, we illustrate the training of an SWGPR model using the TGML approach initiated by a 
sparse probabilistic characterization phase. We employ the method to predict the tip spring-in at the 
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center of six L-shaped composite parts with various cross-ply layups, as described in [6]. Subsequently, 
we evaluate the effectiveness of the supplementary sparse characterization phase by comparing the 
calibration efficiency to that of the original method, which initiated with extensive deterministic 
characterizations. 
 
Figure 5 shows an SWGPR model and its predictions for tip spring-in of L-shaped laminates (a) before 
and (b) after undergoing calibration. In the left-side plots, red points are low-fidelity simulation data 
generated using a single BMB test and surrogate GPR modulus and free strain models, blue squares are 
high-fidelity simulations, and black stars are experiments used for model training. Multi-colored 
surfaces represent the SWGPR models’ mean predictions, while grey surfaces are 95% confidence 
bounds. Tip spring-in is plotted against B11 and D22, identified as optimal parameters using the FBIC. 
On the right side of the figure, tip spring-in predictions for the six testing laminates [6] are displayed, 
with black outlined bars indicating average experimental values and error bars representing standard 
deviations. Table 1 compares the performance and efficiency of the SWGPR calibration process with 
initiating with sparse probabilistic characterization with that of [6]. 
 
 

 
 

Figure 5. SWGPR model (a) before and (b) after calibration and its predictions of tip spring-in for L-
shaped composite parts. 
 
 
Initially, the SWGPR model, trained on 256 low-fidelity simulations derived from a single BMB test 
and the fitted GPR model under MRCC conditions, displayed a root mean squared error (RMSE) of 
27.9° in predicting tip spring-in for the six testing laminates. Although this RMSE was slightly greater 
than that reported in [6], generating low-fidelity simulation data in this work required less than 10% of 
the testing time. These findings suggest that comparable accuracies can be attained by focusing on 
characterizing only the pertinent properties relevant to the specific case study, rather than investing 
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substantial time in fitting deterministic models. Following calibration, both SWGPR models, with and 
without sparse characterization, achieved convergence and accuracy requirements with only four 
experiments. Overall, the outcomes depicted in Figure 5 and Table 2 underscore the potential benefits 
of characterizing only essential thermo-mechanical properties, highlighting time-saving advantages and 
prompting further exploration in future research.  
 
 

Table 1. Performance and efficiency of TGML-SWGPR methodologies. 
 

 Pre-calibration Post-calibration 
Characterization 

Method 
RMSE 

(%) 
Characterization 

Time (hr) 
RMSE 

(%) 
Experiments 

Required 
Sparse Probabilistic 27.9 8 0.1 4 

Deterministic [6] 27.7 204 0.1 4 
 
 
4. Summary and Conclusions 
This study introduced an innovative framework for efficient analysis of composites manufacturing using 
sparse probabilistic characterization, multi-fidelity simulation, limited experimentation, and theory-
guided machine learning (TGML). It begins with a low-fidelity simulation approach utilizing material 
property models derived from Gaussian Process Regression (GPR) for rapid data generation. This data 
is then mapped to reduced-order theory-guided domains and iteratively calibrated using high-fidelity 
simulation data, experiments, and a spatial weighing mechanism. The strategies presented are highly 
efficient at predicting process-induced deformations (PIDs) in L-shaped composite parts and offer 
promise in advancing understanding in composites manufacturing. 
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