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A practical method for the design of pre-tensioned fully grouted

rockbolts in tunnels

Masoud Ranjbarnia !, Anmad Fahimifar 2, Pierpaolo Oreste 3

Abstract

This paper develops an analytical approach to quantitatively model the efficiency of
the pre-tensioning of grouted rockbolts in terms of reduction of tunnel convergence.
In this study, the distribution of force along the pre-tensioned fully grouted bolt is
calculated by the assumption of a rigid connection between the bolt and the rock
mass. A compressive force is then applied to the bolt head on tunnel surface to
consider the shear relative displacement between the bolt and the rock mass. The
magnitude of this compressive force is found by modeling of bolt boundaries
stiffness.

Finally, the theoretical proposed approach is simplified to be used for the practical purposes.
The results show if the stiff end plate is tightened to the bolt head (complete planner
contact), the grouting effect of the pre-tensioned fully grouted bolts on tunnel stability

can be neglected.
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Introduction

The systematic grouted rockbolting is widely used as an effective technique in the
design and construction of tunnels. The pre-tensioned rockbolts, which transfer initial
compressive pressure to the rock mass in order to increase their performance and
efficiency, are one of the best and the most appropriate supporting systems to be used
in particular circumstances like delay in the bolt installation.

During last three decades, a great number of analytical methods have been developed
for the study of passive grouted bolts in tunneling design. In a group of approaches,
the obtaining of the engineering properties of reinforced rock mass has been focused
e.g. with definition of a dimensionless parameter named as "bolt density"” (which
reflects the relative density of bolts with respect to the opening perimeter) to calculate
the improved geo-mechanical properties of rock mass (Indraratna and Kaiser 1990a,b;
Osguii and Oreste 2010), with introducing a dimensionless coefficient named as
"ground reinforcement- stiffness™ (the contrast of stiffnesses of ground and rockbolt)
to be used as the multipliers to obtain the confinement stress of composite material
(Carranza-Torres 2009), with presenting of a formulation for mechanical contribution
of the rockbolts based on shear stress on the bolt surface (Bobet and Einstein 2011),
with obtaining the elastic properties of the rock-bolt material using the shear-lag
method (Bobet 2006), and with assuming the influence of bolting on rock mass as a
pressure on the tunnel boundary (Bischoff and Smart 1975), as a fictitious increase of
the rock mass cohesion (Grasso et al. 1989), and as an increase of confinement stress
within rock mass (Fahimifar and Soroush 2005).

On the other hand, in another group of approaches, a comprehensive series of studies

have been conducted by assuming that the grouted bolt contributes to rock mass in the
2
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form of a radial pressure within the influence zone of the rockbolt (Aydan 1989; Peila
and Oreste 1995; Oreste and Peila 1996; Li and Stillborg 1999; Cai et al. 2004a, b;
Guan et al. 2007; Bobet and Einstein 2011).

Unlike the passive grouted bolts, the study of pre-tensioned grouted bolts has not been
of high interest so far, and their performance is still quantitatively unknown. A few
attempts which were carried out were based on the development of the works
originally performed for the passive reinforcements (Carranza-Torres 2009; Fahimifar
and Ranjbarnia 2009; Bobet and Einstein 2011). Hence, they have involved great
limitations which may cause them to give crude predictions.

In order to model the pre-tensioned grouted rockbolts as a systematic support of
tunnels (at least for the short-time), the relation between the value of pre-tensioned
pressure on the tunnel surface (produced by the pre-tensioned force) and that of the
fictitious constrained radial pressure (supplied by the proximity of tunnel face) should
be particularly taken into consideration. That is, the progressively advancing tunnel
face in front of bolted section leads to diminishing of the fictitious constrained radial
pressure to zero and ultimately, the pre-tensioned pressure will only remain. Provided
that the value of pre-tensioned pressure on the tunnel surface is greater than the
constrained radial pressure, advancement of the tunnel face will not change the
stresses within the rock mass around tunnel, and the ultimate load will not be
changed. Meanwhile, if the value of pre-tensioned pressure is less than the fictitious
constrained radial pressure, the tunnel convergence will again occur immediately after
the radial pressure becomes less than the initial value prior to bolt installation.
Remarking that above discussion is pertinent to the condition that tunnel convergence

merely occurs due to tunnel face advancement (short-term movement).
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Thus, the above-mentioned analytical approaches for the pre-tensioned grouted
rockbolts are not appropriate solution due to either neglecting the relation of the pre-
tensioned and the fictitious constrained pressures (Carranza-Torres 2009; Fahimifar
and Ranjbarnia 2009) or considering constant bolt tensioning (Bobet and Einstein
2011).

In an effort to bridge this apparent gap in the available methods and tools for analysis
of reinforced tunnel by the pre-tensioned grouted rockbolts, this paper develops an
analytical approach to quantitatively model the efficiency of the pre-tensioning of
grouted rockbolts in terms of reduction of both tunnel convergence.

The distribution of force along the bolt is an important issue. In general, the bolt axial
force is originated by the relative shear displacements between the bolt and the rock
mass which itself affected by both the shear stiffness and the bolt boundaries
conditions. Some of the previously mentioned works have obtained the axial force
along the bolt e.g. with modeling of shear stress between the bolt and the rock mass,
and then integrating of the corresponding function (Li and Stillborg 1999), with
considering the constitutive deformation between the bolt and rock mass, and taking
derivation to obtain the differential equation of axial force (Cai et al. 2004a, b). In
these efforts, the boundary conditions were not taken into account i.e. the force on the
tunnel wall was considered zero. Meanwhile; by the in-situ measurements and the
results of numerous numerical calculations, Oreste (2008) presented a simple two-line
graphic for distribution of axial force along the bolt in which the force on tunnel wall
is considered for the stiff end plate.

All these works have been carried out for the passive bolts while no attempt has been
performed for the pre-tensioned grouted types. Hence, in this paper, a new

methodology is also presented to compute the distribution of the force along the pre-
4
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tensioned grouted bolts. For this purpose, it is calculated by the assumption of a rigid
connection between the bolt and the rock mass. A compressive force is then applied to
the bolt head on tunnel surface (near boundary) to reduce the bolt force. The
magnitude of this compressive force is dependent upon the near boundary condition
(i.e. the stiffness of components of nut, washer, and the plate) and the far boundary
condition of bolt (i.e. the shear stiffness of the initial anchored length). Therefore,
these two boundaries conditions will be also modeled.

Finally, as the derived formula of the proposed model is too complicated for practice
and preliminary design, a simple method will be introduced with employing the

support and the rock mass interaction concepts on the basis of the proposed model.

Modeling of systematic pre-tensioned fully grouted bolts

behavior in tunnels

General assumptions

A circular tunnel of radiusr, , under plane strain condition, is driven in a

homogeneous, isotropic, initially elastic rock mass with a strain-softening behavior
subjected to a hydrostatic stress field, p,.

The problem is modeled with the assumption that tunnel closure is only occurred due
to advancement of the tunnel face (which is equivalent to the reduction of fictitious
radial pressure). Therefore, time-dependent properties of the rock mass are ignored,
and short-term convergence of tunnel is only taken into account.

As the rockbolts are installed, a certain convergence of tunnel has already been

occurred, and an initial plastic zone of radius T, has been developed around the tunnel

(Fig. 1a).
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Theoretical concept of the pre-tensioned grouted rockbolts behavior in

tunnel

The installation process of the pre-tensioned grouted rockbolt, in this paper, consists
of placing a grouted anchor, tensioning the rockbolt and tying end of the bolt by nut
and plate to the tunnel surface, and then grouting the remained of the bolt length.
Once the pre-tensioned force is applied by the plate to tunnel surface, a radial pressure
develops within the rock in the influence domain of itself. Therefore

T

pre—ten
p pre—ten = Co (l)

where T and p . ., are the pre-tensioned force and the associated radial

pre—ten

pressure at tunnel surface, respectively. C, is the rockbolt effective area at tunnel

surface calculated by

C, =SS, (2)
Siand S are the longitudinal and tangential space of bolts at tunnel surface,

respectively.

The advancement of tunnel face is again restarted after full installation of bolts. Then,
the remained fictitious radial pressure will be further reduced and will be ultimately
diminished. Accordingly, two following different circumstances can occur:

Case A: If the magnitude of the fictitious radial pressure is less than the radial pre-
tensioned pressure, progressive advancement of tunnel face will not result in further
radial displacement (Fig 1a). This is because, due to applying the pre-tensioned
pressure, the remained radial pressure on tunnel surface (after full diminishing of the

fictitious constrained pressure) is greater than the value prior to the bolt installation.

6
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Thus, the final bolt force is not greater than the initial applied tension i.e. the bolt
force will remain constant along the bolt and will equal to pre-tensioned force. As
well, grouting the remained bolt length has no influence on its behavior mechanism
but will protect the bolt from corrosion.

Case B: If the magnitude of the fictitious constrained radial pressure is greater than
the pre-tensioned pressure, somewhat re-advancing of tunnel face will lead to further
inward radial displacement of the rock mass. So the bolt force will increase till to full
diminishing of the fictitious constrained radial pressure, and the plastic radius will
become greater (Fig. 1b).

Reminding that the magnitude of the pre-tensioned force is a significant fraction of

the bolt’s yielding capacity so that it does not have a final force to yield.

The analytical simulation of the radial pre-tensioned fully grouted bolts

Rigid (Ideal) connection between the bolt and rock mass

In general, the grouted rockbolts reinforce and mobilize the inherent strength of the
rock mass by offering internal and confining pressure (Huang et al. 2002). Assuming
that the bolt contribution is in the form of a radial load spread within its influencing
zone, the differential equation of equilibrium for tunnel with circular cross section,
uniform in-situ stresses, and close spacing of the rockbolts will be

do, _oy=0, dT 1 1
dr r dr C, r

r

3)

whereo,and o, are the tangential and radial stresses, respectively. ris a variable

showing the radial distance from tunnel center, T is the overall rockbolt tensioned

force.
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For Case A, as discussed in section 2-2, tunnel convergence will not increase, and the
force along the bolt will be almost constant and will equal to the pre-tensioned value

e T=T Thus, dT/dr will be zero and Eq. (4) will be resulted from Eq. (3)

pre—ten *

(also by replacing of the Hoek- Brown strength criterion (1980) for rock mass)

2 2
do, _ [chCO'r +SO'C]]/
dr r

(4)
with the following boundary condition

0] Atr=r,, o, = p; inwhich p,, < p; <p,. (Because, P, e > Pinst)

(i) Atr=r,, o, =0,.
where o is uniaxial compressive strength of the intact rock material, and parameters

mand s are rock mass constants depending on the nature of the rock mass and its

geotechnical conditions. p, is the magnitude of radial pressure in the tunnel surface,
P 1S the fictitious radial pressure induced by the working face at bolt installation
time, and o, is the radial stress at the outer boundary of plastic zone and is obtained

by (Hoek and Brown 1980)
0. =P, Mo, ()

in which

1/(m, Y p v m
Sl I o P
M2[(4J +mpo_ +sp] 2 (6)

where parameters m and s are rock mass constants before failure.

For Case B, dwindling of the radial pressure on tunnel surface from its remained

value i.e. p, to pre-tensioned pressure i.e. p, ., leads to increase of radial

deformations of rock mass, and imposes further tension to the bolt. Thus, the
8
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differential equation for this condition will be Eq. (3) with the following boundary
conditions
(I) Atr = ril O, = pi in WhICh ppre—ten < pi < pinst

(i) Atr=r,, o, =0,
The bolt axial force can be obtained by
T=AE.¢g (7)
where A and E, are bolt cross section area and the modulus of elasticity of bolt,

respectively, and &, is the bolt axial strain calculated by

!

‘9b =& + gpre—ten (8)

where & is the pre-tensioned strain of rockbolts, and ¢; is the radial strain within

pre—ten

rock mass taking place after the bolts installation computed by

roE & rn<r<r,
& = : oo 9
& —&, r,<r<r,

where ¢, is total radial strain within plastic rock mass, &, and ¢; are the radial strain
within the rock mass before the bolts installation in the initial and developed plastic
zone, respectively. Reminding that prior to the bolts installation, a plastic

displacement in the initial plastic zone, I, and the elastic deformations in the greater

plastic zone, r,, had been developed (Fig. 1b).

To solve differential Egs. (3) and (4), it is essential to employ a numerical method due
to their algebraic complexity. For this purpose, Brown et al. (1983) analytical-
numerical method with inclusion of the rockbolt parameters is used to calculate

stresses and strains around reinforced circular tunnel. This method is an iterative finite
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difference solution in which the plastic zone is split into annular rings. The

differential equation (3) is rewritten for aring i.e.

12
{maac(a vo )t oz}
r(j r(j-1
Tr(ia) = Te() _ 2 (i) (i-1) a%c +T(j71) —T(J-) L 2
Mo~ ") (HIRIEY o =T Co Mo iy
2
(10)
in which
me ., +m.
ma — (j-1) (1) (11)
2
s, = Sty TS
2
(12)
Manipulating Eq. (10) results the second order equation giving o ;,
a-O',.Z(j)+b~0'r(j)+C=O (13)
and solution is
—b—-+/b*—4ac
Ovj) =
2a
For r, <r<r, zone
K,-K, o
a= 12 , h=__1 1 (121)_2K2
4K K 2K
Ty, K=K i \
c:ar”_{ et 2K, +(K, -K, ) -s,07
(14)
where
y=dey) =&~ iy (15)

10
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K, = &S (16)

Colli = ")
7 =g =) ~ Sy (17)
_ Er
K, ==y (18)
Coll) )
and for r, <r <r, zone
1 K, =K Oy
T | T PO

O iy K, =K/ e 2
c :arm{ G M 1—2K2}+(K1—K1) —s,07

4K ? K
(19)
where
y© =dey) = e~ ey
(20)
e Esri e

K =ty (21)

o\l(j-2) = 1(j)

After finding the distribution of the stress and strain around circular tunnel, the axial

force along the bolt (in the ideal condition) can be obtained by Eq. (7).

Modeling of shear displacement between the bolt and rock mass

To find the bolt force in the reality (to be used in Eq. (10)), the relative shear
displacement between the bolt and the rock should be calculated. For this purpose, the
following new method is proposed. The force applied through the bolt head deforms

the tunnel surface beneath the plate, and the bolt elongation is reduced (Fig. 2). It can

11
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be said that the reduction of the reinforcement elongation (¢,,;, ) is identical to the

rein
deformation of the tunnel surface (A,).

A =5, (22)

In fact, a portion of the force through the bolt head is devoted for the initial bedding in
the components of nut and washer on the plate, bedding of the plate on the rock mass,
and compressing of the rock mass. Hence, the force in the bolt head is reduced from

T, t0T,. (T, and T, are the forces through the bolt head in the ideal and the real

conditions, respectively).

From Eqg. (22), it can be written

T Trein
> = 23
K K (23)

S rein

where K ;, is the shear stiffness of the reinforcing element, and K describes the

equivalent stiffness of the components of nut and washer and the plate's basement.
When a stiff end plate tightened to the bolt head (perfect constraint), it is estimated
thatK, = (0.5-0.8)K

(For the weak rock mass and high in-situ stress, the lower

rein
coefficient is used). This is proven in Appendix A (I1). However; when a perfect

constraint is not guaranteed, the magnitude of K is drastically reduced (Oreste 2008)

and becomes a very small value. T is the magnitude of bolt head force reduction i.e.

rein

Trein = Tmax _Ts (24)
Combining Eq. (23) and Eq. (24), it can be written
K T (25)

Ts =7, 'max
K, +K

rein

12
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From above discussion, it can be assumed thatT ., acts as a compression force

through the bolt head to reduce the bolt elongation and reduces the bolt force from

T t0T

max 10 T
In the case of the pre-tensioned grouted rockbolts, the computation of the real force
applied by the bolt to the tunnel surface may be carried out in two steps as follows:
(1) The computation of the real force due to the pre-tensioned force.
(2) The computation of the real force due to the subsequent load may probably
occur after full grouting of the bolt length.
For Case A, the real force should be only computed due to the pre-tensioned force. As
fictitious compression force acts from the bolt head towards the rock mass, the
reduction takes place in two sections of the bolt length i.e. in the free length section
(un-grouted section) and in the initially anchored length section as observed in Fig.
(3).

Orein =Ogree T O

anch

rein free (26)

where &, and J,,, are respectively the reduction of the bolt elongation in the free

free
length and anchored length of the bolt obtained by

T

5 — rein 27
free K oo ( )
T
5 — rein 28
et Kanch ( )
in which
E,.
K free — Lb—Ab (29)

free

13
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K B H e/‘“-anch +e_M-anch
anch — 7 elLanCh _e—iLanch (30)

where K, .. and K, are the axial stiffness of the free and total anchored length of the

free ancl

bolt for Case A, respectively; (See Appendix A (1) for detailed derivation of K. ).
L,..and L, arethe free and the anchored length of the bolt, and H is a material

parameter associates to the shear stiffness between the bolt and the rock mass, and its
formulation is available in Appendix A (). 4 is a parameter defined as
A= [Lj% (31)
E rein - Arein

where A_. and E

rein rein

are the area section and the elasticity Modulus of the
reinforcement, respectively.
Substituting Egs. (27) and (28) into Eq. (26), and then simplifying gives

K..K
K ' A — free anch 32
rein K 4 K ( )

free anch

For Case A, T, in Eq. (27) equals to T, and superscript A in above equations

ore !
refers to Case A.

Combining Eqg. (25) and Eq. (32) gives the real force on the tunnel surface for Case A
(or for the pre-tensioned force)

Ks (K free + Kanch)

Ts * = Tpre
Ks K free + Ks Kanch + K free Kanch (33)
and from Eq. (24)
Trein g = 77'Tpre (34)
K free Kanch
n (35)

TK K tK K KK

free free " Yanch

14
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Now, from Eq. (24), distribution of force can be obtained. As the initial anchored
length is assumed to be located beyond the plastic zone, the distribution of force in
that length of bolt is not here studied.

For Case B, the bolt is tensioned by both the pre-tensioned force (Fig. 4a) and the
movement of rock mass towards tunnel (Fig. 4b). The real force applied on the tunnel
surface by the pre-tensioned force can be calculated by a similar formulation of Case
A. The real force applied on the tunnel surface by the movement of rock mass can be
obtained by

to__ K o0
s KS LK (2) ' max

rein

(36)

where K. @ is the axial stiffness of free length of the bolt where it is grouted after

rein

pre-tensioning calculated by

K @ _ ﬂ{—eM +eﬂLj (37)
rein ﬂ« elL _e—/lL

where L is the length of the bolt located in the plastic zone, and T, ® is the

maximum force of the bolt in the second step. It can be obtained by subtracting the
pre-tensioned force from the total maximum force in the ideal condition. (Superscripts

(1) and (2) refer to the first and second steps of the bolt tensioning, respectively).

The total real force on tunnel surface may be computed by

T @ oT @ _ KS(K free T Kanch) T 4 Ks T (2) (38)
) ) KSK free + Ks Kanch + K freeKanch P Ks + Krein(Z) i
Considering that Eq. (33) is the extension of Eq. (25), Eqg. (38) will be
K K
B _ s s
T KL " KO (T = Tove) (39)

where T2 is the real force on the tunnel surface for Case B.
15
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The distribution of real force along the bolt for Case B will be obtained by

e For the first step (similar to Case A)

1 _ (]
TV = Tpre _Trein 0< X< L

(40a)

e For the second step (coupling behavior of the bolt and the rock mass)

T@ _T. ® (T (2) T(z)) e 1x (T 2) T(z)) e’ _ax
T Umax T — € g T ;L—e/“_e

 Uideal S e AL +e,1L S e L +

0<x<lL

free

(40D)

where x denotes the arbitrary section of bolt lengthi.e. x=0at r=r, and x=L at

r=r,.
Therefore, summing of Equations (40a) and (40b), and after some manipulations, the
distribution of axial force along the bolt for Case B can be calculated as

T= Tideal - U'Tpre - |:_ (Tmax - Tpre Xl - ﬂ{%}(ei.x + eMLeilX ):|

L+elL

(41)
in which

KS
KK “

rein

Calculation of tunnel convergence considering the real force
As the obtained equilibrium equation is solved by the finite difference method (i.e.

Eqg. (10)), Eqg. (41) should be written as the iterative way. For ring r;,

16



-AL

e
343 T(j) = Tideal(j) - 77'Tpre - |:_ (Tmax - Tpre Xl - ﬂ{m

](ei-(r(nﬁ) n eZALe—ﬂ(r(j)—ri))

344 (43)

345  Substituting Eq. (43) into Eq. (10) gives

m. o ( ) v
2o,y + o, )t+S 02}
346 (51 ~ ) l g TR Mw-Twon 2|
M0 — 1) M) + M) ‘r(J—l)_r(j) Co r(J)”(J—l)‘
2
347 (44)

348  The value of T(; ;) —T;;, in the either side of neutral point (the location of maximum
349  force along the bolt) is the opposite to each other; the absolute value is used in Eqg.
350  (44)

351  The similar performing process and defined parameters which were used to solve Eq.
352  (10) are applied to Eq. (44) except that the parameter K, — K, (or K,—K))is

353  replaced by Eqg. (45).

T.o-Tr
354 K, =000 T (45)
Mo~ T Co
355  Hence, multipliers of the second order Eq. (13) will change to
O,
356 |o=ﬁ—“—‘j)—2|<2 a= 12
K 2K 4K
Oy K 2 2
357 CZUr(j_l){?—?l—ZKZ}-FKl —-S,0
358 (46)

359  Appendix B sets out the stepwise sequence of calculations provided in the section 2.
360  The consideration of a relative shear displacement results in a rotation of principal

361  stresses. That is, the radial and tangential stresses will not be longer principal stresses
17



362 asassumed in the ideal derivation of bolt force. However, it is assumed in this paper,
363  the produced shear stress is not so great that the principal stresses direction is greatly
364  changed to eclipse the results. It is a venial assumption at least in some conditions e.g.
365  where the pre-tensioned force value, the bolt's density, or rock mass Young's Modulus
366 s great.

367
368 Examples

369 A computer program was prepared to solve the differential equations developed by
370 the finite difference method.

371  Example 1. The proposed theoretical solution is applied to the Kielder experimental
372  tunnel to compare the accuracy of its results with the actual performance of bolts. The
373  Kielder Experimental Tunnel was driven through four rock mass types. The tunnel in
374  the mudstone was highly unstable, and required most support. The engineering

375  properties of mudstone are available in Table (1). Eight sections with different

376  support systems were constructed in which extensometers were also installed to

377  monitor movement of the rock mass. One of the sections was left unsupported while
378  two sections included combination of the passive grouted rockbolts and shotcrete.
379  One of the sections is also supported by passive grouted rockbolts only. The

380  geometrical parameters of two systems are available in Table (2).

381  According to Ward et al. (1976), total short-term movement of tunnel surface in the
382  unsupported section of mudstone was about 8 mm in which less thanl mm had

383  occurred before the face reached, and about 6 mm when the face had advanced 2 m

384  beyond this position. If the reinforcement system was installed just in front of the

18



385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

face, it can be expected that tunnel closure was about 1-2 mm prior to bolt installation
(assumed value is 1.5 mm in this paper).

Fig. (5) shows the corresponding ground response curves, and Table (3) gives the
calculated and the measured deformations data at tunnel surface for the supported
and unsupported rock mass (sequence of calculations was performed by the algorithm
presented in Appendix B). As observed, the proposed method can almost predict the
identical results and agree with the in-situ measurements in a satisfactory way.

A perfect constraint from the end- plate is predicted in the case of using rockbolt
together with shotcrete. This is because, a complete planner contact between the bolt
head and the tunnel surface is obtained, and the bolts will take higher loads at the
tunnel surface in comparison with the condition that not perfect constraint is foreseen.
Example 2. A highway tunnel with 10.7 min diameter is driven in a fair to good
quality limestone at a depth of 122 m below the surface (Brown et al. 1983). The
material property data for the rock mass and in-situ stress are available in Brown et al.
(1983).

The pre-tensioned grouted rockbolts are installed by T =17 tonwith C, =1 m?,

pre—ten
L =3.15 m when the fictitious constrained pressure is p,, = 16.5 ton/m? (the

other parameters is assumed to be similar to Example 1). If it is assumed a complete
constrained is provided by the end plate, the pre-tensioned pressure is greater than the
fictitious constrained pressure of tunnel face. Consequently, the circumstance of Case
A will take place. The output results are shown in Fig. (6) and Table (4). The
efficiency of pre-tensioning can now be best assessed and observed. Therefore, the

convergence of tunnel by the pre-tensioning of bolts is reduced considerably.
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If the pre-tensioned grouted rockbolts are installed by T =10 ton, the

pre—ten
circumstance of Case B will take place. Fig. (6) shows the ground response curve for

this case.

A new practical method for the design of the pre-tensioned

grouted bolts

Although the proposed model almost predicts the accurate performance of the passive
and the pre-tensioned grouted bolts, its formulas are too complicated to be used as a
preliminary design tool, and always need a computer program to carry out the
computation procedures. Hence, it will be worth introducing a simple method on the
basis of new presented approach parameters to be used as a rule of thumb method in
practice.

For Case A, the bolt and the rock mass interaction behavior is similar to that of the
support systems (such as shotcrete or the pre-tensioned un-grouted bolts) rather than
to the reinforcement systems. Therefore, Ground Response Curve (GRC) of the un-
supported rock mass and Support Characteristic Curve of a pre-tensioned bolt are
plotted (solid line for this Case) to obtain the ultimate tunnel convergence. As seen in
Fig. (7), the ultimate convergence is equal to that in the installation time.

The pre-tensioned un-grouted bolt characteristic curve can be obtained by the Eq. (47)
(Stille et al. 1989)

pi = ksys 'Aui + ppre—ten (47)

where k. is the support system stiffness calculated by (Stille et al. 1989)

AE 11
I(sys e
CO Lfree§

(48)
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Eq. (48) is the stiffness of support system which the reinforcement effect is smeared

within the zone of its influence. Thus, the stiffness of a single element is calculated by

(cAE L1
Lfree 5 f

(49)
& is a factor describing the local deformations occurring in the anchoring zone (the
far boundary), under the end plate and the bolt head (the near boundary). Stille et al.

(1989) pointed out that & is an empirical factor which can be determined from Hoek

and Brown's (1980) published pull-out tests data of a variety of mechanical and
chemically anchored rockbolts. However, those data were not guaranteed to give the
accurate results, and were strongly recommended to be determined from field tests on
the bolts for critical applications.

It seems that it will be worth developing an analytical approach to obtain & .

Flexibility of the complex of bolt head component and the initial anchored length lead
to decreasing the axial stiffness of single reinforcement. This is because their
deformations under the applied force reduce bolt elongation.

On the other hand, according to the proposed method, the axial stiffness of pre-
tensioned un-grouted rockbolt can be calculated by

+r_1 .t .1 (50)
K, K,n K K

free S

anch

where K, is total axial stiffness of reinforcement element.

Equating right hand of Eq. (50) with that of Eq. (49), and then simplifying gives

K free K free
E=l+—"2 4 — (51)

anch S
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For Case B, the ultimate tunnel convergence will be at the intersection point of the
diagonal line of Support characteristic curve and the Ground Response Curve of the
un-supported rock mass (Dashed line in Fig. 7).

However, this solution is not very exact in case the entire length of the bolt is grouted,
and the bolt interacts with its surrounding grout and rock mass. In other words, the
bolts confine tunnel convergence not only by applying radial pressure to tunnel
surface (like the support systems e.g. un-grouted pre-tensioned bolts), but also by
improving rock mass strength quality (like the reinforcement systems e.g. the passive
grouted rockbolts).

Therefore, to extend this new approach for Case B, the pre-tensioned grouted
rockbolts behavior is simulated as a combination of both the support and the
reinforcement systems. That is, the improved rock mass and the pre-tensioned un-
grouted bolts act independently. The ground response curve of reinforced rock mass
by the passive grouted rockbolts is calculated and plotted, and then the support
characteristic curve of the pre-tensioned un-grouted bolts plotted separately. The
intersection point of two curves gives tunnel convergence which is reinforced by pre-
tensioned grouted rockbolts.

No end-plate should be considered for the passive grouted rockbolts. This is because

the end-plate effect is taken into account in the behavior of un-grouted pre-tensioned

bolt. If the end-plate does not exist, then K will be zero, and T, = 0. Consequently

the distribution of axial stress along the passive grouted bolts without the end-plate is

~ Videal -AL AL

AL
pass __ pass | pass Ax pass e— X
T T { Toax e T oax o e }

e +¢€
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Superscript pass refers to the passive grouted bolts.

This new approach is employed to solve Example 2 for Case B. The output results are
available in Table (5) and Fig. (8). The intersection point of the support characteristic
curve and the ground response curve of the reinforced tunnel (by the passive grouted
bolts without face-plate) gives the ultimate convergence of tunnel. As observed, this
approach predicts almost the identical convergence obtained in Example 2.

The convergence of tunnel supported by un-grouted pre-tensioned rockbolts is almost
identical to that of employing the grouted types. In other words, the grouting effect of
bolt is not very effective, and can be neglected. However, on the basis of the proposed
model concepts and as it can be seen from Fig. (8), when either the pre-tensioned
force is not great enough or the stiffness of the pre-tensioned bolt system is small (e.g.

the value of £ is great), the grouting effect can be considerable.

As a practical design tool, if complete constraint is provided for the near end of bolt
head, the pre-tensioned fully grouted bolts can be treated as un-grouted types and its

grouting effect is only considered as a factor improving safety.

Conclusions

New analytical approach was proposed for the design the pre-tensioned grouted
rockbolts in tunnels based on convergence confinement method. The relationship
between the value of constrained radial stress at bolt installation time and the value of
applied pre-tensioned pressure was focused on in process of modeling. The near and
far boundaries conditions of bolt were also analytically modeled because they can

affect the performance of pre-tensioned bolts.
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Due to the complexity of theoretical approach for design purposes, a simple method
on the basis of new given approach was finally introduced.

The practical outcome of this paper is that if the complete constraint is provided for
the near end of bolt head, the grouting effect of the pre-tensioned fully grouted bolts
on tunnel stability can be neglected. Therefore, they can be designed by the similar
approach of un-grouted pre-tensioned bolts. However, if it is not possible to apply
sufficient pre-tensioned force to the bolts (the pre-tensioned force is not great
enough), if the anchoring system of bolt is not proper e.g. using the expansion shell or
weak grout, or if the complete planner contact between the bolt head and the tunnel
surface is not predicted, the grouting effect will be considerable and the attention

should be taken to grout quality.

Appendix A.

(1) Calculation of the axial stiffness of anchored length and full length of grouted
rockbolt

As the pre-tensioned force is applied, the free and the anchored length of the bolt are
tensioned. The equilibrium of the axial force in the anchored length is

T+dT =T +7z.zd,.dx (53)

where T is the force in the anchored length, d, is diameter of bolt, and 7 is the shear

stress on reinforcement perimeter which can be obtained by

=K .V (54)

ni

where v is the relative displacement between the rock mass and the bolt, K, is the

I
initial shear stiffness between the bolt and the rock mass expressed as (Cai et al.

2004a,b)
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Ky =—— (55)

where H is a material parameter associated to the shear stiffness between the bolt and
the rock mass and can be computed by Eq. (56)

21G,G,,
[In(R/r,)-1/2]G, +In(r, /1, )G,

(56)

where 1, andr, are radius of the bolt and radius of the grout borehole; G, and G, is

shear modulus of the grout mortar and the rock mass, respectively; and R is the
influence radius of a single rock bolt.

Substituting Eqg. (54) into Eq. (53) and then taking derivation gives

T,
-AT=0 57
dx? ®7)
in which
v__T (58)
dx E,.A
0.5 0.5
g:(Kn_”de =( H j (59)
EoA Eo A

A and E, are the area section and the elastic modulus of the bolt, respectively.
The solution of above differential equation is

T=Ce” +C,e ™ (60)
C,and C, are constants obtained by the following boundary conditions

At x=L T= _Trein = _(Tmax _Ts)

- free

and at x=L, +L v=0

- free anch
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where L. is the free length of the bolt which is not grouted in pre-loading process,

free
L. is the initially anchored length of the bolt securing the anchoring capacity
against pre-loading.

Note thatT,,, isequal to T for Case A, (and also for the first step of Case B).

Because, the maximum force isT . for this case.

Substituting C,and C, into Eq. (60) and then calculating v at x = L., gives the
magnitude of displacement of the bolt in anchored section i.e.
B ﬂ"Trein e’“—anch _ e_/“-anch
Vanch - H eﬁLamh + e—/iLamh (61)
therefore
H eil-anch +e’M—anch
Kanch = _[ FT. T (62)
2{ e ancl P e ancl

K anen 1S the axial stiffness of bolt in the anchored section.

Performing the same process for the second step of Case B with the following

boundary condition

At x=0 T= _Trein(Z) = _(Tmax _Tpre )_TS(Z)
and at Xx=L v=0
gives
H(e* +e*
@ _
Kein = = T(WJ (63)

where T, is the force on the bolt head in the ideal connection between the bolt and

the rock mass, and T?) is the force on the bolt head applied on the tunnel surface in

26



559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

o574

575

576

o717

578

579

580

581

real condition. Superscript (2) refers to the second step of the bolt tensioning which

is due to rock mass movement towards tunnel.

(11) Estimation of Ks

From the analysis of the in situ measurements and the results of numerous bi-
dimensional numerical calculation in the performed parametric study, Oreste (2008)
presented the axial force along the passive grouted bolts, with a certain
approximation, by a simple two-line graphic (Fig. 9). When a perfect constraint on the

bolt head is predicted, the maximum value of bolt force is at the distance of about

L/6 from the tunnel wall while the value in the bolt head (T, ) is 2/3of the

maximum force along the bolt i.e.

T, = %Tn’m (64)

As the distribution of axial force in the “pick up length” is exponential, it can be

written T, =(0.35-0.5)T _, (Ranjbarnia 2014). Therefore

K, =(0.5-0.8)K (65)

Evaluation of the results of theoretical approaches carried out for the modelling of
passive grouted bolts (Stille et al. 1989; Oreste and Peila 1996; Li and Stillborg 1999,
Cai et al. 2004a) and in-situ measurements (Ward et al. 1976) shows the suitability of
Eq. (65).

K., 1N EQ. (65) is obtained by Eq. (42). This is because; it gives the reinforcement

rein

stiffness for the second step of loading which is identical to the loading process of the

passive grouted bolts.
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Appendix B. Ground response curve calculation for reinforced
tunnel

Input data.

o, un- axial compressive strength of intact rock pieces.
m, s: material constants for original rock mass.

E.,, v:Young’s modulus and Poisson's ratio of original rock mass.

G, : shear modulus grout.
m,, S, : material constants for broken rock mass.

f, h:gradients of —&! vs. & lines in the residual and the strain softening stages,

respectively.

. constant defining strain at which residual strength is reached.
P, : in situ hydrostatic stress.

.- tunnel radius.

d, :the bolt diameter.

d,: the hole diameter.

A, : cross section area of each bolt.
E. : Young’s modulus of bolt.

C,: bolt’s spacing.

T pre_ten - Pre-tensioning force.

L

anch - INitial anchored length.

L : total bolt length.

R : the influence limit of each bolt usually is 10d
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Preliminary Calculations

1/(mY’ v
1) M :—Hm) +m&+s] _m
2|\ 4 o, 8

2)G, ==
2(1+0)

24G,G,,
[In(R/r,)-1/2]G, +In(r, /1, )G

roees]
EA

5) p pre—ten — Tpre—ten /(CO )

3) H=

m

6) gpre—ten = Tpre—ten /(Ab 'ES )

7) Lfree =L- I‘anch
AL —IL
8) Krein =i[%}
Ale™ —e
9) K, = y.K. 05< <038

10 k- Hfel et
) anch _7 e/“—anch——/“—arm

—€
E,.
11) Kfree = : Ab
I-free
12) Krein(1) _ Kfree'Kanch
K.. +K

free anch

13) K., @ :ﬂ(_e“e“j
rein /1 e/lL_e—/lL

29



619

620

621

622

623

624

625

626

627

628
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631

632

633

634

635

636

637

14) go— Ks

Ks + Krein(l)
K
15) f=— 5
Ks + Krein(Z)
16) K free Kamch
" Ks K free + KsKanch + K freeKanch

Calculations for the first ring

Dry =r,

2) &40y = Egey = Mo 12G
3) &, = €rey = Mo, 12G
4)o,h =0, =P, —M.o,

5) Opny =0g = P +M.o,

&mm:m
DQD:S
8) @y =0

9)¢, =rylr, =1

Sequence of calculations for each ring

1)de, = 0.005¢,,,
2) &y(j) = Eq(j 1y T &y

) If &,y < 1.8,y thene, ;) =&, —hde, otherwise ¢, =&, — fdg,
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285(11) ~ Er(j) ~Er(j)

638 4) k=
285y — €r(joy ~Er(h)

639 5)¢() = xSy

640 6) Ay =Ty /Ty Ay =Ty /T,

Eo(j) ~ €oe)

641 7)) If g, < pe,then m s =m+(m, —m)
o(i) oW (i) PET

otherwise m ;, =m,

Epiiy — €
_g)Zem ~Fo

642 8)If g, < e, then s, =s+(s,
o(i) oW (i) P

otherwise s ;) =s,

1
643 9 m, = E(m(jfl) + m(j))

1
644 10) Sa:E(S(j—l)+S(j))

645 11) K, = a7
645 12) K= un "0
Ay A

647  13) If p e en = Pinge» then go to step 14, otherwise go to step 18

648 14) a=
) 4K?

O (j-)

649 15) b=-
) 2K ?

~2K,

Or(j-1) 2
650 16) C=Ur(jl)|:W—ZK2:|—SaO'C

651  17) Now, go to step 26

652  18) Ifo, ;) > Py and thenew ;, =0, other wise o, = @, +1

653  19) y =de,(j) = &)~ En(ji)
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Er
654 20)K, —— "wEsfi

Collli-y =T
655 21)7:dgr(j):§r(jfwj)_Er(jflfwj) I‘i SI‘<Fe
656 ]/e :dgf(j):gf(j)_gre(jfl) Fe SrSre
_ Er
657 22K, —— B sy <ror
Collii-y =)

658 I, <r<r,

650 23) a=—.
4

K2
_—
660 24)b=—Kl K _ U 2K, <r<T,
K 2K
661 T <r<r, bz—Kl_Kl—af“j)—2|<2
K 2K
K, - K,

O., .
662  25) c=a,(,._l{ =)

663 I, <r<r

oy K, K/
664 c=a,(j_{ U 1—2K2}+(K1—Kf)2—saaf

665 F <r<r

666 26) A=b? —4ac

667 27) o, = SLERTY

2a
668  28) Ifo,;, > p;, then increment j by 1 and repeat the calculation sequence for next
669  ring.

670 29)Ifo,;, = p,thenr, =r; r,=r,/4;-
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671  Note: p;should not be decreased fromp . ...
672  30)Ifo, ;) = Py then I, =,

i = Ao

673  31) The radii of all the rings may now be calculated, using r,
674  32) The displacement values of rings may be determined from the previously

675  computed values of u; =—¢,,.I;;,
676  33) Tigear(j) = Ab'Es'(gr(j) = Er(jw;) +gpre—ten)
677 34) I1:O-r(j) ~ min}lpinstv ppre—ten }' then Tideal(j) :Tmax

678  35) After calculatingT,.., , the steps 1 to 12 are repeated.

max ?

679 36) T, =(1-7)T,.
680  37) Phreen =T5/Co
681  38) If !, n = Pinge» then T, =(1—7)T,,. and go to step 39, otherwise go to step 40

682  39) the steps 14 to 16 and steps 26 to 29 are repeated except that p,, < pP; < P,. Go to

683  step 46.

—-AL
684 40) T(J) = Tideal(j) - U'Tpre - |:_ (Tmax _Tpre Xl_ ﬂ{e/fTJ(eL(rm_n) + e“"e_l(r“’_r‘))}

T..o-T r
685 41K, =2 Wi
M-~ T Co

686 42) a= -
4

KZ

K O-r i—
687 43) b=—1- U2k,
K 2K

O (i K
688  44). c= ar(j_{ 4}‘221) —?1—2K2} K, -s,02
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45) Steps 26 to 29 are repeated except that p}. ., < p; < P, -

=

46) The radii of all the rings may now be calculated, using r;, = 4.1,

47) The displacement values of rings may be determined from the previously

computed values of u; =—g,, .1, -
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819  Figure 4. Interaction of bolt with its surrounding rock mass for Case B. Loading

820  mechanism of the bolt (a) for the first step (b) for the second step
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822  Figure 5. Ground response curves for the rock mass around Kielder Experimental
823  Tunnel (Example 1) in the rockbolted and rockbolt with shotcreted section
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826  Figure 6. Ground response curve for the rock mass around tunnel in Examples 2 for

827 Case Aand Case B

828
Pia
Support Characteristic Curve
Ground Response Curve of
reinforced tunnel by passive...
o Ground Response Curve of
Ppre—ten |77 =- un-supported tunnel
(8)
pp.i'e—fen _______________
u
829 ”0 ”uh‘ !

830  Figure7. Un-grouted pre-tensioned characteristic curve (solid line for Case A

44



831

832

833
834

835

836

837

838

839

840

841

842

843

844

845

846

847

condition and dashed line for Case B condition) and ground response curves of un-

supported tunnel and reinforced by passive grouted bolts

—a— Un-reinforced tunnel

—a— Support characteristic curve
——Reinforced by Passive grouted bolts without the end-plate

Pi (Mpa)

10 20 30 40 50 60 70 80

Radial displacement (mm)

Figure 8. Un- grouted pre-tensioned characteristic curve and the ground response
curves of tunnel for un-reinforced and reinforced by passive grouted bolts (Example 2

by simple practical method)

45



848

849
850

851

852

853

854

855

856

857

858

max

Tﬂ'

max

Tunnel

wall

Figure 9. Simplified graphic of force along the bolt (two solid line by Oreste (2008)

and dashed curve by Ranjbarnia (2014))

46



859
860  Table 1. Mechanical properties of mudstone in the Kielder Experimental Tunnel (data

861 from Freeman 1978; Hoek and Brown 1980)

Parameter Value
Axial compressive strength o, (MPa) 37
Tunnel radius, I; (m) 1.65
In-situ stress, P, (MPa) 2.56
Deformation modulus, E_, (MPa) 5000
Poisson’s ratio, v 0.25
Peak Strength parameter, M b 0.1
Peak Strength parameter, S, 0.00008
Residual Strength parameter, M, 0.05
Residual Strength parameter, S, 0.00001
Dilation angle (degree), y 10
Strain softening parameters*, gradients of —83p Vs. glp lines in the
11
residual stage, f
Strain softening parameters*, gradients of —83p Vs. glp lines in the 1o
softening stage, h
Strain softening parameters*, constant defining strain at which
residual strength is reached, 75
862 *these parameters were computed by the authors from the value of dilation angle
863
864
865
866
867
868
869
870
871
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Table 2. Geometrical parameters of passive grouted rockbolts and shotcrete in the

Kielder Experimental Tunnel (data from Ward et al. 1976; Freeman 1978; Hoek and

Brown 1980)

Parameter Value

Rockbolt Length, L (m) * 1.8

Initial anchored length, L., (M) 05

Young’s modulus of rockbolt, E, (GPa) 210

Bolt diameter, d, (mm) 20

Borehole diameter, d ; (mm)** 60
Distance between rockbolt, S; x S, (mx m) 0.9%0.9

Early age Young’s modulus of shotcrete, Eg, (GPa) 2

Shotcrete thickness, (mm) 140

Bolt head stiffness, K, (MN)*** 320

Shotcrete pressure on the tunnel surface (MPa) **** 0.17

* According to Hoek and Brown (1980) study, this value was smaller than what was required. Authors
of this paper used the required value.

** assumed typical value

***calculated by the authors for the shotcreted section of tunnel where perfect constrained was
predicted for the end plate of bolt.

**** calculated by the authors from the classic formula presented by Hoek and Brown (1980).

Shotcrete layer radial deformation was 1.5 mm.

Table 3. Calculated and measured deformations (data from Stille et al. 1989) at the

rock surface for reinforced and un-reinforced rock mass

Parameter Measured (mm) | Calculated* (mm)
Un-reinforced tunnel 8 8.05
Passive grouted bolt section 4-5 4.84
Passive grouted bolt and Shotcrete section 2-3 2.7

*By authors
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Table 4. The output results of Example 2

Ultimate Plastic radius
Example convergence (mm) (mm)
Un-reinforced tunnel 78.4 12.27
by the passive bolts 44.8 9.37
Reinfortl:ed by the pre-tensioned bolts (Case A) 26.6 8.1
unne by the pre-tensioned bolts (Case B) 29.8 8.42

Table 5. The input and output data of Example 2 calculated by simple practical

method
Parameter Value
O, _pre (Mpa)™ | 0.0924
5 1.2
ksyS (MN/m3) 257
Uy (mm) 26.6
28.5
Uy (mm)

*Calculated by P oo, =T, /C, where T,is obtained by Eq. (33)
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