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DOUBLY NONLINEAR SCHRODINGER GROUND STATES ON
METRIC GRAPHS

FILIPPO BONI AND SIMONE DOVETTA

ABSTRACT. We investigate the existence of ground states at prescribed mass on gen-
eral metric graphs with half-lines for focusing doubly nonlinear Schrédinger equations
involving both a standard power nonlinearity and delta nonlinearities located at the ver-
tices. The problem is proved to be sensitive both to the topology and to the metric of
the graph and to exhibit a phenomenology richer than in the case of the sole standard
nonlinearity considered in [13,15]. On the one hand, we identify various topological fea-
tures responsible for existence/non—existence of doubly nonlinear ground states in specific
mass regimes. On the other hand, we describe the role of the metric in determining the
interplay between these different topological properties.

1. INTRODUCTION

In this paper we investigate the existence of ground states for the doubly nonlinear
Schrédinger energy functional
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Here G = (V, E) is a non—compact metric graph with finitely many vertices V' and edges
E, some of which unbounded. Given p > 0, let

HYG) == {ue H'(G) : [[ullag) = 1}

denote the mass—constrained space (for standard definition of functional spaces on graphs
see for instance [21]), and

under the mass constraint

F ,G):= inf F,.(u,G 2
pa(: G) el (9) pa(u,G) (2)
the ground state energy level at mass pu. Accordingly, a ground state of F), ; at mass p on
G is defined as a global minimizer of (1) among all functions belonging to H EL(Q’), ie. a
function u € H,,(G) such that Fp4(u,G) = Fpq(p, G).
In what follows, we will consider the regime where both the nonlinearities are L%
subcritical, i.e.
2<p<6, 2<qg<4. (3)
Our aim is to discuss the dependence of the ground states problem (2) both on the param-
eters i, p,q and on topological and metric properties of the graphs.

Since the second half of the previous century, the analysis of differential models on metric
graphs (or networks) has been witnessing a significant growth and it is nowadays a lively
and rich research area. As a consequence, the literature in the field is already extremely
wide and continues to increase, so that no attempt to provide a detailed overview of
all the existing results will be done here. We limit ourselves to note that both linear
and nonlinear problems have been addressed extensively. For the linear case, we refer

to [20,23,39,41,45,52] and references therein for some of the most recent developments.
1



2 F. BONI AND S. DOVETTA

In the nonlinear case, a prominent focus has been devoted to Schrodinger equations (see
for instance [11,12,22,24,25,34-36, 43,51, 63,64, 66| as well as the recent review [3] and
references therein), but other nonlinear models have been considered too (see [61] for the
KdV equation and [27,28| for the Dirac equation).

The interest in Schrodinger equations on metric graphs stems from their role as a model
for signal transmission along so called quasi—one—dimensional structures, i.e. domains
where transverse dimensions are negligible compared to the longitudinal one. In particu-
lar, the huge technological developments in quantum technologies of the last decades led
to the actual realization of complex networks of magnetic and/or optical traps serving
as guides for controlled matter—waves. These achievements allowed to envisage the re-
placement of standard electron transport by circuits with currents of ultracold atoms as
Bose—Einstein condensates and gave birth to the emerging field of Atomtronics (for an up
to date comprehensive overview of the subject see e.g. [19]).

From the point of view of mathematical modelling, higher—dimensional thin quantum
waveguides are usually replaced by one—dimensional graphs, even though a rigorous justifi-
cation of such an approximation is still out of reach in full generality (see e.g. [40,44,60,75]).
The definition of a wave dynamics on metric graphs requires an evolution equation, govern-
ing the profile inside each edge, coupled with matching conditions at the vertices, describing
the interaction of wave—packets at junctions. On the one hand, it is by now well-known
that a proper effective theory for the time evolution of many-body quantum systems as
Bose-Einstein condensates is that of Gross—Pitaevskii, with the wave function v satisfying
a nonlinear Schrodinger equation in the form

i00)(x,t) = —0path(z, 1) + o|tb(z, 1) [P 22p(x, 1)

inside each edge of the graph. The interaction between atoms in Bose—Einstein condensates
is usually repulsive, corresponding to a defocusing nonlinearity (o > 0), but it is nowa-
days possible to tune such interaction and build up collapsing condensates, corresponding
to o < 0, through a mechanism called Feshbach resonance [31]. On the contrary, there
is an abundance of mathematical matching conditions that are a priori acceptable from
the physical standpoint, namely all those ensuring the conservation of the total proba-
bility fg |4|> dz. To date it is not clear neither which specific vertex conditions should
be preferred case by case in actual experiments, nor how to justify a specific choice via
shrinking limit of quasi-one—dimensional structures (some results in this direction can be
found in [67] and references therein). As a consequence, a variety of different matching
conditions have been extensively addressed both from the theoretical and the experimental
point of view (for a detailed overview on this point we refer to the recent surveys [3,50]).

Particularly relevant for our discussion is the ground states problem

£n.G) = int  En.g) (4)

"

for the nonlinear Schrédinger energy functional with the standard nonlinearity only

1 1
E(u,G) = / [u'|? da — / |ulP dx . (5)
2 Jg pJg
Solutions of this problem satisfy the stationary nonlinear Scréodinger equation
u’ + JulP"2u = \u

on each edge of G, for a suitable Lagrange multiplier A € R associated to the mass con-
straint, and homogeneous Kirchhoff vertex conditions

du
dz,
-V

(V)=0 VveV, (6)

e
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FIGURE 1. Example of a graph fulfilling Assumption (H) as in [15].

that is the sum of the derivatives outgoing from every vertex equals zero. From the physical
point of view, this can be interpreted as a flux continuity condition at junctions. These
conditions are the most studied ones so far and fall within the general class of linear
matching conditions providing a self-adjoint extension of the Laplacian on graphs [54].

On the real line G = R, it is well-known [33] that in the L?-subcritical regime p € (2, 6)
problem (4) has a unique (up to space translations) positive solution, the soliton ¢, €
H ﬁ(R), explicitly given by

(bll(m) - Ma¢1 (:U/Bx)7 z € R, (7)
where ¢1 € H{(R) is the soliton at mass = 1 and
2 p—2
B (8)

Q= ps =5 5
After first investigations on star graphs (see e.g. [4]), the behaviour of (4) on general
non-compact graphs with half-lines has been characterized in [13,15] for L?-subcritical
nonlinearities p € (2,6) and in [16] for the L?-critical regime p = 6. In particular, it
has been shown that whether ground states at a certain mass exist strongly depends both
on topological and on metric properties of the graph. As it will be important in the
following, we highlight that a general topological assumption, named Assumption (H),
ruling out existence of ground states of E at any mass yu is given in [15, Section 2|. Such
an assumption can be stated for instance as follows

(H) every point of the graph lies on a trail that contains two half-lines

(for other equivalent formulations of Assumption (H) see [14]). Recall that a trail is a
connected path in G in which every edge of the path is run through exactly once. Example
of a graph fulfilling Assumption (H) is given in Figure 1.

In the last years, the model with the sole standard nonlinearity has been generalized at
least in two directions.

On the one hand, [65] recently addressed the ground states problem for the energy
functional

1 1
Esp(u,G) = 2/ |u/|? da — 6/ | da — 7—/ |ul? dz TEeR, pe(2,6),
g g bJg

accounting for the combined effect of a L?critical and a (weighted) L?-subcritical standard
nonlinearity. It is shown how the interplay between the two standard nonlinearities sensibly
affects the ground states problem, giving rise to new phenomena with respect to the single
nonlinearity (4). This work seems to be the first paper on graphs fitting in the quite
active research line of Schrodinger equations with combined standard nonlinearities (see
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for instance [48, 53, 55, 56,59, 70,71, 73]). Note that solutions of this model still satisfy
Kirchhoff conditions (6) at every vertex of the graph.

On the other hand, fueled for instance by possible applications as the dynamic of con-
fined charges [49,58| or the resonant tunneling [62], concentrated nonlinearities have been
proposed. In Euclidean spaces, models describing the effect of a delta potential have
been considered first in dimension one and three [9, 10,17, 18] (see also the recent pa-
pers [46,47]), whereas the analysis in dimension two is more recent [2,7,8,29,32,42]. On
non—compact graphs, the presence of a single standard nonlinearity restricted to the com-
pact core of the graph (i.e. the union of all the bounded edges) has been discussed for
instance in [37,68,69, 74]. The first step towards the investigation of the interaction be-
tween a standard nonlinearity and a pointwise term can be found in [5,6|, where a linear
delta potential is located at the unique vertex of a star graph. Such a model amounts to
take G as a star graph and ¢ = 2 in (1). In this context, ground states are proved to exist
for small masses only, as they bifurcate from the corresponding solution of the associated
linear problem. Since ground states for the model (5) with the sole standard nonlinearity
never exist on star graphs, this existence result is a first marker of the nontrivial interplay
that occurs between a standard nonlinearity and a (linear) delta potential.

In this paper, we push forward this analysis by considering a model somewhat on the edge
between combined and concentrated nonlinearities: the energy functional (1) involving two
focusing nonlinearities, a standard one and a pointwise one. In dimension one it has been
shown that the delta—type nonlinearity can be interpreted as a suitable scaling limit of the
standard one [30]. We stress that solutions of the corresponding ground states problem (2)
satisfy the following nonlinear ¢ vertex condition

> W) = W y) vvev. )

e-v

Contrary to (6), conditions of this sort do not correspond to any self-adjoint extension of
the Laplacian operator. However, they can still be considered physically meaningful, as
the L? norm of the solutions of the associated time-dependent equation is conserved [18].
Moreover, the interest in this model from the point of view of applications is twofold. On
the one hand, nonlinear terms concentrated at the center of a delta have been used to
describe the effect of defects or impurities on the dynamics, as e.g. nonlinear propagation
in defected Kerr—type media [72] and Bose—Einstein condensates in optical lattices with
laser beams generated defects [38,57]. On the other hand, it is not clear whether the
flux continuity imposed by Kirchhoff conditions provides the right choice in many relevant
physical contexts. In fact, jump discontinuities of macroscopic observables as e.g. phase
slips in Josephson junctions [19, Chapter VIII|, vortex—induced jumps of chiral currents
in one—dimensional ring lattices [19, Chapter XIII|, scattering of attractive solitons from a
potential barrier [19, Chapter XIV], have been revealed experimentally. Non—Kirchhoff’s
conditions at the vertices as (9) may thus serve as a model for matching conditions resulting
in flux discontinuity at branching points.

The ground states problem (2) has already been addressed both on the real line [26] and
on star graphs [1]. On the real line, in the regime (3) where both the nonlinearities are
L?-subcritical ground states exist for every value of the mass (see [26, Theorem 1.3] and
Section 2 below). The portrait is sensibly richer on star graphs. New threshold phenomena
arise, concerning both the value of the mass and that of the exponents p, q. Precisely, if
q < § +1, then ground states exist if and only if the mass is smaller than a critical value,
whereas if ¢ > § + 1 the situation is reversed and ground states exist for large masses
only (see [1, Theorem 1.1] as well as Section 2 below). Furthermore, if ¢ = & 4 1, then
the existence of ground states is insensitive of the mass and depends only on how many
half-lines appear in the graph. In particular, ground states exist for every mass on star
graphs with a number of half-lines smaller than a threshold (depending on p), whereas
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they do not exist for any mass whenever the number of half-lines exceeds such a critical
value [1, Theorem 1.2].

1.1. Main results. We can now state and discuss the main results of the present paper,
that extend the analysis of the ground states problem (2) to general non—compact metric
graphs with half-lines.

Let us first highlight that, as a straightforward consequence of Corollary 2.6 below,
existence of ground states of F), ; at mass p is for free whenever it is already known that
ground states at mass p exist for the problem (4) with the standard nonlinearity only (see
Remark 2.7). On the contrary, when ground states of E do not exist, the ground states
problem for F), ; is far from trivial. Since in general existence of such states depends deeply
both on the topology and on the metric of G and may require a case by case analysis, it is
natural to restrict our attention to graphs for which it is granted a priori that ground states
of E never exist, for any value of the mass. For this reason, though this will clearly not
exhaust the class of graphs for which non—existence of ground states of E occurs, in what
follows, according to [13, Example 2.4|, we will focus on graphs fulfilling Assumption (H)
that are not isomorphic to the real line or to the so—called towers of bubbles (see [13, Figure
3]). Note that, to ease the statement of our main results, we will always write that the
graphs we are considering satisfy Assumption (H), being understood without further notice
that we are excluding the line and the towers of bubbles.

Even though Assumption (H) is enough to prevent solutions of problem (4), this is no
longer true in the doubly nonlinear case (2). The first part of our analysis provides a
topological description of the problem. We begin with the following result.

Theorem 1.1. Let G be a non—compact graph satisfying Assumption (H) with at least
3 half-lines and all vertices of degree greater than or equal to 3. Then there exist two

thresholds B, = ﬁpvq(p,q, G)s T g = Thpg(P:q,G), s0 that 0 < By < T4 and
(i) if ¢ < § +1, then ground states of Fy, 4 at mass p exist if pn < Ky and do not exist

/Lf/" > ﬂp’q 7.
i) if ¢ > &+ 1, then ground states of F,, at mass u exist if u > i, , and do not exist
2 b,q b,q
ifp< By

The previous theorem says that graphs fulfilling Assumption (H), with at least 3 half-
lines and no vertex of degree smaller than 3 behave essentially as star graphs, that are
indeed the easiest example of graphs covered by Theorem 1.1. We point out that the
existence parts in Theorem 1.1 are not difficult to obtain and remain true even removing
the hypotheses of at least 3 half-lines and all vertices with degree not smaller than 3
(see Propositions 3.1-3.2 below). Conversely, the proof of the non—existence statements is
rather involved and requires new ideas (see Section 4). Note that, by [1, Theorem 1.1], if
G is a star graph then 1y o = Fpg for every q # § + 1. However, the analysis in [1] heavily
relies on the fact that on star graphs an explicit characterization of the critical points of
F,,in H é (G) is available. Since this is clearly out of reach on general non—compact graphs,
to understand whether, for every graph fulfilling the hypotheses of Theorem 1.1, the two
thresholds By I, 4 coincide seems to be a challenging open question. Notice also that

Theorem 1.1 gives no information when ¢ = £ + 1.

Even though at first sight Theorem 1.1 may lead to think that no new phenomenon
arises when considering networks more general than star graphs, this is actually not the
case. The following theorems identify two topological features of non—compact graphs that
are responsible for existence results with no analogue on star graphs.

Theorem 1.2. Let G be a non—compact graph with at least a vertex of degree 2. Then
there exists fipq = [ipq(P,q,G) > 0 such that ground states of Fj,, at mass p exist for

every t > flpq-
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Theorem 1.3. Let G be a non—compact graph with exactly 2 half-lines. Then there exists
Lp.q = Hpq(p,q,G) > 0 such that ground states of F, , at mass p exist for every p < [y 4.

Note first that neither Theorem 1.2 nor Theorem 1.3 require Assumption (H) to be
fulfilled. This is because each of them refers to a topological property rooting for existence
of ground states independently of any other features of the graph.

For graphs fulfilling Assumption (H), both Theorem 1.2 and Theorem 1.3 shed some
light when each of the two hypotheses of Theorem 1.1 are removed. As already highlighted
before, note that getting rid of such hypotheses do not affect the existence results stated
in Theorem 1.1.

On the one hand, the presence of a vertex of degree 2 accounts for existence of large
masses ground states, regardless of the specific value of p,q. As the proof of Theorem 1.2
will display clearly, this can be seen as a reminiscence of the behaviour of the problem
on the real line, where ground states always exist and concentrate around the origin as
the mass increases. For graphs fulfilling Assumption (H) with at least 3 half-lines, this is
particularly interesting in the regime ¢ < £ + 1. Indeed, combining Theorem 1.1(i) with
Theorem 1.2, the following is immediate.

Corollary 1.4. Let G be a non—compact graph satisfying Assumption (H), with at least 3
half-lines and at least a vertex of degree 2 (e.g. Figure 2(A)), and let ¢ < & + 1. Then
there exist 1, = Hpq(p,q, G) >0, fipq = Hpq(p,q,G) > 0, so that ground states of F) 4

at mass p exist both if p < By and if p > fipq-

This marks a sharp difference with respect to star graphs, for which ground states at
large masses never exist in the regime ¢ < g + 1. Moreover, let us also stress the fact that
the role of vertices of degree 2 is new and peculiar of the doubly nonlinear problem we are
considering. Indeed, it is well-known that vertices of degree 2 are completely inessential
when dealing with standard nonlinearities only.

On the other hand, Theorem 1.3 unravels a somewhat surprising new phenomenon, as
the presence of exactly two half-lines is enough to guarantee that ground states at small
masses always exist, independently of p,q. Even though it is not evident, also in this case
the argument of the proof will show that such a phenomenon is rooted in the behaviour
of ground states on the real line. The main idea underpinning this result is that, when
the mass is sufficiently small, the doubly nonlinear problem does not feel any difference
between a single delta concentrated at a point or finitely many of them located on a given
compact core. Again, combining Theorem 1.3 with Theorem 1.1(ii) and Theorem 1.2 has
the next direct consequences, highlighting once more the rich structure of the problem.

Corollary 1.5. Let G be a non—compact graph satisfying Assumption (H), with exactly 2
half-lines and no vertex of degree 2 (e.g. Figure 2(B)), and let ¢ > £ +1. Then there exist
Hp.q = Hpq(P,0,G) > 0, T, 4 := Ty o(P, ¢, G) > 0 such that ground states of Fpq at mass i
exist both if p < [ipq and if p > i, .-

Corollary 1.6. Let G be a non—compact graph with ezactly 2 half-lines and at least a
vertex of degree 2 (e.g. Figure 2(C)). Then there exist fiyq = [ipq(D,q,G) > 0, Lpg =
fp.q(Pyq,G) > 0 such that ground states of Fp 4 at mass p exist both if p < [i,, and if
[ = [ip,q-

The results discussed so far outline a description of how the ground states problem on
graphs with half-lines is affected by the topology of the network. However, the presence of
various topological features as in Theorems 1.1-1.2-1.3, each guaranteeing on its own the
existence of ground states in different mass regimes, raises new questions. For instance,
Corollary 1.4 provides a class of graphs where small masses ground states exist because
of the similarity between general non—compact graphs and star graphs, whereas ground
states at large masses exist due to vertices with degree 2, that make the problem on graphs
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(A) A graph satlsfymg (B) A graph satisfying Assumption
Assumption (H) with at (H) with exactly 2 half-lines and no
least 3 half-lines and at vertex with degree smaller than 3.
least a vertex with degree

2.

(c) A graph with exactly 2 half-
lines and at least a vertex with de-
gree 2.

FI1GURE 2. Examples of graphs as in Corollaries 1.4-1.5-1.6.

resembles the corresponding one on the line. This seems to suggest that the thresholds

By fipq are rooted in two unrelated properties of the graph. It is then natural to wonder

if a general relation between these two values holds for every graph in Corollary 1.4 or if
it depends on further properties of the graph. Analogous problems are posed by Corollary
1.5 and Corollary 1.6.

To partially answer this kind of questions, we have the following results.

Theorem 1.7. Let ¢ < 5+ 1. Then

(i) there exists a graph G' satisfying Assumption (H), with at least 3 half-lines and at
least a vertex of degree 2, so that ground states of F,, at mass p exist for every
w>0;

(ii) there exists a graph G* satisfying Assumption (H), with at least 3 half-lines and at
least a vertex of degree 2, and a value m > 0 so that ground states of Fj, , at mass
m on G2 do not exist.

Theorem 1.8. Let ¢ > § + 1. Then there exists a graph G satisfying Assumption (H),
with exactly 2 half-lines and no vertex of degree 2, and a value m > 0 so that ground states
of Fy, 4 at mass m on G do not exist.

Theorem 1.9. There exists a graph G, with exactly 2 half-lines and at least a vertex of
degree 2, and a value m > 0 so that ground states of F}, , at mass m on G do not exist.

Theorems 1.7-1.8-1.9 exploit the key role of the metric of the graph. On the one hand,
Theorem 1.7 is proved by considering graphs with exactly one vertex with degree 2 (see
Figure 3) and investigating the dependence of ground states at prescribed mass on the
length of the edges emanating from this vertex. It turns out that ground states always
exist when these two edges are sufficiently long (Proposition 5.2), whereas there are masses
at which they do not exist when the edges emanating from the vertex of degree 2 are too
short (Proposition 5.3). On the other hand, the proof of Theorem 1.8 is based on graphs
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FiGURE 3. Example of a graph as in Theorem 1.7. When the edges ema-
nating from the vertex of degree 2 are sufficiently long ground states always
exist. Conversely, there are masses at which ground states do not exist if
such edges are short enough.

(a) (®)

FIGURE 4. Examples of graphs as in (A) Theorem 1.8 and (B) Theorem
1.9. In (A), when the number of multiple edges between the bottom and
the middle vertex is large enough, there are masses at which ground states
do not exist. The same occurs in (B) when the number of edges between
the second—to—top and third—to—top vertex is large enough and the edges
emanating from the vertex of degree 2 are sufficiently short.

with exactly 2 half-lines and whose compact core has total length way larger than its
diameter (see Figure 4(A)). Theorem 1.9 then combines these features, since to exhibit a
graph as in the statement of the theorem (Figure 4(B)) we add a vertex of degree 2 with
two sufficiently short edges to the graph provided by Theorem 1.8.

Let us highlight that Theorem 1.7 is somewhat complete, showing that under the hy-
potheses of Corollary 1.4 there are both graphs for which ground states exist for every
mass (as on the real line) and graphs where non—existence occurs at certain masses (akin
to star—graphs). Conversely, Theorems 1.8-1.9 provide a partial information only, since
at present we are not able to exhibit graphs fulfilling the hypotheses of Corollary 1.5 or
Corollary 1.6 for which ground states always exist. Actually, it is not even clear to us
whether graphs like this do exist. Roughly, the problem is the following. On the one hand,
to keep the threshold fi, 4 in Corollaries 1.5-1.6 bounded away from zero, one would need
the total length of the compact core to be not too large. On the other hand, to tune g, , of
Corollary 1.5 and i, 4 of Corollary 1.6 to sufficiently small values, it seems to be necessary
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that the lengths of specific edges are large enough. It is an open problem to understand
whether one can balance these conflicting features to obtain existence of ground states at
every mass.

The paper is organized as follows. Section 2 collects some preliminary results on the
doubly nonlinear ground states problem on graphs. Sections 3—4 provide the proof of the
topological results: in Section 3 we consider the existence statements of Theorem 1.1 and
Theorems 1.2-1.3, whereas in Section 4 we conclude the proof of Theorem 1.1 with the
non—existence results. Section 5 discusses the role of the metric and gives the proof of
Theorems 1.7-1.8-1.9. Finally, Appendices A—B contain some technical results used here
and there in the paper.

Notation. Throughout, norms will be denoted avoiding the domain of integration
whenever possible (e.g. |lull, will stand for |lu| »(g)), using full notation only where nec-
essary.

2. PRELIMINARIES

In this section we begin with some preliminary results that will be important in our
discussion.

To start with, let us introduce some notation we will stick to all along the paper. We
recall that here a non—compact metric graph G = (V, E) is a metric graph for which both
the set of vertices V' and the set of edges F are finite, but £ contains both bounded and
unbounded edges. As usual, each bounded edge is identified with a bounded interval, while
every unbounded edge H;, i = 1, ..., N, is identified with (a copy of) the half-line. The
set of all the bounded edges of G will be called its compact core and will be denoted by /.
Whenever needed, we will use ¢ := || for the total length of the compact core. Moreover,
we will denote by n := #V the total number of vertices of G and by VT C V the subset
of vertices v € V attached to at least one unbounded edge.

2.1. Ground states on general non—compact graphs: properties and existence
criteria. Let us first recall the following Gagliardo—Nirenberg inequalities

p %"‘1 / g_l
lully < Epllulls vl 5 p>2, (10)

lullZe < K [Julla|le 2, (11)

holding on every non—compact graph G, for every u € H*(G). Here K, K are positive
constants depending on p and G only.
Observe also that, for every u € H;(g), it is evident that F),(u,G) = E(u,G) —

% Y ovey [u(V)]? < E(u,G). Hence, for every graph G and mass p we have

FZMI(M: g) S 8(:“’7 g) . (12

If G is a non—compact graph with half-lines, [13, Theorem 2.2] shows that &(u,G) <
E(p,R) = E(¢,,R). Moreover, according to (7) one has

E(¢u,R) = 0>, 0, := —E(¢1,R) >0 (13)
where [ is as in (8). Summing up, for every non—compact graph G and mass pu it always
holds

Fpa(p, G) < _9:0/~L26Jrl . (14)
The next lemma provides a priori estimates for functions with energy F), , sufficiently close
to the ground state level 7, ,. Similar estimates were obtained in |13, Lemma 2.6] for the

problem (4) with the standard nonlinearity only, for every value of the mass p. In our
setting, it is possible to recover these results in certain mass regimes only.

Remark 2.1. Since it will be frequently used in the following, we recall here that, given
a,f as in (8), the relation aq < 23+ 1 holds if and only if ¢ < § + 1.
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Lemma 2.2. Let G be a non—compact graph and p € (2,6), q¢ € (2,4). Then there exists
w* = u*(p,q,G) > 0 so that

(@) for every u > u* zifq < % +1, or

(ii) for every p < p* if ¢ > 5 +1,
if u e H}L(g) satisfies Fyq(u,G) < $F,4(11,G), then

ol < |3 < Gt (15)
Col P < lu|lp < G, (16)
Colp® < JJuflos < Cpp® (17)

for some constant Cp, > 0 depending on p and G only.

Proof. We split the proof in two parts.

Part 1: ¢ < § +1. We need to prove that there exists 4* > 0 so that (15)-(16)—(17) hold
for every p > p*. Let u € Hj(G) be such that Fp4(u,G) < 2 Fpa(11,G) and consider the
notation 7" := ||[u/||3, P := ||u||h and D := |lu||%,, so that combining with (14) gives

7T — 7P - = Z lu(v)|? < — P,ﬂﬁ“, (18)
VEV
whereas (10) and (11) become respectively
P<Ku v T (19)
and L
D < Kup>Tx. (20)
We start by proving the upper bound in (15). By contradiction, assume that there exists
a subsequence pp — +00 as k — 400 such that

T
kgrfoo 2o = oo (21)

By (18), (19) and (20) (and recalling (8))

hence

T 2K, pt2_ > K3 a_
p (@5+1) o2 | 20 2%1 (28+1)

<Py
2B+ > k
Nk»ﬁ p

T4

p—2 e}

_ 2K, ( T )4 i K3 ( T )4 Naq—(2ﬁ+1)
- 2B8+1 26+1 k .
P /J’]gﬁ+ q ,u‘kﬁ+

Dividing the last inequality by % then yields
Hi
_6-p . _4—g
2K, [ T YoomK: [T Y ag—(28+1)
1< —= +— | == ud : (22)
2B+1 28+1 k
p (M:BJF ) 9 (%ﬂ )

Since p < 6, ¢ <4 and ¢ < £ 4+ 1, by Remark 2.1 the right hand-side in (22) goes to zero
as k — +oo, providing the contradiction we seek. Thus, there exists pu* > 0 so that the
upper bound in (15) holds for every p > p*. Combining with (19)-(20), we also get for
every fi > p*

P SK]/;N25+1
D <K'pPtt,
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which prove the upper bounds in (16)—(17) (note that 2a = 5+ 1).
As for the lower bounds, assume by contradiction that there exists a subsequence pj, —
+00 as k — +o00 such that
P
lim —— =0. 23

By (18) and the fact that 7' > 0, we already know that

1 P 13 ey luM) 6
n 2B+1 + - 2B8+1 > 9
Dy q 5%

and, taking advantage of the upper bound in (17), this gives

1 P "Cguaq—(%ﬂ) > gp.

- _ £ (24
P M2ﬁ+1 q k 9 )

Therefore, as % — 0, the left hand-side of (24) tends to zero by Remark 2.1, i.e. a
Hi

contradiction. Consequently, up to possibly changing the value of u*, the lower bound in
(16) is proved for every p > p*. The lower bounds in (15)-(17) follow by (19) and by the
fact that P < ||u|[8s?u respectively.

Part 2: ¢ > £ 4+ 1. The argument is analogous to that in Part 1. We assume first by
contradiction that there exists a subsequence pp — 0 as k — 400 such that (21) holds
and show that this is impossible by Remark 2.1 since ¢ > £ 4 1. This is enough to
prove the upper bounds in (15)—(16)—(17) for every u < p*, for some p* > 0. To prove
the lower bounds we argue by contradiction, assuming the existence of a subsequence
pr — 0 as k — +oo such that (23) holds and adapting the previous argument to the case
g>5+1 O

Remark 2.3. Note that the condition Fy4(u,G) < 1F,4(1,G) is non-empty, as by (14)
it holds Fp q(1t,G) < O for every p > 0.

With the following lemma, we provide another qualitative property of doubly nonlinear
ground states.

Lemma 2.4. Let G be a non—compact graph and u € Hi(g) be a ground state of Fj, 4 at
mass . on G. If v.€ V' is a vertex attached to N > 2 half-lines, then u is symmetrically
decreasing on the N half-lines emanating from v.

Proof. Clearly, when there is no vertex of G attached to more than one half-line, there is
nothing to prove. Let then v € VT be a vertex with N half-lines (H;)¥ ; emanating from
it. Note that Uf\i 1 H; can be interpreted as a (copy of a) star graph Sy with N half-lines.
Hence, arguing as in the proof of |1, Lemma 3.4], if u € Hﬁ(g) is a ground state of F),,
at mass p on G, then its restriction UUN to Uf\il ‘H; is either symmetric with respect
to v and monotonically decreasing on each half-line, or it is symmetric with respect to v
and monotonically decreasing on N — 1 half-lines and on the remaining one, say H1, it is
non—decreasing from the origin to a unique maximum point and then non—increasing on
the rest of Hi. To prove the lemma, we are thus left to rule out the latter case. To this
end, assume by contradiction that u is as in the second case. Let u; be the restriction of
u to H1 U Hz and ug be the restriction of u to G\ (H1 U Hs), and set

1 ::/ lug|? dz,  po ::/ lug|? de.
H1UH2 G\(H1UH2)
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For € > 0 small enough, let v € (—¢,¢). Since by assumption u is increasing at v on Hj,
it has no maximum point at v, so it is possible to define u, : G — R

(2) 1/%u1(m+T(V)) x € HiUHos
uy, () =
\/%UQ(ZE) x e G\ (Hi1UH2),

in such a way that the shift 7'(v) satisfies 7(0) = 0 and u, is continuous at v. It then
follows that u, € H}(G) for every v and

d? —211 1
a0 _ =2 | [ et o el d
v v= 41 uy Jraums B3 JG\(H1UH2)
q—2
T 42 Z lu(w)|?
K2 weV

—2 —2
<P [pae- 2,
dp= Jg 45

so that, choosing € small enough, we get a contradiction with the fact that u is a ground
state of F), , at mass pon G. O

> lu(w)? <o,

wevV

The next proposition establishes an existence criterion for ground states of Fj, ; at pre-
scribed mass.

Proposition 2.5. Let G be a non-compact graph and > 0. If Fp 4(11,G) < E(u, R), then
ground states of I, 4 at mass p exist.

Proof. The proof is almost identical to that of [1, Proposition 3.1, so that here we just
sketch the argument to stress the unique minor modification that is needed. Let (u,) C
H;(g) be a minimizing sequence for F), 4, i.e. Fj,q(un,G) = Fpq(p,G) as n — +oo. By
(10)-(11), up, — w in HY(G) and u, — 0 in L{S.(G), for some u € H(G). Arguing as
in [1, Proposition 3.1], one obtains that either u = 0 on G or u is a ground state at mass p.
To rule out the former case, it is enough to note that if v, — 0 in L% (G), then u, — 0 in
L>°(K), so that both ) ¢y [un(V)|? — 0 and [Jup||r(c)y — 0 as n — +oo. Hence, arguing
as in the proof of [15, Theorem 3.3| leads to
6(:”7 R) > fqu(ﬂ’ g) = linLn FP,Q(um g) > lim infE(um g) > g(:ua R)a

n—-+0o0o

i.e. a contradiction. OJ

Corollary 2.6. Let G be a non—compact graph and p > 0. If there exists u € H;(g) such
that Fp 4(u,G) < E(u,R), then ground states of F, , at mass p exist.

Proof. 1t is a straightforward consequence of Proposition 2.5. O

Remark 2.7. By (12) and Corollary 2.6, it follows immediately that if ground states
of E at mass p exist on G, then also ground states of F,, at mass p ewist. Indeed,
by [15, Theorem 2.2], if u € H,(G) is a ground state of E in H(G), then necessarily
E(u,G) < &(u,R), so that F,4(u,G) < E(u,G) < E(n,R) and ground states of F, 4 exist
too.

2.2. Ground states on the real line and on star graphs. To conclude this preliminary
section, we report here some results for the doubly nonlinear problem on the real line and
on star graphs. Almost all of the following has already been proved or it is a minor
modification of the analysis in [1,26]. For the sake of completeness, the proof of what is
new is provided here whenever needed.

The first result concerns the problem on the real line.
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Proposition 2.8. Let p € (2,6), ¢ € (2,4). On the real line R, for every u > 0 there
exists a unique positive ground state n,, € H;(]R) of Fp 4 at mass j. Moreover, 1, satisfies

Fp,q (ﬁ/ﬂ R) < E(¢u7 R)v (25)
7. (0) > 1, (0)], (26)
mu(0)* =o(u) as p—0. (27)

Proof. The existence of a unique positive ground state 7, on R is the content of [26,
Theorem 1.3]. Moreover, computing the Euler-Lagrange equation of the problem shows
that 7, cannot coincide with the soliton ¢,,, so that

1
Fp,q("?uvR) = fp,q(%R) < Fp,q(gbu:R) = E((Z)“,R) - 5]¢“(0)]q < E(¢uaR) )

entailing (25). On the contrary, since the soliton ¢, is the unique (up to translations)
positive ground state of F/ at mass p on R,

E(nu,R) > E(é,R).

Combining with (25) gives (26).
We are left to prove (27). Observe first that Fj, 4(n,,R) < 0 for every p > 0, by (25)
and E(¢,,R) < 0. Coupling with (10)-(11), it follows that
1 K p+2 p_q K% 1 q
glills = =l = == w2 llnull3 <o,

that entails the existence of a constant M > 0 so that ||n;,[|2 < M for every y small enough.
In particular, this implies [|7,]ls — 0 by (11) and thus ||, |5 < [|I1.]/5% > = o) as p — 0.
Suppose then by contradiction that there exists C' > 0 such that ||17L||% > Cpas p— 0.
Since Fj, 4(n,) < 0, by (11) we have

N

K
q

1 1 1 1 P
Sz + o (Illz) = Sl 113 - lally < 2O < w3

q
that, dividing by [[7,[|3 and using ||/,||3 > Cp, implies

, 20-4
1<C'u 7 as pu—0.
Since q > 2, this is impossible. Hence, |[n,|l2 = o(,/z) and (by (11) again)

7.(0)1* = [Inull3e < Kv/ulmllz = o) as p—0. O

The last result of the section is a generalization of [1, Theorem 1.1 on star graphs Sy
to the functional F}, o (-, SN) : H:L(SN) —R

1 1
FparluSn) =3 [ fuPde— [ P de - ju), (28)
SN p SN q

where 7 > 0 is a positive parameter.
Remark 2.9. The functional F, 41 coincides with the usual functional F, 4.

Proposition 2.10. Let p € (2,6), g € (2,4), ¢ # 5+ 1 and 7 > 0. Let Sy be the star
graph with N > 3 half-lines. Then there exists a critical mass p* == p*(p,q,7,N) > 0
such that

(i) if ¢ < £+ 1, then ground states of (28) at mass pu exist if and only if p < p*;

(i) if ¢ > § 4+ 1, then ground states of (28) at mass p exist if and only if p > p*.
Furthermore, whenever they exist, ground states at prescribed mass are unique and radially
decreasing on Sy, i.e. their restriction to each half-line of the graph corresponds to the
same decreasing function on RT.
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Proof. The statement for 7 = 1 has been proved in |1, Theorem 1.1|. It is immediate to
verify that the same argument applies without changes to any choice of the parameter
T > 0. n

3. EXISTENCE RESULTS: PROOF OF THEOREMS 1.1-1.2-1.3

In this section we address the existence of doubly nonlinear ground states, providing the
proof of the existence statements in Theorem 1.1, as well as the proof of Theorems 1.2-1.3.
We begin with the existence results in Theorem 1.1, whose proof is a straightforward
consequence of the next two propositions. Note that none of them requires the validity of
Assumption (H), so that they hold in a more general setting than the one of Theorem 1.1.

Proposition 3.1. Let G be a non-compact graph and q < 5 + 1. Then there exists

By = Hpq(p,q, G) > 0 such that ground states of Fj,, at mass p on G exist for every

B by g
Proof. Consider u € H}L(g) given by

(z) = Om(x) ifxeH;, forsomei=1,...,N
|pmllLe®)y ifzeK,

where ¢, is the soliton at mass m on R as in (7). Then it must be
N N
b= 6By + e sy = m + Ll (0
where as usual £ := |K|. In particular, observe that m — 0 as g — 0, so that m?® = o(m)
and m = p + o(p) as p — 0. Moreover, since ¢ < § 4 1, by (8) and Remark 2.1 it holds
aq < 28+ 1 < ap. Hence,

N L1 (0)[P 0)]4
Fp,q(u, g) — gE(qu,R) _ |¢1}S )| meP — n|¢1q( )’ mad
_ gepm2ﬁ+l o €’¢1]§0)|pmap o n|¢1q(0)‘qmaq
q
LA o) s
so that
0)|4
F,q(u,G) = —n|¢1q()’,u°‘q +o(u®?) < =Pt = E(u,R) aspu— 0.

Therefore, by Corollary 2.6 there exists By ™ 0 such that ground states of F}, ; at mass
on G exist for every p < e O

Proposition 3.2. Let G be a non—compact graph with at least one vertex of degree greater
than or equal to 3 and ¢ > 5 4 1. Then there exists fpq = Fpq(P,q,G) > 0 such that
ground states of Fy, 4 at mass ji on G exist for every pu > fi, ..

Proof. Let v € V be a vertex of degree not smaller than 3. Denote by {e;}i—1, n the
N > 3 edges emanating from v and define L := min;—; _ n ¢;, where ¢; := |e;| is the length
of the edge e;.

Let then ®, € H ;(S ~) be the radially symmetric function on the star graph Sy with N
half-lines whose restriction to each half-line satisfies ®,(x) := ¢ 2 (x), for every z € RT.

Here gbzﬁu is the soliton at mass QW“ given by (7). For every p > 0, let then ¢ := 0(u),
= k(p) be such that the function w,(x) := k(P () — 6) satisfies ||w#H%2(SN) = p and

it is supported on the ball B(0, L) in Sy of radius L centered at the vertex of the star
graph. Relying on the decaying properties of the solitons on the line, it is straightforward



DOUBLY NONLINEAR SCHRODINGER GROUND STATES ON METRIC GRAPHS 15

to check that § — 0, K — 1 and w, — ®, — 0 strongly in H'(Sy) as p — +00, so that
E(wu, Sy) — E(®,,Sy) — 0 and w,(0) — ¢,(0) — 0 as u — +oo. Moreover, since w,,
is supported on the ball of radius L centered at the vertex of Sy, we can think of it as a
function w, € H ;(g) supported on the union of the edges e; emanating from the vertex v
in G. Therefore, for every € > 0 there exists pu* := p*(¢) so that if u > p*

FP»Q(w,u’g) - E(éuvR) = F’P#(wwSN) - E(¢M7R)

_ %E (qs%,R) — E(¢u,R) — ; )qb%(())]q te

28 o
= 0, (1 - (;) > /ﬂﬁ‘*‘l _ "bl(qoﬂq <;) q'uozq + €,

where we made use of (13) and (7). Since ¢ > § +1, by Remark 2.1 we have aqg > 23 +1,
so that whenever ¢ is fixed small enough

2\* 0)[7 [ 2\
Qp(1_<N> )Mwﬂﬂgmgn <N> o

holds for sufficiently large masses. Hence, there exists 11, , > 0 so that Fj, 4(wy,G) <
E(u,R) for every pu > Ty, 4» and by Corollary 2.6 we conclude. O

Proof of Theorem 1.1: existence. The existence result for ¢ < § +1 is a direct application
of Proposition 3.1. On the other hand, since G satisfies Assumption (H) and it is neither
the real line nor a tower of bubbles, then there is at least one vertex of degree not smaller
than 3, and the existence part of the theorem for ¢ > £ 41 follows by Proposition 3.2. [

Let us now focus on graphs with at least one vertex of degree 2.

Proof of Theorem 1.2. Let v € V be a vertex of degree 2, e1, e2 be the two edges emanating
from v and L := min {|e;], |e2|}.

For every p > 0, there exists 6 = d(u) > 0, K = k(p) > 0 so that the function on the
real line wy(z) = r(¢u(x) — )4 (where ¢, is the soliton at mass p on R as in (7)) is
compactly supported on the interval (—L, L) and HwHH%Q(_Lm = u. It is straightforward
to check that § — 0, kK — 1 and w, — ¢, — 0 strongly in H(R) as u — +oo. This entails
that E(w,,R) — E(¢,,R) = 0 and w,(0) — ¢,(0) — 0 as u — +o0. Moreover, as w,, is
compactly supported on (—L, L), we can think of it as a function on G supported on the
union of the edges e; and ey emanating from the vertex v of degree 2.

Hence, for every € > 0 there exists pu* = p*(g) such that for every p > p*

Fy ot @) — (6, R) = E(wy, (~L, L)) — B¢, R) — f}|wu<o>\q

= E(wy, (=L, L)) = E(¢,, R) + ; (11(0)]7 = [w, (0)[*) = i\%(o)!q

1 |¢1(0)[?
<e——|pu(0)]9=¢— u™a.
ql u(0)] .
Fixing a sufficiently small ¢, this implies that there is fi,, > 0 so that Fj4(w,,G) <
E(¢u,R) for every pu > iy 4, which completes the proof by Corollary 2.6. U

To conclude the analysis of the existence results, we provide the proof of Theorem 1.3
concerning non—compact graphs with exactly two half-lines.

Proof of Theorem 1.3. Let H1, Ho be the two half-lines of the graph. Consider u € H}L(g)
defined as
nm(z) if x € HiUHo
u(zx) = .
nm(0) ifxelC,
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where 7,,, is the ground state of F}, ; at mass m on the real line as in Proposition 2.8. By
|lul|3 = 1 and (27) it follows that
= l[ull3 = 72 + nm () = m+o(m) as p—0.

Moreover, since

/ -1
Fpo(1,G) = E(m, R) + E(u, K) — §|nm<o>|q = Fyq(tm B) = lim (O)]” n

[7m (0)]7,

and
E (¢, R) = — 0>t = —0,(m + €0, (0) 7))

= = 0ym = 0,28+ 1)l (O)Pm* + o (Inm(O)Pm*) as -0,
by (25) we have (recalling also (8))

n—1

Fya(0,6) — B (93 B) = Fyg 1 B) + G+ — = (0)

+

op(25+1) - (”gf))pzl (O m® + 0 (1 0) )

p—2
< [9p(26 +1) - ; <”;”ff)) ] Urm (0)]*m*® + 0 (|nm(0>\2m25) :
(29)

Observe that )
h:[0,400) = R, h(z):=0,(28+1)— —aP?2
p

is a strictly decreasing and continuous function satisfying h(0) > 0 and lim,_, o h(z) =
—00, so that there is a unique > 0 for which h(Z) = 0 and h(z) < 0 if and only if x > 7.
By Lemma A.1 it follows that T = ¢1(0) (where as usual ¢, is the soliton at mass 1 on R).
Since by (26) and (7) we have that 7,,(0) > ¢, (0) = m®$1(0), then

1 (|nm(0)\"~*
@@ﬁ+n—<mijg <0.
p\ m
Therefore, coupling with (29) yields a threshold 7z, 4 > 0 such that F}, 4(u,G) < E (¢, R)
for every p < [ip 4, and by Corollary 2.6 we conclude. g

4. NON—EXISTENCE RESULTS: END OF THE PROOF OF THEOREM 1.1

This section is devoted to the proof of the non—existence part of Theorem 1.1. Since it
is rather long and technical demanding, before running through the details of the proof let
us briefly comment on the general idea behind it. In a nutshell, our argument combines
the available knowledge on star graphs with the natural scaling of the problem on general
graphs.

On the one hand, if u € H ;(g) is a ground state of F}, , at mass p, then by Corollary
2.6 its doubly nonlinear energy satisfies

Fpg(u,G) <E(u,R),
which gives the following upper bound on the standard energy E of u
1
E(u,G) < E(u,R) + = > [u(v)[7. (30)
1 veV

On the other hand, since we are considering graphs fulfilling Assumption (H), it is well-
known [15] that for every u € Hi(g)

E(u,G) > &(u,R).
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The key point here is to improve this lower bound in a quantitative version like
E(u,G) = E(1, R) + R(u), (31)

for some suitable remainder term R depending on w. This will be done relying on the
following well-known fact.

Remark 4.1. Recall that, for every graph G and every u € Hﬁ(g), the scaling
G t7G =G, () = tu(t’) = u() (32)
lu

P
with «, B as in (8)) preserves the quantities |2 ”21 , ”2u” - for every t > 0, that is
Bt Bt

||UIH%2(g) B ||U;5H%2(gt) HUHZ;Jp(g) B ||UtH12p(gt)
2684+1 28+17 268+1 28+1
K (HutHLz gt)> K (HUqu%z(gtJ
so that in particular
E(u>g> E(utvgt)
(21 - (33)

(.

Remark 4.1 allows to pass from the upper bound (30) for functions at mass p on G to
the upper bound

Bw.G,) < e B)+ ()" 25 g e

m
VEV

for functions w (the scaled version of u with ¢ = m/u) at mass m on G, := 2§, for any
desired mass m > 0. This upper bound involves a weight depending on the original mass
p and on the quantity ag — (25 + 1), whose sign depends on ¢ being smaller or larger than
£+ 1. Our argument will then proceed as follows. We will first assume by contradiction
that ground states exist in those regimes where Theorem 1.1 asserts non—existence. Hence,
taking sequences of ground states indexed by the mass (i.e. ground states for p — 0 if
q > £ + 1 and ground states for g — +o0 if ¢ < & 4 1), we will exploit the scaling to
construct sequences of functions at a prescribed mass m, choosing m so that ground states
of F}, ; at mass m do not exist on star graphs. This leaves us with a sequence of functions
at mass m supported on G,. In particular, the lengths of the bounded edges will vary
according to u. This will be crucial to obtain a scaled version of the lower bound with
remainder (31) for w, i.e. an inequality in the form

E(w,Gu) = E(m,R) + R(p, w)

that, combined with (34), will provide the contradiction we seek.
To ease the presentation, we prove two independent propositions, the first one dealing
with small masses and the second one discussing the regime of large mass.

Proposition 4.2. Let G be a non—compact graph satisfying Assumption (H) with N > 3
half-lines. If ¢ > 5 + 1, then there exists Bpg ™ 0 such that ground states of F), 4 at mass

1 oon G do not exist for every p < By

Proof. We argue by contradiction. Suppose that there exists a sequence of masses (still
denoted by p, omitting the subscript of the sequence)  — 0 so that a ground state u,, of
F, 4 at mass p exists. With no loss of generality, let u, > 0. Since u, is a ground state at
mass p, by (12) and (13) we have

E(u,G) <~ 4 2 37 Ju (V). (35)
vevVv
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Let now p* = p*(p, g, 1, 3) be the critical mass associated to F}, 4,1 on the star graph S with
3 half-lines as in Proposition 2.10 (recall that Fj, 1 coincides with F}, ;) and fix @ < p*.

For every p, making use of (32) with ¢ = % and u = u,, let then

- () 0. wion- () ((2)")

Clearly, w, € Hl%(g#) for every p1. Observe that the compact core K, of G, has total length
Kyl = 1P, where ¢ = |KC|fi?, so that in particular [ICul = 0 as p— 0.
By (33) and (35) we get

)aq—(2ﬂ+1)

B0, G.) < 072 + (& Sl (V)1 (36)

1

q veV
Moreover, since u,, is a ground state at sufficiently small mass p and ¢ > & + 1, by (15),
(17) and Remark 4.1 there exists C > 0 (depending only on p) such that

—1~2B8+1 2 ~28+1
O < |3 < CR*PF (37)
and
O < e < O (38)
Let us now introduce the quantities
R V1161‘1}1+ wy(V) and A, = n%a;xwu,

(recall that V't is the set of vertices attached to at least one half-line).

For the sake of clarity and to improve the readability, we divide the rest of the proof in
some steps.

Step 1. Since G, satisfies Assumption (H) (because G does) and it has N > 3 half-lines,
by Lemma B.1, there exists w}, € H&(Sg) on the star graph S3 with 3 half-lines such that

E(w;, S3) < E(wu, Gu) (39)
and
wy, (0) = Ay (40)
On the one hand, combining (36) with (39)-(40) then leads to
Fp#](wuas?)) = E(w,unS?r) - 5|’U) ( )|q < E(wuagﬂ) - ;
agq—(26+1) q
~ 0 1 A
< g+ (1) I -2
12 q vev q
aq—(26+1) q
< g, & (‘i) " g A
q q
On the other hand, since g < p* = p*(p, q, 1, 3), by Proposition 2.10 and Corollary 2.6
Fpq(w?, S3) > —0,a%"t1. (42)
Coupling (41) and (42) gives
[ aq—(26+1)
<ﬁ) nAl > Al (43)

Furthermore, letting = € K, realize w,(Z) = A, and V € V be a vertex such that w, (V) =
A, since K, is connected there exists a trail v C K, starting at  and ending at V. Thus

_ 1
Ay — Ay = w0, () — w0, (V) = / W, dz < |Kl® )2, (44)
Y
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FIGURE 5. The construction of the function z, as in Step 2 of the proof of
Proposition 4.2.

that coupled with (37), (43) (recall also Remark 2.1) and [K,| — 0 as p — 0 entails
A, —0 as p—0. (45)
Step 2. By (38) and (45), [lwullre(g,) > C7'a® > Ay = |Jwyllpeo (k) for sufficiently
small g. Hence, by Lemma B.2, there exist two positive functions wy ,,ws, € HY(RT)
satisfying
2||w1,u||%2(R+) + ||w2,u||%2(R+) = ”wHHi?(g#\K#)
QE(”‘UIWRJF) + E(wZ/AvRJr) < E(wy, Gy \ ICM)
w1,,(0) = Ay, w2, (0) = Ay

Consider then the following construction. Denoting by hi, hs, hs the half-lines of the star
graph Ss, define the function z, € H'(S3) as (see Figure 5)

w1, () if © € h; for some i = 1,2
au(@) = A+ 220 if 2 € [0,d,) N ha,

w27u($ — dM) ifx e [d/“ +00) N hs,

where d,, = duP, d > 0 fixed, will be properly chosen later. By construction, zy, 1s
decreasing on h; and hg, while on hs it is increasing (with a linear part at the beginning)
until a maximum point and then decreasing from this point on. Moreover, as z,(x) < A,
for every x € [0,d,,) N ha,

loulaisy = 2lon ey + Nozalaen + [ s

0, H)ﬂhg,

< llwallZz g, + dudi = B = llwullfzgc,) + du’A
2
<p-—of <n’rlcinwu> + duﬁAZ,
n

so that, since by (43)

r;lcinwu <Au=o0(Ay) as pu—0,
n

we obtain
loulFaqs,) < i+ diPA% + o0 (n7A7) (46)

Let us now estimate F, 4(24,53). On the one hand, if 4 is sufficiently small, then (46) and
[ < p* ensure HZFLH%Q(&) < p*, so that by Proposition 2.10 with 7 = 1 and Corollary 2.6

26+1
Fp,q(zuv S3) > Fp.q (HZMH%»SS) = —0, (HZ;LH%) )



20

F. BONI AND S. DOVETTA
and by (46) again

Bz 89) = 0, (7 + du?52)" " + 0 (wA2) .
—0 MQBH d(2p + 1)ﬁ25uﬂAi +o (u@&i) as p— 0. o

On the other hand, exploiting the construction of z, and the properties of w1y ;, w2 ,,
E(2,53) = E (2, 53\ ([0, dy) N ha)) + E (2, [0, dyy) O h3)

(A —N\)° dp’
< BE(wy, G, \ Ky) + 2P - P A

(48)
A2 A2
SE(wM,gM\ICM)—Fﬁ-FO <“> 7

e
the last inequality relying also on (45). Coupling (48) with (36) then yields

AZ )\ A2
Fpq(2u,83) < E(wy, Gu \ Kp) + Qd;jﬁ e ( “)

q e
A2 )\q A2
= E(wu, G,) — E(w,, K,) + 2d:5 - ?‘L +o0 (ﬁ)
ol M aq—(28+1) 1
< —Oppt Arl </7> & Z lw, (V)|? = E(wy, K,,)
2

(49)

2
+ £ —)\fZ+o ﬂ
2dp? g I

A2 A2
2541 —(28+1

< —0Opn + opea )AZ—E(w#,IC”)+2d ﬁ—i-o(HB)
for some constant C' > 0.

2
A

Step 3. By comparing (47) and (49) and noting that pfA? = (ﬁ) as u — 0, we
obtain

A2 A2
OB > B k) — sk +o (m)

(50)

Let us now estimate the term E(w,, K,). By (44)

A=) A A2
/112 > ( I M —
||w,uHL2(ICH) = |ICM| +o

Euﬁ Mﬁ
and

~ p
lwullogre,y < GPAL < CuPllw) 2o,y = o (1) 22c,)
for a suitable C’ > 0. Therefore

1 A2 A2
E(wlhlcﬂ) = 5““&”%2(;@0 +o (HwLH%%K”)) > 2€ p i ( >

e
and plugging into (50) we get

1/1 1) A2 A2
aq— (2ﬂ+1)A >_- (2= )= T
cn 2(6 d)ﬁﬁ_+0< )

5
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FIGURE 6. The construction of the function v, as in Step 1 of the proof of
Proposition 4.3.

Choosing for instance d = 20 then leads to

1
uo‘q_(5+1)Aq_2 > — asu—0,
ST/

that is a contradiction in light of Remark 2.1, thus concluding the proof. O

Proposition 4.3. Let G be a non—compact graph satisfying Assumption (H) with no vertex
of degree smaller than 3. If ¢ < § +1, then there exists iy q > 0 such that ground states of
Fpq at mass p on G do not exist for every p > i, ..

Proof. We argue by contradiction. Suppose that there exists a sequence of masses (still
denoted by p, omitting the subscript of the sequence) 1 — 400 so that a ground state w,,
of F}, 4 at mass p exists. With no loss of generality let u, > 0. Since u, is a ground state
at mass p, (35) holds.

Let p* = p*(p, g, 1,3) be the critical mass associated to Fj, ;1 on the star graph S3 with
3 half-lines as in Proposition 2.10 (recall that Fj, 1 coincides with F}, ;) and fix @ > p*.

For every p, making use of (32) with ¢ = % and u = u,, let then

8 —\a ~\ 8
p i i
G, = (~> g, wy(x) = <> u <> x|,
1 7 u() " w\\
so that IC, has total length |IC,| = (P — 400 as p — +oo (with £ := |K|~?) and, for
every i, we have w,, € H/%(QM) and, by (33) and (35),

g, (BT
E(wy, Gu) < =0, + <> = wu(v))%. (51)
K q vev

The remainder of the proof is divided in three steps.

Step 1. Let z,, € G, be such that w,(7,) = |wu|lec. By Assumption (H), there exists
a trail v, C G, running through 7, and exactly 2 half-lines of G,,. Let then vi € V be a
vertex of G, satisfying w,(v1) = maxyey w, (V). Since by hypothesis every vertex of G,
has degree greater than or equal to 3, there is at least one edge, say €,, emanating from
V1 that does not belong to v,. Set

o, =infw, and ¥, :=maxw,.
€u €u

Let us first show that €, must be a bounded edge of G, for every u large enough. Assume
on the contrary that there exists a subsequence (not renamed) p — +o0c along which €,
is a half-line. Letting J := {z € G, : wy(z) > ¥,}, then w,(J) is connected and, since
wy(vu) = (0, [[wyulloo] and v, is a trail, every ¢t € w,(J) is attained at least twice, except



22 F. BONI AND S. DOVETTA

FIGURE 7. The construction of the function z, as in Step 2 of the proof of
Proposition 4.3.

possibly [lwy|[ec. Let then w} € H! (—%, %‘) be the symmetric rearrangement of w,

on (—%, ‘—g'), which satisfies
/ / _
iz 2 N gy Wolarcy = il g gy W2 1

Moreover, w,, (G, \ J) is connected too and every t € w,(G, \ J) is attained at least
three times (at least twice on v, and at least once on €,). Thus, taking the symmetric
rearrangement w, € H'(S3) of wy)(g,\s) on the star graph S3 with 3 half-lines (see [5,
Appendix A]) we have

w2 = 10 le2gssy s Nwallirgang = lWallor(sy)  Vr > 1.

Denoting as usual by hi, ha, h3 the half-lines of S3, we then define v, € H%(Sg) as (see
Figure 6)

wy, () x € hyUhs
v () 1= W) (x—‘—;l) z € [0,]J])Nhs

wy(x —1J]) z € [[J],+00) Nhs,
so that, by (51) and for u sufficiently large

1 i
Fp:Q(qus?)) = E(Uu’ S3) - §|U,u(0)|q < E(w,uagu) - 7#
~\ 268+1—-aq q
~ m 1 b
<ot (B) T S - 2
1% q vev q
q ~\ 28+1—aq
< _0pﬁ2,3+1 o & (1 —_n <’u) ) < _0pﬁ2,3+17
q H

the last inequality being a direct consequence of Remark 2.1 and g — 4+o00. By Corollary
2.6 this implies existence of ground states of Fj,, on Sg at mass 1 > p* = p*(p,q,1,3),
which is impossible by Proposition 2.10. Hence, for every u large enough €, is a bounded
edge.

Step 2. Since €, is a bounded edge, then by definition of G,, there exist two constants
c1,c2 > 0 so that

c1p? < fe| < ol

Moreover, as 1 = HwHH%Q(gH) > ||w”|\%2(éu) > cl,uﬁaz, it follows that o, — 0 as u — +o0.

Consider then the following construction. Recall that w,(G, \ €,) is connected and,
since v, C G, \ €, and wy(v,) = (0, |wyl|], every value t € w,(G, \ €,) is attained at
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least twice, except possibly |lw,|le. Letting w, € H'(R) be the symmetric rearrangement
on R of the restriction of w, to G, \ €,, we have

lwllr2@aen = 1@ullewy s lwpllirgae,) = @ullr@  vr = 1.
Moreover, denoting by w), € H 1(0, |e,]) the decreasing rearrangement of the restriction of
w,, to €,, we also get

HUJLHLQ(EM) > H(WZ)/HL?@), HU}MHLT'(QM\EH) = HwZHLT@) Vr>1
and

wZ(O) =X, *(‘éu‘)zgu

Observe that, since w};(0) < [[Wy[|p=(r), there exists & € R such that w,(§) = w};(0).

Hence, letting as usual hq, ho, hg be the half lines of S5, we set z, € H'(S3) as (see Figure
7)

@M($+§) x € hyUho

(@) = wy,(z) xz € [0,[e,]) Nhs
oulEul +1—2) € [lel: 6] + 1) g
0 elsewhere .

Note that z,(0) = 3, and

lalasy = [ et [ 2 de
S3\([[eul,len|+1)Nh3) [lenlslen|+1)Nhs
2

1 o
~loulsg + | lonal da =i+ %

On the one hand, since HZMH%Q(SS) > > p* = p*(p,q,1,3), by Proposition 2.10 and
Corollary 2.6

9\ 28+1
9 2B+1 _ oy
Fra(2u:53) > ~6, (HzMan(sg)) > 0, i+

= 0, = (25 L 10 4 0 (02).

(52)

On the other hand,

1 [t 1 [t
E(Z/“ Sg) S E(wu, gu) + 2/ ’(O-MLU)/‘Q dgj —_ p/ |O'M$’p dCC
0 0

2 p
g o
= F Bt B
(G + 5 = pp+ D
so that, recalling (51), the fact that ¥, > w,(v1) = maxyey w,(V) by construction, and
that 26 +1 — ag > 0 by Remark 2.1

U/% 2
= E(wu, Gu) + > +o0 (au) ,

1 o? 4
Fpq(2u, S3) = E(2u, S3) — 5]@(0)]‘1 < E(wy, Gu) + 7# t+o (UZ) - 7“
~\ 28+1—aq 2 q
28+1 M Iu 2 Xy
< —Opp +q<u) ZZ—F?—FO(U“)—? (53)

2
-0 ~25+1727?‘+0(2‘I) +ﬂ+0(02)
= ~UpH q I B )
Comparing (52) and (53), we get

Iy 1 40
;+O(EZ)§( Ep(2ﬁ+1) >ai+o(o’3) as p— +00. (54)
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Step 3. Since o, — 0 as p — 400, by (54) also ¥, — 0 as  — 400 and there exists
C > 0 so that
lwull2e,) > cn’on > Cp’s,
2 ~
lwullz2(g,0e,) < H— C,U'BEZ~
Moreover,
- - 26+1
E(w,, G\ ) > Bz, ha Uhy) > € (u - CuﬁEZ,R) ~ 9, (M . oﬂﬁzg)
28+1 ~28 B B
—Opp + 0,07 (26 +1)Cp EZ—i—o(,u EZ)
and
P
”w/LHLP(gM) - _cyﬁZﬂ
p N p
Hence, since ¢ < £ +1 < pand ¥, — 0 as  — 400

E(wp,eu) > —

~ capP3h,
B(wy Gu) = — 6,07 + 6,57 (28 + 1)Opss - 22 4 o (ux)
p (55)
— 0,2 + 0,72 (28 + 1)L + 0 (,ﬁzg) .

By (51) and (55), it follows that

N 1/ 2B8+1—aq ~\ 2B8+1—aq
0,7°% (28 + )OS +o( W) - (“) 3 fwu(v) <t <“> =7,
q \p = q \p

which entails

14+0(1) <Cp~ B+ ag ) 400, (56)
By Remark 2.1, since ¢ < § +1, then 38 +1 > 26 4+ 1 > agq, and (56) provides the
contradiction we seek. O

End of the proof of Theorem 1.1: non—existence. It is the content of Propositions 4.2-4.3.
O

5. PROOF OF THEOREMS 1.7-1.8-1.9

This section provides the proof of the results of the paper that depend on the metric
properties of the graph. Before proving our main theorems in this context, let us state the
following straightforward lemma.

Lemma 5.1. Let p € (2,6),q € (2,4). Then there exists i > 0 (depending on p,q) such
that for every pu > [ there is a function f, € HPIL(R) compactly supported in [—1,1] and
satisfying

FP,CI(f,ua R) < E(¢,LL7 R)

Proof. Let ¢, be the soliton at mass y on R as in (7) and choose § = 0(p) and k = k(1)
such that the function f,(z) := r(¢u(r) — §)4 is compactly supported in [—1,1] and
| full3 = p. It is immediate to check that § — 0, kK — 1 and f, — ¢, — 0 strongly in
H!(R) as p — 4o00. This entails that E(f,,R) — E(¢,,R) — 0 and f,(0) — ¢,(0) — 0 as
1 — +00o. Hence, fixing € > 0 small enough, there exists 7 > 0 such that for every u > @

1 1
Fpg(fu:9) = E(0u, R) = E(fu, R) — E(¢y, R) — alfu(o)lq <e- 5|¢M(0)|‘1 <0. O

The rest of the section is organized in two subsections.
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5.1. Graphs with at least 3 half-lines: proof of Theorem 1.7. To prove Theorem
1.7 we consider, for [ > 0, graphs G; as in Figure 3. Let v be the vertex of degree 2 from
which emanate two bounded edges, say ei, ea, both of length [. Let v; be the vertex of
e1 not shared with es, and let vy be the vertex of es not shared with e;. Then, a couple
of half-lines emanates both from vy and from vs. In particular, we denote by Hi, Ho the
half-lines emanating from v; and by Hs, H4 those emanating from vy. Clearly, the graph
G, satisfies the hypotheses of Theorem 1.7.

The following two propositions highlight the dependence of the ground states problem
(2) for G; on the length [ of the bounded edges emanating from the vertex of degree 2.

Proposition 5.2. Let G be the graph in Figure 3, with e1, ez each of lengthl, and ¢ < 5+1.
Then there exists | > 0 (depending on p,q) so that, for every | > 1, ground states of Foq
at mass pu on Gy exist for every p.

Proof. The proof is divided in three steps.

Step 1. We first show that there exists 1z > 0 independent of [ so that, for every [ > 1,
ground states of F}, ; at mass pu on G; exist for every u > . By Lemma 5.1, there is 7 > 0
such that for every pu > Iz there exists a function f, € H ;(R) compactly supported on
[—1,1] and satisfying Fp, 4(fu, R) < E(¢u,R). Since, for every [ > 1, one can think of f,
as a function in H ;(Ql) supported on e; Ues and centered at v, by Corollary 2.6 it follows
that a ground state of F), ; at mass p on G; exists for every p > and [ > 1.

Step 2. We now prove that there exists u > 0 independent of [ so that, for every [ > 1,
ground states of F}, ; at mass p on G; exist for every p < p. To this end, let 5, denote the
graph obtained by removing the vertex v from G; and replacing the edges e;, es with a
single edge e of length 2{. Hence, G; has two vertices, vi and Vo. Clearly, HY(G) = Hl('g})
and for every u € H'(G;)

Fix now [ = 1 and g > 0, and set uj € H;(’g]) to be
if 2 € M, f —1,...,4
() = ou(x) 1 x i, for some i (58)
lPvller)y ifx€e,
where ¢, denotes the soliton of mass v on R as in (7). Since \|u1HiQ(§) = p, then p =
1

2v + 2|¢1(0) 202, In particular, if g — 0 then v2® = o(v) and 2v = p + o(u). Moreover,
since aig < 28 4+ 1 < ap (recall Remark 2.1),

2|¢1(0)|pyap 2|¢1(0)|q e

Fyq(u1,G1) — E(¢u,R) = 2E($y,R) — Yy VT Y "~ E(¢u,R)
2 0)|9 @
=0, (225 _ 1) ’u26+1 +0(H26+1) _ ’¢1q( )| (%) q+o(uaq)
<O (1) 0 e evn

which, by Corollary 2.6 and (57), entails the existence of x> 0 such that ground states of
F, , at mass p on G exist for every pu < p. B

Let now [ > 1. Denote by 6 :=1—1 and J := (%1 N (0,9)) U (H2N(0,0)) be the union
o~f the first portion of length § of the half-lines H; and Hsy. Let then u; be the function on
Gy defined in (58) above. Since u; is symmetrically decreasing on H; U Ha, the decreasing
rearrangement u} € H'(0,25) of the restriction of u; to J satisfies

luillrzcry = 1)) 226y s Nurllorry = lluillirozs) ¥r>1
u1(0) = ¢vl o) - uy(20) = uypyy, (6), i=1,2.
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(51 (7

FiGURE 8. The functions v and u; as in the proof of Proposition 5.2.

We then parameterize the edge e with [0, 2[] so that vy corresponds to 0 and vy to 2] and
define u; € H,(Gp) as (see Figure 8)

uy(x), if x € Ha UHy
() = uy(x), if x € (0,2]Ne
' uj(r —2), ifrxe(2,2))Nne

Uy, (v +96), ifrxeH;i=12.

Observe that by construction u;(va) = ui(ve) and

prq(ulvgl)_E(@u]R) < E(ul,gl)_M;W]_E((bu?R) ‘le(q )|q (§>aq+0(uaq) <0

for every p < p. By (57) and Corollary 2.6 it then follows that ground states of Fj,, at
mass p on G exist, for every [ > 1 and every p < p.

Step 3. We now show that there exists [ > 1 so that, for every [ > [, ground states of
F, 4 on G; exist for every p < p < i, where 1, ¢ are as in Step 1 and 2 above. In view of
the previous discussion, this will conclude the proof of Proposition 5.2.

Let ¢, be the soliton at mass p on the real line. For every [, let 6 = §(I) and x = k(I) be

b
such that w;(z) := #(¢u(z) — d)4 is compactly supported on (—I,1) and leHLQ( Ly = K
In particular, observe that § — 0, kK — 1 and w; — ¢, — 0 strongly in HY(R) as | — +oc.
Hence, thinking of w; as a function in H}L(gl) supported on e U ey, we have

—W“;O)’q +o(1)  (59)

as | — +oo, implying by Corollary 2.6 the existence of [ > 0 so that ground states of Fyq
on G; at mass 1 exist for every [ > I.

Let now pu < p < 71 be fixed. Since, for every [ > 1, the function w; € H;(gl) above is
supported on e; U ez only, setting wy,, to be B

anla) = (2) ((Zﬂ) |

By o1, Gt) — E(¢,R) = E(un, >—E<¢#,R>—;rwl<o>rq

we can think of w; ,, as a function in H ;(gl) supported on e; Uey (and identically equal to
zero both on a suitable portion of ey close to v and on the corresponding final portion of
ez close to Vo). By (59), Remark 4.1 and the convergence of w; to ¢, as | — 400, we have

that
Pt )~ B8 = (1) (s ® 20, m) - L (4) " oy

el
B
1
q
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for every u € (p, 1], provided [ is sufficiently large. Hence, up to possibly enlarging the
value of [, by Corollary 2.6 we conclude that ground states of Fj,, at mass 1 on G, exist

for every u < p < and for every [ > 1. This gives the claim of Step 3 and completes the
proof. ]

Proposition 5.3. Let G be the graph in Figure 3, with e1, ez each of length 1, and ¢ < 5+1.
Then there exists | > 0 (depending on p,q) and a value m > 0 so that for everyl <l ground
states of Iy, 4 at mass m on G; do not ewist.

Proof. Choose m so that m > u*, where p* = 1*(p, ¢, 3,4) is the critical value associated to
F,, 4,3 on the star graph S; with 4 half-lines as in Proposition 2.10. Hence, by Proposition
2.10 and Corollary 2.6, ground states of F}, ;3 at mass m on S do not exist and

Fpa3(w, Sy) > —0,m?+t Yw e HE (Sy). (60)

Let us now show that ground states of Fj,, at mass m on G; do not exist, provided [/ is
small enough.

Assume by contradiction that this is not the case and that there exists a ground state
u; of F, , at mass m on G; for every [ > 0. By Corollary 2.6, this entails that for every
>0

Fpq(u1,Gi) < E(¢m, R) = —0,m>P+1, (61)

which coupled with (10)—(11) and the fact that p € (2,6), g € (2,4), ensures that ||| g1(g,)
is bounded from above uniformly on .
Let then K; := e; Ueg. On the one hand, by (11) we get

ya
20 ]| 20’ w7
lilgniOnfE(ul,lCl) > —liminf — %) > iy it T UEG) g, (62)
—

=0 p =0 p

On the other hand, for every [, since v; is a ground state of F}, 4, then it is non-increasing
along every half-line of G; by Lemma 2.4. Hence, by [33, Proposition 1.7.1] there exist
u1, ug € H'(R) such that, up to subsequences, Wiy UM, — w1 and w0, — ug2 strongly
in L"(R) for every 2 < r < co. Moreover, for every z,y € K;, by Holder inequality

lug () — w(y)| < \/ﬂuu;HLZ(gl) —~0 as [—0. (63)

In particular, this implies that u1(0) = limy 0wy, up, (V1) = im0 wgp,0m, (V2) = u2(0).
Therefore, letting as usual hi, ho, hg, hqy be the half-lines of the star graph S4, we define
u € H'(Sy) as

ul(ac) if £ € hyUhsy
u(x) == _
ug(z) ifx € haUhy.

By construction, it then follows that [ul[z2(g,) < m and by (62)
lim inf B (ug, Gi) = E(u, S4)- (64)
—>

Furthermore, (63) implies that u;(W) — (0) for every vertex w € G;. Since G; has 3
vertices, by (61) and (64) we get

q q q
Fyq3(u, Sy) = E(u,Sy) — z‘u(o)’q < hflniglf (E(Uz,gl) B lug (V)| + [u (V)|? 4 |ug (Vo) >
—

q
= h?i%lf Fyo(uy, G) < —0,m?P+L,
(65)
Note that (65) immediately implies u # 0 on Sy. Also, if it were ||u|]%2(54) < m, then there
would exist 3 > 1 so that Bu € H} (S,) and

—Gpm® ! < By g3(Bu, Sa) < B2Fyq3(u, 54) < Fpgs(u, Sy) < —ym* !
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by (60) and (65) (recalling also that p € (2,6), ¢ € (2,4)), which is impossible. Hence,
it must be ||uH%2(S4) = m. But this means that u € H},(S,) satisfies (65), contradicting
(60). Therefore, there exists { > 0 such that no ground states of F}, , at mass m exist on
Gy, for every | < [, and we conclude. O

Proof of Theorem 1.7. To exhibit a graph G! as in part (i), by Proposition 5.2 it is enough
to take G; for sufficiently large value of [. Conversely, to prove statement (ii) one can simply
take G; and m as in Proposition 5.3. O

5.2. Graphs with exactly two half-lines: proof of Theorems 1.8-1.9. We begin
with the proof of Theorem 1.8. To this end, given & € N, we consider the graph G as
in Figure 4(A). From top to bottom, the three vertices of Gy are denoted by Vi, Vg, V3.
The vertices Vi and Vo share 3 edges of length 1. The vertices Vo and Vg share k edges of
length 1. The compact core of G will be denoted by K. The two half-lines H1, Ho of G
emanate from the vertex vs. Clearly, G, fulfills the hypotheses of Theorem 1.8 for every
k> 2.

Proof of Theorem 1.8. We claim that there exists m > 0 so that ground states of F}, ; at
mass m on G do not exist, provided k is sufficiently large. If this is true, then to exhibit
a graph G and a mass m as in the statement of Theorem 1.8 it is enough to take G = G
for a suitably large value of k.

Let us thus prove the claim, dividing the argument in the following steps.

Step 1. Let m > 0 be fixed. The actual value of m will be properly chosen later on
in the argument. Assume by contradiction that a ground state uy € H}(Gy) at mass m
exists on Gy for every k£ € N; so that by Corollary 2.6

Fyq(ug, Gr) < —0,m?*P*t vk eN. (66)
Coupling (66) with (10), (11), p € (2,6), g € (2,4) and HU’CH%Q(Q;@) = m, it then follows that

)]l 2(g,) is bounded from above uniformly on k. In particular, denoting by Ki C Ky, the
union of the k edges of length 1 between Vo and vs, we have that there exists a suitable
constant C' > 0 so that Huk”ﬂ(fék) < C and ||u;€||L2(,€k) < C independently of k.

For every k, consider now an ordering eq, es, ..., e of the edges of /Ek so that if ¢ < j,
that is e; precedes e; in the ordering, then [lug|[z2e,) > llukl[z2(e;)- Then [luglr2(e,) — 0
and minge,, ug(x) — 0 as k — 4o00. Hence, by Holder inequality, for every z € e,

2
uj(z) < (;Iég; Uk(y)) + 2lugll L2 (e lupllL2@ey — 0 ask — +oo.
In particular,
uk(\/g) — 0 and uk(\/g) —0 ask— 4. (67)

Step 2. Since uy is a ground state on G, by Lemma 2.4 it is non—increasing on both
‘Hi and Ho. Hence, (67) and HukH%Q(gk) = m yields |lug|lpr(2,0m,) — 0 as k — 400, so
that

liminf E(ug, H1 UHz) > 0. (68)

k—4o00
Furthermore, since |lug| g1(g,) is bounded uniformly on k and, for every k, Ky \ Ky is
given by 3 edges of length 1, there exists w; € HY(Ky \ Kz) so that Upe\&, — W1 in
Hl(’Ck \ ’Ck) and ukVCk\IEk
w1 (Va) = 0. Observe that we can think of w; as a function on the star graph S3 with 3

half-lines supported on the ball of radius 1 centered at the unique vertex of S3. Therefore
we have

— wj strongly in L" for every r > 2 as k — +oco. By (67),

g (v1)|?
q

k—+o0

lim inf <E(uk, le \Ek) — > > Fp7q(w1, Sg) . (69)
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Let now

K1 = €Ky I ,
K {ey € Kk - [ukll L2 e,y # 0}
Kiz = {ej €Ki+ lim fugllp2e,) = 0} ,

so that Ek = ’Ek,l U IE;CQ for every k. Note that either IE;CJ = I%k and IE;CQ = () for every
k, or K 1 contains a number of edges which is bounded from above uniformly on k.

Arguing as in the final part of Step 1, we obtain HukHLw(Ek ,) — 0as k — 400, which

implies
P < 2 p—2 < p=2
||uk||LP(Kk72) — Huk”[ﬂ(’ck’g)Huk”LOO(’Ck’g) — mHukHL"o(’Ckyg) - 0 asn — +OO7
thus yielding
lim inf E(uy, Kio) > 0. (70)

k—4o00

On the contrary, note that for every e; € IEM, there exists we, € H(0,1), We;, £ 0
on (0,1), so that lim, ,o+ we;(z) = lim, ;- we;(z) = 0, Upe, — we; in H'(0,1) and
Up|e; — We, strongly in L"(0,1) for every r > 2 as k — +o00. Let then [ := lim, 4 [Ky 1],
where as usual |y ;| denotes the length of ICj; (which is also the number of edges in
/Ek,l since each edge is of length 1), and note that either [ € N or [ = +o00. Writing then
lzm = Ué’:1 ej, we consider wy € H'(R) given by

() we,;(x) ifxe[j—1,7], forsome j €N, 1 <5<
wo(x) :=
2 0 otherwise.

By construction,

lliglilolf ||u;€||L2(I€k’1) 2 Hw/QHLQ(R) and kgrfoo ||Uk||Lr(/€k’1) = |wallprwy Vr =2,
so that
lim inf E(un, Ky1) > E(wa, R). (71)

k—+o00

Step 3. Let wy, wa be the functions defined in Step 2. Clearly leH%g(SS) + ngH%Q(R) <

m. Let us now choose m < p*, where pu* = p*(p,q,1,3) is the critical value associated to
Fpq.1 (which is indeed F, ) on S3 by Proposition 2.10. Hence, since ¢ > & 4 1, ground
states of F}, , at mass ;1 do not exist on S3 for every u < m. In particular, ground states

of F,, do not exist on S3 at mass ||w1||%2(83), so that Fj, 4(wy,S3) > & <||w1||%2(53),R>.
Coupling with (69) leads to

o = luk (V)2 9 ) 26+1
gmnﬁ<EwMK%\Kw—q > € (lunlBagsy R) = =0 (lonl3asy)) -

——+o00
(72)
Moreover, since wg € Hl}w2ll2 (R), then E(wq,R) > 5(||w2||%2(R),R), and by (70) and
L2(R)
(71) we get
o =~ 9 ) 28+1
i i B, ) 2 E(wal ey ®) = 6y (lunlagey) (73
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Hence, combining (72)—(73) with (68) and (67) gives
= Ju(va)[?
léginf F, q(uk, Gi) = hginf ( (ug, i \ K) — L
+ lim inf F(ug, Ky 1)+ hm me(uk, Ky, 2)

k——+o0
28+1 26+1
> - ep <||w1||%2(53)) - ep (||w2||%2(R)) > —epm2ﬁ+1 .
Since this contradicts (66), we conclude. O

At the end of this section, we prove Theorem 1.9. To this end, we will consider a graph
G, as in Figure 4(B). For every [ > 0, such a graph is obtained by choosing k € N large
enough so that Theorem 1.8 applies to the graph Gy as in Figure 4(A) and then adding a
vertex with degree 2, attached to two bounded edges each of length | between the original
compact core of G and the two half-lines of the graph.

Proof of Theorem 1.9. To prove the theorem we can simply show that there exist m > 0
and [ > 0 so that ground states of F}, , at mass m do not exist on G, for every [ < [. To
this end, it is enough to take m as in Theorem 1.8 and then adapting the argument in the
proof of Proposition 5.3, since as [ — 0 the limiting graph Gy admits no ground states at
mass m by Theorem 1.8. U

APPENDIX A. A USEFUL IDENTITY

The following identity concerning the actual value of the energy of the soliton ¢; at mass
1 = 1 for the energy E with the sole standard nonlinearity on the real line is crucial in the
proof of Theorem 1.3. Perhaps the result is well-known, but we do not have any explicit
reference. Since its proof is elementary, we report it here for the sake of completeness.

Recall that
2 -2
= — =——\ 60,=-F R).
6 _pu ﬂ 6 p D (¢1) )

Lemma A.1. For every p € (2,6), it holds

[1(0)[P~2
0p(20+1) = =T

Proof. Since ¢; is the ground state of E(-,R) at mass u = 1, there exists w > 0 such that
T+ 1[61P ¢ =wedr  onR. (74)
The conservation of mechanical energy then implies
1 1 w
5(61(2))? + = (¢1(2))? = 5 (91(2))”
2 P 2
for every x € R, so that integrating on R one gets
1,2 1 w
§H¢1||2+Z;||¢1H§:§- (75)
Furthermore, multiplying (74) by ¢; and integrating on R leads to

191113 = lglh + w = 0. (76)
By (75) and (76), we get

_6-p _ W
—E(¢1,R) = 2p+2)° " 2028+1)°
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Recalling that ¢, is explicitly given by
1
p—2

o) = [Bwsear (L2V0(a) |7 wem

it turns out that %|¢1(0) [P=2 = ¢ and, coupling with (77), we conclude. O

APPENDIX B. SOME REARRANGEMENT RESULTS

The next two lemmas collect some general constructions based on the theory of rear-
rangements on graphs that are helpful when proving the non—existence results in Theorem
1.1. Recall that VT is the set of vertices attached to at least one half-line.

Lemma B.1. Let G be a non—compact graph satisfying Assumption (H) with N > 3
half-lines and uw € HL(G) be a positive function. Then there exists u* € H)(S3) on the
star—graph Ss with 3 half-lines such that

E(u®,Ss) < E(u,0) (78)
and
u*(0) = Vrél‘l/n+ u(Vv). (79)

Moreover, u* is symmetric with respect to the origin and monotonically decreasing on 2
half-lines of Ss, whereas on the remaining half-line it is non—decreasing from the origin
to a unique maximum point and then non—increasing from this point on the rest of the

half-line.
Proof. Let u € H(G) be a positive function, m := minyey+ u(v), J :=={z € G : u(x) >
m} and u; be the restriction of u to J. Note that u(J) = (m, ||u|x] is connected and, by

Assumption (H), every value in u(J) is attained at least twice on G, except possibly ||u||cc-
Denoting by 4 € H'(—L, L) the symmetric rearrangement of u); on the interval (—L, L),

with L := %‘, we have (see [15, Proposition 3.1])

'l 20y 2> W'l 2—ny s Nullery = Nallr—p,ny ¥r>1, a(=L)=u(L) =m.
Similarly, u(G \ J) C [0,m] is connected and every value in u(G \ J) is attained at least
N > 3 times (i.e. at least once on each half-line). Therefore, letting & € H'(S3) be the
symmetric rearrangement on S3 of ug\ ; as in [5, Appendix A], we get

v lz2vgy = 1@ Nr2(sy) s Nullir@ngy = llresyy  ¥r=1, @(0) =m.
Denoting by A1, ha, hs the half-lines of S3, set u* : S3 — R
u(r—L) x€l0,2L]Nh
u*(z) == u(xr —2L) x € [2L,+00) NIy
u(x) otherwise .

By construction, u* € H ;(53), it satisfies (78) and (79) and enjoys the desired monotonicity
and symmetry properties. U

Lemma B.2. Let G be a non—compact graph with at least N > 3 half-lines and u € Hl(g)
be a positive function. If ||ullpe () < [[ullLe(g\k), then there exist two positive functions
uy,uz € HY(R™) such that

20wl Fo @y + luzllZo @y = llull7zg ),
2E(u1, RT) + E(uz, RT) < E(u,G \ K)

and

u(0) = min u(v),  u2(0) = flull = x)-
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In particular, uy is decreasing on RT, while us is increasing from the origin to a unique
point of maximum and then decreasing from this point on the rest of the half-line.

Proof. Set m := min,cy+u(V) and M := |lul|p=). Denoting by Ji := {z € G\ K :
u(z) > M} and by u);, the restriction of u to Ji, then u(J;) is connected and, since the
L norm of G is not attained on the compact core K, every value ¢ € u(Jy) is attained at
least twice (on any half-line where u attains its L> norm), except possibly ||u||re(g\x)-
Lettingw € H'(—Ly, L1) be the symmetric rearrangement of u|y, on the interval (— Ly, L1),

with L := |‘]2—1‘, by [15, Proposition 3.1] it follows

[l 2 ry,00) = lellz2cny . E@ (L1, L1)) < E(uyyy, ), lim_u(z) = M.
z—+LT
Moreover, denoting by Js := {z € G\K : m < u(z) < M}, we observe that u(J2) C [m, M]
is connected and every value ¢t € wu(Jz2) is attained at least once (for instance on any
half-line where u attains its L° norm). We thus consider the decreasing rearrangement
u € H'(0, Ly) of uyy, on the interval [0, Ly), where Ly := |.Ja|, so that

[@llz20,L0) = llwll2()  E(w, (0, L2)) < E(ujgy, Jo),  a(0) =M, lim u(z) =m.

x— Ly

Similarly, u(G\ (KU Jy U Jz)) C [0,m] is connected and every value t € u(G\ (KU J; U.J3))
is attained at least N > 3 times (i.e. once on each half-line). Therefore, rearranging
symmetrically decreasing on S3 the restriction of u to G\ (K U J; U J3) (see |5, Appendix
A]), there exists u; € H'(R*) satisfying

Bllutll 2y = 1wl L2 o\ (kugugs))

3E(ui,RT) <E(u,G\ (KUJU.R))

lim w;(x) =m.

z—07+
Then taking u; as above and uz € HY(RT) as
u(x — Ly) x €10,2Ly),
ug(x) == ¢ u(x — 2Lq) x € [2L1,2L + La),
ui(x — 2L — Lg) elsewhere
proves the claim. O
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