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DOUBLY NONLINEAR SCHRÖDINGER GROUND STATES ON
METRIC GRAPHS

FILIPPO BONI AND SIMONE DOVETTA

Abstract. We investigate the existence of ground states at prescribed mass on gen-
eral metric graphs with half–lines for focusing doubly nonlinear Schrödinger equations
involving both a standard power nonlinearity and delta nonlinearities located at the ver-
tices. The problem is proved to be sensitive both to the topology and to the metric of
the graph and to exhibit a phenomenology richer than in the case of the sole standard
nonlinearity considered in [13,15]. On the one hand, we identify various topological fea-
tures responsible for existence/non–existence of doubly nonlinear ground states in specific
mass regimes. On the other hand, we describe the role of the metric in determining the
interplay between these different topological properties.

1. Introduction

In this paper we investigate the existence of ground states for the doubly nonlinear
Schrödinger energy functional

Fp,q(u,G) =
1

2

∫
G
|u′|2 dx− 1

p

∫
G
|u|p dx− 1

q

∑
v∈V
|u(v)|q (1)

under the mass constraint ∫
G
|u|2 dx = µ .

Here G = (V,E) is a non–compact metric graph with finitely many vertices V and edges
E, some of which unbounded. Given µ > 0, let

H1
µ(G) := {u ∈ H1(G) : ‖u‖2L2(G) = µ}

denote the mass–constrained space (for standard definition of functional spaces on graphs
see for instance [21]), and

Fp,q(µ,G) := inf
u∈H1

µ(G)
Fp,q(u,G) (2)

the ground state energy level at mass µ. Accordingly, a ground state of Fp,q at mass µ on
G is defined as a global minimizer of (1) among all functions belonging to H1

µ(G), i.e. a
function u ∈ H1

µ(G) such that Fp,q(u,G) = Fp,q(µ,G).
In what follows, we will consider the regime where both the nonlinearities are L2–

subcritical, i.e.
2 < p < 6, 2 < q < 4 . (3)

Our aim is to discuss the dependence of the ground states problem (2) both on the param-
eters µ, p, q and on topological and metric properties of the graphs.

Since the second half of the previous century, the analysis of differential models on metric
graphs (or networks) has been witnessing a significant growth and it is nowadays a lively
and rich research area. As a consequence, the literature in the field is already extremely
wide and continues to increase, so that no attempt to provide a detailed overview of
all the existing results will be done here. We limit ourselves to note that both linear
and nonlinear problems have been addressed extensively. For the linear case, we refer
to [20, 23, 39, 41, 45, 52] and references therein for some of the most recent developments.
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2 F. BONI AND S. DOVETTA

In the nonlinear case, a prominent focus has been devoted to Schrödinger equations (see
for instance [11, 12, 22, 24, 25, 34–36, 43, 51, 63, 64, 66] as well as the recent review [3] and
references therein), but other nonlinear models have been considered too (see [61] for the
KdV equation and [27,28] for the Dirac equation).

The interest in Schrödinger equations on metric graphs stems from their role as a model
for signal transmission along so called quasi–one–dimensional structures, i.e. domains
where transverse dimensions are negligible compared to the longitudinal one. In particu-
lar, the huge technological developments in quantum technologies of the last decades led
to the actual realization of complex networks of magnetic and/or optical traps serving
as guides for controlled matter–waves. These achievements allowed to envisage the re-
placement of standard electron transport by circuits with currents of ultracold atoms as
Bose–Einstein condensates and gave birth to the emerging field of Atomtronics (for an up
to date comprehensive overview of the subject see e.g. [19]).

From the point of view of mathematical modelling, higher–dimensional thin quantum
waveguides are usually replaced by one–dimensional graphs, even though a rigorous justifi-
cation of such an approximation is still out of reach in full generality (see e.g. [40,44,60,75]).
The definition of a wave dynamics on metric graphs requires an evolution equation, govern-
ing the profile inside each edge, coupled with matching conditions at the vertices, describing
the interaction of wave–packets at junctions. On the one hand, it is by now well–known
that a proper effective theory for the time evolution of many–body quantum systems as
Bose–Einstein condensates is that of Gross–Pitaevskii, with the wave function ψ satisfying
a nonlinear Schrödinger equation in the form

i∂tψ(x, t) = −∂xxψ(x, t) + σ|ψ(x, t)|p−2ψ(x, t)

inside each edge of the graph. The interaction between atoms in Bose–Einstein condensates
is usually repulsive, corresponding to a defocusing nonlinearity (σ > 0), but it is nowa-
days possible to tune such interaction and build up collapsing condensates, corresponding
to σ < 0, through a mechanism called Feshbach resonance [31]. On the contrary, there
is an abundance of mathematical matching conditions that are a priori acceptable from
the physical standpoint, namely all those ensuring the conservation of the total proba-
bility

∫
G |ψ|

2 dx. To date it is not clear neither which specific vertex conditions should
be preferred case by case in actual experiments, nor how to justify a specific choice via
shrinking limit of quasi–one–dimensional structures (some results in this direction can be
found in [67] and references therein). As a consequence, a variety of different matching
conditions have been extensively addressed both from the theoretical and the experimental
point of view (for a detailed overview on this point we refer to the recent surveys [3, 50]).

Particularly relevant for our discussion is the ground states problem

E(µ,G) := inf
u∈H1

µ(G)
E(u,G) (4)

for the nonlinear Schrödinger energy functional with the standard nonlinearity only

E(u,G) :=
1

2

∫
G
|u′|2 dx− 1

p

∫
G
|u|p dx . (5)

Solutions of this problem satisfy the stationary nonlinear Scrödinger equation

u′′ + |u|p−2u = λu

on each edge of G, for a suitable Lagrange multiplier λ ∈ R associated to the mass con-
straint, and homogeneous Kirchhoff vertex conditions∑

e�v

du

dxe
(v) = 0 ∀v ∈ V , (6)
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Figure 1. Example of a graph fulfilling Assumption (H) as in [15].

that is the sum of the derivatives outgoing from every vertex equals zero. From the physical
point of view, this can be interpreted as a flux continuity condition at junctions. These
conditions are the most studied ones so far and fall within the general class of linear
matching conditions providing a self–adjoint extension of the Laplacian on graphs [54].

On the real line G = R, it is well–known [33] that in the L2–subcritical regime p ∈ (2, 6)
problem (4) has a unique (up to space translations) positive solution, the soliton φµ ∈
H1
µ(R), explicitly given by

φµ(x) = µαφ1(µβx), x ∈ R , (7)

where φ1 ∈ H1
1 (R) is the soliton at mass µ = 1 and

α :=
2

6− p
, β :=

p− 2

6− p
. (8)

After first investigations on star graphs (see e.g. [4]), the behaviour of (4) on general
non–compact graphs with half–lines has been characterized in [13, 15] for L2–subcritical
nonlinearities p ∈ (2, 6) and in [16] for the L2–critical regime p = 6. In particular, it
has been shown that whether ground states at a certain mass exist strongly depends both
on topological and on metric properties of the graph. As it will be important in the
following, we highlight that a general topological assumption, named Assumption (H),
ruling out existence of ground states of E at any mass µ is given in [15, Section 2]. Such
an assumption can be stated for instance as follows

(H) every point of the graph lies on a trail that contains two half–lines

(for other equivalent formulations of Assumption (H) see [14]). Recall that a trail is a
connected path in G in which every edge of the path is run through exactly once. Example
of a graph fulfilling Assumption (H) is given in Figure 1.

In the last years, the model with the sole standard nonlinearity has been generalized at
least in two directions.

On the one hand, [65] recently addressed the ground states problem for the energy
functional

E6,p(u,G) =
1

2

∫
G
|u′|2 dx− 1

6

∫
G
|u|6 dx− τ

p

∫
G
|u|p dx , τ ∈ R, p ∈ (2, 6),

accounting for the combined effect of a L2–critical and a (weighted) L2–subcritical standard
nonlinearity. It is shown how the interplay between the two standard nonlinearities sensibly
affects the ground states problem, giving rise to new phenomena with respect to the single
nonlinearity (4). This work seems to be the first paper on graphs fitting in the quite
active research line of Schrödinger equations with combined standard nonlinearities (see
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for instance [48, 53, 55, 56, 59, 70, 71, 73]). Note that solutions of this model still satisfy
Kirchhoff conditions (6) at every vertex of the graph.

On the other hand, fueled for instance by possible applications as the dynamic of con-
fined charges [49,58] or the resonant tunneling [62], concentrated nonlinearities have been
proposed. In Euclidean spaces, models describing the effect of a delta potential have
been considered first in dimension one and three [9, 10, 17, 18] (see also the recent pa-
pers [46, 47]), whereas the analysis in dimension two is more recent [2, 7, 8, 29, 32, 42]. On
non–compact graphs, the presence of a single standard nonlinearity restricted to the com-
pact core of the graph (i.e. the union of all the bounded edges) has been discussed for
instance in [37, 68, 69, 74]. The first step towards the investigation of the interaction be-
tween a standard nonlinearity and a pointwise term can be found in [5, 6], where a linear
delta potential is located at the unique vertex of a star graph. Such a model amounts to
take G as a star graph and q = 2 in (1). In this context, ground states are proved to exist
for small masses only, as they bifurcate from the corresponding solution of the associated
linear problem. Since ground states for the model (5) with the sole standard nonlinearity
never exist on star graphs, this existence result is a first marker of the nontrivial interplay
that occurs between a standard nonlinearity and a (linear) delta potential.

In this paper, we push forward this analysis by considering a model somewhat on the edge
between combined and concentrated nonlinearities: the energy functional (1) involving two
focusing nonlinearities, a standard one and a pointwise one. In dimension one it has been
shown that the delta–type nonlinearity can be interpreted as a suitable scaling limit of the
standard one [30]. We stress that solutions of the corresponding ground states problem (2)
satisfy the following nonlinear δ vertex condition∑

e�v

du

dxe
(v) = −|u(v)|q−2u(v) ∀v ∈ V . (9)

Contrary to (6), conditions of this sort do not correspond to any self–adjoint extension of
the Laplacian operator. However, they can still be considered physically meaningful, as
the L2 norm of the solutions of the associated time–dependent equation is conserved [18].
Moreover, the interest in this model from the point of view of applications is twofold. On
the one hand, nonlinear terms concentrated at the center of a delta have been used to
describe the effect of defects or impurities on the dynamics, as e.g. nonlinear propagation
in defected Kerr–type media [72] and Bose–Einstein condensates in optical lattices with
laser beams generated defects [38, 57]. On the other hand, it is not clear whether the
flux continuity imposed by Kirchhoff conditions provides the right choice in many relevant
physical contexts. In fact, jump discontinuities of macroscopic observables as e.g. phase
slips in Josephson junctions [19, Chapter VIII], vortex–induced jumps of chiral currents
in one–dimensional ring lattices [19, Chapter XIII], scattering of attractive solitons from a
potential barrier [19, Chapter XIV], have been revealed experimentally. Non–Kirchhoff’s
conditions at the vertices as (9) may thus serve as a model for matching conditions resulting
in flux discontinuity at branching points.

The ground states problem (2) has already been addressed both on the real line [26] and
on star graphs [1]. On the real line, in the regime (3) where both the nonlinearities are
L2–subcritical ground states exist for every value of the mass (see [26, Theorem 1.3] and
Section 2 below). The portrait is sensibly richer on star graphs. New threshold phenomena
arise, concerning both the value of the mass and that of the exponents p, q. Precisely, if
q < p

2 + 1, then ground states exist if and only if the mass is smaller than a critical value,
whereas if q > p

2 + 1 the situation is reversed and ground states exist for large masses
only (see [1, Theorem 1.1] as well as Section 2 below). Furthermore, if q = p

2 + 1, then
the existence of ground states is insensitive of the mass and depends only on how many
half–lines appear in the graph. In particular, ground states exist for every mass on star
graphs with a number of half–lines smaller than a threshold (depending on p), whereas
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they do not exist for any mass whenever the number of half–lines exceeds such a critical
value [1, Theorem 1.2].

1.1. Main results. We can now state and discuss the main results of the present paper,
that extend the analysis of the ground states problem (2) to general non–compact metric
graphs with half–lines.

Let us first highlight that, as a straightforward consequence of Corollary 2.6 below,
existence of ground states of Fp,q at mass µ is for free whenever it is already known that
ground states at mass µ exist for the problem (4) with the standard nonlinearity only (see
Remark 2.7). On the contrary, when ground states of E do not exist, the ground states
problem for Fp,q is far from trivial. Since in general existence of such states depends deeply
both on the topology and on the metric of G and may require a case by case analysis, it is
natural to restrict our attention to graphs for which it is granted a priori that ground states
of E never exist, for any value of the mass. For this reason, though this will clearly not
exhaust the class of graphs for which non–existence of ground states of E occurs, in what
follows, according to [13, Example 2.4], we will focus on graphs fulfilling Assumption (H)
that are not isomorphic to the real line or to the so–called towers of bubbles (see [13, Figure
3]). Note that, to ease the statement of our main results, we will always write that the
graphs we are considering satisfy Assumption (H), being understood without further notice
that we are excluding the line and the towers of bubbles.

Even though Assumption (H) is enough to prevent solutions of problem (4), this is no
longer true in the doubly nonlinear case (2). The first part of our analysis provides a
topological description of the problem. We begin with the following result.

Theorem 1.1. Let G be a non–compact graph satisfying Assumption (H) with at least
3 half–lines and all vertices of degree greater than or equal to 3. Then there exist two
thresholds µ

p,q
:= µ

p,q
(p, q,G), µp,q := µp,q(p, q,G), so that 0 < µ

p,q
≤ µp,q and

(i) if q < p
2 + 1, then ground states of Fp,q at mass µ exist if µ < µ

p,q
and do not exist

if µ > µp,q ;
(ii) if q > p

2 + 1, then ground states of Fp,q at mass µ exist if µ > µp,q and do not exist
if µ < µ

p,q
.

The previous theorem says that graphs fulfilling Assumption (H), with at least 3 half–
lines and no vertex of degree smaller than 3 behave essentially as star graphs, that are
indeed the easiest example of graphs covered by Theorem 1.1. We point out that the
existence parts in Theorem 1.1 are not difficult to obtain and remain true even removing
the hypotheses of at least 3 half–lines and all vertices with degree not smaller than 3
(see Propositions 3.1–3.2 below). Conversely, the proof of the non–existence statements is
rather involved and requires new ideas (see Section 4). Note that, by [1, Theorem 1.1], if
G is a star graph then µ

p,q
= µp,q for every q 6=

p
2 + 1. However, the analysis in [1] heavily

relies on the fact that on star graphs an explicit characterization of the critical points of
Fp,q in H1

µ(G) is available. Since this is clearly out of reach on general non–compact graphs,
to understand whether, for every graph fulfilling the hypotheses of Theorem 1.1, the two
thresholds µ

p,q
, µp,q coincide seems to be a challenging open question. Notice also that

Theorem 1.1 gives no information when q = p
2 + 1.

Even though at first sight Theorem 1.1 may lead to think that no new phenomenon
arises when considering networks more general than star graphs, this is actually not the
case. The following theorems identify two topological features of non–compact graphs that
are responsible for existence results with no analogue on star graphs.

Theorem 1.2. Let G be a non–compact graph with at least a vertex of degree 2. Then
there exists µ̃p,q := µ̃p,q(p, q,G) > 0 such that ground states of Fp,q at mass µ exist for
every µ ≥ µ̃p,q.
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Theorem 1.3. Let G be a non–compact graph with exactly 2 half–lines. Then there exists
µ̂p,q := µ̂p,q(p, q,G) > 0 such that ground states of Fp,q at mass µ exist for every µ ≤ µ̂p,q.

Note first that neither Theorem 1.2 nor Theorem 1.3 require Assumption (H) to be
fulfilled. This is because each of them refers to a topological property rooting for existence
of ground states independently of any other features of the graph.

For graphs fulfilling Assumption (H), both Theorem 1.2 and Theorem 1.3 shed some
light when each of the two hypotheses of Theorem 1.1 are removed. As already highlighted
before, note that getting rid of such hypotheses do not affect the existence results stated
in Theorem 1.1.

On the one hand, the presence of a vertex of degree 2 accounts for existence of large
masses ground states, regardless of the specific value of p, q. As the proof of Theorem 1.2
will display clearly, this can be seen as a reminiscence of the behaviour of the problem
on the real line, where ground states always exist and concentrate around the origin as
the mass increases. For graphs fulfilling Assumption (H) with at least 3 half–lines, this is
particularly interesting in the regime q < p

2 + 1. Indeed, combining Theorem 1.1(i) with
Theorem 1.2, the following is immediate.

Corollary 1.4. Let G be a non–compact graph satisfying Assumption (H), with at least 3
half–lines and at least a vertex of degree 2 (e.g. Figure 2(A)), and let q < p

2 + 1. Then
there exist µ

p,q
:= µ

p,q
(p, q,G) > 0, µ̃p,q := µ̃p,q(p, q,G) > 0, so that ground states of Fp,q

at mass µ exist both if µ < µ
p,q

and if µ ≥ µ̃p,q.

This marks a sharp difference with respect to star graphs, for which ground states at
large masses never exist in the regime q < p

2 + 1. Moreover, let us also stress the fact that
the role of vertices of degree 2 is new and peculiar of the doubly nonlinear problem we are
considering. Indeed, it is well–known that vertices of degree 2 are completely inessential
when dealing with standard nonlinearities only.

On the other hand, Theorem 1.3 unravels a somewhat surprising new phenomenon, as
the presence of exactly two half–lines is enough to guarantee that ground states at small
masses always exist, independently of p, q. Even though it is not evident, also in this case
the argument of the proof will show that such a phenomenon is rooted in the behaviour
of ground states on the real line. The main idea underpinning this result is that, when
the mass is sufficiently small, the doubly nonlinear problem does not feel any difference
between a single delta concentrated at a point or finitely many of them located on a given
compact core. Again, combining Theorem 1.3 with Theorem 1.1(ii) and Theorem 1.2 has
the next direct consequences, highlighting once more the rich structure of the problem.

Corollary 1.5. Let G be a non–compact graph satisfying Assumption (H), with exactly 2
half–lines and no vertex of degree 2 (e.g. Figure 2(B)), and let q > p

2 + 1. Then there exist
µ̂p,q := µ̂p,q(p, q,G) > 0, µp,q := µp,q(p, q,G) > 0 such that ground states of Fp,q at mass µ
exist both if µ ≤ µ̂p,q and if µ > µp,q.

Corollary 1.6. Let G be a non–compact graph with exactly 2 half–lines and at least a
vertex of degree 2 (e.g. Figure 2(C)). Then there exist µ̃p,q := µ̃p,q(p, q,G) > 0, µ̂p,q :=
µ̂p,q(p, q,G) > 0 such that ground states of Fp,q at mass µ exist both if µ ≤ µ̂p,q and if
µ ≥ µ̃p,q.

The results discussed so far outline a description of how the ground states problem on
graphs with half–lines is affected by the topology of the network. However, the presence of
various topological features as in Theorems 1.1–1.2–1.3, each guaranteeing on its own the
existence of ground states in different mass regimes, raises new questions. For instance,
Corollary 1.4 provides a class of graphs where small masses ground states exist because
of the similarity between general non–compact graphs and star graphs, whereas ground
states at large masses exist due to vertices with degree 2, that make the problem on graphs
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(a) A graph satisfying
Assumption (H) with at
least 3 half–lines and at
least a vertex with degree
2.

(b) A graph satisfying Assumption
(H) with exactly 2 half–lines and no
vertex with degree smaller than 3.

(c) A graph with exactly 2 half–
lines and at least a vertex with de-
gree 2.

Figure 2. Examples of graphs as in Corollaries 1.4–1.5–1.6.

resembles the corresponding one on the line. This seems to suggest that the thresholds
µ
p,q

, µ̃p,q are rooted in two unrelated properties of the graph. It is then natural to wonder
if a general relation between these two values holds for every graph in Corollary 1.4 or if
it depends on further properties of the graph. Analogous problems are posed by Corollary
1.5 and Corollary 1.6.

To partially answer this kind of questions, we have the following results.

Theorem 1.7. Let q < p
2 + 1. Then

(i) there exists a graph G1 satisfying Assumption (H), with at least 3 half–lines and at
least a vertex of degree 2, so that ground states of Fp,q at mass µ exist for every
µ > 0;

(ii) there exists a graph G2 satisfying Assumption (H), with at least 3 half–lines and at
least a vertex of degree 2, and a value m > 0 so that ground states of Fp,q at mass
m on G2 do not exist.

Theorem 1.8. Let q > p
2 + 1. Then there exists a graph G satisfying Assumption (H),

with exactly 2 half–lines and no vertex of degree 2, and a value m > 0 so that ground states
of Fp,q at mass m on G do not exist.

Theorem 1.9. There exists a graph G, with exactly 2 half–lines and at least a vertex of
degree 2, and a value m > 0 so that ground states of Fp,q at mass m on G do not exist.

Theorems 1.7–1.8–1.9 exploit the key role of the metric of the graph. On the one hand,
Theorem 1.7 is proved by considering graphs with exactly one vertex with degree 2 (see
Figure 3) and investigating the dependence of ground states at prescribed mass on the
length of the edges emanating from this vertex. It turns out that ground states always
exist when these two edges are sufficiently long (Proposition 5.2), whereas there are masses
at which they do not exist when the edges emanating from the vertex of degree 2 are too
short (Proposition 5.3). On the other hand, the proof of Theorem 1.8 is based on graphs
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Figure 3. Example of a graph as in Theorem 1.7. When the edges ema-
nating from the vertex of degree 2 are sufficiently long ground states always
exist. Conversely, there are masses at which ground states do not exist if
such edges are short enough.

v1

(a) (b)

Figure 4. Examples of graphs as in (A) Theorem 1.8 and (B) Theorem
1.9. In (A), when the number of multiple edges between the bottom and
the middle vertex is large enough, there are masses at which ground states
do not exist. The same occurs in (B) when the number of edges between
the second–to–top and third–to–top vertex is large enough and the edges
emanating from the vertex of degree 2 are sufficiently short.

with exactly 2 half–lines and whose compact core has total length way larger than its
diameter (see Figure 4(A)). Theorem 1.9 then combines these features, since to exhibit a
graph as in the statement of the theorem (Figure 4(B)) we add a vertex of degree 2 with
two sufficiently short edges to the graph provided by Theorem 1.8.

Let us highlight that Theorem 1.7 is somewhat complete, showing that under the hy-
potheses of Corollary 1.4 there are both graphs for which ground states exist for every
mass (as on the real line) and graphs where non–existence occurs at certain masses (akin
to star–graphs). Conversely, Theorems 1.8–1.9 provide a partial information only, since
at present we are not able to exhibit graphs fulfilling the hypotheses of Corollary 1.5 or
Corollary 1.6 for which ground states always exist. Actually, it is not even clear to us
whether graphs like this do exist. Roughly, the problem is the following. On the one hand,
to keep the threshold µ̂p,q in Corollaries 1.5–1.6 bounded away from zero, one would need
the total length of the compact core to be not too large. On the other hand, to tune µp,q of
Corollary 1.5 and µ̃p,q of Corollary 1.6 to sufficiently small values, it seems to be necessary
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that the lengths of specific edges are large enough. It is an open problem to understand
whether one can balance these conflicting features to obtain existence of ground states at
every mass.

The paper is organized as follows. Section 2 collects some preliminary results on the
doubly nonlinear ground states problem on graphs. Sections 3–4 provide the proof of the
topological results: in Section 3 we consider the existence statements of Theorem 1.1 and
Theorems 1.2–1.3, whereas in Section 4 we conclude the proof of Theorem 1.1 with the
non–existence results. Section 5 discusses the role of the metric and gives the proof of
Theorems 1.7–1.8–1.9. Finally, Appendices A–B contain some technical results used here
and there in the paper.
Notation. Throughout, norms will be denoted avoiding the domain of integration

whenever possible (e.g. ‖u‖p will stand for ‖u‖Lp(G)), using full notation only where nec-
essary.

2. Preliminaries

In this section we begin with some preliminary results that will be important in our
discussion.

To start with, let us introduce some notation we will stick to all along the paper. We
recall that here a non–compact metric graph G = (V,E) is a metric graph for which both
the set of vertices V and the set of edges E are finite, but E contains both bounded and
unbounded edges. As usual, each bounded edge is identified with a bounded interval, while
every unbounded edge Hi, i = 1, . . . , N , is identified with (a copy of) the half–line. The
set of all the bounded edges of G will be called its compact core and will be denoted by K.
Whenever needed, we will use ` := |K| for the total length of the compact core. Moreover,
we will denote by n := #V the total number of vertices of G and by V + ⊆ V the subset
of vertices v ∈ V attached to at least one unbounded edge.

2.1. Ground states on general non–compact graphs: properties and existence
criteria. Let us first recall the following Gagliardo–Nirenberg inequalities

‖u‖pp ≤ Kp‖u‖
p
2

+1

2 ‖u′‖
p
2
−1

2 , p > 2 , (10)

‖u‖2∞ ≤ K‖u‖2‖u′‖2, (11)

holding on every non–compact graph G, for every u ∈ H1(G). Here Kp,K are positive
constants depending on p and G only.

Observe also that, for every u ∈ H1
µ(G), it is evident that Fp,q(u,G) = E(u,G) −

1
q

∑
v∈V |u(v)|q ≤ E(u,G). Hence, for every graph G and mass µ we have

Fp,q(µ,G) ≤ E(µ,G) . (12)

If G is a non–compact graph with half–lines, [13, Theorem 2.2] shows that E(µ,G) ≤
E(µ,R) = E(φµ,R). Moreover, according to (7) one has

E(φµ,R) = −θpµ2β+1, θp := −E(φ1,R) > 0 (13)

where β is as in (8). Summing up, for every non–compact graph G and mass µ it always
holds

Fp,q(µ,G) ≤ −θpµ2β+1 . (14)
The next lemma provides a priori estimates for functions with energy Fp,q sufficiently close
to the ground state level Fp,q. Similar estimates were obtained in [13, Lemma 2.6] for the
problem (4) with the standard nonlinearity only, for every value of the mass µ. In our
setting, it is possible to recover these results in certain mass regimes only.

Remark 2.1. Since it will be frequently used in the following, we recall here that, given
α, β as in (8), the relation αq < 2β + 1 holds if and only if q < p

2 + 1.
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Lemma 2.2. Let G be a non–compact graph and p ∈ (2, 6), q ∈ (2, 4). Then there exists
µ∗ := µ∗(p, q,G) > 0 so that

(i) for every µ ≥ µ∗ if q < p
2 + 1, or

(ii) for every µ ≤ µ∗ if q > p
2 + 1,

if u ∈ H1
µ(G) satisfies Fp,q(u,G) ≤ 1

2Fp,q(µ,G), then

C−1
p µ2β+1 ≤ ‖u′‖22 ≤ Cpµ2β+1, (15)

C−1
p µ2β+1 ≤ ‖u‖pp ≤ Cpµ2β+1, (16)

C−1
p µα ≤ ‖u‖∞ ≤ Cpµα (17)

for some constant Cp > 0 depending on p and G only.

Proof. We split the proof in two parts.
Part 1: q < p

2 + 1. We need to prove that there exists µ∗ > 0 so that (15)–(16)–(17) hold
for every µ ≥ µ∗. Let u ∈ H1

µ(G) be such that Fp,q(u,G) ≤ 1
2Fp,q(µ,G) and consider the

notation T := ‖u′‖22, P := ‖u‖pp and D := ‖u‖2∞, so that combining with (14) gives
1

2
T − 1

p
P − 1

q

∑
v∈V
|u(v)|q ≤ −θp

2
µ2β+1, (18)

whereas (10) and (11) become respectively

P ≤ Kpµ
p+2
4 T

p−2
4 (19)

and
D ≤ Kµ

1
2T

1
2 . (20)

We start by proving the upper bound in (15). By contradiction, assume that there exists
a subsequence µk → +∞ as k → +∞ such that

lim
k→+∞

T

µ2β+1
k

= +∞. (21)

By (18), (19) and (20) (and recalling (8))

1

2
T ≤ Kp

p
µ
p+2
4

k T
p−2
4 +

nK
q
2

q
µ
q
4
k T

q
4 ,

hence
T

µ2β+1
k

≤ 2Kp

p
µ
p+2
4
−(2β+1)

k T
p−2
4 +

2nK
q
2

q
µ
q
4
−(2β+1)

k T
q
4

=
2Kp

p

(
T

µ2β+1
k

) p−2
4

+
2nK

q
2

q

(
T

µ2β+1
k

) q
4

µ
αq−(2β+1)
k .

Dividing the last inequality by T

µ2β+1
k

then yields

1 ≤ 2Kp

p

(
T

µ2β+1
k

)− 6−p
4

+
2nK

q
2

q

(
T

µ2β+1
k

)− 4−q
4

µ
αq−(2β+1)
k . (22)

Since p < 6, q < 4 and q < p
2 + 1, by Remark 2.1 the right hand–side in (22) goes to zero

as k → +∞, providing the contradiction we seek. Thus, there exists µ∗ > 0 so that the
upper bound in (15) holds for every µ ≥ µ∗. Combining with (19)–(20), we also get for
every µ ≥ µ∗

P ≤K ′pµ2β+1

D ≤K ′µβ+1 ,
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which prove the upper bounds in (16)–(17) (note that 2α = β + 1).
As for the lower bounds, assume by contradiction that there exists a subsequence µk →

+∞ as k → +∞ such that

lim
k→+∞

P

µ2β+1
k

= 0. (23)

By (18) and the fact that T ≥ 0, we already know that

1

p

P

µ2β+1
k

+
1

q

∑
v∈V |u(v)|q

µ2β+1
k

≥ θp
2

and, taking advantage of the upper bound in (17), this gives

1

p

P

µ2β+1
k

+
nCqp
q
µ
αq−(2β+1)
k ≥ θp

2
. (24)

Therefore, as P

µ2β+1
k

→ 0, the left hand–side of (24) tends to zero by Remark 2.1, i.e. a

contradiction. Consequently, up to possibly changing the value of µ∗, the lower bound in
(16) is proved for every µ ≥ µ∗. The lower bounds in (15)–(17) follow by (19) and by the
fact that P ≤ ||u||p−2

∞ µ respectively.

Part 2: q > p
2 + 1. The argument is analogous to that in Part 1. We assume first by

contradiction that there exists a subsequence µk → 0 as k → +∞ such that (21) holds
and show that this is impossible by Remark 2.1 since q > p

2 + 1. This is enough to
prove the upper bounds in (15)–(16)–(17) for every µ ≤ µ∗, for some µ∗ > 0. To prove
the lower bounds we argue by contradiction, assuming the existence of a subsequence
µk → 0 as k → +∞ such that (23) holds and adapting the previous argument to the case
q > p

2 + 1. �

Remark 2.3. Note that the condition Fp,q(u,G) ≤ 1
2Fp,q(µ,G) is non–empty, as by (14)

it holds Fp,q(µ,G) < 0 for every µ > 0.

With the following lemma, we provide another qualitative property of doubly nonlinear
ground states.

Lemma 2.4. Let G be a non–compact graph and u ∈ H1
µ(G) be a ground state of Fp,q at

mass µ on G. If v ∈ V + is a vertex attached to N ≥ 2 half–lines, then u is symmetrically
decreasing on the N half–lines emanating from v.

Proof. Clearly, when there is no vertex of G attached to more than one half–line, there is
nothing to prove. Let then v ∈ V + be a vertex with N half–lines (Hi)Ni=1 emanating from
it. Note that

⋃N
i=1Hi can be interpreted as a (copy of a) star graph SN with N half–lines.

Hence, arguing as in the proof of [1, Lemma 3.4], if u ∈ H1
µ(G) is a ground state of Fp,q

at mass µ on G, then its restriction u|⋃Ni=1Hi
to
⋃N
i=1Hi is either symmetric with respect

to v and monotonically decreasing on each half–line, or it is symmetric with respect to v
and monotonically decreasing on N − 1 half–lines and on the remaining one, say H1, it is
non–decreasing from the origin to a unique maximum point and then non–increasing on
the rest of H1. To prove the lemma, we are thus left to rule out the latter case. To this
end, assume by contradiction that u is as in the second case. Let u1 be the restriction of
u to H1 ∪H2 and u2 be the restriction of u to G \ (H1 ∪H2), and set

µ1 :=

∫
H1∪H2

|u1|2 dx, µ2 :=

∫
G\(H1∪H2)

|u2|2 dx.
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For ε > 0 small enough, let ν ∈ (−ε, ε). Since by assumption u is increasing at v on H1,
it has no maximum point at v, so it is possible to define uν : G → R

uν(x) :=


√

µ1+ν
µ1

u1(x+ T (ν)) x ∈ H1 ∪H2√
µ2−ν
µ2

u2(x) x ∈ G \ (H1 ∪H2) ,

in such a way that the shift T (ν) satisfies T (0) = 0 and uν is continuous at v. It then
follows that uν ∈ H1

µ(G) for every ν and

d2

dν2
Fp,q(uν ,G)

∣∣∣
ν=0

=− p− 2

4

[
1

µ2
1

∫
H1∪H2

|u1|p dx+
1

µ2
2

∫
G\(H1∪H2)

|u2|p dx

]

− q − 2

4µ2
2

∑
w∈V
|u(w)|q

≤− p− 2

4µ2

∫
G
|u|p dx− q − 2

4µ2
2

∑
w∈V
|u(w)|q < 0,

so that, choosing ε small enough, we get a contradiction with the fact that u is a ground
state of Fp,q at mass µ on G. �

The next proposition establishes an existence criterion for ground states of Fp,q at pre-
scribed mass.

Proposition 2.5. Let G be a non–compact graph and µ > 0. If Fp,q(µ,G) < E(µ,R), then
ground states of Fp,q at mass µ exist.

Proof. The proof is almost identical to that of [1, Proposition 3.1], so that here we just
sketch the argument to stress the unique minor modification that is needed. Let (un) ⊂
H1
µ(G) be a minimizing sequence for Fp,q, i.e. Fp,q(un,G) → Fp,q(µ,G) as n → +∞. By

(10)–(11), un ⇀ u in H1(G) and un → 0 in L∞loc(G), for some u ∈ H1(G). Arguing as
in [1, Proposition 3.1], one obtains that either u ≡ 0 on G or u is a ground state at mass µ.
To rule out the former case, it is enough to note that if un → 0 in L∞loc(G), then un → 0 in
L∞(K), so that both

∑
v∈V |un(v)|q → 0 and ‖un‖Lp(K) → 0 as n→ +∞. Hence, arguing

as in the proof of [15, Theorem 3.3] leads to

E(µ,R) > Fp,q(µ,G) = lim
n
Fp,q(un,G) ≥ lim inf

n→+∞
E(un,G) ≥ E(µ,R),

i.e. a contradiction. �

Corollary 2.6. Let G be a non–compact graph and µ > 0. If there exists u ∈ H1
µ(G) such

that Fp,q(u,G) ≤ E(µ,R), then ground states of Fp,q at mass µ exist.

Proof. It is a straightforward consequence of Proposition 2.5. �

Remark 2.7. By (12) and Corollary 2.6, it follows immediately that if ground states
of E at mass µ exist on G, then also ground states of Fp,q at mass µ exist. Indeed,
by [15, Theorem 2.2], if u ∈ H1

µ(G) is a ground state of E in H1
µ(G), then necessarily

E(u,G) ≤ E(µ,R), so that Fp,q(u,G) ≤ E(u,G) ≤ E(µ,R) and ground states of Fp,q exist
too.

2.2. Ground states on the real line and on star graphs. To conclude this preliminary
section, we report here some results for the doubly nonlinear problem on the real line and
on star graphs. Almost all of the following has already been proved or it is a minor
modification of the analysis in [1, 26]. For the sake of completeness, the proof of what is
new is provided here whenever needed.

The first result concerns the problem on the real line.
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Proposition 2.8. Let p ∈ (2, 6), q ∈ (2, 4). On the real line R, for every µ > 0 there
exists a unique positive ground state ηµ ∈ H1

µ(R) of Fp,q at mass µ. Moreover, ηµ satisfies

Fp,q(ηµ,R) <E(φµ,R), (25)
|ηµ(0)| > |φµ(0)| , (26)

|ηµ(0)|2 = o(µ) as µ→ 0. (27)

Proof. The existence of a unique positive ground state ηµ on R is the content of [26,
Theorem 1.3]. Moreover, computing the Euler–Lagrange equation of the problem shows
that ηµ cannot coincide with the soliton φµ, so that

Fp,q(ηµ,R) = Fp,q(µ,R) < Fp,q(φµ,R) = E(φµ,R)− 1

q
|φµ(0)|q < E(φµ,R) ,

entailing (25). On the contrary, since the soliton φµ is the unique (up to translations)
positive ground state of E at mass µ on R,

E(ηµ,R) ≥ E(φµ,R) .

Combining with (25) gives (26).
We are left to prove (27). Observe first that Fp,q(ηµ,R) < 0 for every µ > 0, by (25)

and E(φµ,R) < 0. Coupling with (10)–(11), it follows that

1

2
‖η′µ‖22 −

Kp

p
µ
p+2
4 ‖η′µ‖

p
2
−1

2 − K
q
2

q
µ

1
2 ‖η′µ‖

q
2
2 < 0,

that entails the existence of a constantM > 0 so that ‖η′µ‖2 ≤M for every µ small enough.
In particular, this implies ‖ηµ‖∞ → 0 by (11) and thus ‖ηµ‖pp ≤ ‖ηµ‖p−2

∞ µ = o(µ) as µ→ 0.
Suppose then by contradiction that there exists C > 0 such that ‖η′µ‖22 ≥ Cµ as µ → 0.
Since Fp,q(ηµ) < 0, by (11) we have

1

2
‖η′µ‖22 + o

(
‖η′µ‖22

)
=

1

2
‖η′µ‖22 −

1

p
‖ηµ‖pp <

1

q
|ηµ(0)|q ≤ K

q
2

q
µ
q
4 ‖η′µ‖

q
2
2 ,

that, dividing by ‖η′µ‖
q
2
2 and using ‖η′µ‖22 ≥ Cµ, implies

1 ≤ C ′µ
2q−4

4 as µ→ 0 .

Since q > 2, this is impossible. Hence, ‖η′µ‖2 = o(
√
µ) and (by (11) again)

|ηµ(0)|2 = ‖ηµ‖2∞ ≤ K
√
µ‖η′µ‖2 = o(µ) as µ→ 0 . �

The last result of the section is a generalization of [1, Theorem 1.1] on star graphs SN
to the functional Fp,q,τ (·, SN ) : H1

µ(SN )→ R

Fp,q,τ (u, SN ) =
1

2

∫
SN

|u′|2 dx− 1

p

∫
SN

|u|p dx− τ

q
|u(0)|q, (28)

where τ > 0 is a positive parameter.

Remark 2.9. The functional Fp,q,1 coincides with the usual functional Fp,q.

Proposition 2.10. Let p ∈ (2, 6), q ∈ (2, 4), q 6= p
2 + 1 and τ > 0. Let SN be the star

graph with N ≥ 3 half–lines. Then there exists a critical mass µ∗ := µ∗(p, q, τ,N) > 0
such that

(i) if q < p
2 + 1, then ground states of (28) at mass µ exist if and only if µ ≤ µ∗;

(ii) if q > p
2 + 1, then ground states of (28) at mass µ exist if and only if µ ≥ µ∗.

Furthermore, whenever they exist, ground states at prescribed mass are unique and radially
decreasing on SN , i.e. their restriction to each half–line of the graph corresponds to the
same decreasing function on R+.
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Proof. The statement for τ = 1 has been proved in [1, Theorem 1.1]. It is immediate to
verify that the same argument applies without changes to any choice of the parameter
τ > 0. �

3. Existence results: proof of Theorems 1.1–1.2–1.3

In this section we address the existence of doubly nonlinear ground states, providing the
proof of the existence statements in Theorem 1.1, as well as the proof of Theorems 1.2–1.3.

We begin with the existence results in Theorem 1.1, whose proof is a straightforward
consequence of the next two propositions. Note that none of them requires the validity of
Assumption (H), so that they hold in a more general setting than the one of Theorem 1.1.

Proposition 3.1. Let G be a non–compact graph and q < p
2 + 1. Then there exists

µ
p,q

:= µ
p,q

(p, q,G) > 0 such that ground states of Fp,q at mass µ on G exist for every
µ < µ

p,q
.

Proof. Consider u ∈ H1
µ(G) given by

u(x) :=

{
φm(x) if x ∈ Hi, for some i = 1, . . . , N

‖φm‖L∞(R) if x ∈ K ,

where φm is the soliton at mass m on R as in (7). Then it must be

µ =
N

2
‖φm‖2L2(R) + `‖φm‖2L∞(R) =

N

2
m+ `|φ1(0)|2m2α

where as usual ` := |K|. In particular, observe that m→ 0 as µ→ 0, so that m2α = o(m)
and m = µ + o(µ) as µ → 0. Moreover, since q < p

2 + 1, by (8) and Remark 2.1 it holds
αq < 2β + 1 < αp. Hence,

Fp,q(u,G) =
N

2
E(φm,R)− `|φ1(0)|p

p
mαp − n|φ1(0)|q

q
mαq

= −N
2
θpm

2β+1 − `|φ1(0)|p

p
mαp − n|φ1(0)|q

q
mαq

= −n|φ1(0)|q

q
µαq + o(µαq) as µ→ 0 ,

so that

Fp,q(u,G) = −n|φ1(0)|q

q
µαq + o(µαq) ≤ −θpµ2β+1 = E(µ,R) as µ→ 0 .

Therefore, by Corollary 2.6 there exists µ
p,q
> 0 such that ground states of Fp,q at mass µ

on G exist for every µ < µ
p,q

. �

Proposition 3.2. Let G be a non–compact graph with at least one vertex of degree greater
than or equal to 3 and q > p

2 + 1. Then there exists µp,q := µp,q(p, q,G) > 0 such that
ground states of Fp,q at mass µ on G exist for every µ > µp,q.

Proof. Let v ∈ V be a vertex of degree not smaller than 3. Denote by {ei}i=1,...,N the
N ≥ 3 edges emanating from v and define L := mini=1,...,N `i, where `i := |ei| is the length
of the edge ei.

Let then Φµ ∈ H1
µ(SN ) be the radially symmetric function on the star graph SN with N

half–lines whose restriction to each half–line satisfies Φµ(x) := φ 2µ
N

(x), for every x ∈ R+.

Here φ 2µ
N

is the soliton at mass 2µ
N given by (7). For every µ > 0, let then δ := δ(µ),

κ := κ(µ) be such that the function wµ(x) := κ(Φµ(x)− δ)+ satisfies ‖wµ‖2L2(SN ) = µ and
it is supported on the ball B(0, L) in SN of radius L centered at the vertex of the star
graph. Relying on the decaying properties of the solitons on the line, it is straightforward
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to check that δ → 0, κ → 1 and wµ − Φµ → 0 strongly in H1(SN ) as µ → +∞, so that
E(wµ, SN ) − E(Φµ, SN ) → 0 and wµ(0) − Φµ(0) → 0 as µ → +∞. Moreover, since wµ
is supported on the ball of radius L centered at the vertex of SN , we can think of it as a
function wµ ∈ H1

µ(G) supported on the union of the edges ei emanating from the vertex v
in G. Therefore, for every ε > 0 there exists µ∗ := µ∗(ε) so that if µ ≥ µ∗

Fp,q(wµ,G)− E(φµ,R) = Fp,q(wµ, SN )− E(φµ,R)

=
N

2
E
(
φ 2µ
N
,R
)
− E(φµ,R)− 1

q

∣∣∣φ 2µ
N

(0)
∣∣∣q + ε

= θp

(
1−

(
2

N

)2β
)
µ2β+1 − |φ1(0)|q

q

(
2

N

)αq
µαq + ε,

where we made use of (13) and (7). Since q > p
2 + 1, by Remark 2.1 we have αq > 2β + 1,

so that whenever ε is fixed small enough

θp

(
1−

(
2

N

)2β
)
µ2β+1 + ε ≤ |φ1(0)|q

q

(
2

N

)αq
µαq

holds for sufficiently large masses. Hence, there exists µp,q > 0 so that Fp,q(wµ,G) ≤
E(µ,R) for every µ > µp,q, and by Corollary 2.6 we conclude. �

Proof of Theorem 1.1: existence. The existence result for q < p
2 + 1 is a direct application

of Proposition 3.1. On the other hand, since G satisfies Assumption (H) and it is neither
the real line nor a tower of bubbles, then there is at least one vertex of degree not smaller
than 3, and the existence part of the theorem for q > p

2 + 1 follows by Proposition 3.2. �

Let us now focus on graphs with at least one vertex of degree 2.

Proof of Theorem 1.2. Let v ∈ V be a vertex of degree 2, e1, e2 be the two edges emanating
from v and L := min {|e1|, |e2|}.

For every µ > 0, there exists δ = δ(µ) > 0, κ = κ(µ) > 0 so that the function on the
real line wµ(x) := κ(φµ(x) − δ)+ (where φµ is the soliton at mass µ on R as in (7)) is
compactly supported on the interval (−L,L) and ‖wµ‖2L2(−L,L) = µ. It is straightforward
to check that δ → 0, κ→ 1 and wµ − φµ → 0 strongly in H1(R) as µ→ +∞. This entails
that E(wµ,R) − E(φµ,R) → 0 and wµ(0) − φµ(0) → 0 as µ → +∞. Moreover, as wµ is
compactly supported on (−L,L), we can think of it as a function on G supported on the
union of the edges e1 and e2 emanating from the vertex v of degree 2.

Hence, for every ε > 0 there exists µ∗ = µ∗(ε) such that for every µ ≥ µ∗

Fp,q(wµ,G)− E(φµ,R) = E(wµ, (−L,L))− E(φµ,R)− 1

q
|wµ(0)|q

= E(wµ, (−L,L))− E(φµ,R) +
1

q
(|φµ(0)|q − |wµ(0)|q)− 1

q
|φµ(0)|q

≤ ε− 1

q
|φµ(0)|q = ε− |φ1(0)|q

q
µαq.

Fixing a sufficiently small ε, this implies that there is µ̃p,q > 0 so that Fp,q(wµ,G) <
E(φµ,R) for every µ ≥ µ̃p,q, which completes the proof by Corollary 2.6. �

To conclude the analysis of the existence results, we provide the proof of Theorem 1.3
concerning non–compact graphs with exactly two half–lines.

Proof of Theorem 1.3. Let H1,H2 be the two half–lines of the graph. Consider u ∈ H1
µ(G)

defined as

u(x) :=

{
ηm(x) if x ∈ H1 ∪H2

ηm(0) if x ∈ K ,
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where ηm is the ground state of Fp,q at mass m on the real line as in Proposition 2.8. By
‖u‖22 = µ and (27) it follows that

µ = ‖u‖22 = ‖ηm‖2L2(R) + `|ηm(0)|2 = m+ o(m) as µ→ 0.

Moreover, since

Fp,q(u,G) = E(ηm,R) + E(u,K)− n

q
|ηm(0)|q = Fp,q(ηm,R)− `

p
|ηm(0)|p − n− 1

q
|ηm(0)|q,

and
E (φµ,R) =− θpµ2β+1 = −θp(m+ `|ηm(0)|2)2β+1

=− θpm2β+1 − θp(2β + 1)`|ηm(0)|2m2β + o
(
|ηm(0)|2m2β

)
as µ→ 0,

by (25) we have (recalling also (8))

Fp,q(u,G)− E (φµ,R) =Fp,q(ηm,R) + θpm
2β+1 − n− 1

q
|ηm(0)|q

+

[
θp(2β + 1)− 1

p

(
ηm(0)

mα

)p−2
]
`|ηm(0)|2m2β + o

(
|ηm(0)|2m2β

)
<

[
θp(2β + 1)− 1

p

(
ηm(0)

mα

)p−2
]
`|ηm(0)|2m2β + o

(
|ηm(0)|2m2β

)
.

(29)

Observe that
h : [0,+∞)→ R, h(x) := θp(2β + 1)− 1

p
xp−2

is a strictly decreasing and continuous function satisfying h(0) > 0 and limx→+∞ h(x) =
−∞, so that there is a unique x > 0 for which h(x) = 0 and h(x) < 0 if and only if x > x.
By Lemma A.1 it follows that x = φ1(0) (where as usual φ1 is the soliton at mass 1 on R).
Since by (26) and (7) we have that ηm(0) > φm(0) = mαφ1(0), then

θp(2β + 1)− 1

p

(
|ηm(0)|
mα

)p−2

< 0 .

Therefore, coupling with (29) yields a threshold µ̂p,q > 0 such that Fp,q(u,G) < E (φµ,R)
for every µ ≤ µ̂p,q, and by Corollary 2.6 we conclude. �

4. Non–existence results: end of the proof of Theorem 1.1

This section is devoted to the proof of the non–existence part of Theorem 1.1. Since it
is rather long and technical demanding, before running through the details of the proof let
us briefly comment on the general idea behind it. In a nutshell, our argument combines
the available knowledge on star graphs with the natural scaling of the problem on general
graphs.

On the one hand, if u ∈ H1
µ(G) is a ground state of Fp,q at mass µ, then by Corollary

2.6 its doubly nonlinear energy satisfies

Fp,q(u,G) ≤ E(µ,R),

which gives the following upper bound on the standard energy E of u

E(u,G) ≤ E(µ,R) +
1

q

∑
v∈V
|u(v)|q . (30)

On the other hand, since we are considering graphs fulfilling Assumption (H), it is well–
known [15] that for every u ∈ H1

µ(G)

E(u,G) > E(µ,R) .
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The key point here is to improve this lower bound in a quantitative version like

E(u,G) ≥ E(µ,R) +R(u), (31)

for some suitable remainder term R depending on u. This will be done relying on the
following well–known fact.

Remark 4.1. Recall that, for every graph G and every u ∈ H1
µ(G), the scaling

G 7→ t−βG =: Gt, u(·) 7→ tαu(tβ·) =: ut(·) (32)

(with α, β as in (8)) preserves the quantities ‖u
′‖22

µ2β+1 ,
‖u‖pp
µ2β+1 for every t > 0, that is

‖u′‖2L2(G)

µ2β+1
=

‖u′t‖2L2(Gt)(
‖ut‖2L2(Gt)

)2β+1
,

‖u‖pLp(G)

µ2β+1
=

‖ut‖pLp(Gt)(
‖ut‖2L2(Gt)

)2β+1
,

so that in particular
E(u,G)

µ2β+1
=

E(ut,Gt)(
‖ut‖2L2(Gt)

)2β+1
. (33)

Remark 4.1 allows to pass from the upper bound (30) for functions at mass µ on G to
the upper bound

E(w,Gµ) ≤ E(m,R) +
( µ
m

)αq−(2β+1) 1

q

∑
v∈V
|w(v)|q (34)

for functions w (the scaled version of u with t = m/µ) at mass m on Gµ := m
µ G, for any

desired mass m > 0. This upper bound involves a weight depending on the original mass
µ and on the quantity αq− (2β+ 1), whose sign depends on q being smaller or larger than
p
2 + 1. Our argument will then proceed as follows. We will first assume by contradiction
that ground states exist in those regimes where Theorem 1.1 asserts non–existence. Hence,
taking sequences of ground states indexed by the mass (i.e. ground states for µ → 0 if
q > p

2 + 1 and ground states for µ → +∞ if q < p
2 + 1), we will exploit the scaling to

construct sequences of functions at a prescribed mass m, choosing m so that ground states
of Fp,q at mass m do not exist on star graphs. This leaves us with a sequence of functions
at mass m supported on Gµ. In particular, the lengths of the bounded edges will vary
according to µ. This will be crucial to obtain a scaled version of the lower bound with
remainder (31) for w, i.e. an inequality in the form

E (w,Gµ) ≥ E(m,R) +R(µ,w)

that, combined with (34), will provide the contradiction we seek.
To ease the presentation, we prove two independent propositions, the first one dealing

with small masses and the second one discussing the regime of large mass.

Proposition 4.2. Let G be a non–compact graph satisfying Assumption (H) with N ≥ 3
half–lines. If q > p

2 + 1, then there exists µ
p,q

> 0 such that ground states of Fp,q at mass
µ on G do not exist for every µ < µ

p,q
.

Proof. We argue by contradiction. Suppose that there exists a sequence of masses (still
denoted by µ, omitting the subscript of the sequence) µ→ 0 so that a ground state uµ of
Fp,q at mass µ exists. With no loss of generality, let uµ > 0. Since uµ is a ground state at
mass µ, by (12) and (13) we have

E(uµ,G) ≤ −θpµ2β+1 +
1

q

∑
v∈V
|uµ(v)|q. (35)
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Let now µ∗ = µ∗(p, q, 1, 3) be the critical mass associated to Fp,q,1 on the star graph S3 with
3 half–lines as in Proposition 2.10 (recall that Fp,q,1 coincides with Fp,q) and fix µ̃ < µ∗.
For every µ, making use of (32) with t = µ̃

µ and u = uµ, let then

Gµ :=

(
µ

µ̃

)β
G, wµ(x) :=

(
µ̃

µ

)α
uµ

((
µ̃

µ

)β
x

)
.

Clearly, wµ ∈ H1
µ̃(Gµ) for every µ. Observe that the compact core Kµ of Gµ has total length

|Kµ| = ˜̀µβ , where ˜̀= |K|µ̃−β , so that in particular |Kµ| → 0 as µ→ 0.
By (33) and (35) we get

E(wµ,Gµ) ≤ −θpµ̃2β+1 +

(
µ

µ̃

)αq−(2β+1) 1

q

∑
v∈V
|wµ(v)|q. (36)

Moreover, since uµ is a ground state at sufficiently small mass µ and q > p
2 + 1, by (15),

(17) and Remark 4.1 there exists C > 0 (depending only on p) such that

C−1µ̃2β+1 ≤ ‖w′µ‖22 ≤ Cµ̃2β+1 (37)

and
C−1µ̃α ≤ ‖wµ‖∞ ≤ Cµ̃α. (38)

Let us now introduce the quantities

λµ := min
v∈V +

wµ(v) and Λµ := max
Kµ

wµ ,

(recall that V + is the set of vertices attached to at least one half–line).
For the sake of clarity and to improve the readability, we divide the rest of the proof in

some steps.
Step 1. Since Gµ satisfies Assumption (H) (because G does) and it has N ≥ 3 half–lines,

by Lemma B.1, there exists w∗µ ∈ H1
µ̃(S3) on the star graph S3 with 3 half–lines such that

E(w∗µ, S3) ≤ E(wµ,Gµ) (39)

and
w∗µ(0) = λµ. (40)

On the one hand, combining (36) with (39)–(40) then leads to

Fp,q(w
∗
µ, S3) = E(w∗µ, S3)− 1

q
|w∗µ(0)|q ≤ E(wµ,Gµ)− λqµ

q

≤ −θpµ̃2β+1 +

(
µ

µ̃

)αq−(2β+1) 1

q

∑
v∈V
|wµ(v)|q − λqµ

q

≤ −θpµ̃2β+1 +

(
µ

µ̃

)αq−(2β+1) n

q
Λqµ −

λqµ
q
.

(41)

On the other hand, since µ̃ < µ∗ = µ∗(p, q, 1, 3), by Proposition 2.10 and Corollary 2.6

Fp,q(w
∗
µ, S3) > −θpµ̃2β+1. (42)

Coupling (41) and (42) gives (
µ

µ̃

)αq−(2β+1)

nΛqµ > λqµ. (43)

Furthermore, letting x ∈ Kµ realize wµ(x) = Λµ and v ∈ V be a vertex such that wµ(v) =
λµ, since Kµ is connected there exists a trail γ ⊂ Kµ starting at x and ending at v. Thus

Λµ − λµ = wµ(x)− wµ(v) =

∫
γ
w′µ dx ≤ |Kµ|

1
2 ‖w′µ‖L2(Kµ), (44)
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Λµ

λµ

wµ

λµ

Λµ

dµw1,µ

w2,µ

zµ

Figure 5. The construction of the function zµ as in Step 2 of the proof of
Proposition 4.2.

that coupled with (37), (43) (recall also Remark 2.1) and |Kµ| → 0 as µ→ 0 entails

Λµ → 0 as µ→ 0. (45)

Step 2. By (38) and (45), ‖wµ‖L∞(Gµ) ≥ C−1µ̃α > Λµ = ‖wµ‖L∞(K) for sufficiently
small µ. Hence, by Lemma B.2, there exist two positive functions w1,µ, w2,µ ∈ H1(R+)
satisfying

2‖w1,µ‖2L2(R+) + ‖w2,µ‖2L2(R+) = ‖wµ‖2L2(Gµ\Kµ)

2E(w1,µ,R+) + E(w2,µ,R+) ≤ E(wµ,Gµ \ Kµ)

w1,µ(0) = λµ, w2,µ(0) = Λµ .

Consider then the following construction. Denoting by h1, h2, h3 the half–lines of the star
graph S3, define the function zµ ∈ H1(S3) as (see Figure 5)

zµ(x) :=


w1,µ(x) if x ∈ hi for some i = 1, 2

λµ +
Λµ−λµ
dµ

x if x ∈ [0, dµ) ∩ h3,

w2,µ(x− dµ) if x ∈ [dµ,+∞) ∩ h3,

where dµ := dµβ , d > 0 fixed, will be properly chosen later. By construction, zµ is
decreasing on h1 and h2, while on h3 it is increasing (with a linear part at the beginning)
until a maximum point and then decreasing from this point on. Moreover, as zµ(x) ≤ Λµ
for every x ∈ [0, dµ) ∩ h3,

‖zµ‖2L2(S3) = 2‖w1,µ‖2L2(R+) + ‖w2,µ‖2L2(R+) +

∫
[0,dµ)∩h3

|zµ|2 dx

≤ ‖wµ‖2L2(Gµ\Kµ) + dµΛ2
µ = µ̃− ‖wµ‖2L2(Kµ) + dµβΛ2

µ

≤ µ̃− ˜̀µβ (min
Kµ

wµ

)2

+ dµβΛ2
µ,

so that, since by (43)
min
Kµ

wµ ≤ λµ = o (Λµ) as µ→ 0,

we obtain
‖zµ‖2L2(S3) ≤ µ̃+ dµβΛ2

µ + o
(
µβΛ2

µ

)
. (46)

Let us now estimate Fp,q(zµ, S3). On the one hand, if µ is sufficiently small, then (46) and
µ̃ < µ∗ ensure ‖zµ‖2L2(S3) < µ∗, so that by Proposition 2.10 with τ = 1 and Corollary 2.6

Fp,q(zµ, S3) > Fp,q
(
‖zµ‖22, S3

)
= −θp

(
‖zµ‖22

)2β+1
,
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and by (46) again

Fp,q(zµ, S3) ≥ −θp
(
µ̃+ dµβΛ2

µ

)2β+1
+ o

(
µβΛ2

µ

)
= −θpµ̃2β+1 − d(2β + 1)µ̃2βµβΛ2

µ + o
(
µβΛ2

µ

)
as µ→ 0.

(47)

On the other hand, exploiting the construction of zµ and the properties of w1,µ, w2,µ,

E(zµ, S3) = E (zµ, S3 \ ([0, dµ) ∩ h3)) + E (zµ, [0, dµ) ∩ h3)

≤ E(wµ,Gµ \ Kµ) +
(Λµ − λµ)2

2dµβ
− dµβ

p
λpµ

≤ E(wµ,Gµ \ Kµ) +
Λ2
µ

2dµβ
+ o

(
Λ2
µ

µβ

)
,

(48)

the last inequality relying also on (45). Coupling (48) with (36) then yields

Fp,q(zµ, S3) ≤ E(wµ,Gµ \ Kµ) +
Λ2
µ

2dµβ
− λqµ

q
+ o

(
Λ2
µ

µβ

)

= E(wµ,Gµ)− E(wµ,Kµ) +
Λ2
µ

2dµβ
− λqµ

q
+ o

(
Λ2
µ

µβ

)

≤ −θpµ̃2β+1 +

(
µ

µ̃

)αq−(2β+1) 1

q

∑
v∈V
|wµ(v)|q − E(wµ,Kµ)

+
Λ2
µ

2dµβ
− λqµ

q
+ o

(
Λ2
µ

µβ

)

≤ −θpµ̃2β+1 + Cµαq−(2β+1)Λqµ − E(wµ,Kµ) +
Λ2
µ

2dµβ
+ o

(
Λ2
µ

µβ

)

(49)

for some constant C > 0.
Step 3. By comparing (47) and (49) and noting that µβΛ2

µ = o
(

Λ2
µ

µβ

)
as µ → 0, we

obtain

Cµαq−(2β+1)Λqµ ≥ E(wµ,Kµ)−
Λ2
µ

2dµβ
+ o

(
Λ2
µ

µβ

)
. (50)

Let us now estimate the term E(wµ,Kµ). By (44),

‖w′µ‖2L2(Kµ) ≥
(Λµ − λµ)2

|Kµ|
=

Λ2
µ˜̀µβ + o

(
Λ2
µ

µβ

)
and

‖wµ‖pLp(Kµ) ≤ ˜̀µβΛpµ ≤ C ′µβ‖w′µ‖
p
2

L2(Kµ)
= o

(
‖w′µ‖2L2(Kµ)

)
for a suitable C ′ > 0. Therefore,

E(wµ,Kµ) =
1

2
‖w′µ‖2L2(Kµ) + o

(
‖w′µ‖2L2(Kµ)

)
≥

Λ2
µ

2˜̀µβ + o

(
Λ2
µ

µβ

)
and plugging into (50) we get

Cµαq−(2β+1)Λqµ ≥
1

2

(
1˜̀− 1

d

)
Λ2
µ

µβ
+ o

(
Λ2
µ

µβ

)
.
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eµ

wµ

0 |J |
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w∗
µ

vµ

Figure 6. The construction of the function vµ as in Step 1 of the proof of
Proposition 4.3.

Choosing for instance d = 2˜̀ then leads to

µαq−(β+1)Λq−2
µ ≥ 1

4C ˜̀ as µ→ 0,

that is a contradiction in light of Remark 2.1, thus concluding the proof. �

Proposition 4.3. Let G be a non–compact graph satisfying Assumption (H) with no vertex
of degree smaller than 3. If q < p

2 + 1, then there exists µp,q > 0 such that ground states of
Fp,q at mass µ on G do not exist for every µ > µp,q.

Proof. We argue by contradiction. Suppose that there exists a sequence of masses (still
denoted by µ, omitting the subscript of the sequence) µ→ +∞ so that a ground state uµ
of Fp,q at mass µ exists. With no loss of generality let uµ > 0. Since uµ is a ground state
at mass µ, (35) holds.

Let µ∗ = µ∗(p, q, 1, 3) be the critical mass associated to Fp,q,1 on the star graph S3 with
3 half–lines as in Proposition 2.10 (recall that Fp,q,1 coincides with Fp,q) and fix µ̃ > µ∗.
For every µ, making use of (32) with t = µ̃

µ and u = uµ, let then

Gµ :=

(
µ

µ̃

)β
G, wµ(x) :=

(
µ̃

µ

)α
uµ

((
µ̃

µ

)β
x

)
,

so that Kµ has total length |Kµ| = ˜̀µβ → +∞ as µ → +∞ (with ˜̀ := |K|µ̃−β) and, for
every µ, we have wµ ∈ H1

µ̃(Gµ) and, by (33) and (35),

E(wµ,Gµ) ≤ −θpµ̃2β+1 +

(
µ̃

µ

)2β+1−αq 1

q

∑
v∈V
|wµ(v)|q. (51)

The remainder of the proof is divided in three steps.
Step 1. Let xµ ∈ Gµ be such that wµ(xµ) = ‖wµ‖∞. By Assumption (H), there exists

a trail γµ ⊂ Gµ running through xµ and exactly 2 half–lines of Gµ. Let then v1 ∈ V be a
vertex of Gµ satisfying wµ(v1) = maxv∈V wµ(v). Since by hypothesis every vertex of Gµ
has degree greater than or equal to 3, there is at least one edge, say eµ, emanating from
v1 that does not belong to γµ. Set

σµ := inf
eµ
wµ and Σµ := max

eµ
wµ .

Let us first show that eµ must be a bounded edge of Gµ for every µ large enough. Assume
on the contrary that there exists a subsequence (not renamed) µ → +∞ along which eµ
is a half–line. Letting J := {x ∈ Gµ : wµ(x) > Σµ}, then wµ(J) is connected and, since
wµ(γµ) = (0, ‖wµ‖∞] and γµ is a trail, every t ∈ wµ(J) is attained at least twice, except
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v1

eµ

wµ

σµ

Σµ

σµ

|eµ|

wµ

w∗
µ

|eµ|+ 1

zµ

Figure 7. The construction of the function zµ as in Step 2 of the proof of
Proposition 4.3.

possibly ‖wµ‖∞. Let then w∗µ ∈ H1
(
− |J |2 ,

|J |
2

)
be the symmetric rearrangement of wµ|J

on
(
− |J |2 ,

|J |
2

)
, which satisfies

‖w′µ‖L2(J) ≥ ‖(w∗µ)′‖
L2
(
− |J|

2
,
|J|
2

) , ‖wµ‖Lr(J) = ‖w∗µ‖Lr
(
− |J|

2
,
|J|
2

) ∀r ≥ 1.

Moreover, wµ (Gµ \ J) is connected too and every t ∈ wµ(Gµ \ J) is attained at least
three times (at least twice on γµ and at least once on eµ). Thus, taking the symmetric
rearrangement w̃µ ∈ H1(S3) of wµ|(Gµ\J) on the star graph S3 with 3 half–lines (see [5,
Appendix A]) we have

‖w′µ‖L2(Gµ\J) ≥ ‖w̃µ′‖L2(S3) , ‖wµ‖Lr(Gµ\J) = ‖w̃µ‖Lr(S3) ∀r ≥ 1.

Denoting as usual by h1, h2, h3 the half–lines of S3, we then define vµ ∈ H1
µ̃(S3) as (see

Figure 6)

vµ(x) :=


w̃µ(x) x ∈ h1 ∪ h2

w∗µ

(
x− |J |2

)
x ∈ [0, |J |) ∩ h3

w̃µ(x− |J |) x ∈ [|J |,+∞) ∩ h3,

so that, by (51) and for µ sufficiently large

Fp,q(vµ, S3) = E(vµ, S3)− 1

q
|vµ(0)|q ≤ E(wµ,Gµ)− Σq

µ

q

≤ −θpµ̃2β+1 +

(
µ̃

µ

)2β+1−αq 1

q

∑
v∈V
|wµ(v)|q − Σq

µ

q

≤ −θpµ̃2β+1 − Σq
µ

q

(
1− n

(
µ̃

µ

)2β+1−αq
)
< −θpµ̃2β+1,

the last inequality being a direct consequence of Remark 2.1 and µ→ +∞. By Corollary
2.6 this implies existence of ground states of Fp,q on S3 at mass µ̃ > µ∗ = µ∗(p, q, 1, 3),
which is impossible by Proposition 2.10. Hence, for every µ large enough eµ is a bounded
edge.

Step 2. Since eµ is a bounded edge, then by definition of Gµ there exist two constants
c1, c2 > 0 so that

c1µ
β ≤ |eµ| ≤ c2µ

β .

Moreover, as µ̃ = ‖wµ‖2L2(Gµ) ≥ ‖wµ‖
2
L2(eµ) ≥ c1µ

βσ2
µ, it follows that σµ → 0 as µ→ +∞.

Consider then the following construction. Recall that wµ(Gµ \ eµ) is connected and,
since γµ ⊂ Gµ \ eµ and wµ(γµ) = (0, ‖wµ‖∞], every value t ∈ wµ(Gµ \ eµ) is attained at
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least twice, except possibly ‖wµ‖∞. Letting wµ ∈ H1(R) be the symmetric rearrangement
on R of the restriction of wµ to Gµ \ eµ, we have

‖w′µ‖L2(Gµ\eµ) ≥ ‖w′µ‖L2(R) , ‖wµ‖Lr(Gµ\eµ) = ‖wµ‖Lr(R) ∀r ≥ 1.

Moreover, denoting by w∗µ ∈ H1 (0, |eµ|) the decreasing rearrangement of the restriction of
wµ to eµ, we also get

‖w′µ‖L2(eµ) ≥ ‖(w∗µ)′‖L2(eµ) , ‖wµ‖Lr(Gµ\eµ) = ‖w∗µ‖Lr(eµ) ∀r ≥ 1

and
w∗µ(0) = Σµ , w∗µ(|eµ|) = σµ.

Observe that, since w∗µ(0) ≤ ‖wµ‖L∞(R), there exists ξ ∈ R such that wµ(ξ) = w∗µ(0).
Hence, letting as usual h1, h2, h3 be the half–lines of S3, we set zµ ∈ H1(S3) as (see Figure
7)

zµ(x) :=


wµ(x+ ξ) x ∈ h1 ∪ h2

w∗µ(x) x ∈ [0, |eµ|) ∩ h3

σµ(|eµ|+ 1− x) x ∈ [|eµ|, |eµ|+ 1) ∩ h3

0 elsewhere .
Note that zµ(0) = Σµ and

‖zµ‖2L2(S3) =

∫
S3\([|eµ|,|eµ|+1)∩h3)

|zµ|2 dx+

∫
[|eµ|,|eµ|+1)∩h3

|zµ|2 dx

= ‖wµ‖2L2(Gµ) +

∫ 1

0
|σµx|2 dx = µ̃+

σ2
µ

3
.

On the one hand, since ‖zµ‖2L2(S3) ≥ µ̃ > µ∗ = µ∗(p, q, 1, 3), by Proposition 2.10 and
Corollary 2.6

Fp,q(zµ, S3) ≥ −θp
(
‖zµ‖2L2(S3)

)2β+1
≥ −θp

(
µ̃+

σ2
µ

3

)2β+1

= −θpµ̃2β+1 − θp
3

(2β + 1)µ̃2βσ2
µ + o

(
σ2
µ

)
.

(52)

On the other hand,

E(zµ, S3) ≤ E(wµ,Gµ) +
1

2

∫ 1

0
|(σµx)′|2 dx− 1

p

∫ 1

0
|σµx|p dx

= E(wµ,Gµ) +
σ2
µ

2
− σpµ
p(p+ 1)

= E(wµ,Gµ) +
σ2
µ

2
+ o

(
σ2
µ

)
,

so that, recalling (51), the fact that Σµ ≥ wµ(v1) = maxv∈V wµ(v) by construction, and
that 2β + 1− αq > 0 by Remark 2.1

Fp,q(zµ, S3) = E(zµ, S3)− 1

q
|zµ(0)|q ≤ E(wµ,Gµ) +

σ2
µ

2
+ o

(
σ2
µ

)
− Σq

µ

q

≤ −θpµ̃2β+1 +
n

q

(
µ̃

µ

)2β+1−αq
Σq
µ +

σ2
µ

2
+ o

(
σ2
µ

)
− Σq

µ

q

= −θpµ̃2β+1 − Σq
µ

q
+ o

(
Σq
µ

)
+
σ2
µ

2
+ o

(
σ2
µ

)
.

(53)

Comparing (52) and (53), we get

Σq
µ

q
+ o

(
Σq
µ

)
≤
(

1

2
+
θp
3

(2β + 1)µ̃2β

)
σ2
µ + o

(
σ2
µ

)
as µ→ +∞ . (54)



24 F. BONI AND S. DOVETTA

Step 3. Since σµ → 0 as µ → +∞, by (54) also Σµ → 0 as µ → +∞ and there exists
C > 0 so that

‖wµ‖2L2(eµ) ≥ c1µ
βσ2

µ ≥ CµβΣq
µ

‖wµ‖2L2(Gµ\eµ) ≤ µ̃− Cµ
βΣq

µ .

Moreover,

E(wµ,Gµ \ eµ) ≥ E(zµ, h1 ∪ h2) ≥ E
(
µ̃− CµβΣq

µ,R
)

= −θp
(
µ̃− CµβΣq

µ

)2β+1

= −θpµ̃2β+1 + θpµ̃
2β(2β + 1)CµβΣq

µ + o
(
µβΣq

µ

)
and

E(wµ, eµ) ≥ −
‖wµ‖pLp(eµ)

p
≥ −c2µ

βΣp
µ

p
.

Hence, since q < p
2 + 1 < p and Σµ → 0 as µ→ +∞

E(wµ,Gµ) ≥ −θpµ̃2β+1 + θpµ̃
2β(2β + 1)CµβΣq

µ −
c2µ

βΣp
µ

p
+ o

(
µβΣq

µ

)
= −θpµ̃2β+1 + θpµ̃

2β(2β + 1)CµβΣq
µ + o

(
µβΣq

µ

)
.

(55)

By (51) and (55), it follows that

θpµ̃
2β(2β + 1)CµβΣq

µ + o
(
µβΣq

µ

)
≤ 1

q

(
µ̃

µ

)2β+1−αq∑
v∈V
|wµ(v)|q ≤ n

q

(
µ̃

µ

)2β+1−αq
Σq
µ,

which entails
1 + o (1) ≤ C ′µ−(3β+1)+αq as µ→ +∞ . (56)

By Remark 2.1, since q < p
2 + 1, then 3β + 1 > 2β + 1 > αq, and (56) provides the

contradiction we seek. �

End of the proof of Theorem 1.1: non–existence. It is the content of Propositions 4.2–4.3.
�

5. Proof of Theorems 1.7–1.8–1.9

This section provides the proof of the results of the paper that depend on the metric
properties of the graph. Before proving our main theorems in this context, let us state the
following straightforward lemma.

Lemma 5.1. Let p ∈ (2, 6), q ∈ (2, 4). Then there exists µ > 0 (depending on p, q) such
that for every µ ≥ µ there is a function fµ ∈ H1

µ(R) compactly supported in [−1, 1] and
satisfying

Fp,q(fµ,R) < E(φµ,R).

Proof. Let φµ be the soliton at mass µ on R as in (7) and choose δ = δ(µ) and κ = κ(µ)
such that the function fµ(x) := κ(φµ(x) − δ)+ is compactly supported in [−1, 1] and
‖fµ‖22 = µ. It is immediate to check that δ → 0, κ → 1 and fµ − φµ → 0 strongly in
H1(R) as µ→ +∞. This entails that E(fµ,R)− E(φµ,R)→ 0 and fµ(0)− φµ(0)→ 0 as
µ→ +∞. Hence, fixing ε > 0 small enough, there exists µ > 0 such that for every µ ≥ µ

Fp,q(fµ,G)− E(φµ,R) = E(fµ,R)− E(φµ,R)− 1

q
|fµ(0)|q ≤ ε− 1

q
|φµ(0)|q < 0 . �

The rest of the section is organized in two subsections.
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5.1. Graphs with at least 3 half–lines: proof of Theorem 1.7. To prove Theorem
1.7 we consider, for l > 0, graphs Gl as in Figure 3. Let v be the vertex of degree 2 from
which emanate two bounded edges, say e1, e2, both of length l. Let v1 be the vertex of
e1 not shared with e2, and let v2 be the vertex of e2 not shared with e1. Then, a couple
of half–lines emanates both from v1 and from v2. In particular, we denote by H1,H2 the
half–lines emanating from v1 and by H3,H4 those emanating from v2. Clearly, the graph
Gl satisfies the hypotheses of Theorem 1.7.

The following two propositions highlight the dependence of the ground states problem
(2) for Gl on the length l of the bounded edges emanating from the vertex of degree 2.

Proposition 5.2. Let Gl be the graph in Figure 3, with e1, e2 each of length l, and q < p
2 +1.

Then there exists l > 0 (depending on p, q) so that, for every l ≥ l, ground states of Fp,q
at mass µ on Gl exist for every µ.

Proof. The proof is divided in three steps.
Step 1. We first show that there exists µ > 0 independent of l so that, for every l ≥ 1,

ground states of Fp,q at mass µ on Gl exist for every µ ≥ µ. By Lemma 5.1, there is µ > 0
such that for every µ ≥ µ there exists a function fµ ∈ H1

µ(R) compactly supported on
[−1, 1] and satisfying Fp,q(fµ,R) < E(φµ,R). Since, for every l ≥ 1, one can think of fµ
as a function in H1

µ(Gl) supported on e1 ∪ e2 and centered at v, by Corollary 2.6 it follows
that a ground state of Fp,q at mass µ on Gl exists for every µ ≥ µ and l ≥ 1.

Step 2. We now prove that there exists µ > 0 independent of l so that, for every l ≥ 1,
ground states of Fp,q at mass µ on Gl exist for every µ ≤ µ. To this end, let G̃l denote the
graph obtained by removing the vertex v from Gl and replacing the edges e1, e2 with a
single edge e of length 2l. Hence, G̃l has two vertices, v1 and v2. Clearly, H1(Gl) = H1(G̃l)
and for every u ∈ H1(Gl)

Fp,q(u,Gl) ≤ Fp,q(u, G̃l) . (57)

Fix now l = 1 and µ > 0, and set u1 ∈ H1
µ(G̃1) to be

u1(x) :=

{
φν(x) if x ∈ Hi, for some i = 1, . . . , 4

‖φν‖L∞(R) if x ∈ e ,
(58)

where φν denotes the soliton of mass ν on R as in (7). Since ‖u1‖2L2(G̃1)
= µ, then µ =

2ν + 2|φ1(0)|2ν2α. In particular, if µ → 0 then ν2α = o(ν) and 2ν = µ + o(µ). Moreover,
since αq < 2β + 1 < αp (recall Remark 2.1),

Fp,q(u1, G̃1)− E(φµ,R) = 2E(φν ,R)− 2|φ1(0)|p

p
ναp − 2|φ1(0)|q

q
ναq − E(φµ,R)

= −θp
(

22β − 1
)
µ2β+1 + o

(
µ2β+1

)
− 2|φ1(0)|q

q

(µ
2

)αq
+ o (µαq)

< −|φ1(0)|q

q

(µ
2

)αq
+ o (µαq) < 0 as µ→ 0,

which, by Corollary 2.6 and (57), entails the existence of µ > 0 such that ground states of
Fp,q at mass µ on G1 exist for every µ ≤ µ.

Let now l > 1. Denote by δ := l − 1 and J := (H1 ∩ (0, δ)) ∪ (H2 ∩ (0, δ)) be the union
of the first portion of length δ of the half–lines H1 and H2. Let then u1 be the function on
G̃1 defined in (58) above. Since u1 is symmetrically decreasing on H1 ∪H2, the decreasing
rearrangement u∗1 ∈ H1(0, 2δ) of the restriction of u1 to J satisfies

‖u′1‖L2(J) ≥‖(u∗1)′‖L2(0,2δ) , ‖u1‖Lr(J) = ‖u∗1‖Lr(0,2δ) ∀r ≥ 1

u∗1(0) = ‖φν‖L∞(R) , u∗1(2δ) = u1|Hi(δ), i = 1, 2 .
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2

φν φν

u1

δ

δ

ul

2δ

2l = 2 + 2δ u1|H3∪H4

u∗1

u1|H1(·+ δ)

Figure 8. The functions u1 and ul as in the proof of Proposition 5.2.

We then parameterize the edge e with [0, 2l] so that v2 corresponds to 0 and v1 to 2l and
define ul ∈ H1

µ(G̃l) as (see Figure 8)

ul(x) :=


u1(x), if x ∈ H3 ∪H4

u1(x), if x ∈ (0, 2] ∩ e
u∗1(x− 2), if x ∈ (2, 2l) ∩ e
u1|Hi (x+ δ) , if x ∈ Hi, i = 1, 2 .

Observe that by construction ul(v2) = u1(v2) and

Fp,q(ul, G̃l)−E(φµ,R) < E(u1, G̃1)− |u1(v2)|q

q
−E(φµ,R) ≤ −|φ1(0)|q

q

(µ
2

)αq
+o (µαq) < 0

for every µ ≤ µ. By (57) and Corollary 2.6 it then follows that ground states of Fp,q at
mass µ on Gl exist, for every l ≥ 1 and every µ ≤ µ.

Step 3. We now show that there exists l ≥ 1 so that, for every l ≥ l, ground states of
Fp,q on Gl exist for every µ ≤ µ ≤ µ, where µ, µ are as in Step 1 and 2 above. In view of
the previous discussion, this will conclude the proof of Proposition 5.2.

Let φµ be the soliton at mass µ on the real line. For every l, let δ = δ(l) and κ = κ(l) be
such that wl(x) := κ(φµ(x) − δ)+ is compactly supported on (−l, l) and ‖wl‖2L2(−l,l) = µ.
In particular, observe that δ → 0, κ→ 1 and wl − φµ → 0 strongly in H1(R) as l → +∞.
Hence, thinking of wl as a function in H1

µ(Gl) supported on e1 ∪ e2, we have

Fp,q(wl,Gl)− E(φµ,R) = E(wl,R)− E(φµ,R)− 1

q
|wl(0)|q = −

|φµ(0)|q

q
+ o(1) (59)

as l → +∞, implying by Corollary 2.6 the existence of l > 0 so that ground states of Fp,q
on Gl at mass µ exist for every l ≥ l.

Let now µ < µ ≤ µ be fixed. Since, for every l ≥ l, the function wl ∈ H1
µ(Gl) above is

supported on e1 ∪ e2 only, setting wl,µ to be

wl,µ(x) :=

(
µ

µ

)α
w̃l

((
µ

µ

)β
x

)
,

we can think of wl,µ as a function in H1
µ(Gl) supported on e1 ∪ e2 (and identically equal to

zero both on a suitable portion of e1 close to v1 and on the corresponding final portion of
e2 close to v2). By (59), Remark 4.1 and the convergence of wl to φµ as l→ +∞, we have
that

Fp,q(wl,µ,Gl)− E(φµ,R) =

(
µ

µ

)2β+1 (
E(wl,R)− E(φµ,R)

)
− 1

q

(
µ

µ

)αq
|wl(0)|q

= −1

q

(
µ

µ

)αq
|φµ(0)|q + o(1) < 0
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for every µ ∈ (µ, µ], provided l is sufficiently large. Hence, up to possibly enlarging the
value of l, by Corollary 2.6 we conclude that ground states of Fp,q at mass µ on Gl exist
for every µ ≤ µ ≤ µ and for every l ≥ l. This gives the claim of Step 3 and completes the
proof. �

Proposition 5.3. Let Gl be the graph in Figure 3, with e1, e2 each of length l, and q < p
2 +1.

Then there exists l > 0 (depending on p, q) and a value m > 0 so that for every l ≤ l ground
states of Fp,q at mass m on Gl do not exist.

Proof. Choosem so thatm > µ∗, where µ∗ = µ∗(p, q, 3, 4) is the critical value associated to
Fp,q,3 on the star graph S4 with 4 half–lines as in Proposition 2.10. Hence, by Proposition
2.10 and Corollary 2.6, ground states of Fp,q,3 at mass m on S4 do not exist and

Fp,q,3(w, S4) > −θpm2β+1 , ∀w ∈ H1
m(S4) . (60)

Let us now show that ground states of Fp,q at mass m on Gl do not exist, provided l is
small enough.

Assume by contradiction that this is not the case and that there exists a ground state
ul of Fp,q at mass m on Gl for every l > 0. By Corollary 2.6, this entails that for every
l > 0

Fp,q(ul,Gl) ≤ E(φm,R) = −θpm2β+1 , (61)
which coupled with (10)–(11) and the fact that p ∈ (2, 6), q ∈ (2, 4), ensures that ‖ul‖H1(Gl)
is bounded from above uniformly on l.

Let then Kl := e1 ∪ e2. On the one hand, by (11) we get

lim inf
l→0

E(ul,Kl) ≥ − lim inf
l→0

2l‖ul‖pL∞(Kl)

p
≥ − lim inf

l→0

2lm
p
4 ‖u′l‖

p
2

L2(Gl)

p
= 0 . (62)

On the other hand, for every l, since ul is a ground state of Fp,q, then it is non–increasing
along every half–line of Gl by Lemma 2.4. Hence, by [33, Proposition 1.7.1] there exist
u1, u2 ∈ H1(R) such that, up to subsequences, ul|H1∪H2

→ u1 and ul|H3∪H4
→ u2 strongly

in Lr(R) for every 2 < r ≤ ∞. Moreover, for every x, y ∈ Kl, by Hölder inequality

|ul(x)− ul(y)| ≤
√

2l‖u′l‖L2(Gl) → 0 as l→ 0 . (63)

In particular, this implies that u1(0) = liml→0 ul|H1∪H2
(v1) = liml→0 ul|H3∪H4

(v2) = u2(0).
Therefore, letting as usual h1, h2, h3, h4 be the half–lines of the star graph S4, we define
u ∈ H1(S4) as

u(x) :=

{
u1(x) if x ∈ h1 ∪ h2

u2(x) if x ∈ h3 ∪ h4 .

By construction, it then follows that ‖u‖L2(S4) ≤ m and by (62)

lim inf
l→0

E(ul,Gl) ≥ E(u, S4). (64)

Furthermore, (63) implies that ul(w) → u(0) for every vertex w ∈ Gl. Since Gl has 3
vertices, by (61) and (64) we get

Fp,q,3(u, S4) = E(u, S4)− 3

q
|u(0)|q ≤ lim inf

l→0

(
E(ul,Gl)−

|ul(v1)|q + |ul(v)|q + |ul(v2)|q

q

)
= lim inf

l→0
Fp,q(ul,Gl) ≤ −θpm2β+1.

(65)

Note that (65) immediately implies u 6≡ 0 on S4. Also, if it were ‖u‖2L2(S4) < m, then there
would exist β > 1 so that βu ∈ H1

m(S4) and

−θpm2β+1 < Fp,q,3(βu, S4) < β2Fp,q,3(u, S4) < Fp,q,3(u, S4) ≤ −θpm2β+1
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by (60) and (65) (recalling also that p ∈ (2, 6), q ∈ (2, 4)), which is impossible. Hence,
it must be ‖u‖2L2(S4) = m. But this means that u ∈ H1

m(S4) satisfies (65), contradicting
(60). Therefore, there exists l > 0 such that no ground states of Fp,q at mass m exist on
Gl, for every l ≤ l, and we conclude. �

Proof of Theorem 1.7. To exhibit a graph G1 as in part (i), by Proposition 5.2 it is enough
to take Gl for sufficiently large value of l. Conversely, to prove statement (ii) one can simply
take Gl and m as in Proposition 5.3. �

5.2. Graphs with exactly two half–lines: proof of Theorems 1.8–1.9. We begin
with the proof of Theorem 1.8. To this end, given k ∈ N, we consider the graph Gk as
in Figure 4(A). From top to bottom, the three vertices of Gk are denoted by v1, v2, v3.
The vertices v1 and v2 share 3 edges of length 1. The vertices v2 and v3 share k edges of
length 1. The compact core of Gk will be denoted by Kk. The two half–lines H1, H2 of Gk
emanate from the vertex v3. Clearly, Gk fulfills the hypotheses of Theorem 1.8 for every
k ≥ 2.

Proof of Theorem 1.8. We claim that there exists m > 0 so that ground states of Fp,q at
mass m on Gk do not exist, provided k is sufficiently large. If this is true, then to exhibit
a graph G and a mass m as in the statement of Theorem 1.8 it is enough to take G = Gk
for a suitably large value of k.

Let us thus prove the claim, dividing the argument in the following steps.
Step 1. Let m > 0 be fixed. The actual value of m will be properly chosen later on

in the argument. Assume by contradiction that a ground state uk ∈ H1
m(Gk) at mass m

exists on Gk for every k ∈ N, so that by Corollary 2.6

Fp,q(uk,Gk) ≤ −θpm2β+1 ∀k ∈ N . (66)

Coupling (66) with (10), (11), p ∈ (2, 6), q ∈ (2, 4) and ‖uk‖2L2(Gk) = m, it then follows that

‖u′k‖L2(Gk) is bounded from above uniformly on k. In particular, denoting by K̃k ⊂ Kk the
union of the k edges of length 1 between v2 and v3, we have that there exists a suitable
constant C > 0 so that ‖uk‖L2(K̃k)

≤ C and ‖u′k‖L2(K̃k)
≤ C independently of k.

For every k, consider now an ordering e1, e2, . . . , ek of the edges of K̃k so that if i < j,
that is ei precedes ej in the ordering, then ‖uk‖L2(ei) ≥ ‖uk‖L2(ej). Then ‖uk‖L2(ek) → 0

and minx∈ek uk(x)→ 0 as k → +∞. Hence, by Hölder inequality, for every x ∈ ek

u2
k(x) ≤

(
min
y∈ek

uk(y)

)2

+ 2‖uk‖L2(ek)‖u′k‖L2(ek) → 0 as k → +∞ .

In particular,
uk(v2)→ 0 and uk(v3)→ 0 as k → +∞ . (67)

Step 2. Since uk is a ground state on Gk, by Lemma 2.4 it is non–increasing on both
H1 and H2. Hence, (67) and ‖uk‖2L2(Gk) = m yields ‖uk‖Lp(H1∪H2) → 0 as k → +∞, so
that

lim inf
k→+∞

E(uk,H1 ∪H2) ≥ 0 . (68)

Furthermore, since ‖uk‖H1(Gk) is bounded uniformly on k and, for every k, Kk \ K̃k is
given by 3 edges of length 1, there exists w1 ∈ H1(Kk \ K̃k) so that u

k|Kk\K̃k ⇀ w1 in

H1(Kk \ K̃k) and u
k|Kk\K̃k → w1 strongly in Lr for every r ≥ 2 as k → +∞. By (67),

w1(v2) = 0. Observe that we can think of w1 as a function on the star graph S3 with 3
half–lines supported on the ball of radius 1 centered at the unique vertex of S3. Therefore
we have

lim inf
k→+∞

(
E(uk,Kk \ K̃k)−

|uk(v1)|q

q

)
≥ Fp,q(w1, S3) . (69)
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Let now

K̃k,1 :=

{
ej ∈ K̃k : lim

k→+∞
‖uk‖L2(ej) 6= 0

}
K̃k,2 :=

{
ej ∈ K̃k : lim

k→+∞
‖uk‖L2(ej) = 0

}
,

so that K̃k = K̃k,1 ∪ K̃k,2 for every k. Note that either K̃k,1 = K̃k and K̃k,2 = ∅ for every
k, or K̃k,1 contains a number of edges which is bounded from above uniformly on k.

Arguing as in the final part of Step 1, we obtain ‖uk‖L∞(K̃k,2)
→ 0 as k → +∞, which

implies

‖uk‖pLp(K̃k,2)
≤ ‖uk‖2L2(K̃k,2)

‖uk‖p−2

L∞(K̃k,2)
≤ m‖uk‖p−2

L∞(K̃k,2)
→ 0 as n→ +∞ ,

thus yielding

lim inf
k→+∞

E(uk, K̃k,2) ≥ 0 . (70)

On the contrary, note that for every ej ∈ K̃k,1, there exists wej ∈ H1(0, 1), wej 6≡ 0

on (0, 1), so that limx→0+ wej (x) = limx→1− wej (x) = 0, uk|ej ⇀ wej in H1(0, 1) and
uk|ej → wej strongly in Lr(0, 1) for every r ≥ 2 as k → +∞. Let then l := limn→+∞ |K̃n,1|,
where as usual |K̃k,1| denotes the length of K̃k,1 (which is also the number of edges in
K̃k,1 since each edge is of length 1), and note that either l ∈ N or l = +∞. Writing then
K̃k,1 =

⋃l
j=1 ej , we consider w2 ∈ H1(R) given by

w2(x) :=

{
wej (x) if x ∈ [j − 1, j], for some j ∈ N, 1 ≤ j ≤ l
0 otherwise .

By construction,

lim inf
k→+∞

‖u′k‖L2(K̃k,1)
≥ ‖w′2‖L2(R) and lim

k→+∞
‖uk‖Lr(K̃k,1)

= ‖w2‖Lr(R) ∀r ≥ 2 ,

so that

lim inf
k→+∞

E(un, K̃k,1) ≥ E(w2,R) . (71)

Step 3. Let w1, w2 be the functions defined in Step 2. Clearly ‖w1‖2L2(S3) +‖w2‖2L2(R) ≤
m. Let us now choose m < µ∗, where µ∗ = µ∗(p, q, 1, 3) is the critical value associated to
Fp,q,1 (which is indeed Fp,q) on S3 by Proposition 2.10. Hence, since q > p

2 + 1, ground
states of Fp,q at mass µ do not exist on S3 for every µ ≤ m. In particular, ground states
of Fp,q do not exist on S3 at mass ‖w1‖2L2(S3), so that Fp,q(w1, S3) > E

(
‖w1‖2L2(S3),R

)
.

Coupling with (69) leads to

lim inf
k→+∞

(
E(uk,Kk \ K̃k)−

|uk(v1)|q

q

)
> E

(
‖w1‖2L2(S3),R

)
= −θp

(
‖w1‖2L2(S3)

)2β+1
.

(72)
Moreover, since w2 ∈ H1

‖w2‖2
L2(R)

(R), then E(w2,R) ≥ E(‖w2‖2L2(R),R), and by (70) and

(71) we get

lim inf
k→+∞

E(un, K̃k) ≥ E(‖w2‖2L2(R),R) = −θp
(
‖w2‖2L2(R)

)2β+1
. (73)
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Hence, combining (72)–(73) with (68) and (67) gives

lim inf
k→+∞

Fp,q(uk,Gk) = lim inf
k→+∞

(
E(uk,Kk \ K̃k)−

|uk(v1)|q

q

)
+ lim inf

k→+∞
E(uk, K̃k,1) + lim inf

k→+∞
E(uk, K̃k,2)

> − θp
(
‖w1‖2L2(S3)

)2β+1
− θp

(
‖w2‖2L2(R)

)2β+1
> −θpm2β+1 .

Since this contradicts (66), we conclude. �

At the end of this section, we prove Theorem 1.9. To this end, we will consider a graph
Gl as in Figure 4(B). For every l > 0, such a graph is obtained by choosing k ∈ N large
enough so that Theorem 1.8 applies to the graph Gk as in Figure 4(A) and then adding a
vertex with degree 2, attached to two bounded edges each of length l between the original
compact core of Gk and the two half–lines of the graph.

Proof of Theorem 1.9. To prove the theorem we can simply show that there exist m > 0
and l > 0 so that ground states of Fp,q at mass m do not exist on Gl, for every l ≤ l. To
this end, it is enough to take m as in Theorem 1.8 and then adapting the argument in the
proof of Proposition 5.3, since as l → 0 the limiting graph G0 admits no ground states at
mass m by Theorem 1.8. �

Appendix A. A useful identity

The following identity concerning the actual value of the energy of the soliton φ1 at mass
µ = 1 for the energy E with the sole standard nonlinearity on the real line is crucial in the
proof of Theorem 1.3. Perhaps the result is well–known, but we do not have any explicit
reference. Since its proof is elementary, we report it here for the sake of completeness.

Recall that

α =
2

6− p
, β =

p− 2

6− p
, θp = −E(φ1,R) .

Lemma A.1. For every p ∈ (2, 6), it holds

θp(2β + 1) =
|φ1(0)|p−2

p
.

Proof. Since φ1 is the ground state of E(·,R) at mass µ = 1, there exists ω > 0 such that

φ′′1 + |φ1|p−2φ1 = ωφ1 on R. (74)

The conservation of mechanical energy then implies
1

2
(φ′1(x))2 +

1

p
(φ1(x))p =

ω

2
(φ1(x))2

for every x ∈ R, so that integrating on R one gets
1

2
‖φ′1‖22 +

1

p
‖φ1‖pp =

ω

2
. (75)

Furthermore, multiplying (74) by φ1 and integrating on R leads to

‖φ′1‖22 − ‖φ1‖pp + ω = 0. (76)

By (75) and (76), we get

θp = −E(φ1,R) =
6− p

2(p+ 2)
ω =

ω

2(2β + 1)
. (77)
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Recalling that φ1 is explicitly given by

φ1(x) =

[
p

2
ω sech2

(
p− 2

2

√
ω(|x|)

)] 1
p−2

, x ∈ R,

it turns out that 1
p |φ1(0)|p−2 = ω

2 and, coupling with (77), we conclude. �

Appendix B. Some rearrangement results

The next two lemmas collect some general constructions based on the theory of rear-
rangements on graphs that are helpful when proving the non–existence results in Theorem
1.1. Recall that V + is the set of vertices attached to at least one half–line.

Lemma B.1. Let G be a non–compact graph satisfying Assumption (H) with N ≥ 3
half–lines and u ∈ H1

µ(G) be a positive function. Then there exists u∗ ∈ H1
µ(S3) on the

star–graph S3 with 3 half–lines such that

E(u∗, S3) ≤ E(u,G) (78)

and
u∗(0) = min

v∈V +
u(v). (79)

Moreover, u∗ is symmetric with respect to the origin and monotonically decreasing on 2
half–lines of S3, whereas on the remaining half–line it is non–decreasing from the origin
to a unique maximum point and then non–increasing from this point on the rest of the
half–line.

Proof. Let u ∈ H1
µ(G) be a positive function, m := minv∈V + u(v), J := {x ∈ G : u(x) >

m} and u|J be the restriction of u to J . Note that u(J) = (m, ‖u‖∞] is connected and, by
Assumption (H), every value in u(J) is attained at least twice on G, except possibly ‖u‖∞.
Denoting by û ∈ H1(−L,L) the symmetric rearrangement of u|J on the interval (−L,L),
with L := |J |

2 , we have (see [15, Proposition 3.1])

‖u′‖L2(J) ≥ ‖û′‖L2(−L,L) , ‖u‖Lr(J) = ‖û‖Lr(−L,L) ∀r ≥ 1, û(−L) = û(L) = m.

Similarly, u(G \ J) ⊆ [0,m] is connected and every value in u(G \ J) is attained at least
N ≥ 3 times (i.e. at least once on each half–line). Therefore, letting ũ ∈ H1(S3) be the
symmetric rearrangement on S3 of u|G\J as in [5, Appendix A], we get

‖u′‖L2(G\J) ≥ ‖ũ′‖L2(S3) , ‖u‖Lr(G\J) = ‖ũ‖Lr(S3) ∀r ≥ 1, ũ(0) = m.

Denoting by h1, h2, h3 the half–lines of S3, set u∗ : S3 → R

u∗(x) :=


û(x− L) x ∈ [0, 2L] ∩ h1

ũ(x− 2L) x ∈ [2L,+∞) ∩ h1

ũ(x) otherwise .

By construction, u∗ ∈ H1
µ(S3), it satisfies (78) and (79) and enjoys the desired monotonicity

and symmetry properties. �

Lemma B.2. Let G be a non–compact graph with at least N ≥ 3 half–lines and u ∈ H1(G)
be a positive function. If ‖u‖L∞(K) < ‖u‖L∞(G\K), then there exist two positive functions
u1, u2 ∈ H1(R+) such that

2‖u1‖2L2(R+) + ‖u2‖2L2(R+) = ‖u‖2L2(G\K),

2E(u1,R+) + E(u2,R+) ≤ E(u,G \ K)

and
u1(0) = min

v∈V +
u(v) , u2(0) = ‖u‖L∞(K).
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In particular, u1 is decreasing on R+, while u2 is increasing from the origin to a unique
point of maximum and then decreasing from this point on the rest of the half–line.

Proof. Set m := minv∈V + u(v) and M := ‖u‖L∞(K). Denoting by J1 := {x ∈ G \ K :
u(x) > M} and by u|J1 the restriction of u to J1, then u(J1) is connected and, since the
L∞ norm of G is not attained on the compact core K, every value t ∈ u(J1) is attained at
least twice (on any half–line where u attains its L∞ norm), except possibly ‖u‖L∞(G\K).
Letting u ∈ H1(−L1, L1) be the symmetric rearrangement of u|J1 on the interval (−L1, L1),
with L1 := |J1|

2 , by [15, Proposition 3.1] it follows

‖u‖L2(−L1,L1) = ‖u‖L2(J1) , E(u, (−L1, L1)) ≤ E(u|J1 , J1) , lim
x→±L∓1

u(x) = M.

Moreover, denoting by J2 := {x ∈ G\K : m < u(x) ≤M}, we observe that u(J2) ⊆ [m,M ]
is connected and every value t ∈ u(J2) is attained at least once (for instance on any
half–line where u attains its L∞ norm). We thus consider the decreasing rearrangement
ũ ∈ H1(0, L2) of u|J2 on the interval [0, L2), where L2 := |J2|, so that

‖ũ‖L2(0,L2) = ‖u‖L2(J2) E(ũ, (0, L2)) ≤ E(u|J2 , J2) , ũ(0) = M , lim
x→L−2

ũ(x) = m.

Similarly, u(G \ (K∪J1∪J2)) ⊂ [0,m] is connected and every value t ∈ u(G \ (K∪J1∪J2))
is attained at least N ≥ 3 times (i.e. once on each half–line). Therefore, rearranging
symmetrically decreasing on S3 the restriction of u to G \ (K ∪ J1 ∪ J2) (see [5, Appendix
A]), there exists u1 ∈ H1(R+) satisfying

3‖u1‖L2(R+) = ‖u‖L2(G\(K∪J1∪J2))

3E(u1,R+) ≤E(u,G \ (K ∪ J1 ∪ J2))

lim
x→0+

u1(x) =m.

Then taking u1 as above and u2 ∈ H1(R+) as

u2(x) :=


u(x− L1) x ∈ [0, 2L1),

ũ(x− 2L1) x ∈ [2L1, 2L1 + L2),

u1(x− 2L1 − L2) elsewhere

proves the claim. �
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