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Abstract 49 

Investment in the production of biofuels, as sustainable alternatives for fossil fuels, has gained 50 

momentum over the last decade due to the global environmental and health concerns regarding 51 

fossil fuel consumption. Hence, effective management of biofuel supply chain (BSC) components, 52 

including biomass feedstock production, biomass logistics, biofuel production in biorefineries, and 53 

biofuel distribution to consumers is crucial in transitioning towards a low-carbon and circular 54 

economy (CE). The aim of the present study is to render an inclusive knowledge map of the BSC-55 

related scientific production so far. In this vein, a systematic review, supported by a keywords co-56 

occurrence analysis and qualitative content analysis was carried out on a total of 1,975 peer-57 

reviewed journal articles in the target literature. The analysis revealed four major research hotspots 58 

in the BSC literature, including, (1) biomass-to-biofuel supply chain design and planning, (2) 59 

environmental impacts of biofuel production, (3) biomass to bioenergy, and (4) techno-economic 60 

analysis of biofuel production. Besides, the findings showed that the following subject areas of 61 

research in the BSC research community have recently attracted more attention: (i) global warming 62 

and climate change mitigation, (ii) development of the third-generation biofuels produced from 63 

algal biomass, which has recently gained momentum in the CE debate, and (iii) government 64 

incentives, pricing, and subsidizing policies. The provided insights shed light on the understanding 65 

of researchers, stakeholders, and policy-makers involved in the sustainable energy sector by 66 

outlining the main research backgrounds, developments, and tendencies within the BSC arena. 67 

Looking at the provided knowledge map, potential research directions in BSCs towards 68 

implementing the CE model, including (i) integrative policy convergence at macro, meso, and 69 

micro levels, and (ii) industrializing algae-based biofuel production towards the CE transition were 70 

proposed. 71 
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Abbreviations 88 

Abbreviation Full form 

APY Average publication year 

BECCS Bioenergy with carbon capture and storage 
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CE Circular economy 

GHG Greenhouse gas 

LCA Lifecycle assessment 

WoS Web of Science 
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1. Introduction 99 

The circular economy (CE) with a particular focus on sustainable waste management practices 100 

intends to slow, narrow, and close the supply chain loops by returning materials and waste into 101 

resources towards making a sustainable and zero-waste environment (Ranjbari et al., 2021a). 102 

Implementing CE platforms within the energy sector has been under intense debate due to the 103 

potential of the CE in closing energy and material loops by reducing the need to use nonrenewable 104 

feedstocks and energy sources (Aguilar Esteva et al., 2021). In this regard, utilizing renewable 105 

energy sources has gained momentum worldwide mainly due to the (i) rapid socioeconomic 106 

growth and environmental concerns, (ii) depletion of fossil energy resources, (iii) better power 107 

quality, and (iv) demand for more reliable and flexible energy sources at lower costs (Craparo et 108 

al., 2017; Fadai et al., 2011; Moghaddam et al., 2011). 109 

Renewable energy sources, such as wind, solar, and biomass are considered as main players of 110 

the future growth in the energy sector to ensure sustainable energy security and mitigate the 111 

adverse environmental effects of fossil fuels (Abbasi et al., 2021). In other words, shifting to 112 

renewable energy can reduce greenhouse gas (GHG) emissions, and ensure cost-efficient and 113 

timely delivery of energy (Ellabban et al., 2014) for societies. Hence, there is a high promotion 114 

from governments and their energy policies across the world to force energy systems to utilize 115 

more renewable sources (Li et al., 2020a) to support the transition from a linear economy to a CE. 116 

The global energy demand is estimated to increase by approximately 28% by 2040 in 117 

comparison with the current level (Osman et al., 2021). Today, fossil fuels based on coal, oil, and 118 

natural gas, as effective drivers of economic development (Ellabban et al., 2014), are the primary 119 

source of energy production and consumption in the global community. However, increasing 120 

concerns regarding fossil fuel consumption have attracted much interest in investing in biofuels 121 
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production to substitute fossil fuels, towards a low-carbon and sustainable circular bioeconomy 122 

(CBE). Biofuels produced from biomass feedstock through eco-friendly and carbon-neutral 123 

approaches can potentially support future energy supply towards achieving energy security and 124 

sustainability (Ambaye et al., 2021). Biofuels are mainly preferred for their (i) carbon-neutral 125 

character, (ii) renewability, and (iii) production flexibility in decentralized systems from abundant 126 

and versatile resources (Gebremariam et al., 2019). 127 

The biofuel supply chain (BSC) comprises biomass feedstock production, biomass logistics, 128 

biofuel production in biorefineries, and biofuel distribution to consumers. The supply chain of 129 

converting biomass to biofuels has attracted the attention of academic and industrial research as a 130 

challenging and complex issue (Ghadami et al., 2021), leading to a huge amount of research. On 131 

this basis, BSCs have been extensively explored in the literature from various points of view, such 132 

as pricing decisions (Allameh and Saidi-Mehrabad, 2021), optimal design (Zarei et al., 2021), 133 

subsidizing (Bajgiran and Jang, 2021), GHG emissions (Daioglou et al., 2017), economic 134 

optimization (Ge et al., 2021), network design (Nur et al., 2021), microalgae-based BSCs (Kang 135 

et al., 2020), economic viability and environmental impacts (Li et al., 2020b), risk mitigation 136 

(Wachyudi et al., 2020), profit allocation (Gao et al., 2019), platforms planning for BSCs (Nugroho 137 

and Zhu, 2019), lifecycle assessment (LCA) (Bennion et al., 2015), and strategy selection 138 

(Allameh and Saidi‐Mehrabad, 2019). Consequently, a significant amount of BSC-related research 139 

has been conducted, leading to fragmented literature and scientific production. As a result, a 140 

comprehensive knowledge map of the BSC-related studies and their associated research themes 141 

and trends seems lacking. 142 

To fill the identified gap, the present research aims to provide an inclusive map of the body 143 

of knowledge in the BSC domain by identifying its major research hotspots and emergent research 144 
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tendencies. To this end, a systematic science mapping review, supported by descriptive analysis, 145 

keywords co-occurrence analysis, and qualitative content analysis was performed. The results 146 

contribute to the existing studies by (i) presenting performance indicators of BSC-related scientific 147 

production over time, (ii) identifying BSC research hotspots through conducting a keywords co-148 

occurrence analysis to cluster research articles in the target literature, (iii) capturing BSC subject 149 

areas of research which have recently attracted more attention using the average publication year 150 

measure, and (iv) proposing potential directions for BSC research towards implementing the CE 151 

model. To the best of the authors’ knowledge, this is the first attempt in the literature to map the 152 

BSC scientific production as a whole, using science mapping analysis through addressing the 153 

following research questions (RQs): 154 

RQ1. What are the past and present states and trends of scientific production in the BSC 155 

literature? 156 

RQ2. What are the seminal research hotspots and tendencies building the BSC background? 157 

RQ3. Which areas have been recently attracting more attention in the BSC domain? 158 

RQ4. What are the potential CE avenues ahead for BSC future research? 159 

The remainder of the paper is organized as follows. Section 2 presents the adopted search 160 

protocol and applied methods. Section 3 provides the main results of the research, including 161 

descriptive analysis results, representing performance indicators (Section 3.1), keywords co-162 

occurrence analysis results, representing identified BSC research hotspots (Section 3.2), and 163 

qualitative content analysis results, representing emergent BSC research areas (Section 3.3). 164 

Potential CE directions for future research within the BSC context are proposed in section 4. 165 

Finally, Section 5 concludes the remarks and limitations of the study. 166 

 167 
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2. Scope and review methodology 168 

In this research, a systematic review based on the PRISMA statement (Liberati et al., 2009) 169 

supported by keywords co-occurrence analysis and qualitative content analysis was carried out to 170 

provide a comprehensive knowledge map of the academic production in the BSC literature. The 171 

adopted search protocol to collect data (Section 2.1) and analysis methods used in this review 172 

(Section 2.2) are explained in the following sub-sections. 173 

 174 

2.1. Data source and search protocol 175 

In order to assure sufficient coverage of the target literature and reliability of the results within 176 

each review process, adopting a well-structured search protocol, clarifying data source, search 177 

string, and inclusion criteria seems crucial. On this basis, a structured search protocol was 178 

formulated in three steps. 179 

First, the Web of Science (WoS) Core Collection database, as the world’s most trusted global 180 

academic citation database, was chosen as the main data source for the present review. 181 

Second, a search string was constructed aiming to maximize the sufficiency of the extracted 182 

documents related to the topic of this research indexed in WoS. In this vein, the two main keywords 183 

"biofuel" and "supply chain" were considered as the core of attention for further investigation. To 184 

avoid neglecting critical and significant research within the BSC domain as much as possible, these 185 

two keywords were divided and carefully scanned to outline the crucial keywords referring to the 186 

BSC concept. In this regard, with a similar approach adopted by Pournader et al. (2021), we relied 187 

on the supply chain definition by Mentzer et al. (2001) as "a set of three or more entities 188 

(organizations or individuals) directly involved in the upstream and downstream flows of products, 189 

services, finances, and/or information from a source to a customer". Consequently, we ended up 190 
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with "supply chain", "supply network", "buyer-supplier", "supplier selection", and "supplier 191 

evaluation", as the major keywords covering the concept of the supply chain as a whole. Keywords 192 

that implicitly refer to the supply chain, such as "operation management", inventory management", 193 

and "logistics" were excluded from our search string to remain consistent with the main focus of 194 

this study. On the other hand, the keyword "biofuel" were searched within the most recent 195 

systematic reviews conducted on biofuels (for instance, see Padilla-Rivera et al. (2019), and 196 

Chaudhary et al. (2021)) to identify the main keywords and synonyms implicitly addressing the 197 

biofuel concept within the scientific production in the literature. To this end, "biofuel", "ethanol", 198 

"bioethanol", "biodiesel", "biogas", "biomass", "bio-oil", and "biorefinery" were outlined to be 199 

included in the search string. Moreover, due to the presence of "bio" in the keywords, different 200 

spelling styles, such as "bio-fuel", "bio fuel", "bio-diesel", and "bio diesel" were also taken into 201 

account. As a result, the identified keywords related to "biofuel" and "supply chain" were 202 

connected by using the Boolean operators "AND" and "OR" to formulate the following search 203 

string for capturing the most relevant documents related to the BSC background: "supply chain" 204 

OR "supply network" OR "buyer-supplier" OR "supplier selection" OR "supplier evaluation" AND 205 

"Biofuel" OR "bio fuel" OR "bio-fuel" OR "ethanol" OR "bio ethanol" OR "bio-ethanol" OR 206 

"bioethanol" OR "bio diesel" OR "bio-diesel" OR "biodiesel" OR "biogas" OR "bio gas" OR "bio-207 

gas" OR "biomass" OR "bio-mass" OR "bio-oil" OR "bio oil" OR "biorefiner*" OR "bio refiner*" 208 

OR "bio-refiner*". The initial run of the search string on the topic field in WoS which searches 209 

title, abstract, author keywords, and keywords plus returned a total of 2,605 records. 210 

Finally, a set of inclusion criteria were set up to limit the initial results to the most relevant 211 

and reliable research. In this regard, only peer-reviewed articles published in journals in the 212 

English language were included in the final sample and other forms of documents, such as 213 
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conference proceedings, book chapters, and short communications were excluded from the study. 214 

The rationale behind adopting this approach was to enrich the quality and validity of the collected 215 

data and accordingly analyses and obtained results (Ranjbari et al., 2021c). Besides, due to the aim 216 

of this research to provide a comprehensive science map of the BSC field of research, no time-217 

period restriction was considered. The continuous process of capturing data was stopped by adding 218 

the last update on December 19, 2021, to the dataset. As a result of this stage, 1,975 peer-reviewed 219 

journal articles met the inclusion criteria and were selected as the final sample for analysis in the 220 

present review. Table 1 summarizes the details of the adopted search protocol. 221 

Table 1 222 

The details of the adopted search protocol to collect BSC-related research. 223 

Search string "supply chain" OR "supply network" OR "buyer-supplier" OR "supplier selection" OR 

"supplier evaluation" 

AND 

"Biofuel" OR "bio fuel" OR "bio-fuel" OR "ethanol" OR "bio ethanol" OR "bio-ethanol" 

OR "bioethanol" OR "bio diesel" OR "bio-diesel" OR "biodiesel" OR "biogas" OR "bio 

gas" OR "bio-gas" OR "biomass" OR "bio-mass" OR "bio-oil" OR "bio oil" OR 

"biorefiner*" OR "bio refiner*" OR "bio-refiner*" 

Database Web of Science 

Searched in Topic: title, abstract, author keywords, and keywords plus 

The last update  December 19, 2021 

Initial result 2,605 articles 

Inclusion criteria (i) peer-reviewed journal articles, and (ii) English documents 

Final sample 1,975 articles 

 224 

2.2. Data analyses 225 

To properly answer the RQs of this study, an inclusive approach to assess the research 226 

developments and outcomes in the BSC field was adopted. In this vein, an analytical method 227 

adopted from (Dutra et al., 2022; Ranjbari et al., 2021a, 2022b), combining descriptive analysis, 228 
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keywords co-occurrence analysis, and qualitative content analysis was applied to render the state-229 

of-the-art of BSC research. To do so, the analyses were performed in three steps as the following. 230 

Firstly, a descriptive analysis was conducted on the 1,975 articles collected from WoS to 231 

present performance indicators of the scientific production in the BSC literature, answering RQ1. 232 

In this regard, for the time period of 1992-2021, the following performance indicators were 233 

provided and discussed: (i) publication evolution trends, (ii) contributing publishers and journals, 234 

(iii) the geographical distribution of contributions to the field, and (iv) thematic research categories 235 

of collected data based on WoS classification. 236 

Secondly, based on the co-occurrence algorithm, a keywords co-occurrence analysis was 237 

performed on the authors' keywords in our data (4,443 unique keywords within 1,975 articles) 238 

using VOSviewer version 1.6.16 (van Eck and Waltman, 2010), addressing RQ2. The main 239 

rationale behind adopting this method is linked with the weakness of traditional literature reviews 240 

in dealing with mapping a huge amount of articles due to their manual settings. Keywords co-241 

occurrence analysis has been widely used as a useful knowledge mapping tool in theoretical and 242 

empirical studies due to its capability in mapping the conceptual and thematic structure of a domain 243 

(Krey et al., 2022), representing the cumulative knowledge of the target literature. In keywords 244 

co-occurrence analysis, while each author keyword represents a node in the network constructed, 245 

each co-occurrence of a pair of author keywords represents a link. The weight of the link 246 

connecting the pairs of author keywords denotes the number of times that a pair of author keywords 247 

co-occurs in multiple articles (Radhakrishnan et al., 2017). In this regard, data cleaning, as a crucial 248 

preparing step for conducting any keyword-based analysis (Ranjbari et al., 2020), was first carried 249 

out on the keywords by (i) merging singular and plural forms of the keywords, (ii) combining 250 

abbreviations and full forms of the keywords, and (iii) unifying English and American writing 251 
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styles. Then, the network of the authors' keywords based on the co-occurrence links clusters was 252 

constructed to provide a base for unveiling common themes across the articles to understand the 253 

thematic structure and knowledge components of the BSC field of research. 254 

Finally, in this step, a qualitative content analysis was carried out as a complementary layer to 255 

the keywords co-occurrence analysis to (i) obtain a deeper understanding of the extant knowledge 256 

and intellectual structures, (ii) enable the identification of the most developed topics within the 257 

literature, in particular the most recent subject areas under research, and (iii) better link existing 258 

studies to future directions for research. Since the potential of conducting content analysis lies in 259 

its combination with other methods (Gaur and Kumar, 2018), it can significantly enrich the results 260 

of keyword-based analyses reviews. To this end, combining qualitative content analysis with other 261 

review methods has been broadly used in conducting inclusive reviews (S. Chaudhary et al., 2021; 262 

He et al., 2020; Piwowar-Sulej et al., 2021). In this regard, a qualitative content analysis was 263 

conducted on the articles containing keywords with a minimum average publication year of 2019 264 

(i.e., 2019-2022) and at least two occurrences. In this manner, besides the conceptual structure and 265 

identified hotspots of BSC research in the previous step, emerging subject areas of research that 266 

have recently attracted more attention were also discovered and discussed to answer RQ3. Fig. 1 267 

illustrates the overall research framework employed in this study corresponding to the methods 268 

applied to answer RQs and expected results. 269 
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 270 

Fig. 1. The research framework adopted for mapping BSC research 271 

3. Results and discussion 272 

The obtained results are presented in the following three sub-sections to clearly address the 273 

RQs of the study. In this vein, the performance indicators are presented in Section 3.1 to answer 274 

RQ1 regarding the states of scientific production in the BSC literature. Section 3.2 provides the 275 

major research hotspots and tendencies building the BSC background to address RQ2. And finally, 276 

RQ3 is answered in Section 3.3 through analyzing and discussing the main BSC research areas 277 

that have been recently under debate by research communities. 278 

 279 

3.1. Descriptive analysis results: Performance indicators 280 

3.1.1. Annual publication evolution over time 281 

A total of 1,975 articles was retrieved from WoS by running the defined search string and 282 

applying the inclusion and exclusion criteria. The oldest identified article within the collected 283 

sample was published in 1992 in the journal "Biomass and Bioenergy". In that article, Mitchell 284 

(1992) provided an overview of a project regarding the wood fuel supply chain under the title 285 
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"Biomass supply from conventional forestry". As can be seen in Fig. 2, which shows the trend of 286 

annual publication in the field of biomass supply chain based on the articles’ publishing date, there 287 

were only 10 articles published in this field of study in the period 1992-2005. However, between 288 

2006-2008 a constant increase was initiated and significant growth took place starting from 2009, 289 

although some minor dints appear in the number of publications between 2009 and 2021. Within 290 

our sample, 26 articles had no publication year, out of which 23 were available online since 2021 291 

and 3 were available since 2020. These articles are not considered in the trend shown in Fig. 2, 292 

however, in order not to lose information and to compute the average publication year of the 293 

keywords more realistically, they have been accounted for in the analysis of the keyword with an 294 

assumption of having the publication year of 2022. 295 

 296 

Fig. 2. The annual publication in the research field of BSC. 297 
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Chemical Society, and Taylor and Francis) account for 85.57% of the published articles (1690 301 

articles of the total), as shown in Fig. 3. Moreover, while the selected sample of articles was 302 

distributed in 426 journals, 42.53% of them (840 articles) were published in only 10 journals. More 303 

than 74.4% of the journals (i.e. 317 journals) published only one or two articles in the studied field. 304 

Table 2 provides the list of 10 journals that have published the highest number of articles in our 305 

dataset. As can be seen in this table, "Journal of Cleaner Production", "Biomass & Bioenergy", 306 

and "Applied Energy" are the three most productive journals with 187, 124, and 123 articles, 307 

respectively. Although these three journals have also received the highest number of citations to 308 

their articles, the highest average citation per article is earned by "Computers & Chemical 309 

Engineering", "Renewable Energy", and "Biomass & Bioenergy", respectively. Furthermore, the 310 

average publication year (APY) reported in Table 2 shows that among the listed journals, 311 

"Sustainability", "Energies", and "Journal of Cleaner Production" have been more active in the 312 

publication of more recent articles rather than the older ones. 313 

 314 

Fig. 3. The main contributing publishers in the publication of BSC-related articles. 315 
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Table 2. The top 10 publishing journals in the field of BSC research. 316 

Rank Journal 
2020 

IF* 

2020 

CiteScore 

No. of 

articles 

Share of the 

total sample 
Citations AC* APY* 

1 Journal of Cleaner Production 9.297 13.1 187 9.47% 4009 21.44 2018 

2 Biomass & Bioenergy 5.061 6.7 124 6.28% 3699 29.83 2014.39 

3 Applied Energy 9.746 17.6 123 6.23% 3421 27.81 2017.02 

4 Energy 7.147 11.5 84 4.25% 2314 27.55 2016.68 

5 Computers & Chemical Engineering 3.845 7.0 74 3.75% 2462 33.27 2016.99 

6 Biofuels Bioproducts & Biorefining-Biofpr 4.102 7.2 60 3.04% 1042 17.37 2015.98 

7 Sustainability 3.251 3.9 53 2.68% 451 8.51 2018.79 

8 Renewable Energy 8.001 10.8 48 2.43% 1439 29.98 2017.06 

9 Energies 3.004 4.7 47 2.38% 386 8.21 2018.34 

10 Industrial & Engineering Chemistry Research 3.764 5.6 40 2.03% 1141 28.53 2016.03 

* IF: Impact Factor; AC: Average citation per article; APY: Average publication year 317 

3.1.3. Thematic research categories in WoS 318 

Based on the WoS classification, the collected articles are published in 99 research categories. 319 

Fig. 4 presents the WoS categories in which more than 100 articles are published, which form the 320 

top 10 research categories containing articles in the BSC study area. Since a single article may 321 

belong to more than one research category, the sum of numbers shown in Fig. 4 exceeds the 322 

number of articles in our dataset. As can be seen in this figure, approximately 41.42% of the articles 323 

(818 out of 1975) are classified in the "Energy Fuels" category. Having "Environmental Sciences", 324 

"Engineering Environmental", and "Environmental Studies" in the 2nd, 5th and 8th ranks highlights 325 

the concern of authors in the BSC field towards the environmental issues linked with this field of 326 

study. 327 
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 328 
Fig. 4. The top 10 WoS thematic research categories containing BSC research. 329 
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A total of 85 countries were identified to have contributed to the publication of articles in the 331 
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According to this table, the USA, England, and Italy with 575, 176, and 166 articles and 15410, 334 

5147, and 3289 citations, respectively, are both the top productive and the top influential countries. 335 
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Top 10 contributing countries in terms of the 

no. of articles 
 

Top 10 contributing countries in 

terms of the no. of citations 

Rank Country Articles 
Share of the 

total sample 
 Rank Country Citations 

1 USA 575 29.11%  1 USA 15,410 

2 England 176 8.91%  2 England  5,147 

3 Italy 166 8.41%  3 Italy  3,289 

4 China  157 7.95%  4 Canada  2,832 

5.57%

5.87%

6.18%

9.22%

14.03%

15.75%

20.41%

22.89%

24.66%

41.42%
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5 Canada 131 6.63%  5 China 2,504 

6 Germany 104 5.27%  6 Netherlands  2,242 

7 Netherlands 93 4.71%  7 Spain  1,880 

8 Iran 86 4.35%  8 Germany  1,836 

9 Malaysia 85 4.30%  9 Austria  1,667 

10 Brazil 84 4.25%  10 Malaysia  1,644 

 340 

3.2. Keywords co-occurrence analysis results: Discovering BSC research hotspots  341 

A total of 4,664 author keywords were recognized in the dataset at the initial stage. This 342 

number was reduced to 4,443 unique keywords after cleaning the data. In order to provide a clear 343 

picture of the main keywords forming the core of BSC research, a threshold of a minimum of 20 344 

occurrences was considered for the keywords to be analyzed in-depth in this section. The 345 

considered threshold resulted in the selection of 38 keywords, which were used to build the clusters 346 

in Fig. 5. These clusters reflect the main research focuses in the field of BSC. In the keywords co-347 

occurrence network illustrated in Fig. 5, each node stands for a keyword, its size shows the 348 

occurrence of the keyword in our dataset, and its color shows the cluster it belongs to. Moreover, 349 

the links between the pair of nodes show the co-occurrence of the two keywords in a single article 350 

and the thickness of the links reflects the repetition of this co-occurrence in different documents. 351 

Table 4 provides details about the keywords in the built clusters, including their (1) 352 

occurrence, (2) average publication year (i.e. mean of the publication year of the articles in which 353 

a specific keyword appears), (3) average citation (i.e. mean of the citations received by the article 354 

containing a specific keyword), (4) number of links (i.e. the number of keyword with which a 355 

specific keyword co-appear in a single article), (5) total link strength (i.e. the sum of all co-356 

occurrences of a specific keyword), and (6) the five most co-occurring keywords with a specific 357 

keyword and their number of co-occurrences. Furthermore, for each cluster, the average 358 
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publication year of the keywords is reported, which points to the recentness of the articles 359 

containing the keywords considered in each cluster. The built clusters, including "Biomass to 360 

biofuel supply chain design and planning", "Environmental impacts of biofuel production", 361 

"Biomass to bioenergy", and "Techno-economic analysis of biofuel production" are discussed in 362 

the following sub-sections. 363 

 364 

 
Biomass-to-biofuel supply chain design and planning 

 Environmental impacts of biofuel production 

 Biomass to bioenergy 

 Techno-economic analysis of biofuel production 

 365 

Fig. 5. Co-occurrence network of the keywords within the BSC research from the target 366 

literature. 367 
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Table 4. Major research hotspots within the BSC literature. 368 

Cluster 1: Biomass-to-biofuel supply chain design and planning (APY*: 2016.90) 

Keyword  Occurrence APY AC* Links TLS* The five most co-occurring keywords 

Optimization  223 2017.21 21.02 34 350 Supply chain (51); Biomass (36); Biofuel (35); Bioenergy (20); Uncertainty (20) 

Sustainability  130 2016.99 30.02 32 169 Biofuel (17); LCA (17); Biomass (14); Multi-objective Optimization (13); 

Renewable energy (9) 

Multi-objective optimization 63 2017.56 33.62 28 84 Sustainability (13); Supply chain (11); Biofuel (5); BSC (5); LCA (5) 

Uncertainty 59 2017.22 29.02 25 93 Optimization (20); Biofuel (10); Supply chain (10); Stochastic programming (7); 

BSC (5) 

Mixed integer linear programming 58 2016.76 26.66 26 90 Optimization (18); Biomass (9); Supply chain (9); Bioethanol (4); Biorefinery (4) 

Biomass supply chain 56 2016.68 22.71 19 51 Optimization (10); Bioenergy (5); Biorefinery (4); GHG emission (4); LCA (4) 

Biodiesel 49 2016.35 18.02 18 49 Supply chain (13); Optimization (8); Biofuel (3); LCA (3); Uncertainty (3) 

Supply chain management 42 2016.12 28.57 21 56 Optimization (9); Biomass (8); Bioenergy (4); Bioethanol (4); Sustainability (4) 

BSC 40 2017 38.2 18 46 Optimization (7); Multi-objective optimization (5); Uncertainty (5); GHG emission 

(4); Sustainability (4) 

Stochastic programming 27 2017.11 35.37 13 33 Uncertainty (7); Optimization (5); Biofuel (4); Biomass (4); Supply chain (4) 

Supply chain design 24 2015.96 33.13 16 28 Biofuel (4); Mixed integer linear programming (3); Optimization (3); Biodiesel (2); 

Bioenergy (2) 

Facility location 23 2015.78 26.52 16 38 Biofuel (5); Optimization (5); Supply chain (5); Sustainability (4); Biomass (3) 

Switchgrass 23 2015.26 33.74 21 43 Biofuel (6); Supply chain (5); Sustainability (4); Bioenergy (3); LCA (3) 

Sustainable development 22 2017.64 38.32 17 28 Biomass (5); Multi-objective Optimization (3); Supply chain (3); Bioenergy (2); 

BSC (2) 

Cluster 2: Environmental impacts of biofuel production (APY: 2017.15) 

Keyword  Occurrence APY AC Links TLS Most co-occurring keywords 

LCA 170 2017.21 22.11 34 209 GHG emission (19); Sustainability (17); Bioenergy (16); Biomass (15); GHG (10) 

Renewable energy 66 2017.67 20.55 19 73 Biomass (15); Optimization (11); Sustainability (9); Biofuel (6); Supply chain (6) 

Greenhouse gas emission 56 2017.07 18.89 25 81 LCA (19); Bioenergy (6); Biomass (6); Supply chain (6); Biofuel (4) 

Bioethanol 49 2016.39 16 21 70 Optimization (13); Supply chain (10); LCA (8); Sustainability (6); Mixed integer 

linear programming (4) 

Biogas 45 2017.04 13.98 19 56 Anaerobic digestion (11); Supply chain (11); Optimization (7); Bioenergy (4); 

Biofuel (2) 

Environmental impact 28 2017.79 14.21 15 40 LCA (13); Biofuel (5); Supply chain (5); Bioenergy (2); Bioethanol (2) 

GHG 24 2015.83 23 15 38 LCA (10); Biofuel (5); Bioenergy (4); Biomass (4); Energy (3) 

Anaerobic digestion 23 2018.44 13.78 11 28 Biogas (11); Optimization (4); Bioenergy (3); LCA (3); Biorefinery (1) 

Energy 22 2016.5 21.45 14 34 Biomass (7); Supply chain (4); GHG (3); LCA (3); Optimization (3) 

Cluster 3: Biomass to bioenergy (APY: 2016.29) 
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Keyword  Occurrence APY AC Links TLS Most co-occurring keywords 

Supply chain 267 2016.28 20.54 33 383 Optimization (51); Biomass (43); Biofuel (42); Bioenergy (32); Biorefinery (18) 

Biomass 205 2016.32 26.02 33 310 Supply chain (43); Bioenergy (39); Optimization (36); Biofuel (19); Logistics (17) 

Bioenergy 156 2016.29 28.03 34 238 Biomass (39); Supply chain (32); Optimization (20); Biofuel (17); LCA (16) 

Logistics 57 2015.95 26.14 22 105 Biomass (17); Bioenergy (16); Supply chain (15); Optimization (13); Geographic 

information system (7) 

Geographic information system 45 2015.89 22.11 23 74 Logistics (7); Optimization (8); Supply chain (8); Biomass (7); Biofuel (6) 

Torrefaction 40 2016.93 34.05 15 45 Biomass (10); Bioenergy (8); Supply chain (7); LCA (5); Logistics (4) 

Transportation 37 2016.16 19.57 15 63 Supply chain (12); Biomass (9); Biofuel (7); Optimization (6); Logistics (5) 

Forest biomass 34 2016.83 14.44 20 48 Supply chain (10); Bioenergy (9); Biofuel (5);  

Optimization (5); LCA (2) 

Forest residue 20 2016.25 21.5 14 23 Bioenergy (5); LCA (3); Biomass (2); GHG emission (2); Torrefaction (2) 

Cluster 4: Techno-economic analysis of biofuel production (APY: 2017.13) 

Keyword  Occurrence APY AC Links TLS Most co-occurring keywords 

Biofuel  169 2016.34 23.08 35 269 Supply chain (42); Optimization (35); Biomass (19); Bioenergy (17); Sustainability 

(17) 

Biorefinery  71 2017.39 23.48 21 103 Supply chain (18); Optimization (14); Biofuel (11); Biomass (9); Geographic 

information system (6) 

CE 33 2019.70 10.61 20 38 Sustainability (5); LCA (4); Supply chain (4); Biofuel (3); Bioeconomy (2) 

Techno-economic analysis 31 2018.84 11.84 19 37 LCA (6); Biofuel (4); Biorefinery (4); Bioenergy (3); Bioethanol (2) 

Ethanol  29 2015.55 22.69 17 47 Biofuel (10); Supply chain (9); Biomass (5); Optimization (4); LCA (3) 

Bioeconomy  24 2018.08 12.75 8 20 Biorefinery (5); Biomass (4); LCA (3); Bioenergy (2); Biofuel (2) 

* APY: Average publication year; AC: Average citation; TLS: Total link strength. 369 

 370 
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3.2.1. Cluster 1: Biomass-to-biofuel supply chain design and planning 371 

As reported in Table 4, the most frequent keyword in cluster 1 is "optimization", which has 372 

co-occurred several times with various other highly frequent keywords including "supply chain", 373 

"biomass", "biofuel", "bioenergy", and "uncertainty". Optimization models have been extensively 374 

used in the academic literature for "supply chain design" and also planning in the field of bioenergy 375 

(Memari et al., 2021). These models are applied in various contexts such as economic optimization 376 

of the cellulosic biofuel supply chain (Ge et al., 2021), optimization of food supply chains under 377 

CE considerations (Baratsas et al., 2021), optimal design of a supply chain for jatropha-based 378 

biofuel (Afkhami and Zarrinpoor, 2021), biomass feedstock delivery (Li et al., 2019), and lifecycle 379 

optimization of bioenergy with carbon capture and storage (BECCS) supply chains (Negri et al., 380 

2021). BSCs have several "uncertainties" such as supply uncertainty (Fattahi et al., 2021), demand 381 

uncertainty (Elaradi et al., 2021), and material quality (Saghaei et al., 2020). 382 

To deal with the "uncertainties" linked with the BSC, different approaches have been adopted 383 

by the researchers, such as "stochastic programming" (Elaradi et al., 2021; Fattahi et al., 2021), 384 

robust optimization (Gilani and Sahebi, 2021), and fuzzy programming (Afkhami and Zarrinpoor, 385 

2021). "Multi-objective optimization" models developed in this field mainly focus on 386 

"sustainability" issues and try to optimize a combination of economic, environmental, and social 387 

aspects of a considered BSC. For instance, Baghizadeh et al. (2021) used a mixed-integer non-388 

linear programming model to maximize profit, improve social impacts, and minimize the negative 389 

environmental effects and the lost demands in a forest supply chain. Also, Díaz-Trujillo and 390 

Nápoles-Rivera (2019) focused on the optimization of biogas supply chains based on satisfying 391 

the biogas and biofertilizer demands, maximization of the profit, and minimization of the 392 

environmental impact. In another research conducted by Santibañez-Aguilar et al. (2022), a multi-393 
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objective optimization model was applied for the planning of a biomass supply chain, which 394 

considered several objective functions to address the social impact as a function of the facilities 395 

location, net profit, and net CO2 emissions. 396 

 397 

3.2.2. Cluster 2: Environmental impacts of biofuel production 398 

Biofuel, as a type of "renewable energy", is considered a strong alternative for fossil fuels due 399 

to its favorable "environmental impacts" and its support to lower climate change through emitting 400 

less "greenhouse gasses". Bui et al. (2021) estimated that indigenous sources of biomass in the UK 401 

can remove up to an annual amount of 56 Mt of CO2 from the atmosphere. García-Freites et al. 402 

(2021) also focused on the UK’s net-zero emission target and found that their studied BECCS 403 

supply chains can contribute to the GHG removal by CO2e between -647 and -1,137 kg MWh−1 404 

net negative emissions. In another research with a CE approach, Mayson and Williams (2021) 405 

studied the treatment and reuse of spent coffee grounds to fuel the roasting process in a coffee 406 

company and found that using spent coffee grounds can result in carbon savings of 5.06 kg 407 

CO2e/kg−1 fuel for each roasted batch of coffee in comparison with a conventional approach. 408 

A huge share of articles in the field of BSC deal with the environmental impacts of the 409 

activities linked with the design and operation of BSC (e.g. Duarte et al. (2016) and Lu et al. 410 

(2015)). Besides, "LCA" has been used in 170 articles in our dataset to assess the environmental 411 

impacts of biofuel-related products, as a comprehensive evaluation approach for measuring 412 

environmental impacts over the biofuels' entire production chain (Osman et al., 2021). For 413 

instance, Lin et al. (2021) conducted an LCA on a biogas system for cassava processing in Brazil, 414 

and Xu et al. (2021) studied the GHG emissions of the electricity generated from forest biomass 415 

in the US from an LCA perspective. A cradle-to-grave industry-average assessment of the life-416 

cycle impacts of the wood pallet supply chain in the United States was done by Alanya-Rosenbaum 417 



24 
 

et al. (2021), highlighting the significant share of biomass from the total primary energy 418 

consumption in the supply chain. Tsalidis and Korevaar (2022) pointed to the recent concentration 419 

of LCAs on emerging technologies, which are not yet optimized with respect to energy and 420 

materials, and conducted research to show the data scales effects on LCA results. They considered 421 

a case study of the Dutch torrefaction industry and used its ex-ante experimental data, data derived 422 

from simulations, and ex-post empirical data and modeled bench, lab, pilot, and commercial scales, 423 

and simulations of torrefaction technology. Their investigations showed that simulations result in 424 

better scores regarding all the considered environmental impacts including global warming, fine 425 

particulate matter formation, terrestrial acidification and freshwater eutrophication potentials, in 426 

comparison with the other scales modelled. 427 

"Bioethanol", "biogas", and "anaerobic digestion" are other frequent author keywords 428 

appearing in 49, 45, and 23 articles, respectively, that are labeled under cluster 2. Anaerobic 429 

digestion is a biological process in which organic materials are converted to biogas through a series 430 

of tandem biochemical reactions (Nie et al., 2021). This process is a waste-to-energy option to 431 

recover energy from organic waste and produce value-added chemicals (Barati et al., 2017) and is 432 

recognized as an environmental-friendly technology in this regard. As an example among the 433 

papers investigated in our database, Nguyen et al. (2016) studied the energy conversion of rice 434 

straw through anaerobic digestion and found that using rice straw for biogas production can 435 

generate a positive net energy balance of 70% - 80%. In another research, Stougie et al. (2018) 436 

studied the combustion of bioethanol from the fermentation of verge grass, combustion of 437 

substitute natural gas from supercritical water gasification of animal manure, and combustion of 438 

substitute natural gas from anaerobic digestion of animal manure, and found that the bioethanol 439 

system has the best performance and is the most environmentally sustainable among the studied 440 
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systems. Bioethanol, as a type of biofuel, can be either blended with gasoline or used as a stand-441 

alone fuel (Haghighi Mood et al., 2013). 442 

 443 

3.2.3. Cluster 3: Biomass to bioenergy 444 

This cluster contains the keyword "supply chain", which is the most frequent keyword in our 445 

database, as it constituted the main part of the search string in this research. As can be seen in 446 

Table 4, the highest number of co-occurrences of "supply chain" is with "optimization" in cluster 447 

1, which is the third frequent keyword with 174 occurrences. The strong co-occurrence link 448 

between these two keywords highlights the interest in applying optimization models in different 449 

supply-chain-related issues in the biofuel field of study, as also pointed to in cluster 1. Since the 450 

conversion of "biomass to bioenergy" is the main objective of building a BSC, these two keywords, 451 

representing the main input and output of the process, have significant link strengths with "supply 452 

chain" (43 and 32, respectively). 453 

Biomass is not only a source of energy but also a feedstock to be used in biorefineries. The 454 

biomass materials that can be used to produce biofuel range from wood and energy crops to 455 

agricultural, municipal, and industrial waste (Rentizelas, 2013). "Forest residue" has been 456 

identified as a highly frequent keyword in the dataset analyzed for this research several articles 457 

have considered this type of biomass for the production of biofuel and have analyzed its relevant 458 

supply chain. Through a System Dynamics model developed by Jin and Sutherland (2018), the 459 

dynamic changes in the forest residue supply and demand were analyzed. Sahoo et al. (2019) 460 

developed economic models to estimate the operational costs of different forest residue logistics. 461 

Moreover, in the research conducted by Malladi et al. (2018), a decision support tool was 462 

developed for optimizing the short-term "logistics" of forest-based biomass. Selection of a proper 463 



26 
 

location for the biofuel-related facilities (Santibañez-Aguilar et al., 2018; Woo et al., 2018) and 464 

also the transportation and logistics (Fikry et al., 2021; Han et al., 2018) issues are some of the 465 

other challenges addressed by researchers regarding the management of a BSC, whose relevant 466 

keywords have appeared in this cluster. 467 

 468 

3.2.4. Cluster 4: Techno-economic analysis of biofuel production 469 

Considering the keywords in cluster 4 and their most co-occurring keywords, the main theme 470 

of this cluster can be linked with the techno-economic and cost-based optimization and analysis of 471 

biofuel production. The most frequent keyword in this cluster is "biofuel" with an APY of 2016.34 472 

for 169 occurrences, followed by "biorefinery" with 71 occurrences and an APY of 2017.39. The 473 

most co-occurring keywords with "biofuel" and "biorefinery" are "supply chain" and 474 

"optimization", which point to a significant share of the articles reflecting research on the 475 

optimization of biofuel production or optimization of biofuel supply chains, in line with the 476 

discussions on cluster 1.  477 

In many of the studies dealing with the optimization of the biofuel supply chain or a part of it, 478 

costs and economic analysis have been considered crucial, since biofuel production is linked with 479 

several economic constraints. For instance, Allman et al. (2021) proposed a biomass waste-to-480 

energy supply chain optimization model for the location and relocation of mobile and modular 481 

production units and found that mobile production modules lead to the saving of 1-4% of supply 482 

chain costs in Minnesota and North Carolina. An optimization framework for biorefineries design 483 

was presented by Theozzo and Teles dos Santos (2021) to maximize the operational net present 484 

value. Ankathi et al. (2021) proposed an optimization model for locating food waste and manure 485 

anaerobic co-digestion facilities in Wisconsin to maximize the profit from the biopower supply 486 



27 
 

chain and carbon credits. In addition, "ethanol", which is the most produced biofuel at the industrial 487 

scale level (Amândio et al., 2022), has been addressed in the optimization models of some research. 488 

The optimization-based model by Punnathanam and Shastri (2021) for ethanol production from 489 

the agricultural residue with an objective of minimizing the total annual cost, and the optimization 490 

model by Soren and Shastri (2021) for commercial-scale ethanol production considering the cost 491 

minimization are a few examples in this regard. 492 

"Techno-economic analysis" of biofuel production and the processes involved are the focus of 493 

some other studies. The research by Lan et al. (2021) on the techno-economic analysis of 494 

decentralized preprocessing systems, the techno-economic evaluation by Abelha and Kiel (2020) 495 

on biomass upgrading by washing, and the study conducted by Khounani et al. (2019) on the 496 

techno-economic evaluation of safflower-based biorefinery can be named as a few examples in 497 

this regard. As such, "techno-economic analysis" can be mentioned as the core keyword in this 498 

cluster, which involves both technical and economic aspects of processes and activities in the 499 

biofuels supply chain. 500 

The "CE", as the most recent keyword in this cluster, has been pointed to in several articles, 501 

for instance, to address biogas production in the anaerobic digestion process (Vondra et al., 2019), 502 

using spent coffee grounds as fuel (Mayson and Williams, 2021), and wood-based biomass 503 

(Marques et al., 2020). However, whether biofuel-related articles explicitly mention CE or not, CE 504 

is linked with the nature of biofuel production in terms of particular focus on waste valorization 505 

and resource efficiency. Furthermore, "bioeconomy", which addresses the utilization of renewable 506 

biological resources for energy production and manufacturing domestic consumables (Guo and 507 

Song, 2019), is the least frequent keyword in this cluster, addressed by a number of articles, such 508 

as Egea et al. (2021) and Raimondo et al. (2018). 509 
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 510 

3.3. Qualitative content analysis results: Emergent BSC research areas 511 

In this section, the most emerging topics considered by researchers in the field of BSC are 512 

identified and discussed. To discover the emerging topics, the author keywords with a minimum 513 

of two occurrences and the APY of at least 2019 are selected and analyzed. Considering a threshold 514 

of two occurrences is meant to capture the keywords that are relevant to the studied research area 515 

but are not yet widespread. This threshold resulted in capturing 947 keywords, which were then 516 

reduced to 219 records due to the considered time constraint for focusing on the recent articles. As 517 

a result, the following three main roadmaps, representing the most recent BSC-related subject areas 518 

were identified: (i) global warming and climate change mitigation, (ii) development of the third-519 

generation biofuels, and (iii) government incentives, pricing, and subsidizing policies. 520 

 521 

3.3.1. Global warming and climate change mitigation 522 

The climate change and BSC activities trade-offs have appeared as one of the most recent 523 

subject areas within the BSC literature. In this regard, "global warming", "GHG removal", 524 

"decarbonization", "environmental analysis", "CO2 removal", and "climate change mitigation" are 525 

some of the authors' keywords in our sample data, which can be categorized under the climate 526 

change subject area of research. The urgent need for mitigating climate change adverse effects 527 

along with the potential threat of energy crisis have increased the interest to utilize biomass for 528 

biofuel production (Liu et al., 2020a). 529 

Yan et al. (2021) in a study in China showed that climate change has a significant impact on 530 

the availability of land for producing liquid biofuels due to changing temperature and precipitation. 531 

The main focus of research in this area has been on climate change impacts trade-offs with utilizing 532 
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logging residue for biofuel production (Liu et al., 2020b), economic and environmental effects of 533 

biofuel production developments (Kung, 2019), policy formulation (Prasad et al., 2020), cellulosic 534 

biofuel applications (Popovic et al., 2019), and biofuel cropping systems (Pilecco et al., 2020). 535 

However, developing integrated frameworks to assess the climate change impacts of biomass 536 

utilization for biofuel production needs more investigations in the future. 537 

 538 

3.3.2. Development of the third-generation biofuels 539 

Different categories and generations of development for biofuels have been presented in the 540 

literature based on the type of feedstock that is used for their production (Abbasi et al., 2021; 541 

Hajjari et al., 2017). However, according to Alalwan et al. (2019), biofuels are generally classified 542 

into four generations, including (i) the first-generation biofuels that are produced from edible 543 

biomass, such as corn or sugarcane, (ii) the second-generation biofuels which utilize non-edible 544 

biomass, such as agriculture residues, (iii) the third-generation biofuels use microorganisms as 545 

feedstock, such as algal biomass, and (iv) the fourth-generation biofuel which focuses on 546 

genetically modifying microorganisms to minimize or eliminate carbon emissions. Fig. 6 547 

illustrates the four generations of biofuels. Production of each biofuel generation has faced several 548 

challenges. For instance, first-generation biofuel production deals with the price increase for 549 

animal feeds and food, and the high rate of land use for cultivation (R. Chaudhary et al., 2021). 550 

Moreover, while the second-generation biofuel production technologies have some difficulties in 551 

the extraction of fuel, the third-generation biofuels are struggling with the financial competition 552 

with petroleum-based fuels (Rodolfi et al., 2009). Although the first two generations of biofuels 553 

have been immensely investigated by scholars, the third and fourth generations are still in their 554 

infancy stage of research. 555 
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 556 

*G: generation. 557 
Fig. 6. Biofuel generations. 558 

Based on the average publication year of keywords within our data, the third generation of 559 

biofuels, which utilizes algal biomass, including microalgae and macroalgae has emerged as a 560 

recent subject area in the BSC literature. On this basis, "seaweed", "macroalgae", and "algae" have 561 

been used by researchers as keywords of their research with a minimum average publication year 562 

of 2019. Microalgae, as a potential feedstock for the third-generation biofuel production, has 563 

increasingly gained momentum among scholars and industrial practitioners due to its significant 564 

benefits, such as (i) sequestering huge amounts of CO2 during their cultivation, (ii) high oil content 565 

and fast growth rate, (iii) flexibility in growing in inapplicable water resources, and (iv) using 566 

marginal lands which are not ideally used for agriculture purposes (Abbasi et al., 2021; Molino et 567 

al., 2020). 568 

Bharathiraja et al. (2022) showed that in comparison with the biofuels made from crops and 569 

lignocelluloses, the third-generation biofuels produced from algae are more compatible with diesel 570 

engines due to their lower environmental footprint. The research in this area has been mainly 571 

focused on algae cultivation and production systems (Ou et al., 2021), the application of catalytic 572 

processes on the production of algae-based biofuels (Zuorro et al., 2020), modeling water-energy 573 
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tradeoffs (Mayer et al., 2020), acceptability of genetically engineered algae biofuels (Varela 574 

Villarreal et al., 2020), and value-added products (Kumar et al., 2020). Nevertheless, although 575 

much research has been conducted in this subject area, biofuel production from algae is still under 576 

intense investigation to tackle main barriers, including commercialization (Shiru and Shiru, 2021), 577 

and technological advancements for reducing production costs (Getachew et al., 2020). 578 

 579 

3.3.3. Government incentives, pricing, and subsidizing policies 580 

Governmental support plans, such as financial incentives, pricing strategies, and subsidy 581 

programs in progressing towards using biofuels have appeared as a recent and ongoing subject 582 

area of BSC research. Due to the increasing public awareness of global warming, many 583 

governments are providing monetary incentives to replace biofuels with fossil fuels (Denizel et al., 584 

2020). In this regard, the role of governments to promote and encourage using biofuels through 585 

developing various incentive programs is indispensable. Wu et al. (2021) highlighted the urgent 586 

need for more investigations on effectively guiding the government incentive programs for the 587 

biomass supply chain management and coordination and alliance of profit distribution issue. Haji 588 

Esmaeili et al. (2020) in another research, recommended providing financial incentives to motivate 589 

producers of first-generation bioethanol to switch to second-generation bioethanol production due 590 

to serious food versus fuel debates resulting from the first-generation biofuel production. 591 

Moreover, risk mitigation strategies and policies are required to tackle the evolving and fluctuating 592 

effects of the COVID-19 pandemic on the sustainability of biomass supply chains (Sajid, 2021) 593 

towards achieving sustainable development (Ameli et al., 2022; Ranjbari et al., 2021b). The 594 

research in this domain has been mainly focused on waste-to-energy incentive policy design (Zhao 595 

and You, 2019), and carbon-pricing strategies (Díaz-Trujillo et al., 2019). 596 



32 
 

 597 

4. Future directions for BSC research in transitioning towards a CE 598 

As shown in Table 4, a comparison between the occurrence and APY of the "CE" keyword 599 

with the "biofuel" keyword in our data shows that although the CE concept inherently exists in the 600 

BSC, this concept as a keyword has been more recently attracted attention to be used in the 601 

scientific productions. Besides, the "CE" keyword has appeared as the most frequent keyword with 602 

an APY of more than 2019 in our dataset, highlighting the recentness of serious efforts and focus 603 

on the CE transition in the biofuel production and utilization practices. 604 

Transitioning from a linear economy to a CE with a waste-to-wealth approach plays a 605 

significant role in supporting sustainable development in the local and global contexts 606 

(Shevchenko et al., 2021). Although the nature of waste conversion in biorefineries to produce 607 

biofuels can potentially address CE principles, the research in putting the CE framework in place 608 

as a whole within the BSCs in industrial and commercial scales is still in its infancy stage. 609 

Therefore, implementing CE strategies in the context of BSCs, as a promising solution towards 610 

sustainable development, need more investigations and further development. In this vein, two 611 

mainstreams of research are identified as potential avenues for further research in the future to 612 

facilitate the CE transition in the BSCs: 613 

(i) Integrative policy convergence at macro, meso, and micro levels 614 

Investments in the nexus of the CE and bioeconomy considering the potentials of the bio-615 

based sector have gained momentum to create a sustainable future. On this basis, the CBE, as a 616 

bio-based CE, highly relies on the sustainable and resource-efficient valorization of biomass and 617 

organic waste through integrated biorefineries (Stegmann et al., 2020) to close supply chain loops. 618 

However, existing guidelines and standards developed for businesses lack a clear definition and 619 
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framework, outlining which cycles between the CE and bioeconomy contribute most to a 620 

sustainable future economy (Leipold and Petit-Boix, 2018). In this regard, Leipold and Petit-Boix 621 

(2018) showed that the bio-based businesses in the European context predominantly stick to 622 

already established practices and, so far, do not employ the business model innovation potentials 623 

to implement a CE. 624 

Potential conflicts and frictions among different components of biofuel supply chains and CE 625 

strategies and policies hinder the CE transition in the bio-based economy. Hence, an integrative 626 

policy convergence from macro to micro levels for biofuel production in BSC management still 627 

seems lacking. The extant research in this area is mainly limited to technical aspects at meso and 628 

micro levels. Developing an integrated framework to converge CE and BSC management policies 629 

at macro, meso, and micro levels to align biofuel production and utilization with CE principles is 630 

highly recommended for further research. In particular, investigations need to address convergence 631 

opportunities between CE and BSC stakeholders through (i) supporting initiatives in enabling 632 

innovative business models, (ii) drafting national plans for maximizing the local capacity in waste-633 

based biofuel production pathways, and (iii) adopting systems thinking approach to effectively 634 

evaluate the dynamics of the BSC as a whole in the CE transition. 635 

(ii) Industrializing algae-based biofuel production towards the CE transition 636 

Algae are used as promising feedstocks for different applications, such as bioenergy and 637 

biofuel production, and the manufacturing of high-value bioproducts (Ahmad et al., 2022). Algal 638 

biofuels, as a clean and renewable energy source, are of high interest to the energy sector due to 639 

their energy-efficient and environmentally-friendly potential in tackling GHG emissions and 640 

widespread pollution (Ferreira Mota et al., 2022). In this regard, biofuel production from algal 641 

biomass towards a CBE has been under intense debate, leading to development in different aspects, 642 
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such as microalgae cultivation (Devadas et al., 2021), techno-economic feasibility assessments 643 

(Venkata Subhash et al., 2022), anaerobic digestate valorization (Stiles et al., 2018), and 644 

production and harvesting of microalgae (Khan et al., 2022), to name a few. However, algae-based 645 

biofuel production has faced critical challenges and barriers, mainly economic and technological 646 

barriers that prevent the commercial and industrial use of algae (Ahmad et al., 2022). 647 

Increasing the share of the third-generation biofuels compared to the first and second 648 

generations that create food and landmass competition, can potentially strengthen the link between 649 

bioeconomy and the CE towards an algae-based CBE. In this regard, algae-based biofuels, as the 650 

third generation of biofuels, are not produced on industrial and commercial scales. Hence, further 651 

efforts and research are needed to switch algal biofuel production from a laboratory scale to an 652 

industrial and commercial scale under a new biorefinery paradigm. On this basis, future research 653 

efforts should be mainly focused on (i) developing technological initiatives to foster algae 654 

cultivation, production, and harvesting for biofuel production, and (ii) defining an inclusive agenda 655 

at the national level as a shared blueprint for providing economic incentives and government 656 

support to help commercialize the third-generation biofuels in the energy market. 657 

 658 

5. Conclusions 659 

This research was the first attempt in the literature employing a systematic review, supported 660 

by a keywords co-occurrence analysis and qualitative content analysis to present an inclusive 661 

knowledge map of the BSC research so far. Adopting a structured search protocol, a total of 1,975 662 

peer-reviewed journal articles from the WoS database was scrutinized based on the co-occurrence 663 

algorithm using VOSviewer version 1.6.16 (van Eck and Waltman, 2010). 664 
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On one hand, four seminal research hotspots of the BSC literature were identified. In this 665 

regard, the BSC research has been mainly focused on (i) designing and planning for biomass-to-666 

biofuel supply chains, (ii) investigating the GHG footprint and environmental impacts of biofuel 667 

production and biorefineries, (iii) biomass to bioenergy conversion processes, and (iv) techno-668 

economic analysis of biofuel production. On the other hand, based on the analysis conducted on 669 

the average publication year of authors keywords in our data, (1) global warming and climate 670 

change mitigation, (2) development of the third-generation biofuels produced from algal biomass, 671 

which has recently gained momentum in the CE debate, and (3) government incentives, pricing 672 

and subsidizing policies appeared as the main recent BSC-related subject areas of research. 673 

Moreover, potential research avenues to implement the CE framework in BSCs, including (i) 674 

integrative policy convergence at macro, meso, and micro levels, and (ii) industrializing algae-675 

based biofuel production towards the CE transition were proposed. Compared to the existing 676 

reviews in the BSC literature, the provided insights in this study through a science mapping 677 

analysis contribute to the domain by (i) providing performance indicators of scientific production 678 

in the BSC research, (ii) discovering major research hotspots, themes, and trends in BSCs, (iii) 679 

discovering BSC subject areas of research which have recently attracted more attention, and (iv) 680 

proposing future directions for BSC research to support the CE transition. Accordingly, BSC 681 

research communities, practitioners, policy-makers, and stakeholders are potentially benefited 682 

from the delivered inclusive image of the BSC academic production through the enhancement of 683 

their perception of the field and recent developments. 684 

 685 



36 
 

5.1. Limitations of the study 686 

As is often the case, there are some limitations regarding the scope and review process adopted 687 

in our research, which can serve as promising directions for future studies. First, we relied on the 688 

keywords co-occurrence analysis for clustering the articles in our sample data. Using other 689 

clustering techniques in bibliometric analysis, such as co-citation analysis (Ertz and Leblanc-690 

Proulx, 2018), bibliographic coupling analysis (Belussi et al., 2019), and text mining analysis 691 

(Ranjbari et al., 2022a) are recommended for further studies. The obtained results can be compared 692 

with the present study to evaluate the advantages and disadvantages. Second, our data was 693 

extracted from Wos, which is one of the most well-known academic citation databases. However, 694 

incorporating other databases, such as Scopus may help increase the reliability of the findings. 695 

And finally, the main focus of our review was on providing a general overview of the BSC 696 

research, as a knowledge map. Therefore, more in-depth analyses on each identified hotspot and 697 

the recent subject area within the BSC domain, in particular (i) the third and fourth generations of 698 

biofuels, and (ii) technological advancement to support the transition from a linear economy to a 699 

CBE with a special focus on waste-based biomass are highly encouraged for future research. 700 
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