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ABSTRACT

The evolution of a two-phase, air and unsaturated water vapor, time-decaying, shearless, and turbulent layer has been studied in the presence
of both stable and unstable perturbations of the normal temperature lapse rate. The top interface between a warm vapor cloud and clear air
in the absence of water droplets was considered as the reference dynamics. Direct, three-dimensional, and numerical simulations were per-
formed within a 6� 6-m-wide and 12-m-high domain, which was hypothesized to be located close to an interface between the warm cloud
and clear air. The Taylor microscale Reynolds number was 250 inside the cloud portion. The squared Froude’s number varied over intervals
of [0.4; 981.6] and [�4.0; �19.6]. A sufficiently intense stratification was observed to change the mixing dynamics. The formation of a sub-
layer inside the shearless layer was observed. The sublayer, under a stable thermal stratification condition, behaved like a pit of kinetic energy.
However, it was observed that kinetic energy transient growth took place under unstable conditions, which led to the formation of an energy
peak just below the center of the shearless layer. The scaling law of the energy time-variation inside the interface region was quantified: this
is an algebraic law with an exponent that depends on the perturbation stratification intensity. The presence of an unstable stratification
increased the differences in statistical behavior among the longitudinal velocity derivatives, compared with the unstratified case. Since the
mixing process is suppressed in stable cases, small-scale anisotropy is also suppressed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090042

I. INTRODUCTION

Warm clouds, such as stratocumuli, swathe a significant part of
the earth’s surface and play a major role in the global dynamics of the
atmosphere by reflecting incoming solar radiation—thus, contributing
to the Earth’s albedo—so that an accurate representation of their
dynamics is important for the large-scale analyses of atmospheric
flows.1 Their dynamics are controlled by the close interplay that takes
place among radiative driving, turbulence, surface fluxes, latent heat
release, entrainment, and the energy captured from acoustic–gravity
waves propagating into clouds from below or above cloud layers, or
from cosmic rays during their interaction with water drops. The intro-
duction of all these aspects into numerical simulations is still not the
state of the art. For instance, compressibility should be included in
a numerical simulation to account for internal acoustic and gravity
waves and effects of baroclinicity, but efficient techniques that are
able to carry out the simulation of clouds at the relevant evanescent
values of the Mach number have not yet been developed. However,
among all these physical effects, turbulent mixing and entrainment–
detrainment processes at the top of a cloud have been identified as
being of fundamental importance to determine the internal structure

of warm clouds so that a clear and complete understanding of their
physics can be obtained.2

Stratification in the atmosphere is usually stable above the
boundary layer,3 that is, a fluid particle that is displaced in the vertical
direction tends to return to its initial position. However, unstable per-
turbations of local stratifications can be expected during the formation
and disruption phases of clouds. Terrestrial rotation becomes of
secondary importance in local atmospheric dynamics, and the stratifi-
cation effects dominate.4,5 Over the last few decades, there have been
important advances in the understanding of turbulence in the presence
of intense stratification. For example, in the homogeneous stratified
turbulence context, it is known that isotropic turbulence in a stratified
fluid initially rapidly becomes anisotropic, with the formation of
pancake-like structures on its inside.6,7 As pointed out by Malinowski
et al.,8 data from most field campaigns and large-eddy simulations are
too poorly resolved to infer the details of the interfacial layer, even
though it is known that a high level of turbulence must be present for
entrainment to take place. For this reason, in this work, we have stud-
ied transport across an unsaturated vapor cloud—clear air interface
through the DNS (direct numerical simulation).
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While we have considered turbulent transport without shear in
thermal stratification conditions, and have also included the
Lagrangian dynamics of both monodisperse and polydisperse popula-
tions of water droplets in two recent works,9,10 we here focus on the
phase preceding the formation of a warm cloud containing a liquid
phase. We, therefore, focus on the turbulent transport of the unsatu-
rated vapor phase, considered as a passive scalar, and on the associated
temperature field, considered as an active scalar. This has allowed us
to consider a better spatial resolution by adopting the two-
dimensional stencil parallelization method. In fact, this parallelization
technique of the three-dimensional DNS code cannot be efficiently
adopted in the presence of discrete elements, such as water droplets
transported in a Lagrangian way, because of a large latency in the com-
munication among processes (cores). A numerical code for the study
of the growth, collision, coalescence, and clustering of water droplets
inside turbulent, warm, and cloud–clear air interfaces is discussed here
in detail.11

Thus, we have focused on how the dynamics of the smallest
scales of an airflow influence vapor and thermal turbulent transport.
We have, therefore, simulated an idealized configuration to better
understand, under controlled conditions, the basic phenomena that
occur at the vapor cloud–clear air interface over length scales of the
order of a few meters. Under these conditions, we have solved scales
from a few meters to a few millimeters, that is, we have resolved only
the small-scale part of the inertial range and the dissipative range of
the power spectrum in a small portion (6� 6� 12m) of the atmo-
sphere across a vapor cloud–clear air interface. This has allowed us to
investigate the entrainment dynamics that occur in a thin layer at the
top of the cloud, which has a smaller scale than the scale explicitly
resolved in the large-eddy simulations of clouds.12 In this preliminary
work, we have focused on two concomitant aspects of the top mixing
layer of a vapor cloud: the effect of the presence of stratification and
that of a turbulent kinetic energy gradient. We have not considered
wind shear or radiative cooling processes, which are important in the
presence of buoyancy reversal.13,14 Therefore, our simulations have
been performed by applying the Boussinesq approximation to
Navier–Stokes momentum and energy equations, together with an
advective–diffusive passive scalar transport equation. Details on the
considered physical problem we have considered and on the governing
equations are given in Sec. II. Sec. III contains some of our main
results pertaining to intermittency, energy redistribution, and entrain-
ment. The concluding remarks are given in Sec. IV.

II. THE PHYSICAL PROBLEM

We considered the interaction of two homogeneous isotropic tur-
bulence airfields, with different levels of kinetic energy and unsatu-
rated water vapor (passive scalar), in a 6� 6-m by 12-m domain. As
can be seen in Fig. 1, the chosen domain size allowed us to simulate
the highest wave numbers of the spectral inertial range and the dissipa-
tive range of in situ measurements of the atmospheric power velocity
spectra. As shown in Fig. 2, the two HIT regions make up the system
interact through a shearless mixing layer, whose initial thickness was
set to the same order of the integral scale as the air turbulence back-
ground ‘, which here has been assumed equal to 3� 10�1 m.

The two isotropic regions (external to the mixing) have different
kinetic energies. The underlying region is the more energetic one, and
it is constituted by the vapor cloud region. It hosts the passive scalar,

which is our model for the water vapor phase, and has a kinetic energy
equal to E1 ¼ 0:06m2=s2; the root mean square of the velocity in this
region is urms ¼ 0:2m/s. The initial Taylor microscale Reynolds num-
ber, Rek, is approximately equal to 250 (k is the Taylor scale). The
kinetic energy ratio between the two regions is equal to 6.7. This
energy ratio is of the same order as the ones measured in warm clouds

FIG. 1. Kinetic energy spectra. Contextualization of this study (black spectrum,
inertial small-scale and dissipative ranges) to in situ atmospheric measurements
(colored spectra: energy injection and low wave number inertial scales). The aim of
the current simulations is to represent the small-scale range of the spectrum that in
situ measurements have not been able to detect.

FIG. 2. Scheme of the initial conditions. E1 is the mean initial turbulent kinetic
energy below the shearless mixing layer (vapor cloud, HIT high-energy region), and
E2 is the same, but for the top (clear-air, HIT low-energy region). We assume
E1=E2 ¼ 6:7 for this model of the top interface. A complete overview of the simula-
tion parameters can be found in Table I. The stratification inside this interfacial mix-
ing is represented by a local temperature perturbation with respect to the neutral
profile; the perturbation can be either stable or unstable. The unsaturated vapor
(passive scalar) is initially only present in the high-energy cloudy region. Gravity is
opposite to the positive x3 direction. A complete overview of the stratification param-
eters for different simulation cases can be found in Table II.
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(see, e.g., Ref. 8), and furthermore, it allows our results to be compared
with laboratory and numerical experiments on turbulent shearless
mixing (see Refs. 15 and 16) in the absence of any stratification.

Buoyancy is taken into account through perturbation, h0, of the
profile of the temperature distribution, h, inside the troposphere,
which is located across the shear-free mixing layer. The Prandtl num-
ber considered here is Pr ¼ 0:74 (standard atmosphere, altitude of
1000 m s l ). The initial conditions for the temperature perturbation
are described in Fig. 2 and in Table I. The ratio between the inertial
and buoyancy forces is expressed by the Froude number Fr, which is
defined as

Fr ¼ urms

‘N ; N 2 ¼ ag
dh
dx3

;

where urms is the root mean square of the velocity fluctuation at the
lower border of the interfacial layer, ‘ is the macroscale length inside

the cloudy region, N is the Brunt–V€ais€al€a frequency, h is the mean
temperature, g is the gravitational acceleration, and a is the thermal
expansion coefficient. We consider the square of the Froude number,
Fr2, which is based on the maximum gradient within the initial inter-
face, to characterize each simulation. The initial values of Fr2 range
from 981.6 (negligible stratification) to 0.4 (strong stable stratification).
It should be noted that our usage of Fr2, instead of Fr, is due to the fact
that we consider unstable cases. In fact, in such situations,N 2 is nega-
tive for the initial temperature gradient—and the Brunt–V€ais€al€a
frequency is imaginary; it actually yields the amplification rate of the
perturbations. The most unstable stratification we, therefore, consider
has a Fr2 equal to�4.0.

The unsaturated water vapor is taken into account by considering
its normalized concentration v, which is equal to 1 in the lower cloudy
region and to 0 in the upper clear-air region. Water vapor is consid-
ered as a passive scalar, with a Schmidt number Sc¼ 0.61 (standard
atmosphere, altitude of 1000m s.l.).

TABLE I. Key simulation parameters and initial conditions.

Quantity Symbol Value Unit

Domain size L� L� L3 6 � 6� 12 m3

Domain discretization N�N�N3 1024� 1024� 2048 � � �
Grid step Dx 5:86� 10�3 m
Initial rms velocity (cloud) urms 0.2 m/s
Initial energy ratio (cloud–clear air) E1=E2 6.7 � � �
Initial integral scale ‘0 0.3 m
Initial dissipation rate (cloud) e1 0.025 m2=s3

Kinematic viscosity of air � 1:57� 10�5 m2=s
Initial Kolmogorov time (cloud) sg0 ¼ ð�=e1Þ1=2 2:51� 10�2 s
Initial Kolmogorov length scale (cloud) g0 ¼ ð�3‘0=u3rmsÞ

1=4 6:17� 10�4 m
Initial eddy-turnover time s0 ¼ ‘0=urms 1.5 s
Initial Reynolds number (cloud) Re‘ ¼ urms‘0=� 3821 � � �
Initial Taylor microscale Reynolds number Rek ¼ urmsk=� 250 � � �
Thermal expansion coefficient a 3:55� 10�3 K�1

Prandtl number Pr 0.74 � � �
Schmidt number Sc 0.61 � � �
Atmospheric lapse rate G0 0.0065 K=m�1

TABLE II. Initial stratification parameters. Temperature gradient values (second column) are also expressed in terms of G0 ¼ 0:0065 in the first column. N ic ¼
ffiffiffiffiffiffiffiffiffiffiffi
ag @h

@x3

q
is the

characteristic Brunt–V€ais€al€a frequency of the initial condition (suffix ic). The Froude number, Fr ¼ urms
N ic‘

, and the Reynolds Buoyancy Number, Reb ¼ eN 2
ic

� , offer an indication of
the order of magnitude of the buoyancy forces, compared with the inertial terms (e is the initial energy dissipation rate, ‘ is the initial value of the spatial integral scale, and � is
the kinematic viscosity of air, see Table I for corresponding values).

Level rzhic ðKm�1Þ Dh ðKÞ N ic ðs�1Þ Fr Fr2 Reb Intensity

2G0 1.3� 10–2 4.0� 10–3 2.13� 10–2 31.3 981.6 0.7 Neutral
30G0 2.0� 10–1 6.0� 10–2 8.24� 10–2 8.09 65.4 10.9 Quasi-neutral
100G0 6.7� 10–1 2.0� 10–1 1.50� 10–1 4.43 19.6 36.3 Intermediate
500G0 3.3 1.0 3.36� 10–1 2.00 4.00 181.7 High
5000G0 3.3� 101 1.0� 101 1.06 0.62 0.4 1817.2 Extreme
�100G0 �6.7� 10–1 �2.0� 10–1 � � � � � � �19.6 �36.3 Unstable, intermediate
�500G0 �3.3 �1.0 � � � � � � �4.00 �181.7 Unstable, high
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We use the continuity, momentum, and energy balance equa-
tions within the Boussinesq approximation, which holds for small
temperature variations,17 while we use an advective–diffusive transport
equation for water mixing ratio

$ � u0 ¼ 0; (1)

@u0

@t
þ u0 � $ð Þu0 ¼ �$

~p
q
þ �r2u0 þ agh0; (2)

@h0

@t
þ u0 � $h0 þ u3G ¼ jr2h0; (3)

@v
@t
þ u0 � $v ¼ dvr2v; (4)

where h ¼ h0 þ ~hðx3Þ þ h0ðx; tÞ is the temperature, which is com-
posed of the reference constant temperature h0 at a given altitude, of
the static component ~hðx3Þ ¼ G0x3, where G0 is the standard lapse
rate, and of the fluctuation h0ðx; tÞ; moreover, ~p ¼ pþ agx3ðh0
þG0x3=2Þ is the total hydrodynamic pressure (p is the fluid dynamic
pressure, a is the thermal expansion coefficient, and g is the gravity
acceleration); u0 is the velocity fluctuation; and v is the vapor concen-
tration of the air–water vapor mixture. The constants j and dv stand
for the thermal and water vapor diffusivity, respectively. This is a very
consolidated basic model that is often used as a representation of
Eulerian equations for turbulent fields to which the liquid water
component can be added as a Lagrangian set of N point-like
droplets.9,18–23

The initial condition for the velocity field is obtained by means of
a linear matching of two different HIT fields, u1 and u2, which are ran-
domly generated by respecting the physical solenoid condition, the
required integral scale, and the mean kinetic energy, see Ref. 24. The
initial energy profile along direction x3 is obtained by coupling the u1
and u2 fields, using Eq. (5). As far as the scalars are concerned, in
analogy with previous work,9,25 the initial conditions (constant along
directions x1 and x2) are obtained from Eqs. (6) and (7) for the tem-
perature and water vapor concentration, respectively. These equations
are listed below

u0ðx; t ¼ 0Þ ¼ u1ðxÞp1ðx3Þ � u2ðxÞð1� p1ðx3ÞÞ; (5)

hðx; t ¼ 0Þ ¼ Dhp2ðx3Þ; (6)

vðx; t ¼ 0Þ ¼ p1ðx3Þ; (7)

where u1 and u2 are the two external HIT, andDh is the initial temper-
ature step, while the weight functions p1ðx3Þ and p2ðx3Þ are defined as

p1ðxÞ ¼
1
2

1þ tanh a
x3
L3

� �
þ tanh a

x3 � L3=2
L3

� �"

þ tanh a
x3 � L3

L3

� ��
; (8)

p2ðxÞ ¼
x3
L3
� 1
2

1þ tanh a
x3 � L3=2

L3

� �� �
: (9)

The simulations were performed using our in-house computa-
tional Navier–Stokes code, which implements a pseudo-spectral
Fourier–Galerkin spatial discretization and an explicit low-storage
fourth-order Runge–Kutta time integration scheme. Evaluation of the
nonlinear (advective) terms is performed by means of the 3/2 dealiased
method.26

The grid has N � N � N3 points, with N ¼ 210 and N3 ¼ 2N ,
for a total of 231 grid points. Such a grid allows us to capture all the
turbulent scales from the largest (integral scale ‘) to the smallest
(Kolmogorov scale g). In fact, it should be noted that since the turbu-
lence intensity, and thus the dissipation rate, decay in time, the small
scales, in particular the Kolmogorov scale, gk, grow in time. The grid
size of 5.86mm inside the mixing region matches the kmaxg � 3
requirement for about two eddy-turnover times.

The code is based on TurIsMi, v1.4, of the Philofluid group
(www.polito.it/philofluid), which was released under the terms of the
GNU General Public License. A new version of the code has here been
implemented using the Fortran 2018 standard. The new features
allowed us to design the code as slightly object-oriented, thereby
increasing the readability and efficiency of shared routines. Direct/
inverse FFTs (Fast Fourier Transforms) are evaluated using FFTW
(Fast Fourier Transforms of the West) open-source libraries (which
support the shared memory paradigm). Parallelization is performed
with a hybrid (shared/distributed) memory paradigm. In particular,
we have used a stencil parallelization (parallelization over two direc-
tions) to distribute the computational domain over a chosen number
of processes (up to N2=2—theoretical value). This distribution was
performed using the MPI 3.0 standard, which allows modern MPI
libraries (such as OpenMPI and MPICH2) to be used. In order to per-
form FFTs along a given direction, a process needs to know the values
associated with all the wave numbers in such a direction. For this pur-
pose, matrix transpositions are mandatory to swap the distributed
direction. During the inverse transform/transposition process, the
domain is “expanded” by including the zero-padded antialiasing
region (and vice versa, it is “contracted” during direct transforms).
Using the expanded domain in a physical space only reduces the num-
ber of needed transforms. For simplicity, we considered a cubic
domain, with N3 in wave number space, and M3 ¼ 27=8N3 points in
physical space. Without the expansion/contraction process, the num-
ber of single FFTs required to perform a global transform would be
equal to N2 þ NM þM2 ¼ 27=4N2, thereby a saving of 30% of the
computational time was achieved. The MPI 3.0 standard allows us to
implement a global communication subroutine for direct/inverse
domain transposition and also for input/output routines. The shared
part of the parallelization is managed by OpenMP in the rest of the
code. As a result of the optimization, the new version of the code is
about 5 times faster and has a near-linear speedup, which allowed us to
fully exploit the potential of massively parallelized supercomputers, see
Fig. 3. The simulations were performed on the TGCC Curie supercom-
puter, within PRACE project no. RA07732011, for a total of 3 million
CPU hours.

III. RESULTS

In this section, we analyze the simulated fields by comparing the
results obtained for the different stable and unstable stratification
cases. We analyze the statistical behavior of the velocity and scalar
fields in Subsection IIIA. The formation of kinetic energy sublayers in
the mixing region is discussed in Subsection III B. The effects related
to the entrainment process are presented in Subsection III B 1, while
the anisotropy, dissipation, and small-scale effects are discussed in
Subsections III B 2.

The temporal evolution of Fr2 is shown in Fig. 4. Smaller values
of the Froude number represent a higher level of stratification.
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Figure 4 shows that the initially computed absolute values of the
Froude numbers are decreasing over time, which means a temporal
increase in the stratification level. This is due to the decay of the kinetic
energy and the consequent increase in the integral scale, see definition
of the Froude number and Brunt–V€ais€al€a frequency in Sec. II.

A. Spatial statistical properties

The statistics are computed by averaging the variables in
the planes (x1, x2) normal to the mixing direction (with a sample of

210 � 210 data points). We focus on the variation along the vertical
(nonhomogeneous) direction, x3. We thus define the average operator
h�iðx3Þ as the mean value inside a plane (x1, x2) for given values of x3,

h�iðx3Þ ¼
1
220
X210
i¼1

X210
j¼1
� ðx1;i; x2;j; x3Þ:

The second-order moment is represented by the variance in scalar
fields h and v or by the turbulent kinetic energy of the velocity field,
which is defined as E ¼ 1

2 ðhu21i þ hu22i þ hu23iÞ. High-order moments
are represented by skewness and kurtosis (third- and fourth-order
moments normalized by means of the variance), defined as
Sð�Þ ¼ h�3i=h�2i1:5 and Kð�Þ ¼ h�4i=h�2i2, respectively. It should be
noted that the definition of skewness and kurtosis for passive scalar
field v slightly differs from the one given in the previous equation.
Because of the proximity of the external regions, where the variance
hv2i vanishes, in order to prevent numerical problems, the actual defi-
nitions of skewness and kurtosis are modified as

SðvÞ ¼ hv3i= hv2i þ 0:005hv2imax

� �1:5

FIG. 4. Time evolution of the instantaneous Froude number Fr2ðtÞ for the simula-
tions with stable stratification. The evolution in unstable cases is very close to this
one, except for the sign, which is negative. Dashed lines represent the fitting expo-
nential laws of these temporal decays. For the readers’ convenience, they have
also been gathered in Table III. The horizontal dotted line, Fr2¼ 1, indicates the
moments in time when the buoyancy forces are of the same order as the inertial
ones: the relative effects are found when Fr2ðtÞ � 2� 3.

FIG. 3. Left: wall time for a single RK4 cycle in a cubic domain with a discretization of 20483 grid points. Wall time ¼ tn, where t is the real time needed for the computation,
and n is the number of used processors. Right: speedup of the code. Speedup ¼ nRtR=t, where tR and nR are reference quantities (in this case, nR¼ 64).

TABLE III. Exponential fits, f ðxÞ ¼ bþ n exp�x=u, of the temporal decay of the
Froude numbers shown in Fig. 4.

Froude number Fitting parameters Asymptotic standard error

Fr2 ¼ 65.4 b ¼ 4:5; n ¼ 54:9;
u ¼ 1:8

db ¼ 5:5%; dn ¼ 1:7%;
du ¼ 2:8%

Fr2 ¼ 19.6 b ¼ 1:8; n ¼ 18:9;
u ¼ 1:44

db ¼ 15:4%; dn ¼ 2:2%;
du ¼ 5:8%

Fr2 ¼ 4.0 b ¼ 0:28; n ¼ 3:9;
u ¼ 1:5

db ¼ 10:5%; dn ¼ 1:7%;
du ¼ 3:9%

Fr2 ¼ 0.4 b ¼ 0:05; n ¼ 0:37;
u ¼ 1:13

db ¼ 2:8%; dn ¼ 0:7%;
du ¼ 1:8%
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and

KðvÞ ¼ hv4i= hv2i þ 0:01hv2imax

� �2
;

where hv2imax indicates the maximum variance value along direction
x3.

It is important here to underline that the shearless turbulent mix-
ing is highly intermittent. Skewness and kurtosis distributions are
principal indicators of an intermittent behavior and, therefore, are
commonly used to perform the statistical analysis of the turbulent
shearless mixing. For the convenience of readers not acquainted with
this subject, let us cite some of these properties: the demonstration of
the anisotropy of the small scales,16 the condition for the departure
from Gaussianity,27 the measure of the displacement of the mixing

center—a thing commonly determined in terms of the skewness peak
displacement, the motivation of nonsufficiency of the description in
terms on the first two velocity fluctuation moments,15,28–30 and the
macroscale spatial variation as a source of intermittency and kinetic
energy gradients.31

As a result of the evolution of the ratio between the buoyancy force
and the other dynamical effects (advection and diffusion) and by
looking at the statistical behavior of the turbulent kinetic energy shown
in Fig. 5, the evolution of the system can be split into two main stages.
As long as the ratio remains small, no significant differences emerge with
respect to a nonstratified case. However, as the stratification perturba-
tion becomes more important, buoyancy effects prevail, and differences
are present from both the quantitative and qualitative points of view.

FIG. 5. Turbulent energy along vertical direction x3, computed from the velocity variance in the horizontal planes, x1 � x2, panels (a) and (b): t=s ¼ 3 and 6, respectively. The
data are taken from simulations with different levels of stratification, which are represented by the initial reference squared Froude number. Panel (c): distribution of the initial
velocity variance across the computational domain. Panel (d): kinetic energy decay inside the unsaturated cloud (blue triangles), the interfacial mixing layer (red circles), and
the clear-air region (yellow diamonds).
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The effects of different stratification levels are clearly visible on the tur-
bulent kinetic energy shown in Fig. 5, where two different instants are
compared, t=s ¼ 3 in Fig. 5(a) and t=s ¼ 6 in Fig. 5(b), where s is the
initial eddy-turnover time. When the buoyancy term becomes compa-
rable with the other forces, a slight downward displacement of the
energy gradient location takes place. Subsequently, the onset of a sub-
layer, characterized by a widening of the pit of kinetic energy in time,
can be observed, see also Sec. III B and Fig. 11 [panels (c)–(e)]. The
presence of such a sublayer changes the system dynamics, because two
interfaces are produced in this situation. The first—which would also
be present in the absence of stratification—separates the high-
turbulent energy region from the pit. The second one—which would
not be present without stratification—separates the low-turbulent
energy region from the center of the mixing layer. Therefore, a strong
stable stratification induces a kind of physical separation between the

regions below and above the mixing layer, thus decreasing their inter-
action to a great extent. On the other hand, an increment of the kinetic
energy inside the mixing region, a sort of peaky sublayer, can be
observed in unstable cases. Again in this case, we observe the formation
of a secondary energy gradient, but its location is reversed with respect
to the stable case. At this point, the secondary gradient separates the
peak from the high-energy region where the vapor cloud is located. In
fact, the peak is shifted toward the high-energy region (while the pit is
closer to the low-energy one). The principal gradient is now pushed
upward (positive x3), see also panel (e) in Fig. 11.

The parts of the flow where the primary energy gradient acts and
the secondary one (when present) intermittently behave. Figure 6
shows the skewness and kurtosis of the vertical velocity fluctuations
after 6 timescales [panels (a) and (c), respectively], and the time evolu-
tion of their maximum and minimum values [panels (b) and (d)].

FIG. 6. Vertical velocity skewness [panels (a) and (b)] and kurtosis [panels (c) and (d)] along vertical direction x3, computed from vertical velocity central moments in the hori-
zontal planes ðx1 � x2Þ. The data are taken after 6 s [panels (a)–(c)] and over the temporal evolution [panels (b)–(d)]. Simulations with a different stratification are represented
by the square Froude number, Fr2. The gray band in panels (b) and (d) represents the intermittency range measured outside the mixing layer.
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A reduction in the maximum values, which decay much faster than
the nonstratified or weakly stratified cases, can be observed for the sta-
bly stratified cases, beyond t=s � 1. Such a fast decay during pit for-
mation leads to a low intermittency, which is characterized by values
as low as those observed outside the mixing anisotropic region (the
“normal” range is represented by a gray band in panels b and d in
Fig. 6). S and K then quickly grow in time, reaching higher values than
the unstratified case. The decay of intermittency in the unstable strati-
fication case is immediately damped, and a growth of S and K is
observed for the Fr2¼�4.0 case beyond 3 timescales. The final config-
uration at the end of the numerical simulation seems to be more inter-
mittent in both the stable and unstable cases, with values that can
become even 100% larger than in the unstratified case.

The statistical properties of temperature fluctuation h0, of the
active scalar, and of the vapor passive scalar concentration, v, are anal-
ogous. In fact, the nondifferential term u3G0 in energy Eq. (3) does
not exert an effect that is comparable with that of the buoyancy term
inside the momentum equation. The latter has a vectorial nature and
efficiently receives and transposes the gravitational effect to the veloc-
ity field. Our simulations show that the transport of temperature is
comparable with the transport produced by advective–diffusive Eq. (4)
in the vapor field, that is, a simple passive scalar field, see Fig. 7, where
the first four statistical moments across the interface are presented at
t=s ¼ 6. The effects on the scalar fields are milder than the ones
observed on the velocity. The width of the region with nonzero vari-
ance depends on the stratification level and becomes thinner for stable
cases. Substantial variations can be observed in the case of very strong
stratification, for example, when Fr2¼ 0.4. Scalar fluctuations are
damped in stable cases and slightly enhanced in the presence of unsta-
ble stratification. The shrinking of the mixing layer becomes remark-
able after the onset of the pit of energy and is linked to the reduction
in entrainment, see Subsection III B 1, and for a complete overview,
see Gallana’s Ph.D. thesis.32

As far as the high-order moments are concerned, the scalar fields
initially follow the same trend as the velocity fluctuations, with a
reduction in S and K when the stratification is stable and a growth
when it is unstable, see the panels in the second, third, and fourth
rows in Fig. 7. A large difference can be observed, after a few time-
scales, in the stable stratification case. Here, the onset of the energy pit
blocks the mixing process, and the values of the high-order statistics
tend to remain almost constant.

It is also interesting to note that the morphology of the spatial
distribution of the vapor statistics, the passive scalar, is not affected to
any great extent by the presence of a population of either monodis-
perse or polydisperse water drops. Indeed, if a comparison is made
between our simulations containing the aqueous phase, which is
equivalent in quantity to what is present inside warm clouds (LWC,
liquid water content, equal to 0:8gr=m3), see Golshan et al.9 and the
work of Fossa’ et al. 2022,10 which was carried out under almost the
same Froude numbers, it can be seen that only the temporal evolution
of the maximum and minimum peaks of the vapor statistical distribu-
tions is in fact affected, albeit only slightly, by the presence of drops,
and by the related phenomenology of evaporation–condensation and
collision–coalescence, see Fig. 8. Moreover, there is a variation of the
maximum values of the kurtosis function, which does not settle, in the
long term, on the same asymptotic values, see the bottom right panel
in Fig. 8. Furthermore, it can be observed that the thinning of the

mean temperature profile when the stratification is increased, which
thins by about four times as the stratification increases from neutral to
Fr ¼ 0:4, that is, 5000G0, is the same as that measured by Jayesh and
Warhaft,28 see Fig. 7, and in particular, the curve where the mean tem-
perature profile half width is normalized by the integral length scale of
the large-scale turbulence on the lower side of their mixing layer.

As a validation of our simulations, we present a comparison with
the results of a similar laboratory study carried out by Jayesh and
Warhaft (JW in the following) in 1994 at Cornell University.28 In their
experiment, a stably stratified interface, with strong turbulence below
and quiescent air above, was studied in a wind tunnel with the aim of
simulating the conditions at the inversion cap at the top of the atmo-
spheric boundary layer. Thus, this system is the same as the one in our
study as regards the transport of momentum, turbulent energy, and
temperature, although the transport of the passive scalar is missing.
They generated the interfacial layer by means of a composite grid,
with a small mesh size above and a large one below, see Ref. 28. In the
laboratory study, the system is steady state and is generated by means
of a uniform mean flow with different levels of turbulence above and
below the interface. The present numerical simulations are instead in
temporal decay. No background mean flow is present. Though the
comparison is more qualitative than quantitative because both the
Richardson and the Reynoldsk numbers are different (Ri ¼ 0:8;
x=M ¼ 32, and Ri ¼ 63; x=M ¼ 148, in JW; Ri ¼ 0:11; t=s ¼ 2:5,
roughly equivalent to x=M ¼ 40, and Ri ¼ 18:2; t=s ¼ 3:2, roughly
equivalent to x=M ¼ 48:32, in this study), the laboratory and numeri-
cal statistical trends are very similar, as can be observed in Fig. 9. Here,
the distributions across the mixing layer of the fluctuations of the tem-
perature flux, of its spatial derivative, and of the covariance between
hu23h

0i are shown. Note that in JW, the coordinate x3 is represented by
z and u3 by w. The reverse sign of the flux of the temperature inside
the weak turbulence region, which corresponds to a counter-gradient
heat flux (see also Riley, Metcalfe and Weissmann 1981,33 and Yoon
and Warhaft 199034), should be noted in particular. The correspon-
dence of the trends across the layer between our numerical experiment
and the laboratory ones of JW extends to the kinetic energy flow, see
Subsection III B 1 and Fig. 17, panel (a), in JW and our Fig. 14. A
dynamic aspect, which accompanies the formation of the kinetic
energy pit and the blockage of the mixing layer growth, can be
observed.

To complete this section, we report a comparison between the
active and passive scalars studied here in Fig. 10, for the same distribu-
tions shown in Fig. 9. Once again, a remarkable similarity can be
observed in the behavior of the two scalars, thus demonstrating the
clear dominance of convective transport on the scalar, which, in prin-
ciple, should be of the active type.

B. Stratified shearless turbulent mixing
and the formation of energy pit/peak sublayers

In Sec. IIIA, the onset of a sublayer can be observed beyond the
time instant of the transient when buoyancy starts to be non-negligible
in the center of the domain, where the initial temperature gradient is
located. The formation and time evolution of such a sublayer are
shown in Fig. 11, where the time-variation of the temperature and
vapor interface thicknesses and the normalized kinetic energy profiles,
Enorm ¼ ðhEi � EminÞ=ðEmax � EminÞ, are shown. Here, Emax and Emin

are the maximum and the minimum mean kinetic energies,
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FIG. 7. Comparison of the passive (left) and active (right) scalar statistics, t=s ¼ 6.
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respectively. The normalized energy is almost equal to 0 in the low-
energy clear-air region and nearly equal to 1 in the high-energy vapor
cloud region. In stable cases, the presence of the pit of energy changes
the location of Emin, which is now placed inside the pit, while Emax

always remains inside the high-energy region. As a consequence, after

the onset of the pit, Enorm is approximately equal to 1 in the high-
energy region, to 0 inside the pit, and to> 0 in the low-energy region,
as can be observed in panel (c) in Fig. 11 for the Fr2¼ 4.0 case. An
opposite trend can be observed in unstable cases, after the formation
of their peak sublayer, Enorm is 0 in the low-energy region, 1 inside the

FIG. 8. Comparison of vapor moment statistics for simulations with droplets (dashed) and without (solid, same data as shown in the left column of Fig. 7).
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peak sublayer, and< 1 in the high-energy region, see panel (e) in the
same figure.

It is worth analyzing these “loss” or “gain” variations with refer-
ence to the neutral case of Fr2¼ 65.4. We can define the following rela-
tive kinetic energy variation:

E ¼
Emix � Emix;Fr2¼65:4
Emix þ Emix;Fr2¼65:4

; (10)

where Emix and Emix;Fr2¼65:4 are the kinetic energies within the mixing
layer. This variation is obtained by integrating over thickness Dv,

FIG. 9. Comparison of the flow statistics between the Jayesh and Z. Warhaft laboratory experiment [“Turbulent penetration of a thermally stratified interfacial layer in a wind-
tunnel,” J. Fluid Mech. 277, 23–54 (1994)] (left column, spatial evolution) and the present numerical experiment (right column, temporal evolution). In their experiment, Jayesh
and Warhaf considered a turbulent mixing between two regions with different kinetic energies and temperatures (see Fig. 2). The velocity fluctuations were generated by forcing
a flow into grids of different mesh sizes. Jayesh and Warhaft’s data refer to Ri ¼ 0:8ðx=M ¼ 32, dashed line) and Ri ¼ 63ðx=M ¼ 148, solid line). By using a Taylor transfor-
mation, it is possible to see that x=M ¼ 32 corresponds to a 2 timescale long temporal evolution while x/M¼ 148 corresponds to a 10 timescale long temporal evolution. The
flows simulated in this work refer to Ri¼ 0.11 (30 G case, dashed line) and to Ri¼ 18.2 (5000G case, solid line). In panel (d), t=s ¼ 2:5, while in panels (e) and (f),
t=s ¼ 3:2. Panels (a) and (d): temperature flow. Panels (b) and (e): derivative normal to the mixing of the temperature flux. Panels (c) and (f): the temperature fluctuation flux
(correlation between the second-order moment of the velocity fluctuation across the layer and the temperature fluctuation).
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which is conveniently defined on the passive scalar distribution. In
fact, the complex behavior of the kinetic energy profiles makes it diffi-
cult to provide an unambiguous definition of the layer thickness. The
definition of Dv is given by

dvðtÞ ¼ xtopðtÞ � xbotðtÞ; (11)

where xtop and xbot are the vertical locations in which the mean scalar
concentrations are equal to 0.25 and 0.75, respectively,

FIG. 10. Comparison across the interface of the normalized plane averages of the heat (active scalar) and vapor (passive scalar) flux profiles [panels (a) and (b)], of their
fluxes of u023h and u023v [panels (c) and (d)], and of their vertical derivatives [panels (e) and (f)] for different levels of stratification at t=s ¼ 3.
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hviðxtop; tÞ ¼ 0:25; hviðxbot; tÞ ¼ 0:75;

see Fig. 11(b). However, it should be noted that, in the absence of any
stratification, the thicknesses of the algebraic growth of both the pas-
sive scalar and the kinetic energy have a common exponent, see Fig. 6
in Ref. 25 and also Refs. 15 and 35.

The time evolution of E is shown in Fig. 12. The relative energy
variation in the presence of unstable stratification increases in time
with an algebraic trend; the exponents increase as the stratification
increases—1.84 for Fr2¼�19.6 and 2.14 for Fr2¼�4.0. The situation
is more complex in stable cases. An initial transition phase can be
observed, where E is almost constant. There is then an algebraic decay,
with lower exponents than 1. It should be noted that the initial transi-
tion is not present in the case of a very strong stable stratification
(Fr2¼ 0.4).

We define the pit sublayer as the region where the kinetic energy
(averaged in the x1 � x2 planes) is lower than 80% of the mean energy
inside the low-energy clear region. The intensity variation of the
energy pit sublayer in time is represented in Fig. 11(d). After the initial
transition, the pit width almost linearly grows in time. This is in good
agreement with the hull length growth found in a stratified
Rayleigh–Taylor instability simulation by36 and, at least qualitatively,

with the temporal evolution of the downdraught penetration length in
buoyancy reversal in cloud tops.37

It can be seen, from Figs. 11(a) and 11(b), that the thickness of
the mixing layer is still growing during pit formation. Only after a cou-
ple of timescales beyond the pit onset does the growth stop, and it is
then followed by small oscillations around an asymptotic value. A dif-
ferent behavior is observed for unstable stratifications. In these cases,
the generation of the energy peak enhances the mixing by providing a
faster thickening of the layer, with greater exponents, that is,�0.63 for
Fr2¼�4.0, 0.54–0.56 for Fr2¼�19.6—than the neutral case for
which the exponent is 0.42–0.49.

1. Transport and Entrainment

The entrainment of external fluid inside mixing layers is an
important inertial aspect of interface dynamics, and such an entrain-
ment can range from those of the typical turbulent–nonturbulent
interfaces of boundary layers, jets, hyperbolic tangent shear layers, and
wakes, to those of the shear-free interfaces observed in planet atmos-
pheres and astrophysical clouds. Only downward velocity fluctuations
can transport clear air into a vapor cloud in any plane parallel to the
interface, in the absence of a mean velocity. Their presence can be

FIG. 11. Mixing layer thicknesses. (a) temperature and (b) passive scalar vapor. Distribution of the normalized kinetic energy at different time instants for Fr2¼ 4.0 (c) and
Fr2¼�4.0 (d). Emin, Emax, minimum, and maximum kinetic energy inside the mixing layer. The clear-air top region in panel (c) (right part of the plot) initially shows a value of
around 0. Panel (d), in this case, the clear-air low-energy region always shows a value of around 0. The temporal reduction in the high-energy cloudy region highlights the for-
mation of a peak, which remains in the very center of the mixing. (e) Time evolution of the pit width with Fr2. The pit onset starts at around t=s ¼ 2, and it is clearly visible
beyond t=s ¼ 4, when the layer portion with normalized energy close to 0 is located in the 0 – 1 range of ðx3 � xcÞ=d.
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highlighted by a marker function, w, that is, equal to 1 when u3 is neg-
ative, and 0 otherwise. The entrainment mean value outside the mix-
ing region is approximately constant and equal to 0.56 0.01, a value
which would be observed for homogeneous and isotropic turbulence.
Instead, the deviation inside the mixing layer is greater (up to
�6 0:05), with a spatial distribution and a temporal evolution, which
somehow follow the ones observed in the third-order moment of the

velocity, see Fig. 6. Figure 13(a) shows the vertical derivative of the
downward vapor flux when Fr ¼ 2:05. The downward flux reduces as
the flow evolves and its derivative, which represents the net variation
of 1� v at a given instant, rapidly tends to zero inside the vapor cloud;
this implies that the entrainment of clear air is confined to a thin inter-
facial layer.

Since the entrainment of clear air is responsible for the growth of
a cloud, it can be defined, and thus quantified, by considering the
velocity with which the cloud expands. The velocity we ¼ dz=dt,
where z ¼ hx3;ii, is the mean vertical position of the cloud top inter-
face and is here defined as the location where the mean vapor concen-
tration v is equal to 25%. The time-variation of z has often been used
as a parameter to measure the entrainment rate, see for instance.12,13

Figure 13(b) shows the time evolution of we for different pertur-
bation stratification levels. In the presence of a quasi-neutral stratifica-
tion, we gradually decreases, with an algebraic trend, which is related
to the natural decay of the turbulent kinetic energy. However, when a
stable, strong stratification is present, the decay of we is much faster
and the entrainment vanishes after a few time scales. It should be
noted that such an entrainment is related to the mixing thickness (see
Fig. 11), since the presence of the kinetic energy pit reduces the trans-
port efficiency. On the other hand, in the case of unstable stratification,
the presence of a kinetic energy peak enhances the mixing, and the
entrainment speed, therefore, more slowly decays.

The fact that a different level of entrainment is related to different
efficiencies of the transport of any physical quantity can also be appre-
ciated by observing the kinetic energy flux shown in Fig. 14, and the
passive scalar flux shown in Fig. 10. Compared to a neutral case, the
presence of stable or unstable stratification produces an initial reduc-
tion/increase in the energy flux, respectively, with a maximum flux
always positioned around x3=d ¼ 1, see Fig. 14. In the case of stable
stratification, the flux decreases until it reaches a very low value. The
formation of two fluxes can then be observed, according to the experi-
mental results of.28 The first one, which is located below the pit at

FIG. 12. Time evolution of the relative turbulent energy variation E, which is defined
as the difference in the kinetic energy inside the mixing layer from the neutral case
Fr2¼ 65.4 [see Eq. (10)]. E follows an algebraic trend. In stable cases, after an ini-
tial transition that can last four eddy-turnover times, a decay of the relative energy
is observed inside the mixing, with lower exponents than 1. In unstable cases, the
exponents are greater than 1 and the initial transition is absent.

FIG. 13. Panel (a): vertical variation of the mean flux of the vapor in the cloud; the marker function w only takes into account the spatial points where the velocity is directed
downward. Panel (b): time evolution of the mean entrainment velocity fluctuation, we, which is normalized with the high kinetic energy E1 root mean square. we is calculated in
the horizontal plane where v ¼ 0:25. Both stable interfaces (solid lines) and unstable interfaces (dotted lines) are represented here.
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x3=d ¼ �1, is positive (upward flux), and the second one, which is
located above the pit, in between x3=d ¼ 1 3, is negative (downward
flow)—see Figs. 11(c) and 14(c). A minimum value of 0.025 for the
stable case with Fr2 ¼ 4:0 can be noted for the time evolution of the
integral value of the flux in the layer, see, Fig. 11, panel (d). The ratio
between the two fluxes is around 0.25 for Fr2¼ 4.0. No mean flux is
present in between these two fluxes: this means that the energy tends
to accumulate at the pit edge without being able to cross it, thus limit-
ing the mixing thickness to a fixed width. In particular, if panel (a) in
Fig. 17 of JW is compared with the temporal sequence of panels
(a)–(c) in our Fig. 14, it can be seen that both show a reduction and
inversion of the kinetic energy flow in the case of large stable stratifica-
tion. The trend in panels (b) and (c) in Fig. 17 in JW also shows a sub-
stantial agreement between the derivative of the energy flow along the

vertical and the trend of our flow for Fr2¼ 65.4 and 4.0 at the end of
the transient. In the case of unstable stratification, although the maxi-
mum flux located at x3=d ¼ 1 keeps growing, the formation of a sec-
ondary negative flux, located near x3=d ¼ �1, can be observed. In this
case, the energy is spread from the peak sublayer to the external homo-
geneous vapor cloud region, thereby promoting the thickening of mix-
ing layer.

A similar behavior characterizes the passive scalar flux, which is
shown in the top panel on the right in Fig. 10. The unstable stratifica-
tion enhances the flux, which becomes increasingly important, in com-
parison with the scalar variance. However, no particular changes in
the spatial trend can be seen: the flux is always directed toward the
upper region. On the other hand, important differences can be seen
for the case of stable stratification: after an initial damping, the flux

FIG. 14. Panels (a)–(c): kinetic energy fluxes along the vertical direction x3, averages of the horizontal planes x1 � x2, after 4, 6, and 8 timescales, respectively. It should be
noted that, for the unstable simulations, it is not possible to reach 8 timescales for the computational stability problems self-generated by the physical condition of the flow.
Data from simulations considering different initial squared Froude’s numbers normalized on the mean kinetic energy of the high-energy vapor cloud region. Panel d shows the
temporal trend of the maximum normalized kinetic energy flux.
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becomes zero or even negative in the center of the mixing layer (see
Fr2¼ 0.4 in the above-cited panel), which agrees with the experimental
results of Ref. 28. In particular, the flux derivative along with the verti-
cal direction can be noticed in the bottom panel on the right. A posi-
tive derivative can be interpreted as the entrainment of clear air (the
passive scalar moves away), while a negative derivative implies a
detrainment of clear air (the passive scalar moves into the layer).38 In
the case of neutral (and unstable) stratification, the mixing moves the
scalar upward, where it is not initially present. We observe two sub-
layers (dark yellow solid line, Fr2 ¼ 0:4) for a stable stratification with
a positive derivative that surrounds one sublayer with a negative deriv-
ative: the scalar is thus retained within the mixing layer.

A reduction in communication between the two regions
external to the mixing layer can also be observed by looking at an
instantaneous three-dimensional visualization of the flow streamlines,
see Fig. 15, where three stratification cases are shown as follows:
neutral Fr2 ¼ 65:4, stable Fr2 ¼ 4:0, and unstable Fr2 ¼ �4:0.

The streamlines are computed for fluid particles initially placed at a
distance of 2d0 above (red) and below (blue) the center of the mixing
layer, and are visualized at 6 initial eddy-turnover times. It is possible
to observe that, in the neutral case, panel (b), streamlines from the
upper side can cross the interface to reach the bottom region, and vice
versa. This does not happen in the presence of stable stratification,
panel (a); in this case, crossing of the interface becomes increasingly
rare, and almost all the particles located on one side of the interface
remain there. On the contrary, in the presence of unstable stratifica-
tion, panel (c), mixing is enhanced and the streamlines more fre-
quently cross the layer.

2. Anisotropy and dissipation

In the present system, the anisotropy is first set by the initial
velocity fluctuation condition, which introduces a gradient of kinetic
energy, which, in turn, induces the flux of momentum and kinetic

FIG. 15. Streamlines after 6 timescales for different stratification levels—(a) Fr2¼ 4.0 highly stable, (b) Fr2¼ 65.4 negligible stratification, and (c) Fr2¼�4.0 highly unstable. The
starting position of each streamline is placed at a fixed distance from above (yellow/red tubes) and below (cyan/blue tubes) the center of the interface. In panel (b), where the buoy-
ancy forces are negligible, streamlines from the upper side can cross the interface to reach the lower region, and vice versa. Instead, in panel (a), where stable stratification effects
are relevant, crossing of the interface becomes increasingly rare: what is located on one side of the interface tends to stay there, and the mixing process is damped. Finally, in the
case of unstable stratification shown in panel (c), the mixture of red and blue lines is enhanced, which means that the streamlines more frequently cross the interface.
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energy. Second, the temporal evolution of the vertical velocity compo-
nent feels the effect of the buoyancy stable/unstable forces, which
damp/enhance the transport. By considering the relative weight of the
energy associated with the vertical velocity fluctuation, with respect to
the other components,39 the large-scale anisotropy is represented by
the ratio

B3 ¼
hu3u3i
hukuki

� 1
3
:

Figure 16 shows the behavior of the B3 ratio along the vertical direction
(panel a) and the time evolution of its peak value in time. Anisotropy is
present on a large scale for a neutral stratification condition, but is lim-
ited, with a maximum deviation of 5%. Anisotropy becomes very
intense in the presence of stratification. It is, in particular, possible to
observe that the vertical fluctuation undergoes a large dumping under
stable stratification conditions (hu23i < hu21;2i) and, vice versa, an

intense growth under unstable conditions (hu23i > hu21;2i). These differ-
ences are responsible for the different behaviors of the transport and
fluxes observed in the previous sections. It is also possible to observe, in
Fig. 16(a), that the variation concerns the global mixing layer (and not
only the previously introduced pit/peak sublayers of the kinetic energy).
In fact, together with the formation of such sublayers, a concomitant
shift in the main energy gradient is also observed. This fact confirms the
observation that the time evolution of a cloud during mixing is some-
what sensitive to large scales21 in concomitance with the important
effects directly induced on the drop size distribution and supersatura-
tion fluctuation by the small scale.9

As for the small-scale anisotropy of the flow, it should be men-
tioned that it is accurately represented by the higher moments of the
first-order longitudinal derivative of the velocity components.40 It is
well known that HIT departs from Gaussianity at small scales, and the
longitudinal derivative skewness, Sð@ui=@xiÞ, is almost equal to
�0:56 0:1, with a slight dependency on the Reynolds number.40 In
previous works,16,27 it was found that, in the presence of a mixing layer
due to a mean kinetic energy gradient, at Taylor Reynolds numbers of

between 45 and 150, Sð@ui=@xiÞ not only shows that there is a signifi-
cant departure of the longitudinal velocity derivative moments from
the values found in homogeneous and isotropic turbulence but also
that the variation in skewness has the opposite sign for the compo-
nents across the mixing layer and parallel to it. The anisotropy induced
by the presence of a kinetic energy gradient also has a very different
pattern from the one generated by homogeneous shear. The transver-
sal derivative moments in the mixing are in fact found to be very small,
which highlights that the smallness of the transversal moments is not
a sufficient condition for isotropy. In addition to the Reynolds num-
ber, the level of anisotropy depends on the energy gradient, see Ref. 16.

The presence of buoyancy forces does not directly influence the
tilting/stretching of the vortex filament. Let us consider the vorticity
equation, obtained as the curl of Eq. (2),

@x

@t
þ u � $ð Þx ¼ x � $ð Þuþ u � $ð Þ þ �$� $2uþ a$� ðghÞ;

(12)

where the compressibility stretching and the baroclinic terms have
been neglected as a result of the incompressibility and Boussinesq
approximations. By considering that the buoyancy term is a vector
that lies along the vertical direction, its curl has horizontal compo-
nents, which depend on the derivative along the direction parallel to
the mixing,

a$� ðghÞ ¼ a$�
0
0
gh

0
@

1
A ¼ ag

@h=@x2
@h=@x1

0

0
@

1
A: (13)

It is possible to see that, if a mean variation of h only occurs along the
vertical, there will not be a mean contribution of buoyancy to the vor-
ticity balance. Thus, in HIT, the presence of stratification does not
influence small-scale anisotropy. However, this is not true inside a
mixing layer. Figures 17 and 18 show that the presence of stratification
modifies the behavior of the skewness and kurtosis of the longitudinal
derivatives. Mild stratification does not affect small-scale anisotropy:

FIG. 16. Anisotropy of the turbulence on large scales. (a) B3 ratio along the vertical direction obtained by varying the Fr
2 number. (b) Temporal evolution of the B3 peak value.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 065122 (2022); doi: 10.1063/5.0090042 34, 065122-17

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


the skewness of @u3=@x3 tends to an asymptotic value of�
�0:636 0:02, as expected, for Rek � 200� 250.16,41 In the case of
stable stratification, the skewness of all the longitudinal derivatives
tends to the isotropic value of 0.52, while it tends to diverge in the case
of unstable stratification Sð@u3=@x3Þ, reaching values as low as �0.75
at Fr2¼ �4:0, with an overgrowth of 30%.

In the case of stable stratification, as soon as the energy pit
appears, the mixing process decreases and the small-scale anisotropy
sublayer tends to disappear, as can be seen in Fig. 17(b), since the lon-
gitudinal derivative in the direction across the mixing is gradually

reaching the typical value of homogeneous isotropic fields. Thus, the
behavior of the system is similar to when the energy gradient is not
present—which would seem to indicate that the exchange of informa-
tion between the two outer regions is blocked. On the contrary, mixing
is enhanced in the case of unstable stratification, and the layer
becomes even more anisotropic for small scales and acts as if the
energy gradient is larger. According to the results of Ref. 16, deriva-
tives along a homogeneous direction do not show peaks in the center
of the mixing layer, and it should be recalled that Rek is 250 in the
present cases.

FIG. 17. Anisotropy of the skewness of the longitudinal derivatives. (a) Spatial distribution of the skewness of the longitudinal derivatives normal to the mixing surface (solid
lines) and parallel to the mixing interface (dashed line). (b) Evolution of the mean peak value of the longitudinal derivative crosswise direction of the mixing layer, and the spatial
location is close to x3=d � 1. The symbols represent discrete values averaged over 11 adjacent computational planes, parallel to the layer, while the solid lines represent their
spline interpolations.

FIG. 18. Anisotropy of the kurtosis of the longitudinal derivatives. (a) Spatial distribution of the kurtosis of the longitudinal derivatives normal to the mixing surface (solid lines)
and parallel to the mixing interface (dashed line). (b) Evolution of the mean peak value of the longitudinal derivative crosswise direction of the mixing layer, and the spatial loca-
tion is close to x3=d � 1.
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Another interesting feature concerning anisotropy can be noted
by observing the spectra at the edges of the inertial range in the pres-
ence of stratification. This feature can be evaluated by comparing the
one-dimensional spectra of each velocity component inside the mixing
region with the neutral case. To achieve this, we computed spectra
ûiðk; x3Þ as the average of the transforms along each of the two homo-
geneous directions, that is,

ûiðk; x3Þ ¼ 0:5hûiðk1; x2; x3Þi þ 0:5hûiðx1; k2; x3Þi; k ¼ k1 ¼ k2;

(14)

where the average operator h�i acts along the homogeneous direction
in which the transform is not carried out. The obtained spectra are
then compared with the neutral case, Fr2¼ 65.4, by considering the
relative variation

jjûFr2¼…
i � ûFr2¼65:4

i jj
jjûFr2¼…

i þ ûFr2¼65:4
i jj

:

The results of such a comparison are shown in Fig. 19 for the stable
case, Fr2¼ 4.0 [panels (a) and (c)], and the unstable case, Fr2¼�4.0
[panels (b) and (d)]. The first observation that can be made concerns
the different behavior of the vertical velocity fluctuation from the other
two components. As can be seen, stratification directly acts on the
larger scale of the vertical motion, generating a relative deviation from
the neutral case. Such a variation is negative (less energy in vertical
motion) in the presence of a stable stratification and positive (more
energy) in unstable situations, in agreement with what has been
observed for large-scale anisotropy. As the mixing evolves, these effects
are transmitted to smaller scales through the inertial cascade, until the

FIG. 19. One-dimensional velocity spectra along with homogeneous directions. Unlike the neutral case, Fr2¼ 65.4, panels (a) and (b) show the effects on the vertical velocity
fluctuations in the presence of stable [(a), Fr2¼ 4.0] and unstable (b), Fr2¼�4.0) stratifications, respectively. Panels (c) and (d) show the effects on the other two velocity
components. The spectra were computed inside the mixing layer, at x3=d � 0:8. Here, û1;2 is the arithmetic average of the one-dimensional spectra computed along with the
directions parallel to the mixing layer. The symbols represent the computation of discrete spectra, while the solid lines represent their B�ezier interpolation.
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dissipative range is reached, with the consequent effect of enhancing/
dampening of the dissipation rate for stable/unstable stratification,
respectively. The stratification effects in this scale range are wide-
spread in all the velocity components: as a consequence, absolute
small-scale differences (and, therefore, small-scale anisotropy) are
dumped in the presence of stable stratification and enhanced in
unstable cases.

We observed that Kolmogorov �5/3 scaling is present over the
whole domain. The inertial range is rather narrow, as it extends for
about one decade. See Figs. 20(a) and 20(b), where energy spectra are
shown at t=s > 6 inside both the unsaturated cloud and the interfacial
layer. The normalized kinetic energy spectra are somewhat similar
along the vertical direction, with small deviations, due to the different
local Reynolds numbers. These spectra are also quasi-self-similar in
time, and the main difference is represented by a reduction in the
extension of the inertial range due to the temporal growth of the
Kolmogorov scale and of the dissipative range. A symmetrical varia-
tion has been observed in the inertial range, with respect to the non-
stratified condition, on the spectral indices of the velocity spectra:
�1.99, when Fr2 ¼ 4:0, and �1.35, and when Fr2 ¼ �4:0. The iner-
tial range of the passive scalar power spectra shows an index of about -
1.45 inside the cloud portion and of about �1.56 inside the mixing
layer. These values slowly decrease over time.

The dissipation rate is computed over the whole domain using
the general definition (see Ref. 42)

e ¼ 1
2
�

@ui
@xj
þ
@uj
@xi

 !2

: (15)

Figure 21 shows the plot of the normalized turbulent dissipation rate
Ce, which is defined as

Ceðx3Þ ¼
heih‘i
hEi3=2

;

where the averages in the horizontal planes have been implemented. It
can be observed that the normalized dissipation rate is initially almost
constant in the transient and equal to 0.556 0.05, that is, the same
value as the unstratified case. However, as the buoyancy becomes rele-
vant, in the case of stable stratification, Fr2 ¼ 4:0, the formation of a
dissipation “peak” can be observed inside the pit of kinetic energy,
where Ce reaches values as high as 0.9, that is, an increase of nearly
70%. On the other hand, in the case of unstable stratification,
Fr2 ¼ �4:0, the dissipation decreases inside the sublayer by nearly
20%. Thus, dissipation is affected to a great extent by buoyancy.

IV. CONCLUDING REMARKS

The evolution of a freely decaying, shearless, and turbulent mix-
ing layer hosting both air and a vapor phase, considered as a passive
scalar phase, is obtained by coupling two homogeneous isotropic tur-
bulent fields with different kinetic energies. A large range of Froude
numbers (Fr2 2 ½�19:6; 981:6�) has been studied to evaluate the
changes that take place in the mixing dynamics, due to both stable and
unstable temperature conditions.

Our numerical simulations have shown that both stable and
unstable stratifications modify the dynamics and transport characteris-
tics of a shear-free turbulent layer. First, the formation of a sublayer
inside the mixing region is observed: (i) a pit of kinetic energy under a
stable condition, a sort of intense decay overshoot that is characterized
by a lower level of energy than the external regions; (ii) the formation
of a peak of kinetic energy under unstable stratification conditions,
where the turbulent energy becomes higher than in the external
regions (15% larger at Fr2 ¼ �4:0). The temporal scaling law of the
energy variation inside the mixing region has been quantified. The
exponent depends on the stratification intensity. It reaches a value of
2.1 at Fr2 ¼ �4:0, which is about four times larger than the exponent
determined at Fr2¼ 4:0. Stable stratification almost suppresses vertical
motion, since any fluctuations within it are inhibited by buoyancy
forces. In such a condition, an increased anisotropy is observed for the

FIG. 20. Kinetic energy spectra at different instants for the case with Fr2¼ 4.2. Spectra are compensated according to the Obukhov–Corrsin normalization, in which
EðjÞ ¼ 0:4��2=3j�5=3. Panel (a) shows the spectra in the high-energy region while panel (b) in the center of the mixing layer.
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large-scale structures, compared to the neutral case. In fact, the energy
associated with vertical fluctuations gradually becomes smaller than
the other components. On the other hand, vertical fluctuations, under
unstable conditions, amplify with respect to the horizontal
components.

Turbulence diffusion becomes damped in the presence of a stable
stratification, as do intermittency, kinetic energy, passive scalar trans-
port, and clear-air entrainment. Entrainment almost vanishes when
the Froude square number becomes lower than 1. A detrainment
phase, lasting from 1.4 to 3.5 eddy-turnover time, is observed at
Fr2 ¼ 0:4. On the other hand, unstable stratification enhances the
mixing process.

The dissipation function increases to a great extent for stable per-
turbation conditions. An increase of 70% at Fr2¼ 4:0 has been
observed here. Conversely, at Fr2¼ �4:0, a decrease of 2% has been
observed. Log-normal probability density functions of the dissipation
rate have resulted to be self-similar inside different layers across the
mixing. This is a result that can be explained by considering that strati-
fication has more effect on the energy associated with the vortical
structures than on their morphology.

As far as small-scale anisotropy is concerned, it has been found
that the presence of unstable stratification increases the differences in
the statistical behavior between the longitudinal velocity derivatives.
As a consequence, the compression of the fluid filaments normal to
the interface is greater, due to the increased mixing intensity. Since the
mixing process tends to vanish in stable cases, small-scale anisotropy
also vanishes.

We have collected spectral information. The main observation
concerns the velocity fields. By comparing the stratified spectral behav-
ior with the unstratified behavior of the velocity fields, we have noted a
substantial diversification in time for both low and high wave numbers
for the vertical velocity fluctuations. Instead, for the horizontal compo-
nents of the velocity fluctuation, differentiation is only clearly visible at
the smallest scales, that is, for the highest wave numbers.

Looking ahead, we would like to conduct a simulation campaign
on domains of a similar size to the size considered in this work, but
including the aqueous liquid phase and the related collision and coa-
lescence phenomena of water droplets, as has recently been done,
albeit at a much smaller domain scale than the one considered here
(Golshan et al.9 and Fossa et al.10). In particular, we would like to
observe a longer time window, that is, a time corresponding to almost
one minute of a three-phase (gas, vapor, and liquid) warm cloud
instead of the few seconds of the present simulation.

However, it should be considered that droplet clustering introdu-
ces a further complexity to the structure of the clear air–cloud inter-
face. In particular, the discontinuous distribution of droplets and
droplet clusters in space means that different cores will require a very
uneven computational effort at each time step, and this cannot be a
priori predicted. In such a situation, where a physical modeling is still
under evolution, it would be very difficult to force the code to a mas-
sively high level of parallelization. In fact, the shift from slab to pencil
parallelization (which has already been achieved for the version of the
code used in this work, where water droplets are not simulated)
increases the time needed to exchange information between the
cores by about eight times. This occurs because the amount of
information exchanged by two adjacent cores is not homogeneous
inside the computational domain, and, furthermore, it is likely that
nonadjacent cores would also need to exchange information. Such a
situation has a high probability of occurring over short time inter-
vals, such as those that are comparable with a single computational
time step, because turbulence hosts long-term phenomena, which
can induce large droplet displacements, that is, droplet displace-
ments to a domain portion in a core not adjacent to the core where
the droplet departed from.
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