POLITECNICO DI TORINO
Repository ISTITUZIONALE

Gamified Exploratory GUI Testing of Web Applications: a Preliminary Evaluation

Original

Gamified Exploratory GUI Testing of Web Applications: a Preliminary Evaluation / Fulcini, Tommaso; Ardito, Luca. -
ELETTRONICO. - International Conference on Software Testing, Verification and Validation Workshops (ICSTW):(2022),
pp. 215-222. (Intervento presentato al convegno 2022 IEEE 14th International Conference on Software Testing,
Verification and Validation Workshops tenutosi a Virtual Event nel 4—13 April 2022) [10.1109/ICSTW55395.2022.00045].

Availability:
This version is available at: 11583/2968507 since: 2022-06-23T15:45:55Z7

Publisher:
IEEE

Published
DOI:10.1109/ICSTW55395.2022.00045

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

17 July 2024

Gamified Exploratory GUI Testing of Web
Applications: a Preliminary Evaluation

Tommaso Fulcini and Luca Ardito
Politecnico di Torino, Italy
tommaso.fulcini @polito.it
luca.ardito@polito.it

Abstract—In the context of Software Engineering, testing is a
well-known phase that plays a critical role, as is needed to ensure
that the designed and produced code provides the expected re-
sults, avoiding faults and crashes. Exploratory GUI testing allows
the tester to manually define test cases by directly interacting
with the user interface of the finite system. However, testers often
loosely perform exploratory GUI testing, as they perceive it as a
time-consuming, repetitive and unappealing activity. We defined
a gamified framework for GUI testing to address this issue,
which we developed and integrated into the Augmented testing
tool, Scout. Gamification is perceived as a means to enhance
the performance of human testers by stimulating competition
and encouraging them to achieve better results in terms of
both efficiency and effectiveness. We performed a preliminary
evaluation of the gamification layer with a small sample of
testers to assess the benefits of the technique compared with the
standard version of the same tool. Test sequences defined with
the gamified tool achieved higher coverage (i.e., higher efficiency)
and a slightly higher percentage of bugs found. The user’s opinion
was almost unanimously in favor of the gamified version of the
tool.

Index Terms—GUI testing, Gamification, Software Testing,
Software Engineering

I. INTRODUCTION

Software testing is one of the most critical phases of the
software development process. It allows detecting defects in
advance in the produced code, avoiding releasing code affected
by bugs and security issues, whose repair cost increases once
the software is launched on the market.

Testing can be performed at any level and with many
techniques (i.e. functional, structural), from low level (unit
testing) to high level (system testing). Adopting a particular
technique does not exclude another: they can be combined to
ensure correctness at different layers.

Testing a system through its Graphical User Interface (i.e.,
GUI Testing) becomes crucial for software domains such as
web applications because of the growing complexity of the
provided graphical user experience and the fact that most of the
input and output is conveyed through graphical components of
the GUI hierarchy. At this level, the system is evaluated by
traversing the interface simulating scenarios of final users and
using properties of the components as oracles to prove the
presence of defects.

Despite being an essential activity, GUI testing is often ne-
glected or superficially performed by testers; the main reasons
are two: the first is due to its highly time-consuming nature,

primarily when conducted manually by testers, the second is
owing to the complexity of configuration and integration of
automated testing tools with existing IDEs, and the high cost
in maintaining automated test scripts [1].

There are two main techniques to carry out system testing:
case-based testing and exploratory testing (ET). The former
requires the execution of the test cases to be preceded by
a rigorous definition of the goal that each test case should
reach and its steps to completion. The latter demands the
construction of the test case to the ability of the tester to
explore the interface as it is, without following a script. ET,
which will be the one we will discuss in this paper, is typically
performed by a human who chooses which interactions to
perform among all the possibilities offered by the GUI and
allows the tester to reach higher flexibility and to get an overall
picture of the quality of the system in a faster way [2]. Despite
the benefits brought by this technique, testers have to carry
out a repetitive job, prone to attention losses that may result
in poor test quality and limited effectiveness, i.e. low numbers
of defects discovered.

Our vision is to keep the human factor, i.e. the tester, in
the loop of creating and executing test cases but increasing
commitment, motivation, and performance.

Gamification is a promising technique that consists in
applying concepts, elements, and mechanics that are proper
to games to a different discipline [3], in this case, Software
Engineering. This technique has been proven to be able to
boost users’ performance and enjoyment when game design
principles are correctly applied [4] [5].

As many other studies on gamification applied to the Soft-
ware Engineering field showed encouraging results, both in
the educational and industrial field, we decided to implement
a gamification plugin to be installed on a GUI testing tool to
make the vanilla test environment more enjoyable to achieve
both higher user satisfaction and better performance compared
to manual and automated scripted testing.

This paper discusses a preliminary analysis of the game
elements we applied to a prototype tool for manual exploratory
testing of web applications. Our objective is to verify the
benefits of a gamified approach when applied in the test case
creation phase and to measure its impact on the efficiency and
effectiveness of exploratory testing tools.

The remainder of the paper is organized as follows: Sec-
tion II defines the concept of gamification and reports other

applications of that practice in the software engineering do-
main; Section III describes the gamification plugin that we
implemented; Section IV reports the preliminary evaluations
of our prototype with its experimental settings and the result
we reached; Section V deepens the current limitation and the
validity threats of the works; finally Section VI concludes the
paper and provides a roadmap for future work.

II. RELATED WORKS

In the past ten years, the application of gamification has
undergone a growing interest [6]: in almost all academic
disciplines, gamified approaches have been proposed. In the
field of Software Engineering, gamification is a particularly
suitable approach since Software Engineering activities are
strongly human-centered. Between all the sub-disciplines of
Software Engineering for which we can find documented
attempts of adoption of gamification techniques, software
testing has only received 13% of the total research interest [7]:
this figure highlights how the efforts made have been focused
mainly on other software engineering fields than testing; with
development and requirements having the highest percentage
of research items and on a par with project management.

Octalysis, defined by Yu-Kai Chou, is one of the most
used frameworks to quantitatively assess how gamification is
applied. It identifies eight core drives representing the different
aspects of human behavior that gamification can stimulate,
divided into four categories: right-brained, the ones related
to creativity and social aspects and left-brained, associated
with logic and calculations. The framework plots the core
drives into an octagon, allowing to visually determine if the
elements inserted are well balanced horizontally. It enables the
gamification level assessment in any software by measuring
the elements of each component, with a prediction of the
feeling perceived by the user [8]. In this paper, we adopted
the Octalysis framework as an item for assessing the game
design of our plugin in order to establish if the chosen game
elements were the right ones to fulfill our goals.

The benefits of gamification have been proven to be quite
interesting in the software testing context, particularly in the
teaching process of the testing concepts.

Some innovative tools were proposed to support the stu-
dents. For example, Code Defenders [9] allows students to
practice mutation testing, also allowing the creation of mu-
tated test suites that can be used in actual use cases. This
gamification tool introduces two roles, attacker and defender;
the former has to create mutants based on existing code able
to pass all the test cases both for the starting test suite and
the defender’s one. Defenders have to enrich the starting
test suite to prevent the attacker’s code from passing the
test cases. The mutants produced by participants using the
tool in the experimental settings described in [10] have also
been compared to mutants generated with existing automatic
mutants generation tools. The results showed that the mutants
manually generated with Code Defenders were able to reach
a higher coverage, confirming the benefits of the gamification
environment. Our plugin differs from Code Defenders in that

the injection of mutants is done at the GUI level by using
visual artifacts rather than unit level. Furthermore, we used the
mutant injection technique with the purpose of evaluating the
tester’s performance, while Code Defenders aims to support
the creation of test suites able to detect mutants.

Another promising gamified approach to a different testing
discipline is the one proposed by Scherr et al. in [11], where
the authors describe an innovative approach to acceptance
testing of mobile applications based on the use of animojis
to determine the feeling of the user who is testing the
system. The envisioned approach involves the automation of
user evaluation for acceptance testing. The playful element
lies in the possibility of showing the user in real-time its
corresponding animoji. The animoji makes testers’ enjoyment
higher, as they can look at themselves in the role of a
“cartoon” and makes them aware of the data automatically
collected, reassuring them that no sensitive data is taken. This
gamification feature leverages people’s enjoyment in seeing a
moving avatar mimicking their facial expressions.

Ferreira Costa et al. [12] [13], used a gamification frame-
work to teach exploratory testing techniques. Each student
received a fictitious name of an existing pirate and took part in
a pirate story told during exploratory testing lessons. Different
stages were faced, each of which the student learned or applied
concepts, as in traditional lessons. After the lessons, an actual
test session was carried out. In the end, each student had
to fill in the report of the enclosed session. The students
then exchanged reports and evaluated each other under the
supervision of an expert who then validated all the reports.
This validation included rewarding the participants with points
(used to buy elements to customize the pirate’s profile) and
other playful resources to enrich the tester’s avatar and medals.
According to the domain expert, students were reportedly more
engaged and would have done more test sessions and produced
good test reports. This work, which is regarding the same
testing technique of our paper, uses avatars as a way to certify
the progress of the tester similarly as we did in our plugin.

III. THE PROTOTYPE

Our work is based on a conceptual framework that was
presented by Cacciotto et al. [14]. In the present paper,
we implement the framework’s four elements (final score,
progress bar, injected bugs and exploration highlights) and add
two additional ones (namely, the avatar and shop system and
the achievement badges).

We implemented our prototype as a plugin for Scout, a
tool for Augmented exploratory manual GUI testing of web
applications proposed by Alegroth et al. [15]. The tool allows
the tester to perform system testing for web applications
using a capture and replay paradigm. Testers can create a test
suite by executing test scenarios against the SUT through the
tool’s GUI that completely mimics the original application
interface. In this way, the original SUT GUI is enriched
with superimposed information (e.g., highlighting of clickable
buttons, path and coverage information) that supports the tester
in the creation of the test scenarios.

! @ Session Recap — =
Tester: John Doe
Minutes 5
Seconds 20
Highlighted Widgets 23
Average Coverage 9.5%
Issues 3
Easter Eggs Found (%) 33.3%
Discovered Pages 4
Discovered Widgets 17
Base Score 37
Bonus Score 4
Total Score 41
Grade

Fig. 1: Results screen, showing the metrics measured for the
session and the related score

We represent a testing session with a tree structure. Every
node represents a web page and includes data related to the
interactions performed by the tester on that particular page.
Each session is uniquely identified by the testerID and the
instant in which it is terminated.

Our prototype implements six different game mechanics:

1) Final Score and leaderboard: The main gamification
element of the proposed framework is a mechanism that
assigns a score to each testing session. A sample prompt
showing the final score to the tester is reported in Fig.
1. The score is computed based on the following lower-
level metrics:

o Coverage component. Computed as the ratio of
interacted widgets over the total widgets of a page,
averaged over all visited pages;

e Exploration component. The component depends
on the percentage of pages visited and widgets
interacted for the first time by the current tester,
among all users that have already completed a test
session on the same SUT;

e Diversity component. based on the ratio between
the total number of interactions and the number
of different widgets interacted, it quantifies the
diversity of the test case executed by the tester;

o Time component: based on the duration of the test
session, it rewards longer sessions in which the
tester should explore the GUI more thoroughly;

o Problems component: based on the number of issues
reported by the tester during the exploration of the
SUT.

Depending on the score obtained, the tester receives
feedback about its performance, in the shape of a grade

@ Scout Zoom: 106% Running

7 el
? W |
& Q " Strona giéwna Dyskusja
<'§ F
WIKIPEDIA
Wolna encyklopedia
wolnej encyklopg 6rg kazdy moze redagowac
Losuj artykut 1512 118 artykui wtym 4443 wyréznione

Kategorie artykuiow
Najlepsze artykuty

Czeste pytania (FAQ)

% Wiasnie trwa Tydzien Panstw

Fig. 2: Graphical feedback of the tool: progress bar, injected
bug and star to indicate a newly discovered webpage

2)

3)

from D (lowest) to S (highest). A detailed description of
how the final score is computed based on the individual
components is reported in the conceptual framework by
Cacciotto et al. [14].

The scoring mechanism and leaderboard can be consid-
ered as a means to encourage and motivate the user of a
system to achieve better performance [16]. Furthermore,
these two game elements provide a basis for other more
complex game mechanics, besides the fact that the score
is also the most widespread playful element used in
gamification applied to SE [7].

Progress Bar: A live visual feedback that shows the
number of widgets interacted by the current tester as
a green line. The progress bar is rendered over a red
one, which represents the total number of widgets on the
current page (see fig. 2). Each time a new interaction in
the current page occurs, the green portion of the progress
bar expands.

For those pages that at least another tester has previously
visited, a blue line is shown between the green and the
red to represent the maximum coverage ever reached on
that page, i.e. the current high score to beat.

This element, along with the previous one, is reported
in the Octalysis framework under the core drive “Devel-
opment & Accomplishment” as a stimulating element
that provides satisfaction for the progress made and the
reward obtained. By the time we are writing the current
paper, as far as we know from the systematic mapping
of Porto et al. [7] this is the first time this element has
been introduced in a SE discipline.

Injected Bugs: A visual mutation introduced to emulate
real bugs. One widget is selected randomly once per
each page, among all the clickable widgets with hyper-
links present on that page. If such a widget is clicked,
the destination page will contain the loaded dynamic
bug. The bug is represented on-screen as a yellow oval.
Injected bugs represent a way to evaluate the tester’s
ability to find actual bugs in the SUT and the effective-
ness of the testing tool. In the literature, the injection
of additional, random and dynamic mutants is the only
way to compare the performance of a tester in finding
incorrect elements in the GUI of the SUT since the

4)

presence of actual bugs cannot be known apriori. This
technique also allows establishing how reactive is the
tester in discovering faults by navigating through the
hyperlinks. In this research, we mocked the mutant/fault
injection by using a visual artifact that lies in a random
position of the screen. Since mutation testing is mainly
used at the unit testing level, the grounds behind the
introduction of this element is the attempt to apply the
concepts to system testing as suggested by Zhu et al.
[17].

This element can be classified in the Octalysis as an
“unpredictability” factor. In fact, the generation of a
mutant is similar to the easter egg feature due to
their hidden nature and the “hunt” that the tester has
performed to find the element. According to Porto et
al. [7], this element as well has been applied for the
first time in the Software Engineering domain in this
prototype.

Exploration Highlights: A live feedback which high-
lights a page newly discovered with a semi-transparent
star in the top-left corner of the page (see fig. 2).
It allows marking a page that has never been tested
before, showing the user how deep the current test
session’s exploration of the SUT provided with respect
to all previous ones. This kind of visual feedback has
not been previously used in related literature, nor does
available frameworks of gamified mechanics mention it.
Nonetheless, we consider this element as equivalent to
the progress bar in terms of the possible stimulation
provided to the users.

5) Avatar and shop system: For each tester, a profile win-

dow has been created. Here the tester can customize the
profile with the preferred avatar by choosing between the
available ones. Some avatars are unavailable by default
as they are unlockable by spending a predefined amount
of virtual currency. The tester has to score in tests
sessions or complete the corresponding achievements’
goals to collect virtual currency. The avatar and shop
systems are shown in fig. 3 respectively on the upper left
corner and in the right part of the screen. The avatars
are statically generated using the open license and open
source Github project Avataaars Generator'. The current
avatars shopping system has some limitations as, once
the tester owns all the available ones, the urge to
collect the virtual currency runs out. For this reason,
we reported some possible improvements in the future
works section.

Avatars belong to the "Ownership” core drive in the Oc-
talysis and rely on the innately human need to empower
their presence and own properties. This need pushes
users to care for what they own in the platform and
to increase their possessions. This gamification element
has been adopted by many studies in the literature and
— with some specific categories of people, as in [18] —

Uhttps://github.com/fangpenlin/avataaars-generator

iy Login Form - x

E-mail: d gallotti@outiook.it

Azienda: Lnks foundstion

D 20 ($

Achivements 1/6

Fig. 3: Profile page of the tester, with the chosen avatar, the
achievements’ badges and the avatar shop

proved to be an important aid for the user even from a
psychological perspective.

6) Achievement badges: A sort of "medal” that certifies that
the tester has met some particular objectives and require-
ments. It has the purpose of gratifying the work done
by the tester (in a particular session or with its behavior
in a set of sessions), rewarding him with an amount
of virtual money depending on the difficulty of that
particular achievement, and explicit acknowledgements
on the results reached. An example of achievements is
shown in fig. 3 in the bottom-left part of the screen.
This element is also one of the most used, right be-
hind the scoring system and leaderboards [7], for this
reason, we decided to use it. Achievements belong to
the “Development & Accomplishment” category in the
Octalysis, a left-brain tendency: the user wants to com-
plete all the achievements to collect all the visual badges
assigned. Some ready-to-use open source solutions are
available for unit testing [19].

The tester profile is meant to be public to let other testers see
the progress made, see how the profile has been customized,
which achievements have been reached, stimulate the compe-
tition between them, and push each tester to perform better
than the others.

We applied the Octalysis framework to evaluate our pro-
totype tool. Fig. 4 shows the result of the application of the
Octalysis graphically. At the same time, the prediction reported
a balanced tool between left-brain and right-brain Core Drives,
which means to have a good balance between Intrinsic and
Extrinsic Motivation. The only reminder was about Extrinsic
Motivation factors, which, when poorly designed, could negate
the Intrinsic ones.

We continued our work by validating the plugin based on
this promising forecast.

Epic Meaning

Accomplishment Empowerment

Social
Influence

ah
Ownership Octa YSis
Analysis

Scarcity Unpredictability

Avoidance

Fig. 4: Evaluation of the gamification plugin using the Octal-
ysis framework

IV. PRELIMINARY EVALUATION OF THE TOOL

We report the design, goal, research questions, metrics, and
procedure adopted for the study following the Goal Question
Metric (GQM) paradigm [20], as summarized in table I.

The goal of the study was to evaluate the impact of
efficiency and effectiveness of the application of gamification
concepts on GUI testing of web applications. The results of
the study are interpreted according to the perspective of web
software testers and researchers.

A. Research Questions and Metrics

In this section, we detail the Research Questions that we
have defined to pursue the goal of our study and the metrics
that we adopted to answer them.

RQ1 - Efficiency: What is the impact of gamified mechan-
ics on GUI testing efficiency?

Efficiency, for a software testing tool, technique, or method-
ology, can be defined as the time required for obtaining a test
suite able to provide sufficient coverage of the SUT [21]. In
our case, we measure efficiency from another point of view
by measuring the following metrics over a fixed time frame:

o Coverage: we measure coverage as the percentage of
widgets interacted or checked inside each page of the
web application, averaged over all the pages explored by
the tester;

e New widgets ratio: number of new widgets discovered
(i.e., never found in previous sessions by any tester) by
the current tester, normalized by the total number of
widgets encountered during the test session;

e New pages ratio: number of pages visited by the tester
that was not already discovered in previous testing ses-
sions by any tester, normalized by the total number of
pages visited in the test session.

TABLE I: GQM Template for the study

Object of Study : Application of gamification concepts
Purpose : Evaluate the benefits for software testing
Focus : Efficiency, Effectiveness, User Experience
Context : GUI testing of web applications
Stakeholders : Software testers, researchers

As this study is conducted in the field of GUI testing, it was
not possible to adopt the statement coverage. It happened be-
cause the Scout tool is agnostic of the technology with which
the system is made and performs end-to-end testing in a pure
black-box fashion, accessing only the HTML representation of
the shown pages. For this reason, we have chosen the widget
coverage metric as it was the only available way to quantify
the percentage of each screen that was covered.

RQ2 - Effectiveness: What is the impact of gamified
mechanics on GUI testing effectiveness?

The Effectiveness of a testing technique can be defined as
the number of faults that the technique will find [22]. To
measure effectiveness in our case, we resorted to measuring
the percentage of Injected Bugs of those randomly injected in
the web application by the tool successfully identified by the
testers. We intended a bug as found or identified each time the
page with the bug was loaded in the GUI and shown to the
tester, meaning that even if the corresponding visual artifact
was not rendered, the bug was counted as found.

RQ3 - User Experience: How do testers perceive the
applied gamified mechanics?

The last research question deals with the user’s perception of
the gamified mechanics. We analyzed the participant’s answers
to a survey about their user experience to answer this question.

B. Experimental Setting

The Gamification Layer’s experimental assessment applied
to Scout was conducted following the AB/BA design with a
sample of ten people, who spontaneously offered to participate
in the experiment under receiving a small reward (a meal
coupon) when completing the experiment. Participants were
both young workers in the software development branch (20%
of them) and students from the master’s degree in computer
engineering and computer science, all in the 20 to 30 age
range. Despite their different backgrounds, only 10% of the
sample had not had previous Object-oriented programming ex-
perience. 70% of them had at least three years of programming
experience, mainly with PHP and Javascript.

Participants were divided into two groups: group A had
to test the first SUT (a simple company showcase website?,
from now on referred to as Showcase) using the vanilla
version of the tool, with the gamification plugin disabled.
Then, after receiving a brief introduction regarding the applied
game mechanism, they had to perform the second session on
a second SUT (a popular e-commerce website®, from now

Zhttps://magi-giovanni-funghi-e-tartufi. webnode.it
3www.subito.it

TABLE II: Survey Questions

ID Question (Type)

Age range (Multiple choice)
2 Are you a student or an employee? (Multiple choice)
Have you ever worked as a professional in object-oriented
programming? (Multiple choice)
14 How many years of experience do you have in Object-oriented
programming? (Open)

1.5 How many years of experience do you have in web applica-
tion programming? (Open)
1.6 Do you have previous experience in web application testing?

(Multiple choice)

1.6b Which tools did you use for testing web applications? (Open)

2.1 The tool functioning and mechanics were clear to me (Likert)

2.2 How useful did you perceive the progress bar mechanic in
order to perform more interaction on the page?(Likert)

2.3 How useful did you perceive the leaderboard mechanic in the

sense of competition aroused?(Likert)
24 How useful did you perceive the presence of a final session
score in order to enhance exploration?(Likert)

2.5 How useful did you perceive the star signalling for discover-
ing a new page? (Likert)

2.6 How useful did you perceive the presence of mocked dynamic
bugs in encouraging the search in different pages? (Likert)

2.7 How useful did you perceive the achievements in the paid
attention during the session? (Likert)

2.8 How useful did you perceive the presence of unlockable
avatars in pushing you to reach a higher score? (Likert)

29 Do you believe that the used tool can be easily integrated
into an existing testing environment (working or studying)?
(Likert)

2.10 Overall, which version do you prefer? (Likert)

2.11 Which of the following elements do you believe are essential
in a testing session? (Checkbox)

2.12 What were the principal issues you encountered during the
sessions? (Open)

2.13 Have you got any suggestions, comments or unsolved doubts

on the presented tool? (Open)

on referred to as E-Commerce), with the gamification plugin
enabled. Group B performed the sessions on the SUTs in
reverse order.

We have chosen this setting for the experiment because
we wanted to avoid introducing any application bias; for this
reason, we adopted this A/B scheme. We could not apply the
same scheme to the vanilla vs gamified dimension due to the
narrowness of the sample; this introduced a validity threat that
we will discuss afterward in the corresponding section.

Both sessions had a starting state simulating a previous
usage of the tool to let users compare their score with past
testers, having a high score to beat in a set of pages. To
compare the tool’s effectiveness with and without gamification,
we counted the amount of identified bugs by the testers also in
the vanilla version of the tool, even though the visual artifact
were not rendered. With this setup, we could analyze how
testers react to the gamified aspects added by the plugin and
the influence of the introduced competition with other players.

The test sessions were limited to 30 minutes. At the end
of each session, the generated test cases were automatically
analyzed to extract the metrics of interest to answer the first
two RQs. After the end of the second session, the participants
were asked to answer an online survey, to collect demographic

Tool version ® Gamified @ Vanilla

Coverage
31% 45%
Showcase - ® L]
25% 32%
E-commerce - [J [}
New Widgets
54% 62%
Showcase - [J L]
76% 85%
g E-commerce - [L J
2
L2 New Pages
[=%
o 58% 67%
< Showcase- o L]
60% 65%
E-commerce - o o
Found Bugs
8% 9%
Showcase - «©
1% 8%
E-commerce- @ o
0% 20% 40% 60% 80%
Average Value
Fig. 5: Results of the preliminary evaluation
Q21| 10% 0% 90%
Q2.2 0% 10% 90%
Q2.3 0% 10% 90%
Q2.4 0% 30% 0%
Q25| 10% 20% 0%
Q2.6 0% 50% 50%
Q27 0% 10% 90%
028 0% 10% 0%
029 | 10% 30% 80%
Q210 0% 0% 100%
!
100 50 0 50 100
Percentage
Response Strongly Disagree Disagree Neither Agree Strongly Agree

Fig. 6: Answers to the Likert questions of the survey

information and impressions about the tool used and the
gamified aspects they used. The survey structure is reported
in Table II.

C. Results

Fig. 5 reports the results of the empirical evaluation, di-
vided by application and version of the tool used (vanilla
vs gamified). For each of the four considered metrics, we
considered the average over the set of experimental sessions
that the respondents performed.

Regarding RQI, we observe an increasing trend in the
average coverage when transitioning from the vanilla to the
gamified version of the tool, with an average increase of
7% for the E-Commerce experimental object and 14% for
Showcase. These results likely reflect a positive impact of
the addition of graphical feedback for the coverage during
the test session execution, which effectively encouraged the
testers to perform more operations on the widgets during the
test sessions.

This result is countered by the decrease in the percentage
of new widgets (-9% for the E-Commerce SUT, and -8% for
Showcase SUT) and new pages (-5% for the E-Commerce
SUT, and -9% for Showcase SUT) over all those traversed
during a test session. These results suggest that testers have
focused their attention on exploring already visited pages,
preferring to reach a higher coverage in a lower number of
pages rather than exploring more pages more superficially.

Regarding RQ2, we observe a slight decrease of the percent-
age of bugs found over the total injected for the E-Commerce
SUT, and a steady increase in the metric for the Showcase
SUT. The small experimental sample size can justify such
divergence in the two measures.

Regarding RQ3, we report the average answers to the
questions of the survey in fig. 6. We observe that all the
averages are positive towards the usage of gamified mechanics
in the practice of exploratory GUI testing, compared to the
vanilla version of the tool. Specifically, question 2.10, which
used a Likert score from 1 to 5, where 1 was associated with
the Vanilla version and 5 with the Gamifed version, obtained
a 4.8 average score, with all the preferences to the tool with
gamification plugin.

The lowest average Likert scores were obtained by the
three survey questions: one regarding the integration of the
tool in the existing environment, the other two regarding the
usefulness and intuitiveness of the star signaling new pages,
and of the presence of mocked dynamic bugs (respectively 3.7,
3.9 and 3.8 average scores). These results about gamification
elements are in line with what was observed for RQ1 and RQ2,
for which no benefits in exploration and bug finding effective-
ness were measured. The low result about the integration of
the tool shows how users had difficulty in making a context
switch from their current testing tool to Scout: this means that
additional effort is required in order to broaden the adoption
of Scout, regardless of the version used (vanilla or gamified).

We report some constructive notes regarding the question
about encountered issues. Two participants did not see the star
mark for the newly discovered pages, having seen pages solely
already discovered. Some other issues were about Scout and
not the Gamification Plugin; these were primarily difficulties
in performing some interactions and suggestions to improve
the tool per se. The answers to the final open question of the
survey also hinted at the addition of more explicit mechanics
to visualize and track the discovery of new widgets and pages
in addition to a more appealing profile window, enriched with
more statistics about the performances of the tester in the
various tested project.

V. THREATS TO VALIDITY

Threats to Construct Validity.

In the adopted experimental setting, even if the two con-
sidered SUTs belong to the same domain, the comparability
of the results obtained for them is limited since the set of
pages and widgets present in the web applications, as well as
the nature of the interactions that can occur, is substantially
different.

Additionally, the application of the gamification layer only
in the second test session could impact the results. Using
the same tool in both sessions may introduce a learning
effect in the testers, with the possibility to achieve better
results independently of the presence of gamified mechanics.
We still believe that it is reasonable to study the effect of
gamification when applied to a known environment. In a real-
world scenario, the adoption of the proposed plugin would
be an addition to the classic environment of the tester, and it
is implausible that testers start their activity directly with the
gamified tool.

To better understand the influence of gamified components,
further evaluations shall adopt a full-factorial AB/BA pattern,
alternating in the first session the usage of the gamified tool
in group A to one without gamification for group B [23].

The way the bug injection is currently implemented provides
only a statistic that considers the pages that contain a bug,
counting it each time as a found bug, without relying on
the ability of the tester to recognize different categories of
bugs. We believe that the provided mock-ups still simulate
the presence of real bugs, putting the exploration made by a
tester to the test.

Threats to External Validity.

The further problem is that no support is provided for
the version of Scout used for the execution of JavaScript
code snippets inside the testing environment. For such reason,
the interactions that can occur have been limited to cut off
all the functionalities that would have led to misbehaviors,
like the appearance of pop-ups, hyperlinks forcing the scroll
of a page and the execution of scripts inside the browser.
This assumption narrows the set of testable SUTs with the
tool and therefore limit the generalisability of the results.
Additional limitations to generalisability are caused by the way
the interaction trees are constructed by the tool, which so far
cannot consider the operations on widgets with dynamically
generated IDs and properties.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described the incorporation of gamification
mechanics in the practice of exploratory GUI testing. By
examining a set of four efficiency and effectiveness-related
metrics on ten test sessions and comparing the results obtained
with and without the gamification, we observed positive effects
of the applied concepts on the coverage reached by the testers
on the visited pages. On the contrary, testers tended to visit
fewer pages in their test sequences when using the gamified
version of the tool, hinting at a reduced tendency to explore
in-depth the web application instead of increasing the coverage
for already visited pages.

The user experience of the testers with the gamified version
of the tool was instead unanimously positive. These results
suggest that a more refined calibration of the provided visual
feedback and gaming components provided can provide ben-
eficial results for both coverage and bug-finding capabilities
of exploratory GUI testing, stimulating a deeper exploration

and a more comprehensive selection of test inputs for the web
applications under test.

We noted that the most impactful element was the progress
bar, as each participant considered it an essential mechanic, the
effect being a trend to achieve higher coverage despite deep
exploration of the test domain. According to the questionnaire,
achievements were also an appreciated element, but no appar-
ent effect on the produced test case was seen; only a higher
motivation was stimulated in the sample: many achievements
required multiple testing sessions to be accomplished. The
lower-rated element was the exploration highlight, with some
reported cases clearly stating that they had never seen the star
visually present in the left upper corner.

Lastly, the work described in the present manuscript is
intended as a pilot study for a large-scale empirical experiment
with graduate students. In this future experiment, we also
plan to extend the analysis of the impacts of gamification on
GUI testing by considering the effectiveness in finding actual
mutants and the quality of test cases in terms of similarity to
real usage scenarios of the SUT.

We also foresee incorporating and validating additional
game mechanics, such as challenges and quests, to exploratory
GUI testing. We also plan to refine how the current game
elements are applied, expanding the avatar customization,
starting with buying small items or expressions to add to the
basic avatars to the complete customization of the avatars or
with the release of exclusive avatars available just for a limited
amount of time. The current bug injection implementation in
the future should be enhanced to provide a visual mutation
compliant with the classification of Alegroth et al. [24] Also,
the coverage computation could be adapted to a different
definition, avoiding the count of the many text area and
limiting it to the elements the test can interact with; this
implies the possibility of a redesign of the scoring system.
Whether the future results will be encouraging, the plugin
could be transformed into a stand-alone testing tool or a
browser plugin to verify its effectiveness.

REFERENCES

[11 M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Chapter five - ap-
proaches and tools for automated end-to-end web testing,” ser. Advances
in Computers, A. Memon, Ed. Elsevier, 2016, vol. 101, pp. 193-237.

[2] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in 2005 International Symposium on Empirical Software En-
gineering, 2005., 2005, pp. 10 pp.—.

[3] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: Defining gamification,” in Proceedings of the
15th International Academic MindTrek Conference: Envisioning Future
Media Environments, MindTrek 2011, vol. 11, 09 2011, pp. 9-15.

[4] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a software
testing course with code defenders,” in Proc. of the ACM Technical
Symposium on Computer Science Education (SIGCSE), ser. SIGCSE’19.
ACM, 2019, to appear.

[5] K. Berkling and C. Thomas, “Gamification of a software engineering
course and a detailed analysis of the factors that lead to it’s failure,”
in 2013 International Conference on Interactive Collaborative Learning
(ICL), 2013, pp. 525-530.

[6] M. Trinidad, M. Ruiz, and A. Calderén, “A bibliometric analysis of
gamification research,” IEEE Access, vol. 9, pp. 46 505-46 544, 2021.

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

D. de Paula Porto, G. M. de Jesus, F. C. Ferrari, and S. C. P. F. Fabbri,
“Initiatives and challenges of using gamification in software engineering:
A systematic mapping,” Journal of Systems and Software, vol. 173, p.
110870, 2021.

Y. Chou, Actionable Gamification: Beyond Points, Badges, and
Leaderboards. Createspace Independent Publishing Platform, 2015.
[Online]. Available: https://books.google.it/books?id=jFWQrgEACAAJ
J. M. Rojas and G. Fraser, “Code defenders: A mutation testing game,” in
Proc. of The 11th International Workshop on Mutation Analysis. 1EEE,
2016, pp. 162-167.

B. C. José Miguel Rojas, Thomas White and G. Fraser, “Code Defend-
ers: Crowdsourcing effective tests and subtle mutants with a mutation
testing game,” in Proc. of the International Conference on Software
Engineering (ICSE) 2017. 1EEE, 2017, pp. 677-688.

S. A. Scherr, F. Elberzhager, and K. Holl, “Acceptance testing
of mobile applications: Automated emotion tracking for large user
groups,” in Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems, ser. MOBILESoft "18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 247-251.
[Online]. Available: https://doi.org/10.1145/3197231.3197259

I. E. F. Costa and S. R. B. Oliveira, “A systematic strategy to teaching
of exploratory testing using gamification,” in ENASE, 2019.

I. F. Costa and S. Oliveira, “The use of gamification to support the
teaching-learning of software exploratory testing: an experience report
based on the application of a framework,” in 2020 IEEE Frontiers in
Education Conference (FIE). Los Alamitos, CA, USA: IEEE Computer
Society, oct 2020, pp. 1-9.

F. Cacciotto, T. Fulcini, R. Coppola, and L. Ardito, “A metric framework
for the gamification of web and mobile gui testing,” in 2021 IEEE In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 1EEE, 2021, pp. 126-129.

M. Nass, E. Alégroth, and R. Feldt, “On the industrial applicability
of augmented testing: An empirical study,” in 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 1EEE, 2020, pp. 364-371.

E. D. Mekler, F. Brithlmann, K. Opwis, and A. N. Tuch, “Do
points, levels and leaderboards harm intrinsic motivation? an empirical
analysis of common gamification elements,” in Proceedings of the
First International Conference on Gameful Design, Research, and
Applications, ser. Gamification "13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 66-73. [Online]. Available:
https://doi.org/10.1145/2583008.2583017

Q. Zhu, A. Panichella, and A. Zaidman, “A systematic literature review
of how mutation testing supports quality assurance processes,” Software
Testing Verification and Reliability, vol. To Appear, 05 2018.

A. Mendoza-Gonzilez, H. Luna-Garcia, R. Mendoza-Gonzalez, C. Rusu,
H. Gamboa-Rosales, J. I. Galvan-Tejada, J. G. Arceo-Olague, J. M.
Celaya-Padilla, and R. Solis-Robles, “An approach to make software
testing for users with down syndrome a little more pleasant,” in
Proceedings of the XIX International Conference on Human Computer
Interaction, ser. Interaccion 2018. New York, NY, USA: Association
for Computing Machinery, 2018.

B. Beck, “nose-achievements,’
achievements, 2010-2016.

V. R. Basili, “Goal question metric paradigm,” Encyclopedia of software
engineering, pp. 528-532, 1994.

S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson, and D. Sundmark,
“A framework for comparing efficiency, effectiveness and applicability
of software testing techniques,” in Testing: Academic & Industrial
Conference-Practice And Research Techniques (TAIC PART’06). 1EEE,
2006, pp. 159-170.

E. J. Weyuker, “Can we measure software testing effectiveness?” in
[1993] Proceedings First International Software Metrics Symposium.
IEEE, 1993, pp. 100-107.

L. Madeyski and B. Kitchenham, “Effect sizes and their variance for
ab/ba crossover design studies,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE *18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 420.

E. Alégroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization and
evaluation of component-based testing unified with visual gui testing: an
empirical study,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). 1EEE, 2015, pp. 1-10.

https://github.com/exogen/nose-

