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Abstract 

A recent trend in human-computer interaction is to ease the creation of contents like apps, 
games, etc. by means of intelligent systems allowing also non-skilled users to define the behavior 
of a given system through visual programming and/or simplified meta-languages. However, 
when the number of elements to be controlled increases, the complexity could get comparable 
to that of traditional coding strategies. This paper addresses this issue, by proposing a framework 
for automatically configuring a system’s behavior based on user’s input and context information. 
Framework effectiveness has been tested in a game creation scenario and used for automatically 
mapping user’s commands on virtual characters’ actions based on a natural language description 
of the game scene. The use of a semantics-based mapping reduces the effort and complexity 
linked with the configuration of the interaction logic, decreasing also the number of commands 
for controlling the characters. 

Keywords 
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Processing  
 

Introduction and related work 

Continuous technological developments produce, in general, a diffuse appreciation, though may 
be a matter of concern for unskilled users that could find it difficult to get acquainted with them. 
Hence, it is not surprising that recent research and industry efforts have been extensively 
devoted to increase the simplicity and usage intuitiveness of devices, appliances and applications 
in a human-centred perspective based on human-computer intelligent interaction [1]. The goal is 
to devise interactive systems capable to recognize multiple stimuli deriving from the external 
context and to adapt their behaviour accordingly.  

Application fields are heterogeneous, including the creation of systems supporting everyday 
activities, such as: 

- the creation of intelligent user interfaces, changing the way information is displayed 
based on user’s operation environment  habits, etc.; for instance, in [2], an algorithm is 
designed to predict the next relevant interaction element(s) and adapt the user interface 
accordingly; 

- the development of systems for human-computer interaction considering additional data 
like, for instance, user’s mood; in [3], behavioural cues (like body postures, vocal and 
facial expressions, etc.) are analysed and matched with the surrounding context in order 
to identify user’s communication intentions; 

- the creation of applications able to understand and translate the natural language into 
commands for a smart home; in [4], context information and speech recognition 
techniques are considered together with a thesauri to improve command processing 
performances; 
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- the exploitation of speech recognition and Natural Language Processing (NLP) techniques 
to command a robot; in [5], context information is used to improve the accuracy of 
speech recognition results.  

Other application fields deal with the definition of new ways of human-computer interaction, 
especially devoted to allow users with limited skills to interact with (technological) devices by: 

- devising systems to improve webpages accessibility for blind users; systems like that in [6] 
automatically compare images description with image elements in order to verify the 
correctness of the information provided before communicating it to the user;  

- developing new interaction paradigms, where different sensors acquire data about user’s 
movements and translate them into commands to be sent to a smart wheelchair [7]; 

- creating Natural User Interfaces (NUI) allowing digital and language illiterates to browse 
Internet pages; in [8], keyboard and speech recognition are used to gather user’s inputs, 
which are first translated to English, then pre-processed to identify relevant keywords 
and finally shown in a simplified icon-based interface. 

At the same time, prototypes are being developed for easing the work of professionals, e.g.,: 

- to support tele-assistance for maintenance applications via object recognition, context 
capturing and real-scene augmentation with graphical hints [9]; 

- to explore whether multimodal interaction can be possibly used for communicating with 
a robotic nurse in surgery rooms [10]; gestures and speech recognition techniques and, in 
the future, context data represented by the activity of the whole surgical team, could be 
used to let the system predict the next surgical instrument likely needed by the surgeon. 

In parallel to these developments, a new trend is emerging, where users are changing their role 
from being mere consumers of contents developed by other people, to becoming in first person 
inventors and creators of contents. Such process is supported by the development of intelligent 
systems designed to ease the creation phases by hiding the underlying complexity. These 
systems are becoming rather common in contexts related to: 

- mobile apps development, by allowing users to define apps behaviour by using visual 
programming languages [11]; 

- virtual worlds/games creation [12], by providing users with graphics interfaces and 
drag&drop tools that can be used to define both the features of the virtual world/game 
and the actions to be performed by the virtual characters; 

- robotics [13], by making it possible to use programming by demonstration together with 
speech recognition for performing the training. 

In this paper, we will focus on the field of human-computer intelligent interaction, and especially 
on the definition of system’s behaviour in response to user’s interactions. Although the above 
solutions make this process quite easy to be managed, when the number of elements to be 
controlled increases, existing approaches might be still rather cumbersome even for skilled users. 
Hence, the objective of this work is to overcome this limitation by proposing an adaptive system 
capable to automatically identify the more suitable action a system should perform based on 
commands issued by the user and of the context. 

Even though the proposed system could be potentially applied in different fields, we decided to 
tackle in particular the development of video games and interactive 3D graphics applications. In 
fact, the economic importance of this sector is continuously growing and the advancements 
made by frameworks for games creation like Blender (www.blender.org), Unity (unity3d.com) or 
Project Spark (www.projectspark.com) show the need for systems easing developers’ activities.  

http://www.blender.org/
http://unity3d.com/
http://www.projectspark.com/
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This field has been historically relevant for the research in the area of artificial intelligence, and is 
also particularly interesting from the point of view of human-computer interaction, as ever new 
and complex interaction modalities are often experimented first in this domain with the goal of 
improving user’s experience (more details can be found in the sidebar “Intelligence in games”). 

To provide intelligence to the system we relied on semantics, a technology usually exploited in 
the field of information retrieval to support automatic processing of (possibly naturally-
expressed) resources. Core pillars of semantics are taxonomical and ontological descriptions, 
which define relevant concepts for the domain of interest in a machine-understandable format 
and let computer-based systems exploit relations among them to match resources based on 
their actual meaning. Semantics has been successfully exploited in different application, from 
search engines [14], to recommender systems [15], to plagiarism identification [16], etc. In the 
contexts of interest for this paper, semantics has been mainly used to enable text-based 3D 
scenes generation [17], to define virtual objects’ behaviour and interactions among them [18], to 
adapt game difficulty to players’ ability [19], and to retarget body parts motion in computer 
animations [20]. 

In this work, the exploitation of semantics brings two benefits: first, semantic relations are 
browsed to produce a mediated mapping between commands (that could be gathered by 
recognizing users gestures performed in front of off-the-shelf gaming sensors, or their voice 
recorded through microphones, their facial expressions, etc.) and actions a character could carry 
out in the virtual environment based on their meaning. Second, NLP techniques embedded in the 
system allow users to freely specify, in natural language, the tasks a character could carry out in 
a given scene, thus laying the foundations for a dynamic mapping that could change based on 
the context in which the character is acting into. In this way, not only the complexity associated 
with aforementioned operations could be hidden thus making them easily accessible also to 
unskilled users, but also the number of commands required for controlling a character could be 
decreased, limiting mental effort and improving user experience.   

The proposed system has been embedded into the 3D game engine of the Blender open source 
modeling and animation suite, and has been tested by animating several virtual characters with 
body gestures. In the case of non-anthropomorphic characters, the system would provide the 
additional advantage of letting the user control, for instance, a bird character by making it move 
on the ground or fly with the same walk gesture, depending on the description provided for the 
task and the context. 
 

The proposed system 

The behavior of the proposed system could be split in three different steps:  

1. command recognition: user’s gestures captured by an off-the-shelf gaming sensor are 
processed and recognized; 

2. semantic processing and mapping (with a set of pre-created actions): mapping can be 
based just on names assigned to commands and actions or exploit optional text-based 
descriptions about the actions to be carried out by the character and the context they can 
be executed into; as a result, the action having a meaning similar to a given command 
(and task, if specified) is identified, together with the activation conditions defining the 
particular context (when provided);  

3. character animation: recognized gestures activate the corresponding character’s action in 
synthetic worlds created using the Blender game engine. 
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The architecture of the system is depicted in Figure 1. In the following, a detailed explanation of 
the functioning of the three key modules implementing the above steps will be given. 
 
Command recognition 

In the current implementation, user’s commands are represented by body gestures that are 
gathered by using the Microsoft Kinect, though the system could easily work with other input 
modalities, e.g., based on speech recognition or face tracking. Microsoft Kinect SDK APIs are used 
to collect information about the position of user’s skeleton joints in the 3D space. Command 
recognition is performed by comparing 3D coordinates obtained in real time by the sensor with a 
set of pre-recorded gesture descriptions. Comparison exploits the Dynamic Time Warping (DTW) 
algorithm [21], which is capable to compute the match between coordinate series with possibly 
different timings. During the training phase, the user can use a graphics interface to specify body 
parts affected by the gesture to be recognized. The system will then record only changes 
affecting interested joints. 
 
 

 

Figure 1. Architecture of the proposed system. 
 
Semantic processing and mapping 

In order to identify actions to be activated we designed two approaches, i.e., a direct “command 
- action” mapping and an indirect “command - tasks/context - action” mapping.  
 
Direct “command - action” mapping 

In the simplest implementation, the identification of the mapping between commands issued by 
the user, i.e., gestures, and actions defined for a virtual character is performed by directly 
matching their names. To this aim, a semantics thesaurus is considered, and a similarity score 
between words (lemmas) used is computed by considering the relations among them. 
Specifically, we chose the well-known WordNet thesaurus, though other semantic frameworks 
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could be experimented as well (like, ConceptNet, DBpedia, etc.) even in a combined way, e.g., for 
improving mapping accuracy.  

Since the same word can have more than one meaning (that is, more senses), the user is allowed 
to annotate gestures and actions by linking a selected subset of senses to them. For instance, a 
gesture in which user’s legs rapidly move could be described by lemma “run”, and/or more 
specifically, linked to the meaning “move fast by using one’s feet, with one foot off the ground at 
any given time”, thus ignoring other misleading meanings (e.g., “execute a computer program”, 
“direct a business”, etc.).  

Mapping is computed every time a new gesture/action is inserted into the system. Firstly, for 
each action 𝑎𝑖 ∈ 𝐴 = {𝑎1, … , 𝑎𝐼} a character could perform, the similarity 𝑠𝑖𝑚(𝑎𝑖 , 𝑐𝑗) with each 

command 𝑐𝑗 ∈ 𝐶 = {𝑐1, … , 𝑐𝐽} that can be issued by the user is computed. Similarity is calculated 

using the PATH measure [22], an easy-to-compute metric commonly adopted for WordNet 
implemented in many libraries. In particular, we chose WS4J (code.google.com/p/ws4j), an open 
source library which includes other similarity measures that could be worth to be experimented 
in the future. Given two senses, PATH defines a similarity score in the range (0,1] that is inversely 
proportional to the number of nodes along the shortest path between the two word senses. The 
closest the senses are (path length equal to 1), the more similar they are assumed to be (score 
equal to 1).  

Similarity scores for all command - action pairs are sorted in a descendent order. Then, starting 
from the pair showing the highest similarity, action 𝑎𝑖 is linked to the best matching command 𝑐𝑗. 

In case of ambiguities, a random choice is made. 

At the end of this step, each command is linked to a character action (a threshold can be used to 
exclude poor matches). The mapping is stored in a command - action mapping database, which 
will be queried anytime a command issued by the user is recognized in order to return the most 
suitable action. 

A possible limit of this approach is that each command is linked to one action only. Hence, when 
a character presents a number of actions higher than the number of commands, some actions 
could not be activated. To address this issue and further extend system flexibility, an indirect 
mapping strategy has been explored. 
 
Indirect “command - tasks/context - action” mapping  

Indirect mapping additionally considers a description of tasks that can be performed by the 
virtual character and related context, which is provided in natural language (with context 
conventionally capitalized). This description is processed to identify a set of tasks 𝑇 = {𝑡1, … 𝑡𝐾} 
to be matched with the set of actions 𝐴 defined for the character. When available, context 
information is used to identify the conditions that, combined with a particular command, will 
determine the activation of a given action. 

The dependency parser and the semantic role labeller in [23] (code.google.com/p/mate-tools) 
are used to extract the structure (parse tree) of each sentence in terms of dependencies among 
terms, by identifying both syntactic relations (subject, object, etc.) as well as semantic relations 
(agent, instrument, goal, manner, time, etc.).  

For sentences describing tasks, 

- subjects are found, and predicates not related to the character described are discarded; 
- for the remaining predicates – each assumed to represent a task – words (and compound 

words) used are extracted;  

http://code.google.com/p/ws4j
http://code.google.com/p/mate-tools
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- stop-words (adjectives, prepositions, etc.) as well as non-relevant information like 
temporal data and de-lexical verbs (take, have, make, give, do, etc.) are discarded 

- if the sentence does not contain other verbs, objects of de-lexical verbs are used to 
extract alternative verbs (by considering usage of objects in their definition). 

As a result, for each task 𝑡𝑘 ∈ 𝑇 a set of words 𝑊𝑘 = {𝑤1, … , 𝑤𝑣 , … , 𝑤𝑉} to be matched with 
actions in A is identified. Next step consists in computing 𝑠𝑖𝑚(𝑎𝑖 , 𝑡𝑘) =  ∑ 𝑠𝑖𝑚(𝑎𝑖 , 𝑤𝑣)𝑉

𝑣=1 /𝑉, 
thus identifying to what extent an action 𝑎𝑖 is similar to the set of words describing a task.  

Since the number of words to be possibly annotated with senses (and related burden) could be 
higher than with the direct approach, here we decided to compute similarity by working directly 
with lemmas. However, we reduced the amount of senses to consider by exploiting words’ part-
of-speech in the task description and considering for actions/commands only senses belonging to 
the same category, according to an importance rank defined as verbs-nouns-adjectives-adverbs. 
This means that, as a matter of example, at first, only verb senses linked to a lemma are taken 
into account and, if there are no verbs linked to a lemma, all the noun senses are considered (the 
same for adjectives and adverbs). This choice was based on the assumption that the majority of 
lemmas used for describing commands and actions are verbs. 

Once similarity has been computed, for each task the action with the highest score is selected. In 
case of ambiguities (more actions with the same similarity value), words in predicates are used to 
look for additional verbs, similarity is computed again and ranking is adjusted. Possibly remaining  
ambiguities are managed by simply selecting more than one action.  

Selected actions are then matched with the set of commands by following the same approach 
adopted for direct mapping and results are saved in the command - action mapping database. 

When context sentences are found in the description, 

- subjects of each clause are recognized and matched with characters’ names by using 
relations in the thesaurus, thus allowing for different words to be used to refer to the 
same character; 

- for each subject, the associated verbs are found and related sub-trees are selected; 
- words defining objects and complements in each sub-tree are identified (discarding 

punctuation, determiners, conjunctions and possessive pronouns); 
 
Subject, verb and object/complement words extracted are used to define activation conditions 
for the context, which are expressed as (possibly incomplete) triples where personal pronouns 
are replaced with the actor they refer to. Triples are recorded in the context-based activation 
rules database, and linked to the corresponding command - action mapping. 
 
Character animation 

The last phase of virtual character animation has been experimented with Blender, where a 
library of actions for the character to be animated is assumed to be available already (e.g., 
manually developed by a graphics artist or obtained by using either a consumer or professional-
level motion capture tool). In an offline configuration stage, a Python script is used to create the 
interaction logic bricks (variables, sensors, controllers and actuators) in the Blender Game Logic 
editor and link them to a TCP/IP socket connected to the semantic processing and mapping 
module. At runtime, when a command is recognized, it is sent to the character animation 
module, where it is processed based on the actual state of the virtual environment (context) and 
the action encoded in the mapping is activated (thus animating the character, accordingly). 
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Practical examples 

The functioning of the system could be better understood by considering the case studies 
illustrated in the following, where an elephant-like virtual character has been animated using the 
two mapping approaches.  
 
Example of command - action mapping 

According to this approach, for each command and action the user could restrict the meaning of 
names used by specifying one or more senses. Assuming that the set of commands is 𝐶 = {walk, 
bow, drink}, for command walk the user could decide to select sense #v#1 (use one’s feet to 
advance; advance by steps). For bow, two senses could be chosen, namely #v#3 (bend the head 
or the upper part of the body in a gesture of respect and greeting) and #v#4 (bend one’s back 
forward from the waist on down). The user could also decide to leave senses for command drink 
unspecified. In this case, all the senses available in WordNet for the lemma would be used. Now, 
assuming that set A contains two actions for the elephant, like amble and eat, the user could 
assign sense #v#1 (walk leisurely) to the former and leave senses unspecified for the latter. 

To determine the mapping, the direct mapping algorithm would compute the similarity between 
command and action senses using PATH (when more senses or just the lemma are provided, it 
would consider the highest value for each pair). Thus, for instance, for action amble, the highest 
similarity is obtained between amble#v#1 and command sense walk#v#1 (path length equal to 2, 
similarity 0.50). Thus, action amble would be mapped to command walk. Similarly, action eat 
would be mapped to command drink (path length equal to 3, similarity 0.34). Similarity 
computation could be experimented at http://ws4jdemo.appspot.com/. 
 
Example of command - task/context - action mapping 

Here, three different scenarios are considered (with the elephant in a circus, in a cage and in the 
savannah), together with a set of nine actions to be performed by the character, namely amble, 
curtsy, eat, headstand, huddle, moonwalk, salute, ingest, walk_around. A richer set of commands 
is used, with 𝐶 = {walk, bow, run, jump, kick, punch, greet, drink, listen, look}. The descriptions of 
the tasks the character could perform and related contexts are as follows: 

• AN ELEPHANT IS PERFORMING IN A CIRCUS SHOW. It first makes a sequence of dance 
steps sliding backward. Then it exhibits itself in an acrobatic feat balancing on its head. 
Finally it toasts to the health of the audience by raising a glass of wine. 

• AN ELEPHANT IS IN A CAGE. It greets the visitors by bowing down on its knees as a sign of 
obeisance. It nibbles some nuts and stretches its legs by circumambulating without goals 
inside the cage. 

• AN ELEPHANT IS FREE IN THE SAVANNAH. It moseys across the surroundings. It sips some 
water from a river. Then, it crouches to relax. 

  
Processing, e.g., for the first scenario, starts with the identification of the elephant as the subject 
of the context sentence. Verb is selected (is performing) and complement extracted (in circus 
show). Triple elephant@is_performing@in_circus_show is saved as the context-based activation 
rule for the considered scenario. Then, the subject in task sentences is identified (it, i.e., the 
elephant). Semantic roles, together with dependency parsing, are used to identify predicates, 
i.e., tasks. Verbs, together with words (and compound words) they are linked to are added to 
𝑊𝑘. Stop-words {a, of}, temporal data {first} and de-lexical verbs {make} are removed. 
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As a result, 𝑊𝑘  = {sequence, dance, step, dance_step, slide, backward}. For each word, 
𝑠𝑖𝑚(𝑎𝑖 , 𝑤𝑣) is computed. For amble, curtsy, eat, huddle, salute, ingest and walk_around all the 
verb senses are considered. For headstand and moonwalk, which in WordNet are nouns, only 
noun senses are analyzed. For all the commands, the whole set of verb senses is used (since all 
the considered commands have at least a verb sense).  

Results are reported in Table 1. Rows contain the actions, whereas columns show the words 𝑤𝑣. 
Part-of-speech is reported in brackets, whereas the last column gives 𝑠𝑖𝑚(𝑎𝑖 , 𝑡1). For example, 
for the moonwalk action, 𝑠𝑖𝑚(𝑚𝑜𝑜𝑛𝑤𝑎𝑙𝑘, 𝑡1) = (0.1 + 0.09 + 0.5 + 0.5)/6 ≅ 0.2.  After 
having computed 𝑠𝑖𝑚(𝑎𝑖 , 𝑡1) for each action 𝑎𝑖, moonwalk is selected since no other actions 
showed a similarity higher than 0.2.  
Finally, similarity among actions and commands is calculated. Hence, by considering again the 
first scenario, for which actions moonwalk, headstand and salute have been identified, selected 
commands that could be used to activate them are walk, bow and drink, with a similarity of 0.5, 
0.125 and 1.0 respectively. 
 

 
 

                 Wk 

Actions 
sequence 

(n) 
dance  

(n) 
step  
(n) 

dance_step 
(n) 

slide  
(v) 

backward 
(r) 

Sim  
(𝑎𝑖 , 𝑡1) 

moonwalk (n) 0.09 0.1 0.5 0.5 0.0 0.0 0.20 

headstand (n) 0.09 0.1 0.1 0.1 0.0 0.0 0.06 

ingest (v) 0.0 0.0 0.0 0.0 0.25 0.0 0.04 

walk_around (v) 0.0 0.0 0.0 0.0 0.25 0.0 0.04 

amble (v) 0.0 0.0 0.0 0.0 0.25 0.0 0.04 

eat (v) 0.0 0.0 0.0 0.0 0.2 0.0 0.03 

salute (v) 0.0 0.0 0.0 0.0 0.16 0.0 0.02 

curtsy (v) 0.0 0.0 0.0 0.0 0.16 0.0 0.02 

huddle (v) 0.0 0.0 0.0 0.0 0.12 0.0 0.02 

Table 1. Similarity between actions (rows) and words describing the first task 𝑡1 (columns). 
 
By looking at the results of the overall processing that are reported in Figure 2, it is possible to 
make the following considerations: 

- the automatic mapping is able to return results that are reasonable for the given context; 
- by using an indirect mapping, some commands could be re-used in different contexts, 

with different meanings, thus limiting the commands to be memorized by the user; 
- in some cases, two ore more commands (e.g., bow and greet) could activate the same 

action (e.g., curtsy). This could occur when the commands show a comparable similarity 
with an action, and reflects what happens in the real world. 

 

Experimental results 

In order to validate the effectiveness of the proposed technology, we devised an experimental 
setup centered on the creation of the interaction logic of a game in Blender. We focused on a 
simple storyboard, where the elephant character introduced in the above examples needs to be 
controlled in four possible game scenes. In the first three scenes, the elephant is in a cage: at 
first, it is moving in circle trying to attract visitors’ attention; when a boy enters the scene and 
gets close to the cage, the elephant makes a curtsy to possibly obtain a kind of reward; the boy 
offers a peanut to the elephant, which takes it with the trunk and eat it. In the fourth scene, the 
elephant is in the savannah, and crouches down. 



 9 

el
ep

h
a

n
t@

is
_p

er
fo

rm
in

g
@

in
_c

ir
cu

s_
sh

o
w

 It first makes a sequence of 
dance steps sliding 
backward 
 

action: moonwalk 
command: walk 

then it exhibits itself in an 
acrobatic feat balancing 
on its head  
 

action: headstand 
command: bow 

and finally it toasts to the 
health of the audience by 
raising a glass of wine 
 

action: salute 
command: drink 

   
    

ep
h

a
n

t@
is

@
in

_c
a

g
e 

It greets the visitors by 
bowing down on its knees 
as a sign of obeisance 
 

action: curtsy 
command: bow/greet 

it nibbles some nuts 
 
 
 

action: eat 
command: drink 

it stretches its legs by 
circumambulating without 
goals inside the cage 
 

action: walk_around 
command: walk 

   
    

el
ep

h
a

n
t@

is
@

fr
ee

_
in

_s
a

va
nn

a
h

 It moseys across the 
surroundings 
 

action: amble 
command: walk 
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action: huddle 
command: bow 

   

Figure 2. Animation of the virtual character in the three contexts: circus (first row), cage (second 
row), savannah (third row). Context-based activation rules are reported on the left (vertical text). 
 

Since the goal of the proposed system is to hide the complexity associated with the creation of 
the interaction logic by exploiting natural language descriptions of the scene and character’s 
behavior to automatically choose the action to activate in a given context and the command to 
be issued by the player for activating it, we first managed to collect text data to process by 
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means an online questionnaire. Questionnaire was administered to 20 students enrolled in 
various degrees at our university with no experience in game design with Blender or similar tools. 

Students were asked to go through four Web pages each showing a video with the elephant 
exhibiting one of the above behaviors. For each page, students had to provide a description of 
the context and, separately, of the main task(s) undertaken by the main character. Time to 
provide the descriptions was monitored for individual users and pages. The questionnaire and 
full catalogue of descriptions collected has been included as supplemental material and is also 
available at http://intelligenthci.altervista.org.  

Information extracted by the semantic engine for the descriptions provided by each of the 20 
students was used to generate the corresponding logic bricks in Blender. An example reporting 
the logic created for the descriptions by student S#8 (see catalogue) is illustrated in Figure 3. 
Dashed boxes identify bricks for the third scene, which was described as THE ELEPHANT IS INSIDE 
ITS CAGE. A BABY HANDS A PEANUT TO IT. The elephant nibbles the peanut.  
 

 
 

Figure 3. Logic bricks in Blender Game Logic editor created by the semantic system for a        
given description. 

The system identified two variables, elephant@is@inside_cage and man@is_moving@ towards_ 
elephant, and created as many properties for the Game Engine object named Elephant. It then 
mapped action description onto Elephant’s action named eat, and linked it to activation 
command drink. Finally, it created two property sensor bricks (one per variable) plus one 
message sensor brick (for the command). Sensors bricks are connected to an AND controller. 
Controller’s output feeds an action actuator brick that actually plays the correct action when 
conditions are met. 

We started to quantitatively assess the performance of the semantic-based algorithm by 
measuring the accuracy of indirect mapping. Specifically, regarding context descriptions, we 
evaluated system’s ability to generate the set of activation conditions (i.e., logic variables) to be 

Sensors 

Controllers 

Actuators 

Properties 
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used as sensor bricks in the Blender’s Game Logic editor. In 95% of the cases, the system 
extracted the expected number of variables, each with the right meaning. In 5% of the cases, 
number of variables was either overestimated or underestimated (mainly because of parsing 
errors), with possible mistakes in the structure of the triples. 

Concerning character’s behavior, we evaluated system success in automatically selecting, for the 
considered context, the expected interaction command and the corresponding action (linked to 
its actuator logic brick). Tabulated results can be accessed from the above link. For all the 
sentences, when the action was properly identified, the system assigned the correct command. 
In 18% of the cases, the wrong action was extracted, whereas In 6% of the cases the system was 
not able to distinguish among two or more actions (and proposed all of them, asking the user to 
make a decision about the final assignment).  

Results obtained in the considered scenario confirmed that semantics could be regarded as an 
interesting technique for significantly ease tasks related to the coding of the interaction logic, 
making this pipeline step flexible enough to be approached also by unskilled users.  

We then moved to consider how the proposed methodology compares to traditional techniques 
adopted by game designers. To this aim, we computed the average time required to the students 
for producing the descriptions of all the four scenes (student looking at the video and writing 
down the text), approximately equal to 110s (standard deviation σ = 34s). Semantic processing 
and logic generation required less than 6s per student, on average.  

System performance was evaluated by comparing the time needed to obtain the automatically-
generated logic with baseline measurements collected for three skilled users using the native 
coding strategy based on the visual programming interface of the Game Logic editor. The 
analysis also considered the time required by the users (professors at our university teaching 
game design in Blender) to fix the mapping errors in the student-generated logics. Average time 
required by the reference users to create the logic for the four scenes was 338s (standard 
deviation 63s). By considering the time spent to fix the errors (average 75s, σ = 64s), the average 
time needed to automatically produce correct logics was 172s (σ = 61s).  

Results above quantified the efficiency gain that could be obtained by means of the designed 
system, which proved to be capable to produce the interaction logic of a game starting from 
text-based descriptions in a time that is, on average, about half the time required by skilled users 
operating in a traditional way.    

 

Conclusions 

In this work an intelligent human-computer interaction system easing the definition of the 
behavior of a virtual character in synthetic environments in response to user’s interactions has 
been presented. Users exploiting the proposed system for the creation of games and animations 
in general could be relieved from the burden of manually processing the library of actions 
prepared for the character and (learn how to) manually mapping them with possible commands. 
Moreover, the natural language-based description of tasks to be accomplished by the character 
in different contexts of the virtual environment could let the system possibly work with a limited 
set of commands, thus reducing the number of interactions to be learned by the user. 

It is worth observing that, although the effectiveness of the devised system has been assessed at 
present only in 3D animation scenarios, it could be possibly exploited in other contexts of 
intelligent human-computer interaction like those mentioned in the Introduction. 
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Future works could be devoted to make the interaction logic even more intelligent, by 
automatically producing the meta-information to be assigned to commands and actions, and by 
designing new strategies mixing semantic processing of text-based descriptions with information 
concerning, among others, command robustness and intuitiveness, users’ preferences, etc. 
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APPENDIX (supplemental material) 

Sidebar “Intelligence in games” 

This section and accompanying references could be possibly moved in a sidebar or appendix.  

People usually think at intelligence in games as the logic behind the game, i.e., to the so-called 
artificial intelligence. However, intelligence could be involved also in different stages of games 
lifecycle [1], from games generation, to players’ behavior learning, etc. 
Before analyzing the different aspects of intelligence in games, it could be interesting to take a 
step backward and to examine the game creation process with frameworks like Blender, Unity 
and Project Spark. Here, game creators initially populate the virtual environment with 
elements/objects by dragging and dropping them in the scene. In some cases (Project Spark), 
elements appearance and size could be easily modified with brushes (similar to the ones used 
in paint programs). Once the scene has been populated, the remaining core step consists in 
embedding intelligence in the game, by describing the elements (and characters) behavior in 
terms of reaction to user’s commands, or to interactions with other elements of the game. This 
results in the specification that if something occurs, the element/character should react in a 
given manner, and could be done by means of graphical interfaces and scripts (Blender, Unity), 
or by using simplified graphics-based meta-languages and ready-made behaviors (Project 
Spark).  
Even though such frameworks proved to be capable of speeding up games creation activities, it 
is evident that the above steps could still require a considerable amount of time, especially 
when the number of scenes and elements increases. Hence, a lot of efforts have been devoted 
to use artificial intelligence for automatically generating 3D scenes and stories [2], e.g., by 
exploiting natural language processing techniques. More complex approaches involve also 
automatic object positioning, based on spatial constraints specified for each object [3, 4], or by 
learning the constraints from similar pre-developed example scenes [5]. Objects’ meta-
information could describe not only spatial information such as dimension, orientation and 
space, but also the relations with other objects. Other approaches exploit real data, such as 
Linked Open Data, to automatically create the scenes [6].  
Other research activities aim at investigating whether intelligence could be used to 
automatically define also the behavior of objects and characters. This is the case of [7], in 
which user’s interactions are processed in order to trigger a chain of cause-effect-based events 
affecting objects in the scene. In [8] and [9], agents are used to automatically define the 
actions of crowds and characters. The approach in [10] takes a step forward and enriches non-
player characters with emotions, computed based on their goals and on what happens in the 
scene. 
Intelligence could be also used to adapt the game to the player, in order to make it less 
predictable and more challenging. For instance, the work of [11] models players (in terms of 
skills, preferences, etc.) starting from their actions in the game and change game’s scenes 
accordingly. 
Finally, intelligence could be exploited also in the definition of new strategies for player-game 
interaction. For instance, [12] proposes a sketching interface allowing the player to interact 
with the game by drawing shapes on a piece of paper, whereas [13] uses gaming sensors in an 
intelligent way, letting the user make complex character animations by identifying the object 
the character is interacting with, and integrating physical constraints. 
The present works contributes to the above areas by focusing on another aspect of games 
creation, that involves automatic modeling of character’s behaviors based on commands 
issued by the user, as done in [13]. Similarly to [13], the proposed system exploits a gaming 
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sensor to acquire user’s commands but, instead of using rules defined by the game creator to 
chose the right action to be played, it relies on semantics to automatically compute the 
similarity between user’s commands and character’s actions, thus making it easier to insert 
new actions/commands and reducing the efforts associated with the rules definition phase. 
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