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We establish bounds on quantum correlations in many-body systems. They reveal what sort of
information about a quantum system can be simultaneously recorded in different parts of its environment.
Specifically, independent agents who monitor environment fragments can eavesdrop only on amplified and
redundantly disseminated—hence, effectively classical—information about the decoherence-resistant
pointer observable. We also show that the emergence of classical objectivity is signaled by a distinctive
scaling of the conditional mutual information, bypassing hard numerical optimizations. Our results validate
the core idea of quantum Darwinism: objective classical reality does not need to be postulated and is not
accidental, but rather a compelling emergent feature of quantum theory that otherwise—in the absence of
decoherence and amplification—leads to “quantum weirdness.” In particular, a lack of consensus between
agents that access environment fragments is bounded by the information deficit, a measure of the
incompleteness of the information about the system.

DOI: 10.1103/PhysRevLett.129.010401

Introduction.—Is classical reality, reflected in the con-
sensus between independent agents about the properties of
physical systems [1], a consequence of quantum laws?
Quantum weirdness makes it difficult to reconcile human
perception with our most successful scientific theory. In
particular, quantum systems display stronger correlations
than those admitted by classical physics [2–4]. They enable
the advantages of quantum information processing [5–8].
Despite their importance in quantum science, our under-
standing of genuinely quantum correlations is limited: their
identification and quantification in large scale quantum
systems—the focus of quantum-classical transition—is an
often intractable problem [9–15].
Here, we prove universal, quantitative bounds on quan-

tum correlations in many-body systems: they are bounded
by the shared classical information among their parts. As an
important consequence, objectivity of measurement results
arises only when quantum correlations between an infor-
mation source and a network of recipients are selectively
suppressed. That is, consensus responsible for objective
classical reality is an emergent attribute of quantum
mechanics.
First, we consider a quantum universe consisting of a

system S and an environment E. We prove an upper bound
on quantum discord, which quantifies genuinely quantum
correlations [16]. The simultaneous creation of quantum
discord between S and different environment fragments F
and E=F is restricted. The upper limit is determined by how

much classical information about S is concurrently avail-
able to observers monitoring the two distinct fragments.
Then, we extend our study to the multipartite case.

Quantum correlations are generally not monogamous, and
almost ubiquitous in Hilbert space [17–21]. Nevertheless,
we prove an upper bound on the average bipartite quantum
discord, and, remarkably, also on the entanglement of
formation that can exist between S and any of N sub-
systems εi of the environment. Simultaneous classical
correlations between S and each εi imply that quantum
discord (almost) vanishes throughout the universe. Hence,
quantum information about S is inaccessible to indepen-
dent observers that monitor different εi.
This result supports quantum Darwinism, pinpointing

the origin of classical reality within quantum theory [22].
Its core insight is that independent observers (such as
humans) find out about S by eavesdropping on εis—e.g.,
scattered or emitted photons in our everyday E [23–29].
Only information that has been replicated throughout the
environment [30,31], resulting in multiple records, is
widely accessible—only pointer states that survive
decoherence intact and can be shared by many observers
become the subject of consensus, acquiring a classically
objective nature [1,32].
The newfound bounds on quantum correlations confirm

that agreement among independent observers suppresses
quantumness. Only large fragments (i.e., F ≥ E=F ) retain
quantum information about S. Moreover, we show that
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when disjoint environment fragments establish sufficient
correlations with S, they store predominantly information
about a unique observable. We compute bounds on such
classical correlations between environment fragments,
obtaining an information-theoretic characterization of
objective classical reality. These bounds generalize pre-
vious findings [33–40], highlighting that redundancy of
information available to independent observers implies
uniqueness of objective reality.
Finally, we introduce an analytical witness of objectivity.

Testing quantum Darwinism in complex systems is hard,
because quantifying correlations requires daunting numeri-
cal optimizations [11,41]. We overcome this limitation and
show that redundancy of classical correlations (in its
strongest form) is signaled by a characteristic scaling of
the conditional mutual information, an analytical function
of quantum states [42].
Trade-off relations for quantum correlations.—We con-

sider a quantum system S of dimension dS and an N-partite
environment E ≔∪N

i¼1 εi of dimension dE ¼ ΠN
i¼1dεi . We

call F k ≔∪#i¼k εi a fragment of k < N elements, and
E=k ≔ E=F k its complement. The information shared by
S and F k is quantified by the mutual information
IðS∶F kÞ ≔ HðSÞ þHðF kÞ −HðSF kÞ, where HðXÞ ≔
−trfρX log2 ρXg ≤ log2 dX is the von Neumann entropy
of the state ρX of X . The mutual information consists of
classical and quantum components [16,43]. The classical
part is the (maximal) mutual information that is left after a
local measurement Mk ≔ fMα;

P
α M

†
αMα ¼ IdFk

g on

F k. Given the postmeasurement state

ρSF k;Mk
¼

X
α

ðIdS ⊗ MαÞρSF k
ðIdS ⊗ M†

αÞ; ð1Þ

classical correlations are quantified as the maximal infor-
mation about S an observer can extract by measurements
onF k: JðS∶F̌ kÞ ≔ maxMk

IðS∶F k;Mk
Þ [43,44]. This quan-

tity is upper bounded by HðSÞ. Quantum discord, the most
general kind of quantum correlation, is then defined as the
difference between premeasurement and postmeasurement
mutual information,

DðS∶F̌ kÞ ≔ IðS∶F kÞ − JðS∶F̌ kÞ: ð2Þ

Note that classical and quantum correlations are generally
not invariant under subsystem swapping: JðS∶F̌ kÞ ≠
JðŠ∶F kÞ, and DðS∶F̌ kÞ ≠ DðŠ∶F kÞ.
Quantum discord DðS∶F̌ kÞ is the minimum quantum

information about S that F k loses when a local measure-
ment Mk is performed [3,45,46]. Quantum discord can
exist even in nonentangled states [16,21], as it can be
created by local operations and classical communication
(LOCCs) [47]. Specifically, DðS∶F̌ kÞ ¼ 0 if and only if
there exists a measurement M̃k such that ρSF k

¼ ρSF k;M̃k
.

Quantum discord signals the presence of quantum coher-
ence [48]. It can be converted into entanglement [49,50],
and it is a resource for quantum metrology [51]. For pure
states, it is equal to the entanglement entropy,
DðS∶F̌ kÞ ¼ DðŠ∶F kÞ ¼ HðSÞ, while in general its maxi-
mal value is HðF kÞ [9].
In the following, we derive constraints on quantum

correlations between S and any fragment F . First, we
evaluate upper bounds to DðS∶F̌ kÞ, that is, how much
quantum information about S is accessible to an observer
who knows the state of F k (Fig. 1). Koashi and Winter
discovered a trade-off between the entanglement of for-
mation EfðS∶F kÞ in SF k [52], and classical correlations in
SE=k [17,53],

EfðS∶F kÞ ≤ HðSÞ − JðS∶Ě=kÞ: ð3Þ

Without loss of generality, we assume now that SE is in a
pure state jψiSE . Then, the inequality in Eq. (3) is saturated.
This surprising relation between classical and quantum
features does not hold if we replace entanglement with
quantum discord [17,54].
Yet, we can establish an exact bound on quantum discord

between S and environment fragments. We quantify the
(lack of) agreement between the classical information about
S that is accessible via F k and E=k, i.e., classical objectivity
[37,55], by introducing the information deficit

δ ≔
JðS∶ĚÞ −min fJðS∶F̌ kÞ; JðS∶Ě=kÞg

HðSÞ ∈ ½0; 1�: ð4Þ

The information deficit disappears if and only if classical
information about S is simultaneously stored into F k and
E=k, and it is maximal if and only if there is maximal
discrepancy [56]. The information deficit δ was employed
in previous Quantum Darwinism literature as a free

FIG. 1. We demonstrate quantitative bounds on quantum
correlations between a system S and fragments F k; E=k of an
N-partite environment E. Equation (5) is an upper limit to
quantum discord (wavy lines) in terms of the consensus about
classical information (double lines) that is broadcast from S toF k
and E=k.
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parameter. The definition in Eq. (4) is key in the proof that
classical objectivity restricts the proliferation of quantum
correlations.
Result 1. For any state of the universe jψiSE ,

DðS∶F̌ kÞ þDðS∶Ě=kÞ ≤ 2δHðSÞ: ð5Þ

Proof.—Since JðS∶ĚÞ ¼ HðSÞ for pure states jψiSE ,
one has

IðS∶F kÞþIðS∶E=kÞ¼2HðSÞ
⇒DðS∶F̌ kÞþDðS∶Ě=kÞ¼2HðSÞ−JðS∶F̌ kÞ−JðS∶Ě=kÞ

≤2HðSÞþ2δHðSÞ−2JðS∶ĚÞ
≤2δHðSÞ:

Hence, consensus between two observers accessing
F k; E=k, respectively, about classical information on S
prevents proliferation of quantum correlations. Note that
for δ → 0, neither fragment can share quantum discord
with S.
We extend the result, by proving a bound on this

concurrent sharing of quantum information about S with
N environment constituents εi, i.e., to N > 2 observers
(Fig. 2). As a special case of Eq. (4), we quantify the (lack
of) consensus of two observers accessing εi and E=i by

δi ≔
JðS∶ĚÞ −min fJðS∶ε̌iÞ; JðS∶Ě=iÞg

HðSÞ ∈ ½0; 1�: ð6Þ

It is also useful to define the average information deficit
δ ≔

P
N
i¼1 δi=N. For N ¼ 2, it is the quantity in Eq. (4)

[57]. Then, there exists a universal bound on quantum
discord in many-body systems [56].

Result 2. For any state of the universe jψiSE ,

D̄ðS∶ε̌iÞ ≔
1

N

XN
i¼1

DðS∶ε̌iÞ;

D̄ðS∶ε̌iÞ ≤ δHðSÞ: ð7Þ

The tightness of this bound only depends on the δ, i.e.,
(lack of) objectivity. Also, since EfðS∶εiÞ ¼ HðSÞ−
JðS∶Ě=iÞ, and δi ¼ 1 −min fJðS∶ε̌iÞ; JðS∶Ě=iÞg=HðSÞ,
the entanglement of formation is upper bounded:
EfðS∶εiÞ ≤ δiHðSÞ. Averaging over all subsystems εi,
we get the following.
Remark. For any jψiSE,

ĒfðS∶εiÞ ≔
1

N

XN
i¼1

EfðS∶εiÞ ≤ δHðSÞ: ð8Þ

That is, quantum correlations are tightly constrained
whenever multiple observers reach agreement concerning
classical information about S. Note that the inequality
J̄ðS∶ε̌iÞ ≔ ð1=NÞPN

i¼1 JðS∶ε̌iÞ ≤ HðSÞ can be saturated:
independent observers can achieve arbitrarily small δ,
making quantum correlations (almost) vanish. We support
this statement with an example. (See the Supplemental
Material [56] for details.) A qubit S and an N-qubit
environment E are in the initial state jþiSj0i⊗N

E , with

jþi≡ ffiffiffiffiffiffiffiffi
1=2

p ðj0i þ j1iÞ. We quantify classical and quan-
tum correlations that are created by a unitary
USEðaÞ≡ ΠN

i¼1USεiðaÞ, where each USεiðaÞ implements

the controlled gate I2 ⊕
�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
−a

�
; a ∈ ½0; 1�,

on Sεi. Their average values, in this case, are the values
calculated for any Sεi bipartition. This dynamical “c-
maybe” model [58] is significant: it can represent the
correlation pattern of a system S interacting with a photonic
environment. The universe is therefore in a singly branch-
ing state [23,59]. The plots in Fig. 3 highlight how the
newfound bound to quantum discord is much tighter than
the entropic limit HðεiÞ in the most interesting regime,
when system and environment are highly correlated
[a → 0; the universe is in a generalized Greenberger–
Horne–Zeilinger (GHZ) state].
While limits to quantum information sharing are mani-

fest in GHZ states, the generality of Eqs. (7) and (8) is
surprising. Quantum discord and the entanglement of
formation are generally nonmonogamous: DðS∶ĚÞ≱P

i DðS∶ε̌iÞ [17–20,54,61,62]. Also, there are infinitely
many kinds of entanglement structures, i.e., classes of
states that cannot be transformed into each other by
(stochastic) LOCCs [63]. Our bounds therefore capture a
universal feature of many-body quantum systems which
cannot be inferred from the structure of the GHZ class, nor
by monogamy relations.

FIG. 2. Quantum Darwinism recognizes that information about
a system S is obtained from disjoint environment fragments
consisting of distinct subsystems εi’s of E by independent
observers. Unconstrained proliferation of classical correlations
means that only the information about a pointer observable is
accessible. Equation (7) implies that, whenever classical objec-
tivity manifests, bipartite quantum correlations are suppressed.
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We stress that redundancy of amplified—hence, classical
—information is sufficient to suppress quantum correla-
tions. For pure states jψiSE ,

J̄ðS∶ε̌iÞ ≥ ð1 − δÞHðSÞ ⇒ D̄ðS∶ε̌iÞ ≤ δHðSÞ: ð9Þ

Moreover, if at least ð1 − δÞHðSÞ bits of classical correla-
tions are shared between S and Rδ subsystems εi, then [56]

D̄ðS∶F̌ kÞ ≤ ½1 − Rδð1 − δÞ=N�HðSÞ; k ≤ N=2; ð10Þ

where the average is computed over allF k’s.When classical
information is redundantly broadcast (Rδ ≈ N; δ ≈ 0), only
large fragments (k > N=2) display any traces of quantum
correlations with S.
Recentworksdiscoveredboundsonentanglement sharing

for genericSE dynamics [33–35]. Specifically, a state ρSεi ¼
trE=ifUSEjψiSEg is always close to a separable state, dis-
playing zero discord in the ideal limitN → ∞.Here,wehave
obtained exact, physically meaningful bounds on quantum
correlations assuming a realistic, finite environment. In
particular,whenobservers accessing different εi’s agreewith
each other (small δ), quantum information is inaccessible,
while classical information can spread into the environment.
This is how consensus that defines classical reality emerges
fromaquantumsubstrate, aswediscuss in the following [36].
Significance of the bounds within quantum

Darwinism.—A physical state is classically objective if
independent observers agree about its properties. Quantum
Darwinism describes the origin of classical objectivity
within quantum theory [22,36]. Different observers access
information about a system S by eavesdropping on differ-
ent parts of the environment (Fig. 2). Because of
decoherence, only information about “pointer observables”
fM̂ ≔ jα̂ihα̂jg is communicated through the environment

[64], e.g., by photons that interact with a central system and
then carry information about it. Such scattered light [59,65]
is then intercepted by rod cells or artificial photoreceptors.
Crucially, only classical information survives decoherence and
becomes available to observers [22,36]. The statement is
formalized by a characteristic scaling of classical correlations:

JðŠ∶F kÞ ≥ ð1 − δÞHðSÞ; ∀ F k; k ≥ kδ; ð11Þ
in which kδ ≪ N is determined by the information deficit δ
[22,24–26,36]. That is, any fragmentF k carries the same large
amount of classical information about S. However, we have
recently established that quantum Darwinism is better formal-
ized by the scaling of classical correlations with respect to
measurements on F k [58],

JðS∶F̌ kÞ ≥ ð1 − δÞHðSÞ; ∀ F k; k ≥ kδ: ð12Þ
Westress thatJðS∶F̌ kÞ is themaximal informationaboutS one
extracts by measuring on F k [66].
Our result [Eq. (7)] corroborates quantum Darwinism’s

central tenet. Recognizing the information deficit δ as a
measure of (lack of) classical objectivity elucidates how
redundancy of classical information suppresses quantum
correlations. In particular, for pure states, quantum
Darwinism [Eq. (12)] implies [56]

DðS∶F̌ kÞ ≤ 2δHðSÞ; ∀ F k; k ∈ ½kδ; N − kδ�; ð13Þ
certifying that quantum information is not concurrently
accessible to multiple independent observers.
Further, we prove that Eq. (12), and therefore our bound

on quantum discord, signify uniqueness of the pointer
observable [56].
Result 3. For any disjoint fragments F k, F l and any

state USE=kþl
VSF l

WSF k
jψiSjϕiF k

jφiF l
jχiE=kþl

, k; l ≥ kδ, if
Eq. (12) holds, then

FIG. 3. By employing known methods [58,60], for different values of N, we compute the following quantities in the state
USEðaÞjþiSj0i⊗N

E ([56]): quantum discord, D̄ðS∶ε̌iÞ (blue line); known upper bound HðεiÞ, (orange line); minimum among the upper
bound from Eq. (7) and HðεiÞ (dashed blue line); classical correlations J̄ðS∶ε̌iÞ (red line); HðSÞ (black line). For N ¼ 2, the bound in
Eq. (7) is even saturated, D̄ðS∶ε̌iÞ ¼ δHðSÞ. Overall, it is much more informative than the entropic limit for a → 0, while classical
correlations attain HðSÞ.
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ð1 − 2δÞHðSÞ ≤ IðF k;M̂k
∶F l;M̂l

Þ;

IðF k;M̂k
∶F l;M̂l

Þ ≤
� ð1þ δÞHðSÞ; if ΔUSE=kþl

VSF l
HðSÞ ≥ 0;

log2dS þ δHðSÞ; otherwise;
ð14Þ

where ΔUSE=kþl
VSF l

HðSÞ is the entropy variation due to

USE=kþl
VSF l

. The lower limit holds, in fact, for any pure
state jψiSE , while the restriction on the dynamics is
necessary to establish the upper bound, as it ensures that
classical correlations between fragments are strictly infor-
mation about S. These stringent bounds show that the
maximally informative observables in disjoint fragments
are highly correlated, M̂k ≈ M̂l ≈ M̂. When S and small
fragments F k; k ≥ kδ, already share maximal classical
correlations, the maximally informative measurement for
any observer is inevitably the projection on the pointer
basis fα̂g. While similar statements were proven for the
ideal case of δ ¼ 0 [36–40], the generalization of the result,
as suggested by model-dependent studies [37], allows for
verifying quantum Darwinism in realistic, imperfect
(δ ≠ 0) scenarios.
We observe that Eq. (12) holds when S and all fragments

of a certain size k ≥ kδ share a certain amount of classical
correlations. The criterion can be relaxed by replacing
JðS∶F̌ kÞ with its average value over all F k. Under this less

strong condition, bounds like Eq. (14) exist for the average
IðF k;M̂k

∶F l;M̂l
Þ. Also, adopting Eq. (11) as quantum

Darwinism signature is justifiable a posteriori. The quan-
tity JðŠ∶F kÞ displays the same scaling with k of JðS∶F̌ kÞ
[and IðS∶F kÞ] in the widely applicable “c-maybe” model
in Fig. 3 [58].
Finally, we show how to certify the emergence of

classical objectivity when the universe is in a certain
state jψiSE . Verifying Eq. (12) is computationally hard,
requiring an optimization over all possible measurements
on F k [10,11,13,41,67]. The problem is bypassed
by linking quantum Darwinism to the scaling of an
analytical function. Consider the conditional mutual infor-
mation IðS∶F ljF kÞ ≔ IðS∶F kþlÞ − IðS∶F kÞ, which
is the supplemental information one acquires about S
by enlarging the monitored fragment [42,68]. If and
only if such information is vanishing, then independent
observers access maximal classical information about
S [56].
Result 4. For any state jψiSE , given kδ ≤ N=2,

JðS∶F̌ kÞ ¼ HðSÞ; ∀ F k; k ≥ kδ

⇒ IðS∶F ljF kÞ ¼ 0; ∀ F k;F l; k ≥ kδ; kþ l ≤ N − kδ

⇒ JðS∶F̌ kÞ ¼ HðSÞ; ∀ F k; k ≥ 2kδ: ð15Þ

Therefore, the quantum Darwinism condition [Eq. (12)] can be verified, in the strongest form (δ ¼ 0), without explicit
calculation of classical and quantum correlations. A more general one-way implication reads [56]

JðS∶F̌ kÞ ≥ ð1 − δÞHðSÞ; ∀ F k; ∀ k ≥ kδ

⇒ IðS∶F ljF kÞ ≤ 2δHðSÞ; ∀ F k;F l; k ≥ kδ; kþ l ≤ N − kδ: ð16Þ

Redundancy of classical information allows the mutual
information to increase rapidly only for k > N − kδ.
Quantum correlations, and therefore quantum information
about S, significantly build up only in large fragments.
Conclusion.—We have established universal, quantita-

tive bounds on quantum correlations in multipartite sys-
tems. Independent observers can simultaneously access
classical information about a quantum system that redun-
dantly spreads into the environment, but quantum infor-
mation is out of reach. Hence, classical reality is not only
consistent with quantum laws, but an emergent byproduct
of decoherence and quantum Darwinism. We conjecture

that stronger bounds might exist when the environment
state is mixed [69,70], and for multipartite correlations
[42,71]. Also, the analytical witness of quantumDarwinism
may enable its experimental verification in large dimen-
sional systems.
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