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Microphysical time scales and local supersaturation balance at a warm Cloud Top

Boundary

Ludovico Fossà,a) Shahbozbek Abdunabiev, Mina Golshan, and Daniela Tordella

Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

(*Electronic mail: daniela.tordella@polito.it)

(Dated: 10 May 2022)

Recent results have shown that there is an acceleration in the spread of the size distribu-
tion of droplet populations in the region bordering the cloud and undersaturated ambient.
We have analyzed the supersaturation balance in this region, which is typically a highly
intermittent shearless turbulent mixing layer, under a condition where there is no mean
updraft. We have investigated the evolution of the cloud - clear air interface and of the
droplets therein via direct numerical simulations. We have compared horizontal averages
of the phase relaxation, evaporation, reaction and condensation times within the cloud-
clear air interface for the size distributions of the initial monodispersed and polydisperse
droplets. For the monodisperse population, a clustering of the values of the reaction, phase
and evaporation times, that is around 20-30 seconds, is observed in the central area of the
mixing layer, just before the location where the maximum value of the supersaturation
turbulent flux occurs. This clustering of values is similar for the polydisperse population
but also includes the condensation time. The mismatch between the time derivative of the
supersaturation and the condensation term in the interfacial mixing layer is correlated with
the planar covariance of the horizontal longitudinal velocity derivatives of the carrier air
flow and the supersaturation field, thus suggesting that a quasi-linear relationship may exist
between these quantities.

a)Present address: Department of Mechanical Engineering, The University of Sheffield, S1 3JD Sheffield, United

Kingdom.
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I. INTRODUCTION

The large-scale dynamics of warm atmospheric clouds is closely coupled with small-scale phe-
nomena. Lukewarm clouds are a stage of a complex interplay between competing turbulent and
microphysical processes, which determine their evolution over time. However, many physical
processes that are relevant for cloud dynamics have not yet been completely unravelled, and still
constitute a matter of debate in the cloud physics and turbulence communities. In recent years, a
great deal of attention has been paid to the effect of turbulent mixing at cloud boundaries as well
as its impact on droplet condensation (evaporation) and collision. The interfacial mixing of cloud
and clear air has often been identified as the main cause of the observed broadening of droplet size
distributions and the rapid onset of precipitation.

Warner (1969)1 suggested the importance of mixing at a growing cloud top in unstable environ-
ments. Latham and Reed (1977)2 and Baker, Corbin and Latham (1980)3 were the first to recog-
nize a difference between homogeneous and inhomogeneous mixing, where the microphysics time
scale can be either longer or shorter than the time scale of the turbulent motions. The ratio between
the turbulent time scale and the microphysical time scale is represented by the Damköhler number,
Da. The same turbulent flow encompasses a wide range of Da along the energy cascade4. Several
time scales have been used to define the Damköhler number5, and to parameterize the impact of
the entrainment and mixing of clear air at cloud boundaries. These scales include evaporation,
phase relaxation and reaction time scales. The fundamental variable that drives the condensation
(evaporation) of a droplet is supersaturation S = RH− 1, where RH is the relative humidity6. S
varies over both time and space, and is determined by the local, instantaneous concentration of
water vapor ρv and temperature T through the Clausius-Clapeyron equation. However, supersatu-
ration S has often been described as a somewhat global property of a cloud parcel7, and the local
value of the vertical velocity and the microphysical properties are generally taken into account
for its estimation. The supersaturation balance within a cloud is often described by means of a
production-condensation model of the type proposed by Twomey (1959)8, where the mean up-
draft velocity w and the mean radius of the droplet population R are the main contributors to the
time derivative of S

dS
dt
∼= c1w− S

τphase
(1)

where τphase = (c2ndR)−1 is the phase relaxation timescale9,10, nd is the droplet number density
and c1,c2 are coefficients that depend, albeit only slightly, on the temperature, c1 and tempera-
ture/pressure, c2,11. Cooper (1989)12 described a theoretical framework in which the variability
of S, and the subsequent broadening of the droplet size distribution are determined by the value
of the integral radius as well as by the covariance of the integral radius and the vertical velocity
fluctuation.

Sardina et al. 2015 generalized Twomey’s model to a scalar transport equation that they used in
their direct numerical simulation (DNS) study of cloud cores13. They showed that the contribution
of the diffusive effect is negligible for large Reynolds numbers. Chandrakar et al. (2016)14, in a

2



laboratory experiment, used the stochastic condensation model of13 to investigate the effects of an
aerosol concentration on the broadening of the droplet size distribution. They argued that super-
saturation fluctuations determine diverse growth conditions inside cloud cores with low aerosol
(and droplet) concentrations.15, who studied the impact of turbulent temperature and water vapor
density fluctuations on supersaturation by performing in-situ measurements of shallow-cumulus
clouds, suggested the same. Their data show a reduction in the standard deviation of supersatu-
ration inside cloud cores compared to regions where few or no droplets are located. They used
the phase relaxation time τphase as the microphysical time scale in the Damköhler number. Prab-
hakaran (2020)16 used the stochastic condensation approach to study the activation of dry-sodium
chloride aerosols, as well as droplet nucleation and growth via laboratory experiments. They used
a climate chamber where statistically steady-state Rayleigh-Bénard turbulence had been generated.
They claimed that their results can be extended to a context in which the effects of entrainment
and mixing are important, and that, in this case, droplet activation is governed by a fluctuation-
dominated regime, even though such a region is subsaturated on the whole.

However, many DNS studies have focused on both statistically steady-state and transient shear-
less mixing layers located at a vertical droplet-laden, cloud-clear air interface17,18. Kumar et
al.(2018)19 investigated the effects of the range of the energy cascade on the relative dispersion
of a droplet population, which was observed to increase for larger initial values of the domain
size-based Da. Miller and Bellan (2000)20 performed direct numerical simulations (DNS) of a
droplet-laden shear layer that featured a two-way interphase coupling and a Lagrangian tracking
system for the droplets. Onishi, Takahashi and Komori (2009)21 studied the influence of gravity on
droplet collision and coalescence. Sidin, Ijzermans and Reeds (2009)22 used a synthetic turbulent
field to investigate the impact of both large and small-scale turbulent eddies on droplet conden-
sation and evaporation. Their DNS model did not take into account the effects of condensation
and evaporation. Golshan et al. (2021)23 have recently performed direct numerical simulations
of a horizontal, droplet-laden, interfacial shearless mixing layer subject to unstable stratification.
They observed a remarkable acceleration in the dynamics of the droplet population in the mixing
layer, in particular in the temporal evolution of the droplet collision/evaporation rates and in their
spectrum broadening. These findings were linked to the large intermittency of the small-scale
turbulence, which is driven by the anisotropy of the carrier flow shearless layer and by the active
scalars transported there.

The aim of the present work is twofold: first, to compute and compare the various micro-
physical time scales in the cloudy - clear air interfacial layer so far proposed in the literature,
second, to infer a possible source term for Twomey’s equation (1) that accounts for the small-scale
statistics of the carrier flow at a cloud-top boundary where the updraft is null. We have used the
dataset computed from the aforementioned direct numerical simulation campaign performed by
Golshan et al. (2021)23. We have adopted a high-resolution pseudospectral method that allows
us to observe the temporal evolution of the supersaturation fluctuations and the velocity derivative
statistics across the horizontal turbulent shearless mixing layer (for the gas phase dynamics, see
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Tordella and Iovieno (2011)24).
The physical model of a shearless cloud-clear air interface, together with the relevant governing

equations of the direct numerical simulations, are presented in section II. The obtained results are
discussed in section III, and the conclusions are drawn in section IV.

II. PHYSICAL PROBLEM AND MATHEMATICAL FRAMEWORK

A. Physical model and governing equations

The aim here has been to study the transient decay of a top cloud-clear air interface by perform-
ing direct numerical simulations of a turbulent shearless mixing layer. This idealized interfacial
layer separates two regions. A warmer, droplet-laden cloud region is located at the bottom half
of the domain and it is rich in water vapor and kinetic energy. A clear air less energetic area lies
in the top half of the computational domain, which is a parallelepiped made up of two adjacent
cubes, see Fig. 1, panels a and b.

A turbulent layer without mean shear is a reasonable model of turbulence at the boundary be-
tween atmospheric clouds and the surrounding undersaturated air. This flow is considered simple
because it is free of the complications associated with the production of turbulence due to the
mean flow. However, in reality it is home to dynamic aspects that are not obvious and have not yet
been fully described or understood. We briefly list some of them hereafter. To form a shear-free
turbulent layer, it is sufficient that two contiguous non-sheared regions with a different integral
scale and the same kinetic initial energy interact. This, in time, can generate a shear-free layer that
hosts a gradient of kinetic energy25. All the shear-free turbulent layers are in-homogeneous, thus
anisotropic, and also intermittent at the small scale level. Anisotropy appears in the main diagonal
of the velocity fluctuation gradient, which is characterised by a substantial absence of significant
off-diagonal terms24,26. The growth or reduction of the thickness of the layer is controlled to
a great extent by the concomitant action of the local kinetic energy and spatial macroscale gradi-
ents. If these gradients have opposite signs across the layer, the thickening of the layer decelerates,
and vice versa, if the signs are concordant27. If the layers are stratified in density, substrates are
formed. In the case of stable stratification, the energy collapses below the two formation region
levels. Flow transport across the layer is blocked. In the case of unstable stratification, the sublayer
hosts an accumulation of energy, and transport is enhanced28.
Moreover, it should be noted that for the case where the most energetic portion beside the layer
(cloud region) hosts both supersaturated water vapor and water droplets, recent results have shown
that i) the small-scale intermittency of the air flow in the mixing layer is higly correlated with the
drop collision rate of both the monodisperse and polydisperse drop size distributions, ii) a more
intense widening of the drop population size spectrum is observed in the interfacial region with
respect to what happens inside the homogeneous cloud region. These results have prompted our
interest in exploring the correlation between supersaturation fluctuations and the small-scale inter-
mittency of air flow turbulence. A relationship has here been hypothesized to be responsible for

4



the so-called bottleneck problem associated with the interaction of the evaporation-condensation-
coalescence processes present in the formation of cumulus rain.

Boussinesq Navier-Stokes equations provide the Eulerian description of the incompressible,
stratified, velocity fluctuation, ui, along with active scalar transport equations for temparature, T ,
and water vapor density ρv

4,17–19,29–31

∂u j

∂x j
=0 (2a)

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ0

∂ p
∂xi

+ν
∂ 2ui

∂x2
j
+Bδ3i (2b)

∂T
∂ t

+u j
∂T
∂x j

=κ
∂ 2T
∂x2

j
+

LCd

ρ0cp
(2c)

∂ρv

∂ t
+u j

∂ρv

∂x j
=κv

∂ 2ρv

∂x2
j
−Cd (2d)

where ρ0 is the Boussinesq density (that is, the mean density of dry air 1000 m above the sea
level), ν is the kinematic viscosity of the air, κ is the heat diffusivity of the air and κv the mass
diffusivity of the water vapor. L is the latent heat of evaporation of the water and cp is the
specific heat of the air at the mean domain temperature T0. All the physical constants in equations
(2, a-d) are summarized in Table I. The Boussinesq approximation allows us to take into account
small perturbations of a parcel density of moist air due to local temperature and vapor density
variations32. The buoyancy term, B, in equation (2b) can be expressed as a function of the local
values of T and ρv

B = g
[

∆T
T0
− ∆ρv

ρ0

(
1−Ma

Mw

)]
(3)

where Ma and Mw are the molar masses of the air and water, respectively. We adopt periodic
boundary conditions for the velocity and water vapor density fields in the three directions. The
temperature field is non-periodic in the vertical direction and results from the superposition of a
triply-periodic scalar field and a constant, negative, vertical temperature gradient. The temperature
of the cloud region being higher than the clear-air one, the interfacial mixing layer is subject to an
unstable stratification with a squared Froud number, Fr2

int , approximately equal to −7. This leads
to a local increase in the momentum and kinetic energy, as a result of the Boussinesq body-force
term in equation (2b).

The condensation term Cd = Cd(xi, t) in the energy and vapor density equation expresses the
water vapor mass absorption (depletion) rate at the surface of all the spherical droplets contained
in the cubic computational cell of volume (∆)3, Vaillancourt et al. (2001)29. Since cloud droplets
are advected by the turbulent flow, Cd must be determined in the Lagrangian reference frame used
for the liquid water mixing ratio, which is described below in sub-section II B. However, in order
to use Cd , in equations (2c) and (2d), it should be represented in the Eulerian frame of reference.
The condensation rate field is determined as:
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(a) (b)

FIG. 1: Panel (a): initial distributions of kinetic energy E (solid dark red line), water vapor
density ρv (solid green line) and temperature T (orange and yellow dash-dotted lines) in the

vertical direction across the interfacial mixing layer. The mixing layer is located at xc = L12 (see
Table II). The temperature fluctuation component T ′(x3) of equation (11) is plotted with yellow
the dash-dotted line, while the non-periodic physical temperature T is plotted with the orange
dash-dotted line. Subscripts 1 and 2 refer to cloud and clear-air conditions (see Table I). Panel
(b): The computational domain is a parallelepiped composed of two adjacent cubes. The total

height L3 is twice L1,2. Subscripts 1 and 2 refer to the horizontal directions parallel to the mixing
layer, whereas subscript 3 indicates the vertical direction.

Cd =
1

∆x3
dmw

dt
=

4πρw

∆x3

N∆

∑
j=1

R2
j(XXX j(t))

dR j(XXX j(t))
dt

(4)

where R j(t) and XXX j(t) are the radius and the coordinate of the j−th drop contained within the grid
cell, respectively, and N∆ represents the number of drops inside each grid cell. The interpolation
of Eulerian field values at grid points to the positions occupied by the water droplets inside the
cell is obtained via second-order Lagrange polynomials. An inverse procedure is used to calculate
the condensation rate, which is determined at the first step at each droplet position and then relo-
cated to the closest of the eight grid vertices. The time derivative, dR j/dt, expresses the droplet
condensational shrinkage (growth) rate, as defined in Equation (8).
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TABLE I: The key physical parameters used in the numerical experiments.

Quantity Symbol Value Unit

Latent heat of evaporation L 2.48 ·106 Jkg−1

Heat capacity of the air at a constant pressure cp 1005 Jkg−1 K−1

Gravitational acceleration g 9.81 m/s2

Molar mass of the water Mw 18 kgkmol−1

Gas constant of the water vapor Rv 461.5 Jkg−1 K−1

Molar mass of the dry air Ma 29 kgkmol−1

Gas constant of the air Ra 286.7 Jkg−1 K−1

Diffusivity of the water vapor mass κv 2.52 ·10−5 m2/s

Thermal conductivity of the dry air K 2.5 ·10−2 Wm−1 K−1

Liquid water density ρw 1000 kg/m3

Dry air density at an altitude of 1000 m ρ0 1.11 kg/m3

Dry air kinematic viscosity ν 1.5 ·10−5 m2/s

Average temperature of the whole domain T0 281.16 K

Average temperature of the cloud region T1 282.16 K

Average temperature of the clear air region T2 280.16 K

Background temperature gradient (unstable) G -2/1.024 Km−1

Brunt-Väisäla amplification factor N 2 -0.69 s−2

Droplet growth coefficient Ks 8.6 ·10−11 m2/s

Accumulation mode (radius) rd 0.01 µm

Kelvin coefficient A 1.15 ·10−9 m

Raoult solubility parameter for inorganic, hygroscopic sub-

stances such as ammonium sulfate, lithium chloride etc...

B 0.7 -

Initial relative humidity in the cloud region RH1 1.02 -

Initial relative humidity in the clear air region RH2 0.7 -

Initial liquid water content LWC0 7.9 ·10−4 kg/m3

B. Lagrangian droplet dynamics and droplet populations

The Lagrangian motion of each k-th droplet in the physical system is modeled by a tracker of
the type29,33:

dXki

dt
=Vki (5a)

dVki

dt
=

1
τk

[ui (Xki, t)−Vki]+gδi3

(
1− ρ0

ρw

)
(5b)

which features two vector equations for position, Xki, and velocity, Vki, of a droplet within the
reference frame, where i indicates the direction. The momentum equation is derived for low-
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Reynolds spherical droplets29,31 and only accounts for the contribution of Stokes’ drag and gravity,
while the effects of Faxen and Basset’s history force are negligible23,31,34. The inertia of a spherical
droplet is proportional to its surface and is often expressed through a characteristic time scale, that
is, the droplet response time (τd) of the k-th droplet with radius Rk

10

τdk =
2
9

ρw

ρ0

R2
k

ν
(6)

which is also the time constant of the solution to equation (5b) for a steady, homogeneous flow.
It should be noted that, in a similar way to what is done for the condensation rate field, Eulerian

flow field quantities have to be determined at the droplet position to numerically proceed with
Lagrangian equations. In this context, we adopted a simplified feedback on the droplet flow. The
direct effect of the liquid droplet drag on the velocity field is neglected in the buoyancy term in
the momentum equation. The feedback is therefore indirect and is confined to the coupling of
the temperature field with the velocity field and the vapour mixing ratio through the condensation
rate. The rationale behind this position depends on the smallness Stokes’ numbers of the drops and
liquid mass and volume fractions ∼ 10−3 and ∼ 10−6, respectively. In fact, for radii in the range
[1− 30]µm, the initial transient values of Stokes’numbers are in [0.02− 0.7], while the end of
transient values are in [0.002−0.066], which means Reynolds numbers of the drops much lower
than 1.

Spherical cloud droplets are assumed to collide and coalesce with full collision and coalescence
efficiency whenever their relative distance falls below the sum of the respective radii[

3

∑
i=1

(Xli−Xki)
2

]1/2

≤ Rl +Rk

The single droplet resulting from coalescence conserves the total mass and momentum of the
colliding drops. In present work, we have focused on the effects associated with anisotropy and
intermittency of the interfacial layer separating the cloud region from the clear-air ambient. Ac-
cording to a hypothesis that is commonly adopted in the literature (Saffman and Turner (1955)35,
Wang et al. (1998)36), dynamic and kinematical collision kernels are very similar and the collision
efficiency is close to unity (see for instance Wang et al. (2005)36, Tables 2,3 and 4). Therefore, we
did not consider the parametrization on the efficiency as a first order effect in the present study.

Both monodisperse and polydisperse droplet size distributions are considered in the present
simulation campaign (Fig. 2). At the beginning of the simulation, the droplets are randomly
distributed in the cloud region of the computational domain, where the clear air region is initially
void. The number of droplets, Ntot−mono = 8 ·106, for the monodisperse population, is determined
from the typical liquid water content LWC0 ∼ 0.8g/m3 encountered in warm cumulus clouds and
the choosen initial monodisperse radius, R0,mono = 15µm,

Ntot−mono = LWC0
4
3

πρwR3
0,mono. (7)
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FIG. 2: Droplet size distributions as a function of the radius classes. Panels (a) and (b): size
distribution for a monodisperse population (R = 15 µm) in the cloud and interface regions,

respectively. Comparison of normalized PDF values of droplet radii at different time instances. In
panels (c) and (d), the present results (color lines) are compared with the results by Götzfried et
al. (2017)31 (solid/dashed black lines), which were computed over the entire domain, including
the homogeneous cloud, the interface layer and the clear-air homogeneous region. It should be

noted that the simulation made by Götzfried et al. does not include any collisions, which caused
the second peak on the right in the distributions. PDF values of both datasets are normalized with
the peak value. Results are plotted for non-dimensional large eddy turnover time. Panels (e) and
(f): size distribution for a polydisperse (equal mass in the droplet volume classes, R ∈ [0.6 - 30]

µm) population in the cloud and interface regions, respectively.
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The faster dynamics of the droplet spectrum inside the highly intermittent mixing layer, with
respect to that shown in the nearly Gaussian cloud turbulence, should be noted. Panels a and b in
Fig. 2 highlight the intense acceleration of the broadening of the droplet spectrum in the interfacial
layer (standard deviation time variation: 0.015(t/τ0)+ 0.05 in the cloud and 0.23(t/τ0)+ 0.003
in the mixing, see figures 7,11 and table 3 in Golshan et al. (2021)23. Panels c and d in Fig. 2)
show, for an initially flat polydisperse size distribution, a faster rate of modification toward the
typical peaky shape in the interface than in the cloudy region. In fact, the temporal narrowing of
the standard deviation goes like −0.19(t/τ0)+ 19.7 in the cloud and as −0.74(t/τ0)+ 17.94 in
the mixing, see figures 8,12 and table 3 in Golshan et al. (2021)23.

Götzfried et al. (2017)31 conducted a similar numerical experiment, in which they studied the
response of an ensemble of cloud water droplets to the turbulent entrainment of clear air in a
cloud filament. They presented three simulations of a monodisperse droplet population, where the
droplet size distributions evolved mainly due to condensation-evaporation processes. However,
they did not include any collision-coalescence processes in their simulations, and they only con-
sidered monodisperse size distributions. Figure 2(c,d) shows a good agreement with simulation
made by Götzfried et al. apart from the second peak due to collision-coalescence. In both cases,
the size distributions broaden to the left as a result of the evaporation process, starting from the
initial radius. There is still a negligible enhancement of the size distribution during transient on
the right side in both studies.

Broad droplet size distributions have been observed in both in-situ measurements of forming
shallow cumulus clouds15 and in laboratory experiments14. These distributions usually show a
peak for relatively small radii (1÷ 10µm), which is accompanied by a monotonical decrease in
concentration as the radius increases. However, the existence of a general and ubiquitous func-
tional shape of the droplet size distribution in shallow cumulus clouds is still a matter of debate37.
Without any claim of generality, we introduce an initial polydisperse distribution in which the
same mass is allocated to each class of radii. Each volume class gathers droplets that have roughly
the same volume 23.

A droplet is subject to ambient supersaturation, which is obtained through a polynomial inter-
polation with the neighboring cell values. The condensation-evaporation rate of the spherical k-th
droplet can be estimated according to6,12,38

dRk

dt
=

Ks

Rk

(
S− A

Rk
+

Br3
d

R3
k

)
(8)

where S is the supersaturation or saturation deficit (see section II D), A is the Kelvin coefficient,
B is the hygroscopicity parameter, Rk is the k-th droplet radius, and rd is the accumulation radius.
The second and the third terms on the right-hand side are known as the Kelvin and Raoult terms,
respectively. The Kelvin term describes the effect of droplet curvature and surface tension, while
the Raoult term indicates aerosol hygroscopicity. The diffusion coefficient Ks is slightly sensi-
tive to local equilibrium thermodynamics7,38,39. It includes the self-limiting effects of latent heat
release. This diffusion coefficient is considered to be constant in the literature, for typical warm
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FIG. 3: The plot shows the condensational growth rate (Equation 8) for a drop of given radius R
for supersaturated (S = 0.02, as in the cloud region of the present work), saturated (S = 0) and
subsaturated (S =−0.3) conditions. The contributions due to the effect of both surface tension

(Kelvin) and curvature (Raoult) are negligible for droplets of radius above 1µm, such as the ones
considered in the present work. The dashed lines only represent the effect of supersaturation,
when the Kelvin and Raoult terms are set equal to zero. The vertical green bar highlights the

range of radii below-above which the Raoult and Kelvin terms dominate, respectively.

cloud conditions, where the characteristic heat flux due to latent heat from a small variation in the
droplet temperature is of the same order as the heat flux due to thermal conduction for the same
temperature difference. The temperature dependence of this constant is weak (the Ks value in m2

s−1 ranges from 5.07 ·10−11 at T = 270 K, to 1.17 ·10−10 at T = 293 K17,40). In agreement with
our volume averaged initial temperature of 281 K, we used the value 8.6 · 10−11 m2 s−1. The
interpolation of Eulerian field values at grid points to the position occupied by the water droplets
inside the cell is obtained via second-order Lagrange polynomials. An inverse procedure is then
used for the calculate of the condensation rate, which is determined at the first step at each droplet
position and then relocated to the closest of the eight grid vertices. A collision is hypothesized to
occur when the distance between the centers is equal to or less than the sum of their radii. Such
collisions are assumed to be completely inelastic.

Supersaturation

S(xxx, t) =
ρv(xxx, t)
ρvs(T )

−1 = RH−1

is defined as the ratio between the water vapor and the saturated vapor densities (i.e. the relative
humidity) minus 1. The relative humidity RH = ρv/ρsv and supersaturation (or saturation deficit)
are functions of the saturated vapor density, ρvs, whose dependence on temperature is described
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by the Clausius-Clapeyron equation7

dρvs

ρvs
=

(
L

RvT
−1
)

dT
T

(9)

where L is the latent heat of evaporation (condensation) and Rv is the gas constant of the water
vapor. It is hypothesized that the droplet-gas interphase coupling is negligible41, and the droplet
motion therefore does not exert any relevant dynamical effect on the carrier field. Conversely,
the turbulent field affects the motion of the water drops to a great extent. Phase transition at the
droplet surface results in the exchange of water vapor and latent heat between the two phases, thus
perturbing the buoyancy term in momentum equation (2b).

Since the coefficients A, B, and rd are hypothesized to be constant, the droplet growth rate
mainly depends on the local value of S and on the droplet radius R. The droplet growth (shrinkage)
rate (8) is plotted in Figure 3 for three constant values of supersaturation S, where the competing
effects of the Kelvin and Raoult terms can be appreciated by observing the orange curve, which
describes a saturated environment. In the present conditions, the Kelvin effect becomes important
for R < 1µm, and it is soon outweighed by the Raoult effect as the droplet (aerosol) radius falls
below ∼= 23nm. The Raoult term is the term that is prevalent below this threshold.

C. Numerical experiment setup and DNS algorithm

The parallelepiped-shaped domain (see Figure 1) is made up of two adjacent cubes of 5123 cells
each. Two initial zero-mean, homogeneous, isotropic air fluctuation fields are generated inside the
two cubes. The turbulent spectra show the same functional shape and hence the same integral
scale. The cube in the lower half of the parallelepiped - which from now on is referred to as the
cloud region - initially hosts a higher turbulent kinetic energy, E, and dissipation (decay) rate, ε ,
than the upper cube, which models a clear air region, see Figures 1b and 4, Panels a and b. The
initial integral scale is set equal in the two regions so as not to introduce a further control parameter
- the integral length gradient across the layer - on the interface evolution and the related transport
dynamics25,27. The summary of simulation parameters are given in Table II.

The root mean square velocity in the more energetic region is urms ∼= 0.11ms−1, which rep-
resents the large-scale energy in the cumulus spectral subrange of wavelengths 0.002 to 0.25 m.
Since our system is time decaying, the initial dissipation rate was purposely set high in order
to reach the commonly values observed in cumulus clouds in the central part of the transient.
However, the initial dissipation rate ε ∼ 500 cm2/s3 is of the same order as those measured by
MacPherson and Isaac (1977)42 in cumulus clouds in the proximity of the top (cloud # 1 mea-
surement, 100 m below the cloud top, height of the top 4800 m) although in the presence of a
much higher kinetic energy of the air fluctuation (rms ∼ 2 m/s). Lower values (10 ∼ 20 cm2/s3)
have been reported43–46, and they are obtained during the transient decay, see Figure 4, Panels c
and d. The estimated Kolmogorov scale is η0 ∼= 0.5mm, and the highest resolved wavenumber
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TABLE II: The key simulation parameters and initial conditions, which are the same for all the
runs.

Quantity Symbol Value Unit

Domain size L2
1,2 ·L3 0.5122 ·1.024 m3

Domain discretization n2
1,2 ·n3 5122 ·1024 -

Grid step ∆x 10−3 m

Initial rms velocity (cloud) urms,1 0.11 ms−1

Initial integral scale `0 2.65 ·10−2 m

Initial dissipation rate (cloud) ε1 0.05 m2/s3

Initial energy ratio (cloud-clear air) E1/E2 = u2
rms,1/u2

rms,2 6.7 -

Initial Kolmogorov time (cloud) τη0 = (ν/ε1)
1/2 1.74 ·10−2 s

Initial Kolmogorov length scale (cloud) η0 =
(
ν3/ε1

)1/4 5.1 ·10−4 m

Initial eddy turnover time τ0 = 2`/(urms,1 +urms,2) 0.35 s

Initial Reynolds number (cloud) Re` = urms`/ν 196 -

Droplet response time (1µm, 30µm) τd = 2ρvR/(9ρ0ν)

4.4 · 10−4, 1.3 ·

10−2 s

Initial droplet Stokes numbers (R ∈ 1−30 µm) St = τd/τη0 0.025 - 0.7

Final droplet Stokes number (R ∈ 1−30 µm) St = τd/τη f 0.002 - 0.066

Initial Taylor microscale Reynolds number Reλ = urmsλ/ν 52 -

Integration time step ∆t = 1/20 ·∆x/urms 4.64 ·10−4 s

Initial number of droplets (monodisperse distribution) Ntot−mono 8 ·106 -

Initial number of droplets (polydisperse distribution) Ntot−poly 107 -

Initial droplet radius (monodisperse distribution) r0,mono 15 µm

Initial droplet radius (polydisperse distribution) r0,poly 0.6÷30 µm

is kmax = π/∆x = π ·103m−147. Since we have kmaxη1 ∼= 1.6, the resolution is acceptable for the
problem at hand33,48.

The DNS algorithm is based on the dealiased pseudospectral Navier-Stokes solver described
in49. Code versions and releases are available on the official website of Philofluid Research Group.
This software has been used in several works conducted by the group23,24,26–28,50 to investigate
turbulence self-diffusion in shearless mixings, with passive or active scalars, and water drop popu-
lations. Spectral discretization is achieved by means of the Fourier-Galerkin method with pseudo-
spectral treatment of the advection terms in the momentum (2b) equation, and scalar transport
ones (2d and 2c. Time integration is performed, according to Ireland (2012)33, with a second-
order explicit Runge-Kutta method51. The diffusive terms for the momentum, internal energy (2c)
and vapor density fields (2d) are computed by means of exponential integration. Droplet velocities
5a and accelerations 5b are integrated with a second-order explicit method and a second-order im-
plicit trapezoidal method, respectively. The implicit structure of the integration scheme used for
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the equations 5b ensures numerical stability for arbitrary values of ∆t.
The code stores the velocity, temperature and vapor fields in three-dimensional arrays and dis-

tributes them along one direction in both physical and Fourier spaces. The three-dimensional
discrete Fourier transform is performed with the FFTW library. A slab-like parallelization is im-
plemented with Message Passage Interface (MPI) standard libraries.

D. Initial and boundary conditions for the flow velocity, temperature and vapor fields

Two homogeneous isotropic solenoidal turbulent fields, with zero-mean velocity and different
kinetic energies, that mix at a common interface, are studied in this numerical experiment. A
smoothing function, p(x3), is applied to modulate the velocity and scalar vapor fields along x3

27,28

ui(x j) = ui1(x j)p(x3)+ui2(x j)
√

1− p2(x3)

ρv = ρv1 p(x3)+ρv2

√
1− p2(x3)

p(x3) = 1+ tanh
[

a
x3

L3

]
tanh

[
a
(

x3

L3
− 1

2

)]
tanh

[
a
(

x3

L3
−1
)]

where ρv1 = ρvs(T1)RH1 and ρv2 = ρvs(T2)RH2 were chosen to obtain the desired level of super-
saturation in both regions (see Table I). Direction x3 is the inhomogeneous direction and L3 is the
width of the computational domain in the x3 direction. Constant a determines the initial mixing
layer thickness ∆, which is conventionally defined as the distance between the points with normal-
ized energy values of 0.25 and 0.75, whenever the low energy side is mapped to zero and the high
energy side to one. When a = 12π , the initial ∆/L3 ratio is about 0.026, a value that was chosen
so that the initial thickness would be large enough to be resolved but small enough to have large
regions of homogeneous turbulence during the simulations.

The initial distributions of the velocity, temperature and water vapor density fields in the vertical
direction are plotted in Figure 1 a.

The same initial values of T and ρv are defined for all the cells of a horizontal plane and are
thus functions of their vertical position with respect to the interface. As in23,50, the vapor field is
periodic and continuous in the three directions, whereas the temperature field

T (x3,0) = T ′ (x3,0)+T0 +G
x3

L3
(10)

is composed of the sum of a vertical, triple-periodic fluctuating temperature T ′(x3, t), a static
component Gx3, and a global average temperature T0. The periodic term T ′ in equation (10) is
defined with a hyperbolic tangent

T ′ (x3,0) =
T2−T1

2
·
[

tanh
(

a(
x3

L3
− 1

2
)

)
− 2x3

L3
+1
]

(11)
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However, the code is required to solve the periodic field T ′. Equation (2c) then becomes

∂T ′

∂ t
+u1

∂T ′

∂x1
+u2

∂T ′

∂x2
+u3

∂ (T ′+Gx3)

∂x3
= κ∇

2T ′+
LCd

ρ0cp

The cloud-clear air interface is located in the center (x3− xc)/L3 ∼= 0, with xc = L12. We define
the distance between the points whose normalized temperature (T −Tmin)/(Tmax−Tmin) is 0.75
and 0.25, respectively, as the width of mixing layer region ∆24,27,52. The squared Brunt-Väisälä
frequency, N 2 = gδT

T0
1
∆
∼= −0.69Hz2, is negative, and thus describes an unstable environment.

The internal Froude number associated with this stratification is initially

Fr2
int =

u2
rms,av

N 2∆2
∼=−7

The saturated vapor density, the relative humidity and the supersaturation are computed with the
values of T expressed by equation (10).

III. RESULTS. VELOCITY AND SUPERSATURATION FLUCTUATIONS, AND
TURBULENCE BROADENING OF THE DROPLET SIZE DISTRIBUTION.

Droplet and flow statistics are taken from horizontal x1−x2 planes at a constant x3, and plotted
with respect to the normalized height (x3−xc)/L3, with xc being the position of the cloud-clear air
interface, and L3 = 2L1,2 being twice the length of the edge of the cube. To observe the interface
cloud - clear air dynamics, it is necessary to focus on the evolution of the statistics along the
non-homogeneous (vertical) direction of the domain. The mean, standard deviation and higher
order-moments are computed over the cells in the same horizontal plane and associated with the
corresponding vertical coordinate x3. The covariance for each horizontal plane

covX ,Y (x3, t) =
1

n1n2

n1,n2

∑
i, j=1

(
X(x1,x2;x3, t)−X

)(
Y (x1,x2;x3, t)−Y

)
(12)

where the over-line indicates the average of a given physical quantity in the x1,x2 planes and

X(x3, t) =
1

n1n2

n1,n2

∑
i=1, j=1

X(x1,x2;x3, t) (13)

The Pearson product-moment correlation coefficient of two planar averaged quantities, X(t) and
Y (t), only depends on the time and when used to correlate variations across the interface layer
∆(t), it can be written as

ρX ,Y ∆(t) =
n∆

∑
k=1

(X(x3, t)−X∆(t))
σX

(Y (x3, t)−Y ∆(t))
σY

(14)

where subscript ∆ stands for the quantity averaged inside the interface and n∆ is the number of
planes inside the interface.
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FIG. 4: Trends of the kinetic energy and turbulent dissipation rate. (a) Evolution of the
turbulent kinetic energy E across the domain for an initial unstable background temperature

gradient. The interface is located at the center of the figure (that is, for x3 ∼= xc). Mildly unstable
stratification (Fr2

int
∼=−7). (b) Normalized values of E(t) with respect to the mean kinetic energy

in the cloud E1(t) and clear air E2(t) regions. The initial energy ratio across the interface is
E1/E2 = 6.7. The plotted values of E are the planar averages of each horizontal plane. (c)

Transient evolution of the kinetic energy E, the dissipation rate ε , the Kolmogorov time scale τη

and the Kolmogorov length scale η in the cloud and mixing regions (subscripts 1 and 2,
respectively). The thin horizontal line indicates the grid width, ∆x, in meters. (d) Evolution of the

dissipation rate ε across the domain.

The kinetic energy inside the homogeneous cloudy and clear air regions, decays over time
with a power-law exponent (see Figure 4) of the E/E0 ∼ (t/τ0)

−n type, where n ranges from 1.6
to 2.1527,53. The initial values of the root mean square velocity of the flow, of the longitudinal
integral length scale and of the eddy turnover time are reported in Table II. The eddy turnover

16



-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

cloud clear-air

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

cloud clear-air

(b)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
-8

-6

-4

-2

0

2

4

6

8

cloud clear-air

(c)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

60

70

cloud clear-air

(d)

FIG. 5: Monodisperse droplet population. Planar averages and statistical moments of
supersaturation across the cloudy - under-saturated ambient air interface layer. (a)

Supersaturation (or saturation deficit) across the layer. (b) Standard deviation. (c) Skewness. (d)
Kurtosis. The initial distributions are plotted with black dash-dotted lines. The approximate

extension of the interface mixing layer is indicated as the blue-shaded area between the cloudy
and clear air regions.

time τ0 = 2`0/(urms,c0 +urms,a0), is computed from the initial integral length scale and root mean
square velocity of the flow, averaged over the domain, and has an initial value of 0.35s.

The decay of both kinetic energy E and dissipation rate ε can be observed in Figure 4). During
the decay, the integral scale grows homogeneously over the entire domain.

The system relaxes to a quasi steady-state condition as values of ε of the order of 10 cm2/s3

are reached inside the mixing layer. Values of this order of magnitude have already been measured
in shallow cumulus clouds10,43.

The average value of E quickly decreases during the transient. However, the effects of the
unstable stratification are highlighted by the normalized kinetic energy, (E−E2)/E1−E2), which
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FIG. 6: Difference in the supersaturation statistics between monodisperse (Sm) and
polydisperse (Sp) droplet populations across the cloudy - under-saturated ambient air

interface layer. (a) Difference in the mean supersaturation (or saturation deficit) across the layer.
(b) Difference in the standard deviation. (c) Difference in the skewness. (d) Difference in the

kurtosis. The approximate extension of the interface mixing layer is indicated as the blue shaded
area between the cloudy and clear air regions.

in fact shows a hump that amplifies in time (see Figure 4b, and Figures 11 and 12 in Gallana et
al.28). The warmer air close to the interface is convected upward and gains vertical velocity, thus
increasing the kinetic energy locally. This injection of kinetic energy at the small scales of the
turbulence affects the mixing process by enhancing the vertical advection of the dispersed water
droplets, water vapor and internal energy up to the subsaturated region. High values of higher
moments of the spatial longitudinal derivatives of the velocity indicate the high anisotropy and
intermittency of the small-scale of the carrier flow in the mixing region. Small-scale intermittency
in the mixing region is associated with accelerated droplet population dynamics and an increased
collision-coalescence rate, see Figure 2 in section II and also Table 3 and Figures 11 and 12 in
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Golshan et al. 202123. The time required by the two populations to reach the same width for
the evaporation and condensation processes is estimated by equating the time variations of the
standard deviations of the monodisperse and polydisperse size distributions. The estimate is about
100τ0 in the cloudy region, which is homogeneous and isotropic. The estimate is about 18,5τ0 in
the interface region, i.e. more than 5 times faster. A remarkable acceleration of the broadening of
the droplet size distribution, due to turbulent fluctuations, is therefore observed in the shear-free
mixing layer that separates the cloud from the sub-saturated environmental air.

Planar averages and higher order statistical moments of supersaturation across the cloudy -
undersaturated ambient air interface layer are shown in Fig. 5. The high intermittency of the
distributions should be notes. Very high values of both skewness and kurtosis are reached on the
two sides of the mixing layer. Moreover, comparatively higher absolute values can be ovserved
at the border with the cloudy region (S down to -8, K up to 60), where the vapor flux is spatially
increasing, with respect to that observed at the border with sub-saturated air (S up to 4, K up to
20), where the vapor flux is spatially decreasing28.

The droplet statistics have been computed over the horizontal planes to complement the data
in Fig. 2. From now on, we denote the droplet numerical concentration with the symbol N. The
results of the monodisperese and polydisperse distributions across the mixing layer are shown in
Figure 7, where both the droplet radius and the concentration are plotted along x3. At the beginning
of the transient, the droplets populate the lower part of the domain and are randomly distributed
within the cloud. The core environment of the cloud is supersaturated (see Figure 5a), and this
permits a uniform condensation growth of the droplets to take place within the cloud. As the
central mixing proceeds, a few drops are advected in the upper subsaturated clear-air region. Here,
smaller drops will rapidly evaporate and eventually be eliminated by the algorithm. Dissipation
rate ε decreases during the transient and heavier droplets are likely to settle, as the small-scale
Froude number scales sublinearly with the dissipation rate Frη ∼ ε3/410.

The mean radius plot for the monodisperse case (see Figure 7a) is almost flat in the cloud
core region. The extension of this constant-radius plateau becomes more and more reduced as the
decaying shearless mixing proceeds. The blue-shaded area represents an approximate extension
of the mixing region at the end of the simulated transients. The concentration plots (Figure 7b)
displays analogous trends. In the polydisperse case, Figures 7c and 7d, the flat region of nearly
constant radii is narrower and presents a peak close to the very top of the mixing layer. This is
because collisions are much more frequent in this case. Moreover, given the concomitant presence
of very different droplets, the volume ratio between the largest to the smallest droplet is of the
order of 1.25 · 105, thus the number of collisions is large. Out of a total of 107 droplets, we in
fact observe about 5 ·104 collisions over about 8 physical time scales. Information on the collision
kernel inside the cloudy and mixing layer regions can be found in Figures 13 and 14 of Golshan et
al. 202123.
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Mean droplet radius and concentration across the cloud and interfacial
mixing regions

(a) (b)

(c) (d)

FIG. 7: Average mean droplet radius (a) (c), and concentration (b) (d). Each value represents the
planar average computed for a horizontal plane (see Figure 1). Shearless mixing takes place in

the shaded area. The dash-dotted black line shows the initial conditions.

A. Supersaturation evolution equation, and the microphysical time scales.

The supersaturation evolution equation has often been used to model a water vapor budget on
a developing cloud10. This equation is based on a production-condensation model, where the time
derivative of supersaturation is determined by balancing a production term, P , and a condensation
term, C 6,8

dS
dt

= P +C (15)
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Microphysical time scales and mean supersaturation in the cloud and
interfacial mixing regions

(a) (b)

(c) (d)

FIG. 8: Vertical distribution of the evaporation τevap, phase relaxation τphase and reaction τreact

time scales computed inside each grid cell and then averaged on horinzontal planes. The data are
displayed for the monodisperse (a) (b), and the polydisperse cases (c) (d) for two different time

steps at the beginning and the end of the transient. The planar average of supersaturation S
(Figure 5a) is also plotted for comparison purposes.

The condensation term accounts for the depletion of water vapor and the release of latent heat
during condensation at the surface of a spherical droplet, and it is a function of the local level of
supersaturation

C =− S
τphase

= 4πκvNRS. (16)
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The source term, P , has often been modeled as a linear function of the vertical mean velocity
of the updraft12,15, or identified as the net flux of supersaturated water vapor through the parcel
boundaries16. In the present analysis, updraft is absent, thus P = 0. Equation (15) does not
account for the advection and diffusion of water vapor and internal energy in the environment sur-
rounding the droplet (Redrop� 1), and considers supersaturation S as a rather global, bulk property
of an adiabatic cloud parcel7. In their study on cloud cores,13 generalized the supersaturation evo-
lution equation (15) to a transport model by assuming a linear dependency between the diffusive
term of the supersaturation and the Laplacian of the temperature and vapor density fields. They
showed that, under steady-state conditions and within the limit of a real-cloud Reynolds’ number,
the diffusive term of the supersaturation variance becomes negligible.

In a homogeneous, nearly isotropic cloudy layer that is statistically in equilibrium, a zero-mean
vertical velocity field would imply a null net vertical transport of cooling vapor parcels. It should
be noted that whenever an updraft can be neglected, equation (15) can be solved by separating the
variables54

dS
dt
∼=−4πκvNRS =− S

τphase
(17)

Therefore, an initially subsaturated (supersaturated), droplet-laden environment experiences an
increase (decrease) in the vapor concentration, which results in S relaxing exponentially to 0. The
time constant of this solution is the phase relaxation time

τphase =
(
4πκvNR

)−1 (18)

The definition of τphase depends on the assumption of the droplet population having a constant
integral radius, NR, and it is able to describe the temporal variation of the supersaturation and the
liquid water content5,45 in a homogeneous context. The phase relaxation time was chosen from
the microphysical time scales used in several DNS studies that focused on entrainment-mixing
processes4,14,17,19,31, and was used to define the Damköhler number

Da =
τturb

τmicrophysics

Depending on whether the choice of τturb falls into large or small-eddy time scales, a vast range
of Damköhler numbers can be defined for the same microphysical time scale in a turbulent flow4.
Large and small values of Da are associated with a fast and slow microphysical response of the
droplet population to entrainment and turbulent mixing, respectively55. Large Da are also associ-
ated with inhomogeneous mixing, whereas small Da often indicate homogeneous mixing2,3.

However, it should be noted that, in a highly anisotropic, in-homogeneous situation, such as
inside the mixing layer that separates the cloud from the subsaturated environemental air, the
momentum, internal and kinetic energy fluxes and the water vapor are not zero. The fluxes are
positive and rising, forming a peak value that is almost centered in the middle of the layer. Beyond
this point, the fluxes decrease and become zero inside the isotropic homogeneous subsaturated
ambient air,52,26,28. In such a situation, a mismatch between the supersaturation time derivative
and the condensation term can be expected.
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(a) monodisperse, t/τ0 = 0.75
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(b) monodisperse, t/τ0 = 6.61
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(c) polydisperse, t/τ0 = 0.75
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FIG. 9: For comparison with Fig. 8, the reaction time and relaxation phase time statistics,
computed using planar averaged quantities, are here shown for both polydipserse (c)(d) and
monodisperse (a)(b) populations and for two different time instances. The red dashed line

represents the condition that is first reached at each vertical location when numerically solving
the coupled system of Equations 8 and 17. Supersaturation S and the planar averaged R are

included for reading convenience purposes.

On the other hand, if the focus is on the evolution of the droplet size and the number concen-
tration, the evaporation time scale offers a good practical description of the process, and should be
taken as the relevant microphysical time scale, τmicrophysics. By neglecting the Kelvin and Raoult
terms in equation (8), and integrating for a constant S0 < 0, one can obtain in each computational
cell, an estimate of the time required for a single droplet, with an initial radius of R0, to evaporate
completely in a uniform subsaturated environment

τevap =−
R2

0
2KsS0

(19)

Both τphase and τevap rely on the assumption of constant supersaturation and integral radius.
However, since both quantities vary concurrently inside a mixing layer, it is better to define a
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reaction time τreact
45 that considers variations of both S and NR. The reaction time is defined as

the shortest time that has elapsed since either the droplet has evaporated completely or the parcel
has become saturated, and it is obtained by numerically solving the coupled system of differential
equations, that is, Equations (8) and (17), for initial non-zero values of positive R0 and negative
S0. It should be noted that τevap and τreact are only defined for the subsaturated regions, whereas
τphase is defined for non-zero values of the integral radius, and can also be used in supersaturated
regions. In order to describe a characteristic time of the condensation process in supersaturated
regions of the domain, we introduce a condensation time τcond , which we arbitrarly define as the
time it takes a droplet to double its radius for a constant local supersaturation S:

τcond =
3
2

R2
0

KsS0
. (20)

The horizontal planar average values of all these microphysical time scales are plotted for two
different time instants and the initial droplet size distribution type in the cloud and mixing regions.
See Figure 8, where the computation is performed in each computational grid cell and then av-
eraged over the horizontal planes. For comparison, see also Figure 9, where the computation is
performed by directly using the averaged quantities, R and S. It should be noted that the differ-
ently computed quantities are very close, except for the case of the monodisperse population at
t/τ = 6.78, where the location of the maximum reaction time changes from (x3−xc)/L3 =−0.06,
Fig. 8, to (x3− xc)/L3 =−0.025, Fig. 9.
The condensation and evaporation times diverge toward values of the order of 103 seconds at the
saturation location, S = 0, where they are not defined, see Figure 5a to observe the displacement
in time of the spatial points where S = 0. The phase relaxation time, τphase, elongates across the
mixing layer as the mean radius and the droplet concentration (numerical density) decrease. In
time, the τphase growth rate smoothes out as the layer widens. The fact that τphase grows inde-
finetely in the diluted interfacial region is not surprising and was also observed during the in-situ
measurements of shallow cumulus clouds by Siebert and Shaw (2017)15.

It is interesting to observe that, in the monodisperse case, the reaction time is converging to the
saturation time (ratio ρv/ρvs = 0.995), where the skewness of S is negative, while it is converging
to the evaporation time when S is positively skewed.

The droplet condensation time is considerably higher everywhere than the phase relaxation
time in the monodisperse case, and increases in time. The condensation time is instead shorter
than the phase relaxation time in the cloudy region in the polydisperse case, but it becomes of the
same order as τphase where the mixing process starts. A rise of τcond is observed at the end of
the transient in the bottom region of the domain where the sedimentation due to gravity becomes
substantial.
However, the most interesting observation is that there is a location inside the mixing layer where
the phase relaxation, the reaction time and the evaporation time cluster together. This location
precedes the location where the turbulent fluxes maximize. By comparing the distributions in
Figure 8 with the distribution of the turbulent supersaturation flux, see Figure 10, it is possible to
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see that the clustering of the microphysical times takes place at almost the same location, where the
flux rate is close to a maximum. The microphysical times separate before and after this location.
In particular, the reaction time is much shorter than the evaporation and phase relaxation times
before this location. The reaction time then collapses to the evaporation time, which is much
shorter that the phase relaxation time. In the polydisperse case, the clustering of the microphysical
times also includes the condensation time, as expected, since condensation often occurs rapidly
in the spectral range of the drops with a small radius for these populations. The evaporation time
on the right hand side of the panels in Figure 8 oscillates to great extent, particularly for the two
panels showing the last part of the transient, due to the higher collision rate there. This result
should be contrasted with Figure 2.
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FIG. 10: Supersaturation flux statistics for the monodisperse drop population. (a) Normalized
covariance (flux) of the supersaturation with vertical velocity component. (b) Normalized

covariance of the supersaturation and square of the vertical velocity component. (c) Normalized
derivative of the covariance (flux) of the supersaturation with vertical velocity component. The

difference of values between the monodisperse and polydisperse population distributions is
negligible. The same comparative situation shown in Figures 5 and 6 holds true.
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B. Turbulent transport effects on the supersaturation balance

The observed acceleration of the population dynamics in the same cloud-clear air interface re-
gion as those studied here, as well as the rapid differentiation in the size of the droplets, due to
the different weights that evaporation, condensation and collision have in these highly intermittent
mixing region23, can, at least in part, explain the rapid increase in the size of the droplets that is ob-
served in some cumulus cloud formations, in particular in maritime ones, and which is considered
capable of locally inducing rain-fall, Mason and Chien (1962)56, Li et al. (2020)57. These find-
ing have been observed despite the fact that beyond the temporal decay of the turbulence present
in the whole system, the interface also hosts the spatial decay of the kinetic energy. It should
be considered that the large scales of turbulence vary very little in this flow system, because the
computational domain is fixed and because the ratio of the large scales and the ratio of the ki-
netic energies between the cloudy and ambient air regions vary slowly in time24,27. All things
considered, these observations lead to the conclusion that the observed accelerated dynamics is
associated with the particular small-scale anisotropy and intermittency of the interfacial layer.
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FIG. 11: Distribution of the planar horizontal averages along the vertical direction of the
difference between the time derivatives of the supersaturation and condensation terms,

dS/dt−C = dS/dt +S/τp and of the covariances covS,∂u1/∂x1 , covS,∂u3/∂x3 , see equation (12).
These quantities vary considerably inside the mixing layer, and the two kinds of curves are both
almost antisymmetric with respect to the center of mixing layer xc. The data were retrieved from

a monodisperse simulation at t/τ0 = 2.45.

In conditions of zero updraft, under almost statistical equilibrium conditions (steady state, ho-
mogeneity and isotropy), the planar averages of the difference between the time derivative of the
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Supersaturation and longitudinal velocity derivatives in the mixing layer

FIG. 12: Visualizations of the supersaturation (top row) and longitudinal velocity derivatives in
the mixing region (second, third and fourth rows). The plots display only a portion of the domain,

as shown by the normalized coordinates at two time instances t/τ0 = 0.49 and t/τ0 = 4.44. xc

denotes the initial position of the mixing layer. The variance of the longitudinal velocity
derivatives is of the order of 10s−1 at the beginning of the transient, but rapidly decreases. The
values of the inverse Kolmogorov times in the mixing region are plotted in Figure 4c (indigo

dash-dotted line) and are of the same order of magnitude as the derivatives shown in this figure.
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supersaturation and the condensation terms must be null

dS/dt−C = dS/dt +S/τp ∼= 0.

However, in more general turbulence situations, as in the present system, which is unsteady (a
temporal decay follows an initial transient kinetic energy growth due to an unstable stratification),
highly in-homogenous, and thus anistropic, dS/dt may not necessarily balance S/τp. This inbal-
ance can be referred to as a turbulence supersaturation fluctuation production, Pt . As can be seen
in Fig. 11, dS/dt + S/τp and the covariances between the supersaturation and the longitudinal
velocity derivatives along the vertical direction, covS,∂u3/∂x3 , as well as along the horizontal direc-
tion covS,∂u1/∂x1 , are plotted across the entire (x3−xc)/L3 ∈ [−0.5,05] domain. All the quantities
become larger and almost antisymmetric in the mixing region, and they appear qualitatively skew-
symmetric with respect to the central plane x3∼= xc. It is thus evident that, under spatially averaged
(planar averages) conditions, the condensation term alone in the supersaturation evolution equa-
tion (15) is not able to account for the value of the time derivative of the supersaturation that takes
place inside the mixing region.
Provided that the Kolmogorov time, τη , scales with dissipation rate ε , the former is found to be
much smaller (10−2÷10−1s) than the evaporation and phase relaxation time scales reported in Fig.
8. Large values of τphase at the interface result in low small-scale Damköhler numbers, and should
therefore enhance turbulent supersaturation fluctuations15. It is therefore reasonable to assume
that supersaturation fluctuations, due to turbulence, are prevalent with respect to those generated
by phase transition at the droplet surface. There are two reasons for this hypothesis. First, the sta-
tistical moments of the vapor density in an analogous unstable mixing layer with identical initial
and boundary conditions and an identical set of control parameters for the carrier flow, but with
a subsaturated cloud region where droplets are absent, are close in shape and value to those of
mixings that contain droplets coming from a supersaturated cloudy region (see Figure 8 in28)
Second, as can be seen in Figures 5 and 6, the effects of the supersaturation statistics associated
with the different size distributions of the drop populations are negligible, and the differences are
in fact well below 1%. It should be noted that the opposite is not true, that is, that the dynamics of
the populations is very sensitive to the shape of the droplet size distribution.

We therefore hypothetize that the amplitude of the local supersaturation is modulated by small-
scale turbulent fluctuations and that such turbulent fluctuations may contribute to the overall local
supersaturation balance. In order to assess this hypothesis, we looked for the proportionality rela-
tion between: i) the difference in the planar averages of the supersaturation time derivative and the
condensation term, and ii) the covariance, eq. (12), of the supersaturation and the intermittency of
the small-scale, as represented by the fluctuations of the longitudinal derivatives of the velocities.
In other words, we put

dS
dt

+
S

τphase
= Pt ∼ covS,∂ui/∂xi (21)

This is conceptually equivalent to modeling supersaturation production as the product of the super-
saturation fluctuations and the characteristic frequency of small-scale turbulent structures, ∼ τ−1

η ,
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where the characteristic frequency of small-scale turbulent motions can be represented by the lon-
gitudinal velocity spatial derivatives.

The generation of small-scale anisotropy in turbulent shearless mixing has recently been in-
vestigated numerically. Data from direct numerical simulations for Taylor microscale Reynolds
numbers between 45 and 15023–25,28,50 show that there is a significant departure of the longitudi-
nal velocity derivative moments from the values found in homogeneous and isotropic turbulence
and that the variation of skewness has the opposite sign for the components across the mixing
layer and parallel to it. The anisotropy induced by the presence of a kinetic energy gradient has
a very different pattern from the one generated by homogeneous shear. The transversal derivative
moments in the mixing are in fact found to be very small, which highlights that smallness of the
transversal moments is not a sufficient condition for isotropy. This intermittency is characterized
by a large departure of the longitudinal derivative moments (as shown in Fig. 12 together with
the supersaturation for two time instances), which are different in direction across and parallel to
the layer from the typical values of the isotropic condition, even in such a flow, where there is no
energy production(due to the lack of mean flow gradients). The structure of the anisotropy is such
that the skewness departure from isotropy reduces the compression on the fluid filaments parallel
to the mixing layer and enhances that of the filaments orthogonal to it.

The Pearson correlation coefficient, ρPt ,covS,∂ui/∂xi
, inside the layer of thickness ∆(t), see eq.

14, was computed along the transient for i=1,2,3. The results are shown in Figure 13, where the
data points have been collected for a time increment, that is approximately one half of the initial
eddy turnover time.

When the correlation coefficient, that is, the linear correlation between two sets of data, is above
0.7, the correlation is defined as strong. However, we do not expect the numerical simulation to
describe the first initial eddy turnover time of the transient accurately. The correlation coefficient
decreases slightly along the transient, beyond the first eddy turn over time, as the transient proceeds
from values as high as 0.9, when the longitudinal velocity derivative is horizontal, and as high as
0.8, when the longitudinal velocity derivative is vertical, to values close to 0.7. This is true for
both monodisperse and polydisperse drop populations.

The relatively large absolute values of the correlation coefficients confirm that a quasi-linear
relation should hold between the source term Pt and covS∂ui/∂xi . An alternative way of estimating
the proportionality constant, C, relevant to the dimensional quantities, along the transient is to
integrate across the mixing layer of Pt and covS∂ui/∂xi, i = 1,2:

∫
∆

∣∣∣∣dS
dt

+
S

τphase

∣∣∣∣dx3 ∼=C
∫

∆

∣∣covS∂ui/∂xi

∣∣dx3

The estimated values of the non-dimensional constant C are reported in Figure 13 (orange curve).
Once again, the shape of the initial droplet size distribution does not seem to affect either the
evolution of the correlation coefficient or the non-dimensional constant C during the transient.
In all these cases, the estimated value is 5, an asymptotic value, that is rapidly reached after the
first initial eddy turnover. We can observe a different pre-asymptotic trend for the horizontal and
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Supersaturation production and small-scale velocity statistics
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FIG. 13: Time evolution of the estimated production-planar covariance correlation
coefficient and the proportionality constant. The Pearson correlation coefficient between the
turbulence production term Pt , see equation(21), and the supersaturation-velocity longitudinal

derivative covariance (blue curves) plotted for the horizontal (left, (a)(c)) and vertical (right,
(b)(d)) longitudinal derivatives during the transient. The correlation coefficient peaks around the
first initial eddy turnover time and slowly decreases in magnitude to an asymptote ∼ 0.7 as the

transient progresses.

vertical longitudinal derivative correlation coefficients, which is due to the intrinsic small-scale
anisotropy of the mixing layer between the cloudy region and the clear-air, see the discussion
above.
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IV. CONCLUSIONS

We have considered the relationship between supersaturation fluctuations and turbulent small-
scale dynamics in the context of an inhomogeneous, anisotropic, shearless, turbulent air mixing
layer, which is often used to model the carrier flow at the interface between warm clouds and
unsaturated environmental air. Two initial droplet population types, that is, a 15µm-monodisperse
one and constant-mass-per-volume-class polydisperse one, were tested.

The various time scales pertaining to the microphysics of a droplet population were compared
inside the top of the cloudy region, the layer where the turbulent transport process toward the envi-
ronmental subsaturated air takes place. The evaporation, reaction, and phase relaxation time scales
match for a value close to 20 ∼ 30 s inside the layer just before the location where the supersat-
uration flux reaches its maximum rate of variation. In the case of a polydisperse population, this
match includes the condensation time. The time scales before this spatial location are different,
with differences of the order of one minute. Beyond this location, the evaporation and reaction
times overlap, while the relaxation phase and condensation time scales asymptotically diverge,
since the environment becomes more and more undersatured.

Under the hypothesis of the supersaturation fluctuation depending to a great extent on the small-
scale intermittency of the carrier flow that hosts the vapor and liquid water phases, we have ana-
lyzed the supersaturation balance equation with the aim of evincing their reciprocal correlation. In
order to assess this hypothesis, we compared the estimated planar averages of the time derivative
of the supersaturation and the condensation terms with the planar covariance of the supersaturation
and the longitudinal velocity derivatives. The statistics of the velocity derivatives are in fact partic-
ularly relevant for small-scale dynamics. For the specific shearless turbulent structure considered
here, the longitudinal velocity derivatives are more significant for small-scale intermittency than
the transversal ones, which are null. Moreover, the longitudinal velocity derivative can be consid-
ered as a characteristic measure of the small-scale frequency, τ−1

η . We have found a high value
of the Pearson correlation coefficient, ρPt ,covS∂ui/∂xi

∼ 0.7 for the droplet populations, both inside
the interfacial layer and along the entire simulation transient, which leads to the conclusion that,
in the absence of an updraft, the mismatch of the time derivative of the supersaturation and the
condensation terms is linearly related to the covariance of the suparsaturation and the longitudinal
velocity derivatives of the carrier flow.
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