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Prof. Laura Rondi, Politecnico di Torino

Coordinator: Arianna Alfieri

November 2018 - January 2022



Acknowledgements

I am indebted to my supervisor Carlo Cambini for his support and guidance over the

years. His mentorship has shaped my approach to research.

I am thankful to the referees, Marc Bourreau and Tommaso Duso, for their precious

insights and comments.

I thank the Economics Department of Télécom Paris for welcoming me during my
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Introduction

This thesis comprises three essays – a theoretical and two empirical ones – which study

the dynamics of digital markets, focusing on regulation and competition. Each chapter

analyses a single aspect of this multi-faceted topic: consumer data and competition in the

first chapter; the impact of privacy regulation on website traffic and visitor behaviour in

the second; how digital markets can affect traditional ones by looking at Airbnb’s impact

on the housing market in the third.

The first chapter investigates how a Data Broker (DB) can influence firm entry and

downstream competition in oligopolistic markets by deciding how much data to sell and

to whom. The effect of data on competition is the focus of two main strands of literature.

The first one studies the impact of data exogenously available to firms. A more recent

strand endogenises the information acquisition process, studying a monopolistic DB who

sells data to a downstream duopoly. While the first strand highlights a pro-competitive

effect of data, the second nuances it by showing that the DB can limit consumer surplus

gains by reducing competition through exclusive data sales. This work contributes to the

literature in two ways. First, by modelling an oligopoly market to analyse how the number

of competing firms influences the DB’s strategy and the market outcomes. Second, by

endogenising firm entry.

The model consists of a circular city with entry costs à la Salop, where firms can

enter the market and then acquire consumer data from a DB. Data are used by firms to

identify consumers for price discrimination. The DB has information on all consumers,

and she decides to which firms she sells data, the quantity sold to each one, and the price.

The results show that the DB has the incentive to limit firm entry in the downstream

market, as she benefits from the increased market concentration by extracting firms’

profits through the price of data. Moreover, the DB has the incentive to under-serve the

market by selling data to a subset of firms, so as to maximise their willingness to pay.

Overall, both these effects lead to a reduction in downstream competition. The analysis

shows that this reduction outweighs the pro-competitive effect of data highlighted by the

3



previous literature. Consequently, consumer surplus is always lower in the presence of

a monopolistic DB. These results are robust to the introduction of a privacy cost and

to the reduction of the DB’s bargaining power. Moreover, when taking into account the

consumers’ loss of privacy, the entry barrier effect is mitigated since data become less

valuable to firms. As such, raising consumers’ privacy awareness can be an effective lever

to reduce the consumer harm induced by the DB.

The second chapter assesses the impact on website traffic and visitor behaviour of

the introduction of the European Union’s General Data Protection Regulation (GDPR).

From its adoption, the GDPR has attracted considerable interest from researchers, policy-

makers and industry players across the globe, spurring a fast-growing literature that

studies its impact on digital markets. So far, however, little attention has been devoted

to understanding the legislation’s effect on website’s ability to attract visitors and on the

way those users engage with website content. This work aims to fill this gap.

The analysis exploits the fact that the GDPR applies to EU residents – leaving the

non-EU audience unaffected – to perform a difference-in-differences that relies on the

geographic origin of website traffic. In particular, the treatment assignment identifies the

traffic originated from EU countries, using US traffic as control group. Traffic data from

about 5, 000 web domains in Europe and the US is used. The analysis documents an

overall traffic reduction of approximately 15% in the long-run, and it finds a measurable

reduction of user engagement with websites. These effects unfold fully with a delay,

several months after the date of GDPR entry into force, following the issuance of the first

large fine by the French Authority on Google. The overall traffic reduction is broken down

into detailed acquisition channels. Traffic from direct visits, organic search, email, social

media, display advertising and referrals dropped significantly, but paid search traffic –

mainly Google search advertisement – was barely affected. The work finds evidence of

an inverted U-shaped relationship between website size and traffic reduction due to the

privacy regulation: the smallest and largest websites lost visitors, while medium ones were

not affected or even gained from it. The results appear consistent with the view that

users care about privacy and may avoid visiting a website in response to its data handling

policy. The results also highlight how privacy regulation can impact market structure and

may increase dependence on large advertising service providers. Enforcement matters as

well: the effects were amplified considerably in the long-run, following the first significant

fine issued eight months after full entry into force of the legislation.
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The third chapter studies the impact of Airbnb’s diffusion on house prices and rents

in the Italian cities of Florence, Milan, Naples, Rome, and Turin. Airbnb’s claim is to

provide hosts with an additional source of income from unused capacity. Conversely, crit-

ics argue that – through the platform – landlords substitute from the long- to the short-

term rental market, increasing rents and house prices. A growing number of empirical

studies has recently started to inquire into the platform’s impact on the housing market,

with a recent strand of literature investigating the distributional effects of Airbnb’s het-

erogeneous presence within cities. This work adds to both strands by investigating the

impact of the platform at different levels – overall, across cities, and in the centre and

suburbs – and by estimating the spillover effects of Airbnb presence in the city centre on

the rents and house prices in the periphery.

The empirical strategy accounts for endogeneity and simultaneity problems. The

analysis exploits an instrumental variable obtained from the interaction of an out-of-

sample measure of tourist attraction that varies within cities (derived from Tripadvisor),

and a measure of public awareness of Airbnb that varies over time (derived from Google

searches). The analysis documents an increase in rents and, especially, in sale prices

due to Airbnb’s diffusion. Overall, an increase of 1 percentage point in Airbnb density

rises house prices by 0.63%, translating to a 44.24 €/m2 rise over the period of the

analysis. However, the effect varies greatly across and within cities. Across cities, sale

prices increase everywhere, from 162.31 €/m2 in Milan to 19.37 €/m2 in Rome. Rents

are significantly affected in Florence and Naples, with effects that are sizeable when

compared to price variations during the period of the analysis. The within-city effect

is extremely heterogeneous, with some cities where it interests centre and suburbs and

others where only the centre is affected. Whether the effect increases or reduces the gap

between them changes on a by city basis, depending on the initial conditions of the two

areas. Finally, the work finds evidence that the increase in Airbnb density in central areas

has a negative effect on the property values in the suburbs. This is possibly due to the

centre’s increasing attractiveness at the expense of the suburbs following its increase in

localised amenities. The results speak of an overarching effect, but also of differentiated

impacts which require context-specific policies and evaluations.
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CHAPTER 1

User Data and Endogenous Entry in Online Markets∗

Laura Abrardi, Carlo Cambini, Raffaele Congiu, Flavio Pino†

This work investigates how the presence of a Data Broker (DB), who sells
consumer information to downstream firms, affects firm entry and consumer
surplus in an oligopoly market with horizontally differentiated goods, in which
data allow firms to price discriminate. We show that the DB reduces firm
entry by choosing the price and quantity of data and by selling data only
to a subset of the entering firms. By doing so, the DB maximises firms’
willingness to pay for data. Overall, the presence of the DB reduces both
downstream competition and consumer surplus. Our results are robust to the
introduction of a privacy cost and to alternative selling mechanisms entailing
different degrees of DB’s bargaining power.

*We thank Paul Belleflamme, Marc Bourreau, Antoine Dubus, Tommaso Duso, Johannes Johnen,
Elisabetta Iossa, Tommaso Valletti, as well as participants to the 2022 Lidam seminar (Louvain) for
useful comments.

†Politecnico di Torino, Department of Management, Corso Duca degli Abruzzi, 24, 10129 Turin,
Italy.
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1. Introduction

Invisible hands move the market of data, but they might not be those of competition.

Data Brokers (DBs) track consumers online, hoard massive amount of information and

sell that intelligence in the form of targeted market segments based on the customer’s

needs. Though consumers can benefit from firms’ targeted commercial offers, DBs might

also have the power to affect market entry and steer competition simply by choosing to

which firms (and to what extent) data are sold. This paper analyses a market where

a DB sells consumer information to a number of horizontally differentiated downstream

firms, which can use data for price discrimination. We highlight how the DB, by choosing

the firms to which data are sold, and the price and quantity of data sold, can affect firm

entry, firm profits and consumer surplus.

The advent of the digital economy has made personal data widely available. Once

aggregated and processed, these data can be used to perform market research, customer

base segmentation and targeted advertising. First degree price discrimination, once only

a theoretical possibility, has become a reality.1 However, collecting and processing data

at a scale that makes it valuable requires unique resources and capabilities. The demand

for such abilities has determined the growth of the DB sector, a highly concentrated in-

dustry whose revenue is estimated at USD 200 billion (FTC, 2014; Crain, 2018). DBs’

business model compounds both online and offline sources, collecting data from commer-

cial, government, and other publicly available sources – e.g., blogs, social media. Since

they typically do not get their data directly from consumers, DBs are often away from the

media’s spotlight or people’s awareness: yet, DBs are building intricate profiles with thou-

sands of records on almost every household (FTC, 2014). Working in the background,

DBs mostly engage in business-to-business relations, selling the processed information to

downstream firms who want to reach specific consumers with targeted offers.

Given the huge potential to influence downstream competition, policymakers have

often expressed concerns regarding the reach and the lack of transparency of this highly

concentrated, and yet virtually unregulated industry. Recent literature (see, e.g., Montes

et al., 2019) has pointed out how DBs have the incentive to increase some firms’ market

power by selling data selectively in downstream duopolistic markets. However, little is

1Mikians et al. (2012) show that individual consumer data such as geolocalization are used by firms
to price discriminate them, with price differences of up to 166%. Similarly, Aparicio et al. (2021) show
that the algorithms used by the leading online grocers in the U.S. personalise prices at the delivery
zipcode level.
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known on the strategies used by DBs when they serve markets populated by more than

two competing firms, and how these strategies influence market entry and competition,

firms’ profits and consumer surplus.

The aim of this paper is to understand how a DB can influence firm entry and down-

stream competition in oligopolistic markets by deciding to whom and how much data to

sell. We consider a circular city model with entry costs à la Salop (1979), where firms can

enter the market and then acquire consumer data from a DB. Data are used by firms to

identify consumers for price discrimination. The DB has information on all consumers,

and she decides to which firms she sells data – making them informed – how much data

she sells to each one (e.g., the full dataset or only a partition of it), and the price of data.

We find that the DB’ optimal strategy entails a reduction of firm entry in the down-

stream market, relative to the benchmark case in which data are not available or are

provided exogenously to the firms (as in Taylor and Wagman, 2014). Intuitively, a higher

level of market concentration increases the overall profits of the market, which the DB

can then extract through a higher price of data. In addition to this entry barrier effect,

we also find that the DB influences the downstream market structure by selectively selling

data to a subset of the entered firms. The possibility to compete having information that

is precluded to rivals increases the firms’ willingness to pay for data, and therefore the

DB’s profits. Overall, the DB lowers competition in the downstream market both by

reducing entry, and by providing a competitive advantage to some of the firms. The re-

duction in competition ultimately harms consumers, who are all worse off when compared

to a setting where data are not available.

We extend the basic model in three ways. First, we introduce a privacy cost for

consumers when they receive a tailored offer (e.g., the annoyance of being contacted

by somebody they have not disclosed their data to). When we take into account the

consumers’ loss of privacy, we find that the entry barrier effect is mitigated, since data

become less valuable for firms. As such, raising consumers’ awareness about privacy can

be an effective lever to reduce the consumer harm induced by the DB.

Second, we show that the entry barrier effect is robust to alternative selling mechan-

isms adopted by the DB, namely the auction mechanism with or without reserve prices

(see, e.g., Bounie et al., 2021) and Take It Or Leave It offers (as in Bergemann and

Bonatti, 2019).2 However, differently from the auction mechanism, under Take It Or

2The use of direct sales when selling data has been documented by the United States subcommittee
on antitrust (Judiciary Committee, 2020).
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Leave It offers the DB prefers to sell data to all entering firms. Interestingly, the DB’s

equilibrium strategy depends on the value of transportation costs relative to the entry

cost. When transportation cost are low relative to the entry fixed cost, fewer firms enters

the market, and the DB sells the whole dataset. Conversely, when transportation cost

are high relative to the entry fixed cost, the market is less concentrated and the DB sells

non-overlapping data partitions. Take It Or Leave It offers entail the highest consumer

surplus among the analysed selling mechanisms.

Finally, we explore the possibility that the data sale occurs prior to firms’ entry. This

is the case, for instance, of emerging digital markets, where potential entrants anticipate

the value of obtaining consumer data and thus make their entry decision after having

obtained (or not obtained) data. Under this alternative timing, we find that the DB

always maximises her entry barrier effect, regardless of the selling mechanism. This

strategy allows her to increase concentration in the downstream market, leading to higher

profits and higher consumer harm compared to the basic model.

The literature studying the impact of data on competition is growing. Firms can use

consumer data to identify naive consumers (Johnen, 2020), or to distinguish between con-

sumer groups with different price sensitivities (Colombo, 2018). de Cornière and Taylor

(2020) provide a general framework in which data are a revenue-shifter, for a given level

of consumers’ utility. This framework usefully finds a wide range of applications in which

data increase the quality of the information, but is ill suited for price discrimination in

spatial competition settings where data provide information on the type of consumers

(Armstrong and Vickers, 2001). When firms exogenously have data, the literature high-

lights a pro competitive effect, both under monopoly (Belleflamme and Vergote, 2016)

and under competition.3 As informed firms compete more fiercely, consumers benefit

from lower prices. Although Taylor and Wagman (2014) show that the pro-competitive

effect of data limits firm entry, this is due to the erosion of profits stemming from the in-

tense competition, and not from the intervention of a DB who maximises the downstream

surplus. A more recent strand of literature has endogenised the information acquisition

process, either through firms’ repeated interactions with consumers (Villas-Boas, 2004;

Acquisti and Varian, 2005; Liu and Serfes, 2004; Bergemann and Bonatti, 2011; Hagiu

and Wright, 2020) or by acquiring data from strategic actors (Bergemann and Bonatti,

3See for instance Thisse and Vives (1988), Shaffer and Zhang (1995), Bester and Petrakis (1996),
C. R. Taylor (2003), Liu and Serfes (2004), Taylor and Wagman (2014), Shy and Stenbacka (2016) and
Chen et al. (2020).
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2015; de Cornière, 2016; Gu et al., 2019). In particular, Braulin and Valletti (2016),

Montes et al. (2019) and Bounie et al. (2021) consider a monopolistic DB who sells data

to a downstream duopoly through a series of auctions with negative externalities, as in

Jehiel and Moldovanu (2000). These studies highlight how a DB can limit competition

between two existing firms by selling data exclusively to one of them, thus extracting

higher industry profits at the expense of consumer surplus. However, when three firms

are present, Delbono et al. (2021) find that the DB always sells data to two or more firms

– depending on the selling mechanism – and thus exclusive sales are never part of the

equilibrium. A parallel stream of literature studies the role of competition between DBs

on data collection. In particular, Ichihashi (2021), by studying a market with many data

intermediaries and one downstream firm, shows that the non-rivalrous nature of data can

lead to significant concentration in data markets.

We contribute to the existing literature in two ways. First, we extend the duopolistic

setup to analyse how the number of competing firms in an oligopoly market influences the

DB’s strategy and the subsequent market outcomes. Second, we endogenise the number

of firms present in the market by modelling their entry. This allows to highlight a novel

effect of data, which we label as entry barrier effect, which emerges as a result of the

DB’s profit-maximising strategy. Our analysis shows that the reduction in competition

given by the DB’s entry barrier effect outweighs the pro-competitive effect of data, so

that consumer surplus is ultimately reduced. To our knowledge, this is the first paper to

highlight the entry barrier effect of the DB’s behaviour and its potential anticompetitive

nature.

From a policy perspective, a critical concern pertains to the concentration of the DBs’

market and its effects on consumers. A key insight of previous literature on monopolistic

DBs is that antitrust authorities should ban exclusive data deals to foster competition

and protect consumers when the downstream market is a duopoly. However, our results

suggest that in markets with more than two firms, the harm to competition stems from

the entry barrier raised by a monopolistic DB. The negative effects of the entry barrier

on consumers can be reduced by enforcing data sharing obligations with all firms or by

intervening on the selling mechanism adopted by the DB. We find that the DB sells data

to all firms if Take It Or Leave It offers (TIOLI) are used for the data sale, so that the

TIOLI mechanism would be better for consumers than sales with auctions, especially in

markets with high transportation cost relative to the entry fixed cost. While both these
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measures would be an effective tool to raise competition in the market, they might also

involve a higher loss of consumer privacy.

The remainder of the paper is organised as follows. Section 2 presents the model, and

Section 3 computes firms’ equilibrium prices. Section 4 computes the DB’s profits and

her optimal strategy and discusses the consequent market outcomes. Section 5 analyses

three model’s extensions: introducing a privacy cost, reducing the DB’s bargaining power,

and allowing her to commit to data prices prior to firm entry. Section 6 concludes by

discussing our results. All proofs are contained in the Appendix.

2. The Model

We consider a market where horizontally differentiated firms sell a product to a mass

of consumers, whose preferences can be observed by a firm only if it purchases customer-

specific data from a Data Broker (DB). For example, firms sell their products via e-

commerce solutions, and the possibility of identifying the consumer through data acquired

from a DB allows the firm to make personalised offers.

2.1. Consumers, Firms and the Data Broker

We consider a free-entry game with a market represented by a circular city of length 1

(Vickrey, 1964; Salop, 1979). Consumers are uniformly distributed on the circumference

and normalised to 1, and their locations are indexed by x ∈ [0, 1) in counter-clockwise

order. Let us denote with n the number of symmetric firms that enter the market, indexed

by i ∈ {0, 1, 2, . . . , n− 2, n− 1}.4 Their marginal cost of production is normalised to 0,

while their entry in the market entails a cost F . We can think of F as the total costs

incurred in the process of digitisation (see Anderson and Bedre-Defolie, 2021), such as

the creation of an online retail shop. We assume that firms enter the market choosing

equally spaced locations, so that the location of a generic firm i is indexed by i
n
. Once

firms enter the market, each consumer buys at most one unit of the product.

There is one Data Broker (DB) who has a dataset with the location of all consumers in

the market. The DB can sell this information to firms that entered the market, allowing

them to perform first-degree price discrimination on the identified consumers. The DB

offers to each firm a data partition by setting up n auctions. Let us denote with di ∈ [0, 1]

4As standard in the literature on markets with entry, we assume sequential entry to avoid coordination
problems and ignore integer constraints on n. A similar approach has been recently adopted in Rhodes
and Zhou (2021).
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the data partition offered to firm i.5 A partition di allows a firm to price discriminate on an

arch of size di that contains firm i’s location.6 The partition set containing all partitions

offered by the DB is P = (d0, d1, d2, . . . , dn−1). Once the auctions are concluded, we refer

to the partition set containing all partitions sold in equilibrium as P∗.

If a firm obtains a partition, it can offer location-specific tailored prices pTi (x) to

the identified consumers and a basic price pBi to the others. Note that the number of

consumers the firm serves through tailored prices depends on the amount of data it

obtains.

2.2. Payoffs and Timing

When buying from firm i, a consumer located in x derives a net utility equal to:

U(x, i) = v − pTi (x)− t ∗D(x, i)

if firm i has data on that consumer, or

U(x, i) = v − pBi − t ∗D(x, i)

if it does not, where v is the gross utility, pTi (x) ≥ 0 is the tailored price of the product

set by firm i to the identified consumer in position x, pBi ≥ 0 is the basic price set by

firm i for the unidentified consumers, t > 0 is the transportation cost and D(x, i) is the

shortest arch between the consumer and firm i. A consumer in x buys from the firm

i that maximises her utility U(x, i). We assume that the market is fully covered: i.e.,

the gross utility is high enough that all consumers make a purchase. The location of an

indifferent consumer between firms i and i+1 is x̂i,i+1, i.e., U (x̂i,i+1, i) = U (x̂i,i+1, i+1).

A firm’s profits can thus be defined as the integral of its prices over its market segment.

Given that a firm offers a constant basic price to unidentified consumers, we can write

its profits prior to paying for data as

πi =

∫ i
n
+

di
2

i
n
− di

2

pTi (x) dx+ pBi (x̂i,i+1 − x̂i−1,i − di)

where the first term on the right-hand side represents firm’s profits over the identified

consumers, while the second term represents its profits over the unidentified consumers.

From this general expression we can see how the amount of data di influences firm i’s

5By assuming public DB’s offers, we rule out situations like secret contracting games as in Hart and
Tirole (1988). In our model, firms are ex-ante identical and the DB’s decision to sell data to any specific
firm does not depend on the firm’s identity.

6Through price discrimination, firms can extract more surplus from consumers who are close to their
location. Since the DB’s profits are directly proportional to firms’ profits (gross of the price paid for
data), her best strategy requires selling partitions containing firms’ locations (see Bounie et al., 2021).
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strategy. First, di determines the number of consumers the firm can offer a tailored price

to. Second, di also influences the profits firm i makes from unidentified consumers, as a

higher amount of data implies a smaller share of unidentified consumers, and thus less

profits extracted through firm i’s basic price. Finally, firm i’s basic price, and in turn its

profits, are influenced by its rivals’ basic prices, which in turn depend on the amount of

data they obtain. As such, firm i’s prices, and thus its profits, depend on P. We denote

firm i’s basic price and profits under a partition set as pBi (P) and πi(P) respectively.

Following Bounie et al. (2021), we assume that the DB sells data through a system of

auctions with reserve prices. This assumption implies that the DB has all the bargaining

power and can thus extract all surplus from firms (we relax this assumption in Section

5.2, where we assume alternative selling mechanisms, namely auctions without reserve

prices and Take It Or Leave It offers). The DB chooses the partition set P and sets

up n auctions. In each auction, all firms can participate and the DB sells a partition

di that is particularly valuable to a specific firm, being centred on that firm’s location.

We denote a firm’s profits when it wins its auction as πW
i (P), while its profits when it

loses are denoted as πL
i (P) . While a generic firm i can bid in every auction, it is mostly

interested in the one where di is sold. Thus, firm i valuation of di is not matched by any

other firm. As such, firm i could bid lower than its true valuation and still obtain di:

this would result in the DB not being able to extract all surplus. To avoid this scenario,

the DB sets a reserve price wi for each auction that is equal to firm i’s true valuation of

di. We define a firm’s true valuation of data as the difference in firm’s profits between

winning or losing its specific auction under a partition set P:

wi = πW
i (P)− πL

i (P)

The vector of reserve prices is denoted as w = (w0, w1, w2, . . . , wn−1). This selling

mechanism implies that, while any firm could bid in any auction, the DB can tailor each

auction to maximise the willingness to pay of some firms. As such, when the DB sets up

an auction that awards a partition centred on firm i’s location, we interchangeably refer

to it as an offer made to firm i or as firm i’s auction.

Finally, similar to Bounie et al. (2021), the DB declares the maximum number of

auctions she is going to fulfil, k, which is common knowledge prior to firms’ bidding.

A fulfilled auction – or won auction, from the viewpoint of the firm – is one where

the transaction takes place. Declaring the maximum rather than the actual number of
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fulfilled auctions is functional to minimise firms’ profits if they lose their auction.7 The

DB fulfils a subset J of auctions after the firms have placed their bids. The reserve price

wi allows the DB to set the price of data equal to firm i’s true valuation of data, as priorly

described. As such, DB’s profits can be written as the sum of firms’ winning bids, which

are equal to their reserve prices:

πDB(P,J) =
∑
i∈J

wi

We denote the cardinality of J as j: as such, j ≤ k is the number of fulfilled auctions.

The timing of the model is as follows:8

Stage 1. Firms enter the market and pay the fixed cost F .

Stage 2. The DB chooses a partition set P, the reserve prices w, and the max-

imum number of auctions she will fulfil k. All this information is common know-

ledge and offers are non-renegotiable.

Stage 3. Firms that entered the market individually and simultaneously bid in

the auctions.

Stage 4: The DB observes the bids and chooses a subset J of auctions to fulfil.

The winning firms receive their respective partitions and pay their price to the

DB, corresponding to wi = πW
i (P)− πL

i (P).

Stage 5. Firms set basic prices pBi for the anonymous consumers.

Stage 6. Firms set tailored prices pi
T(x) for the identified consumers if they have

won an auction. Consumers purchase the product and profits are made.

7In a Hotelling setting with two firms, the DB’s optimal strategy involves setting up two auctions
and declaring that only one will be fulfilled (Montes et al., 2019; Bounie et al., 2021). This way, a firm
knows that if it loses its auction, the other firm will win it. This strategy allows the DB to maximise
firms’ valuation of data, as firms are informed and competing against an uninformed rival if they win,
and the opposite if they lose. However, declaring the number of fulfilled auctions is no longer optimal
when moving to a circular city with n ≥ 3, as firms always face two direct rivals. In this setting, the DB
can maximise firms’ evaluation of data only if she can change the number of fulfilled auctions depending
on firms’ behaviour. Consider a case where n = 3. A firm’s profits are maximised when it is informed
and competing against uninformed rivals, and thus when only its specific auction is fulfilled. On the
other hand, a firm’s profits are minimised when it is uninformed and competing against both informed
rivals, resulting in two fulfilled auctions. As such, declaring the exact number of fulfilled auctions would
be suboptimal for the DB, as she would not be able to simultaneously maximise firms’ profits when they
win and minimise them if they lose. By instead declaring the maximum number of fulfilled auctions, the
DB can maximise firms’ valuation of data. Sticking to the example with n = 3, the DB can declare that
she will fulfil a maximum of two auctions. If all firms do not deviate from their equilibrium strategies,
only one auction will be concluded, maximising the winning firm’s profits. On the other hand, firms
know that if they deviate, the DB can let both of their rivals win their respective auctions and thus
minimise their profits.

8Stage 6 follows Stage 5 to ensure the existence of an equilibrium in pure strategies. See also Montes
et al. (2019) for an analogous approach.
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In the following sections we proceed by backward induction, identifying the firms’ basic

and tailored prices, and the DB’s optimal strategy.

2.3. DB’s Strategies

The DB can influence the degree of downstream competition by determining if and

to what extent a firm and its rivals have access to consumer data. As already noted, she

does so by deciding the maximum number of fulfilled auctions k, the subset of fulfilled

auctions J, the reserve prices w and the partition set P. Although this would leave us

with a conspicuous set of strategies, we can reduce them by eliminating some strategies

that can never be part of an equilibrium, as stated by the following proposition.

Proposition 1. Only two candidate equilibrium strategies are possible: i) the DB

sells equally sized partitions to all the firms that entered, or ii) the DB sells equally sized

partitions to half of the entered firms, alternating between informed and uninformed ones.

Proof. See Appendix I. □

Proposition 1 states that the set of candidate equilibria includes only two types of

strategies, namely either selling data to all entered firms, or selling data to every other

firm. Intuitively, our circular city can be seen as a concatenation of Hotelling segments

with symmetric firms located at their extremes. In equilibrium, the DB adopts the

profits-maximising strategy in one of these Hotelling segments and replicates it on all

other segments. By doing so, the DB can only have two viable strategies. First, she

can sell equally sized partitions to both firms of each Hotelling segment. Replicated on

all segments, this strategy implies that the DB sells equally sized partitions to all the

firms that entered the market. We refer to this strategy as the sale to all firms, and we

denote it with the subscript A. Second, the DB can sell data to one of the two firms of

each Hotelling segment. Replicated on all segments, this strategy implies that the DB

sells equally sized partitions to half of the firms, alternating those with data and those

without. We refer to this strategy as the sale to alternating firms, denoting it with the

subscript H. Notably, under both strategies a firm always faces direct rivals that obtain

same-sized partitions: as such, in equilibrium the DB offers partitions that are centred on

firms’ locations. Suppose that firm i is offered a partition di: since both its direct rivals

obtain equally sized partitions, in equilibrium the DB sells to firm i a partition such that

it can identify consumer segments of size di
2
on each arch on which it competes.
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Under the sale to all firms, the DB sets di = dA ∀ i, thus offering a partition set

PA = (dA, dA, . . . , dA). Since the DB fulfils all auctions, k = j = n, and the partition

set offered to firms is equal to the partition set resulting in equilibrium, PA = P∗
A. To

better explain the implications of this strategy, we focus on a generic firm i. If firm i

wins its auction, its profits are πW
i (P∗

A) = πW
i (dA, dA, . . . , dA, dA, dA, . . . , dA): that is, it

is an informed firm competing against informed rivals. If firm i loses, it becomes the only

uninformed firm in the market, with profits πL
i (P

∗
A) = π

L

i (dA, dA, , . . . , dA, 0, dA, . . . , dA).

While this strategy maximises the number of paying firms, it does not maximise individual

firms’ willingness to pay. Previous literature on Hotelling settings (Thisse and Vives,

1988) has highlighted how data have two effects on firms’ profits. An informed firm can

extract more surplus from the identified consumers, increasing its profits. Moreover, an

informed firm engages in price wars as it tries to poach the consumers of its rivals. These

two effects are referred to by the literature as surplus extraction effect and competition

effect respectively. The first one increases firms’ profits, while the second one decreases

them. In particular, when an informed firm faces informed rivals, the competition effect

dominates the surplus extraction effect, and firms’ profits decrease. As such, an individual

firm’s willingness to pay under the sale to all firms is lower than under the sale to

alternating firms.

Under the sale to alternating firms, the equilibrium outcome entails di = dH ∀ i ∈

{0, 2, 4, . . . , n − 2}, and di = 0 ∀ i ∈ {1, 3, 5, . . . , n − 1}. Therefore, the partition set

relative to the equilibrium outcome is P∗
H = (dH, 0, dH, 0, . . . , dH, 0). Since the DB may

decide not to fulfil some auctions, the partition outcome P∗
H may differ from the partition

set offered to firms, denoted as PH. In particular, to achieve the partition outcome P∗
H,

the optimal partition set PH offered by the DB under the sale to alternating firms is

defined by the following proposition.

Proposition 2. Under the sale to alternating firms, given the partition set outcome

P∗
H = (dH, 0, dH, 0, . . . , dH, 0), the DB offers the partition set PH = (dH, 1, dH, 1, . . . , dH, 1).

Proof. See Appendix II. □

Proposition 2 states that, under the sale to alternating firms., the DB offers the whole

dataset in all auctions that will not be fulfilled in equilibrium, and she offers dH in all

auctions that will be fulfilled. This strategy maximises the willingness to pay of the firms

whose auctions will be fulfilled by the DB in equilibrium. The intuition is the following.
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The DB is not constrained to fulfil all auctions, as she may fulfil only a subset of the

auctions she sets up. In particular, in the sale to alternating firms, the DB can set up

auctions for all firms, even though she means to fulfil only half of them. By doing so,

the DB can use the auctions she will not fulfil as a threat to increase firms’ willingness

to pay for data, and consequently her profits. In fact, the DB’s profits are equal to the

difference between firms’ profits when winning their auction and when losing it. If firm i

is offered di = dH and wins it auction, it competes against uninformed direct rivals (i.e.,

i+1 and i−1). This raises firm i’s profits, as it becomes an informed firm competing

against uninformed rivals. Conversely, if firm i loses its auction, the DB lets firm i’s

rivals win their respective partitions and sets such partitions to the full dataset. This

minimises firm i’s profits when losing, as it would be forced to compete without data

against completely informed rivals. Overall, the DB’s strategy of offering the full dataset

in auctions that are not meant to be fulfilled hurts firm i the most if it loses its specific

auction, increasing firm i’s willingness to pay for data and, in turn, DB’s profits.9

To maximise the threat posed on firms receiving dH, the DB declares that she will

fulfil at most k = n
2
+ 1 auctions. Under this strategy, if firm i loses its auction, the DB

can make both its rivals win their respective auctions, since k = n
2
+ 1.

In the following sections we focus on subgame perfect Nash equilibria under these two

strategies.

3. Equilibrium Prices

We proceed by backward induction, and find the equilibrium prices and firms’ profits

under the DB’s strategies described in Section 2.3.

As a benchmark, we refer to the Salop (1979) model with marginal costs normalised

to 0. In this setting, each firm sets a price pi
∗ = t

n
and obtains a market share of 1

n
,

resulting in profits πi
∗ = t

n2 − F . The number of entering firms is n∗ =
√

t
F
, resulting in

firms’ prices pi
∗ =

√
tF and profits πi

∗ = 0. Consumer surplus is CS = v− 5
4

√
tF , which

is also equal to total surplus (Taylor and Wagman, 2014).

In our setup, the indifferent consumers between firms i−1 and i, and between i and

i+1, are:

x̂i−1,i =
2i− 1

2n
+

pBi − pBi−1

2t
and x̂i,i+1 =

2i+ 1

2n
+

pBi+1 − pBi
2t

(1)

9As already pointed out by Bounie et al. (2021; footnote 14), who obtain an analogous result in a
duopoly setup, the threat of selling the full dataset to firm i’s rivals is not renegotiation proof. In Section
5.2 we extend our model to other selling mechanisms in which the DB’s strategy is renegotiation proof.
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If firm i wins the auction, it obtains the data di and offers a tailored price pTi (x) to the

identified consumers for each arch in which it competes, matching the competitor’s offer

in utility level and resulting in

pTi (x) =

pBi−1 + 2tx− t
n
(2i− 1) for x ∈ [ i

n
− di

2
, i
n
]

pBi+1 − 2tx+ t
n
(2i+ 1) for x ∈ [ i

n
, i
n
+ di

2
]

(2)

Notice that tailored prices decrease as the rival’s basic price decreases: as the competitive

pressure rises, firms lower their tailored prices to match the rival’s basic price. Depending

on the amount of data di obtained, firm i can serve both identified and anonymous

consumers on both arches. When firm i is offered di and wins the auction, its profits

prior to paying for data are given by:

πW
i (P) =

∫ i
n

i
n
− di

2

pTi (x) dx+

∫ i
n
+

di
2

i
n

pTi (x) dx+ pBi (P) (x̂i,i+1 − x̂i−1,i − di)− F (3)

given the offered partition set P ∈ {PH,PA}. The first two components of Equation

(3) represent profits on the identified segment on the two sides of firm i and depend

on the tailored price, while the third component represents profits on the anonymous

segment and depends on the basic price. The profits on the identified segments are due

to a surplus extraction effect: as firm i can identify consumers, it can offer them tailored

prices to exactly match their willingness to pay for its product. Using the expression of

the indifferent consumers from Equation (1) and of the tailored prices in Equation (2),

we can rewrite the profits of the generic informed firm i in Equation (3) as

πW
i (P) =

di
2n

(
2t+ npBi−1 (P) + npBi+1 (P)− ntdi

)
+ pBi (P)

(
n
(
pBi+1 (P) + pBi−1 (P)− 2pBi (P)

)
+ 2t

2nt
− di

)
− F (4)

Conversely, if firm i loses the auction, it becomes uninformed obtaining profits

πL
i (P) = pBi (P)

(
n
(
pBi+1(P) + pBi−1(P)− 2pBi (P)

)
+ 2t

2nt

)
− F (5)

given the offered partition set P ∈ {PH,PA}. By taking the first-order condition of

Equations (4) and (5) with respect to pBi (P), we obtain the firm’s reaction function on

basic prices:

pBi(W) (P) =
t

2n
− tdi

2
+

pBi+1 (P) + pBi−1 (P)

4
(6)

pBi(L) (P) =
t

2n
+

pBi+1 (P) + pBi−1 (P)

4
(7)
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The reaction function in Equation (6) is analogous to the reaction function of the standard

Salop (1979) model, except for the term − tdi
2
in the expression of pB

i(W)(P). The term − tdi
2

is related to the competition effect of data: as firm i acquires more data, the anonymous

consumers it reaches are on average farther from its location, requiring the firm to lower

its basic price.

3.1. Sale to Alternating Firms

Recall that, from Proposition 2, under the strategy of selling to alternating firms, a

subset of firms are offered a positive partition of data dH, whereas others are offered the

full dataset – although their auctions will not be fulfilled.

Let us first analyse the equilibrium in the subgame in which the firms that are offered

di = dH win their auction, while the firms that are offered the full dataset lose their

auctions. In particular, let i, i+2, i+4 . . . be the firms that obtain dH and thus exhibit

the reaction function expressed in Equation (6), while firms i−1, i+1, i+3 . . . compete

without data and thus present the reaction function expressed in (7). The system of

reaction functions for all firms allows us to obtain the equilibrium basic prices and, by

using (4), firm i’s profits, as illustrated in the following proposition.

Proposition 3. Under the sale to alternating firms, if firm i wins its auction and

obtains dH while its direct rivals lose their respective auctions, firm i’s basic price is

decreasing in dH if dH < 3
2n
, and is zero otherwise:

pB∗
i (P∗

H) =


t
n
− 2

3
tdH for dH < 3

2n

0 for dH ≥ 3
2n

Firm i’s profits follow an inverse U-shaped curve with respect to data for dH < 3
2n
, and

are constant otherwise:

πW∗
i (P∗

H) =


t
n2 +

2dHt
3n

− 7td2H
18

− F for dH < 3
2n

9t
8n2 − F for dH ≥ 3

2n

Moreover, firm i’s profits are always higher than in the benchmark case.

Proof. See Appendix III. □

From the expression of firm i’s basic price in Proposition 3, we observe that this price

is positive only if dH < 3
2n
. When dH < 3

2n
, firm i’s basic price is decreasing in dH, while

its profits follow an inverse U-shaped curve with respect to dH. At first, the surplus
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extraction effect is stronger than the competition effect, increasing profits. However, the

marginal surplus extraction is decreasing in dH while the competition effect is linear,

causing profits to peak and then decrease. After dH ≥ 3
2n
, firm i’s basic price reaches

zero and the effect of incremental data vanishes, because firm i cannot poach additional

consumers: those who are close to the uninformed rivals always prefer them over the

informed firm due to their positional advantage. Note that firm’s profits are negatively

related to n. In fact, a higher number of firms intensifies competition, lowering basic

prices, and at the same time it reduces firms’ market segments.

We now focus on the subgame where firm i is offered dH but loses its auction, while its

direct rivals are offered di+1 = di−1 = 1 and win their auctions. Then, firm i becomes an

uninformed firm competing against informed rivals. By offering the full dataset to firm

i’s rivals and choosing to fulfil their auctions, the DB minimises firm i’s profits when it

loses the auction.

In this scenario, firm i’s profits are expressed by Equation (5), where P = PH and

pBi+1 = pBi−1 = 0 because, being di+1 = di−1 = 1 > 3
2n
, they earn all of their profits through

tailored prices. Firm i’s equilibrium price and profits when losing the auction, given the

offered partition set P = PH expressed in Proposition 2, are summarised in the following

proposition.

Proposition 4. Under the sale to alternating firms, if firm i loses its auction while

its direct rivals obtain di+1 = di−1 = 1, firm i’s basic price and profits are respectively

pB∗
i (PH) =

t
2n

and πL∗
i (PH) =

t
4n2 − F .

Proof. See Appendix IV. □

Proposition 4 highlights that firm i’s profits when losing the auction do not depend on

dH and are always lower than its profits in the benchmark case. Moreover, by comparing

the results of Propositions 3 and 4, we note that firm i’s profits when losing the auction

are always lower than its profits when it wins its auction.

It is worthwhile to note that firms’ profits are positive even when they lose the auction

and compete against fully informed rivals, due to their horizontal differentiation which

ensures them a market share near their location. Therefore, uninformed firms can still

make a profit. This feature has important implications for the number of entering firms,

as we highlight in Section 4.1.
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3.2. Sale to All Firms

We now consider the alternative DB’s strategy of the sale to all firms. We first

analyse the subgame in which a generic firm i wins its auction, and then we proceed to

the subgame in which it loses it – given that all other firms win their respective auctions

and receive data.

If the offered partition set is P = PA and all firms win their respective auction, firm

i’s profits are expressed by Equation (4), for all i, and all firms obtain a partition of size

di = dA centred on their respective location. Firms’ reaction functions are expressed by

(6), where P = PA and di = dA, for all i. The system of all reaction functions allows

us to obtain the equilibrium basic prices and firms’ profits, as reported in the following

proposition.

Proposition 5. Under the sale to all firms, if all firms win their respective auctions

and obtain data dA, firm i’s basic price is

pB∗
i (PA) =


t
n
− tdA for dA < 1

n

0 for dA ≥ 1
n

for all i. Firm i’s profits are

πW∗
i (PA) =


t
n2 −

td2A
2

− F for dA < 1
n

t
2n2 − F for dA ≥ 1

n

Proof. See Appendix V. □

By observing the expressions of pB∗
i (PA) and πW∗

i (PA) in Proposition 5, we note that

firm i’s basic price and profits when all firms win their auction are both decreasing in dA

if dA < 1
n
, and zero otherwise.

Absent data, the indifferent consumer is in the middle of the arch between two firms

(i.e., at a distance 1
2n

from the firms’ locations), and each firm sets an equal basic price.

As the data dA sold to the two firms increases, the location of the indifferent consumer

remains the same due to firms’ symmetry, but firms start price discriminating on ever

more consumers. This causes the surplus extraction effect that increases profits. At

the same time, however, the competition effect lowers all basic prices, and thus profits.

Moreover, as the rival reduces its basic price, so does firm i with its tailored price, to

match the rival’s offer. This lowers the positive impact on profits of the surplus extraction

effect. Although profits are affected by the two opposite forces of the competition and
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surplus extraction effect, the first is dominant due to the symmetry of firms’ information,

which intensifies their competition and produces a strong reduction of prices, thereby

reducing profits.

However, above a threshold – namely, dA ≥ 1
n
– firms identify all consumers up to

the indifferent one in the middle of the arch. Since now firm i only serves identified

consumers through tailored prices, it has an incentive to set pBi (PA) as low as possible

to try expanding its market segment, as the basic price in this scenario only influences

the indifferent consumer’s location. After this threshold, additional data stop having an

impact since they identify consumers who are too close to firms’ rivals to be poached.

We now focus on the subgame in which firm i loses its auction, while its competitors

obtain data. Although this subgame is off the equilibrium path, it is necessary to know

firm i’s payoff in this subgame to assess its willingness to pay for data. Since firm i does

not obtain data, its profits are defined by Equation (5), while all other firms’ profits can

be expressed as in (4). From the system of all reaction functions, we obtain the following

result.

Proposition 6. Under the sale to all firms, if firm i loses its auction while all firms

i′ ̸= i win it and obtain dA > 0, firm i’s basic price and profits are strictly decreasing in

the quantity of data if dA < 3
2n
, and are constant otherwise.

Proof. See Appendix VI. □

Being the only uninformed firm in the market, firm i is at a disadvantage vis-à-vis its

rivals. First, firm i cannot adopt targeted pricing, thus limiting the profits it can extract

from consumers. Second, the decrease in basic prices caused by the competition effect

can be partially beneficial to informed firms: since they can lower their basic price more

than the uninformed firm, they can expand their market segments. This second effect is

stronger the closer the informed competitor is to the uninformed firm.

To gain further insights on this second effect, without loss of generality, let us focus on

firm i+1: on one side, it competes against an uninformed firm (i.e., i), while on the other

it competes against an informed one (i+2). In this situation, firm i+1 optimal strategy

is to maximise the profits on the arch shared with firm i, on which it has an advantage,

while sacrificing some profits on the arch shared with firm i+2. To do so, firm i+1

undercuts firm i’s basic price, thus expanding its market share and increasing its profits

on that arch. Firm i+1’s direct rival (i.e., i+2) can in turn increase its profits by slightly

23



undercutting firm i+1’s basic price: as such, firm i+2 expands its market segment on

the arch it shares with firm i+1. In short, all firms expand their market segments on the

arch closer to the uninformed firm, while they reduce their market segment on the other

arch. When dA is relatively low, all informed firms serve both identified and anonymous

consumers, and thus set positive basic prices. After dA reaches a first threshold, firm

i+1 only serves identified consumers on the arch it shares with i+2, while it still serves

anonymous consumers on the arch it shares with firm i.10 Finally, after dA reaches a

second threshold (i.e., dA ≥ 3
2n
), firm i+1 only serves identified consumers, and the effect

of additional data becomes nil.

By comparing firm i’s profits when winning or losing its auction, we find that firms

are always better off when winning it by paying the DB’s reservation price. Figure 1

provides a graphical representation of firms’ profits functions in the two subgames.11

Figure 1. Firms’ Profits in the Sale to All Firms

This figure shows firms’ profits under the benchmark case (i.e., without data) and when win-
ning or losing the auction prior to paying for data. n = 4 and t = 20.

As shown in Proposition 5, when all firms obtain data, their profits (represented by

the solid line in Figure 1) are strictly decreasing for dA ≤ 1/n, and constant otherwise.

The threshold identifies the amount of data above which all consumers are identified in

the market, and additional data have no impact on firms’ strategy. The greater amount

10This threshold depends on the number of entering firms, and it is always lower than 1
n . See Appendix

VI for details.
11While we show profits functions for specific parameters values, we observe the same trends for all

parameters values that grant market coverage (i.e., any value that does not violate the model’s basic
assumptions).
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of data sold in the downstream market makes the competition effect outweigh the surplus

extraction effect, resulting in firms being worse off under the presence of a DB. However,

firms experience a prisoner’s dilemma: while they would be better off not buying data, the

threat of being uninformed and competing against informed rivals leads them to prefer

participating in the DB’s auctions.

4. DB’s Equilibrium Profits

Having analysed the effect of data on firms, we can obtain DB’s profits and maximise

them with respect to dH and dA under the two strategies. We recall that the DB sets the

auctions’ reserve prices w equal to firms’ willingness to pay for data: as such, she extracts

all surplus from the firms that win the auctions. As a tie-breaker rule, we assume that

if a firm is indifferent between winning or losing its auction, it prefers winning it. The

DB’s profits can be written as

πDB(P,J) =
∑
i∈J

wi =
∑
i∈J

πW
i (P)− πL

i (P) (8)

As such, firms’ profits after winning their auction and paying for data are equal to

πW
i (P)− wi = πW

i (P)−
(
πW
i (P)− πL

i (P)
)
= πL

i (P)

That is, firms’ remaining profits after paying for data are equal to their profits when

losing their auction. Since firms enter the market as long as they make positive profits,

the number of entering firms is given by the condition

πL
i (P) = 0 (9)

As a useful benchmark, we can refer to the standard Salop (1979) model (see Section

3) where, absent the DB, the number of entering firms is ñ∗ =
√

t
F
. In the following

sections we solve the game under the two strategies and compare the outcomes to assess

the DB’s preferred one.

4.1. Sale to Alternating Firms

When the DB opts for the sale to alternating firms, we can rewrite her profits as

πDB(PH,J) =
∑
i∈J

wi =
n

2

(
πW∗
i (PH)− πL∗

i (PH)
)

(10)

The DB sets d∗H so as to maximise firms’ willingness to pay for data (10), for a given

number of entering firms n. The solution of the DB’s profit maximisation problem is

expressed by the following proposition.
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Proposition 7. Under the sale to alternating firms, the DB offers d∗H = 6
7n

in the

auctions she wants to fulfil and di = 1 in the ones she does not want to fulfil.

Proof. See Appendix VII. □

From Proposition 7, the amount of data sold in equilibrium by the DB to every other

firm is d∗H = 6
7n
, which is lower than the amount of data 3/(2n) that would allow firms to

identify all consumers on their market segment. This implies that the DB only sells data

about high valuation consumers, located closer to the winning firms’ positions, so that

in equilibrium informed firms serve both identified and unidentified consumers. The DB

adopts this strategy to temper downstream competition. In fact, letting informed firms

identify all their consumers would result in price wars that would deplete their profits

and, in turn, their willingness to pay for data.

4.2. Sale to All Firms

When the DB opts to sell data to all firms, her profits are:

max
dA

πDB = n
(
πW∗
i (PA)− πL∗

i (PA)
)

(11)

The amount of data d∗A sold by the DB to each firm depends on the number of entering

firms and is defined by the following proposition.

Proposition 8. Let n̂ be the number of entering firms such that the DB’s profits

when selling non overlapping partitions are equal to those when selling dA ≥ 3
2n
. Under

the sale to all firms, the DB’s strategy depends on the number of entering firms:

• If n < n̂, the DB offers d∗A = 1 in all auctions and fulfils all of them.

• If n ≥ n̂, the DB offers non overlapping partitions in all the auctions and fulfils

all of them.

Proof. See Appendix VIII. □

As shown in the Appendix, the value of n̂ is approximately equal to 3.34. The DB’s

strategy depends on the number of entering firms because firms’ valuation of data depends

on n. When n is sufficiently high, firms have small market shares. This implies that their

average consumers are closer to their locations. Since data allows firms to extract more

surplus from consumers closer to their locations, the DB opts to temper downstream

competition by selling non-overlapping partitions. By doing so, the DB allows firms to

extract more surplus from consumers, via the price of data. Conversely, when n is low,
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selling non-overlapping partitions would not be as effective, as consumers are on average

farther from firms’ locations. Thus, the DB offers the whole dataset to all firms: this

strategy minimises firms’ profits when losing their auction, as they risk to face completely

informed rivals.

4.3. DB’s Optimal Strategy

By comparing the DB’s profits under the two possible strategies described in Propos-

itions 7 and 8, we can identify the DB’s optimal choice. Results are summarised in the

following proposition.

Proposition 9. In equilibrium, the DB sells data to alternating firms. The number

of entering firms is n∗
H = 1

2

√
t
F
, i.e., n∗

H = ñ∗

2
.

Proof. See Appendix IX. □

The sale to alternating firms dominates the sale to all firms, implying that the DB

prefers under-serving the market by excluding some firms from the data sale. In fact,

selling data to alternating firms allows her to maximise firms’ willingness to pay for data,

as it increases the informed firm’s profits when it competes against an uninformed rival

while also maximising the threat posed to firms if they lose. While previous literature

(e.g., Montes et al., 2019) advocated for oversight by policymakers of exclusive data

arrangements in a duopoly setting, the result of Proposition 9 suggests that, in a less

concentrated market, the DB under-serves the market even in the absence of exclusive

deals, as she excludes some firms from the data sale.

Moreover, Proposition 9 highlights that the DB’s optimal strategy reduces firms’ entry

relative to the benchmark case where data are absent. This entry barrier effect is due to

the reduction of firms’ profits, as they either pay for data (if they win) or face informed

rivals (if they lose). Interestingly, the number of entering firms in equilibrium cannot be

lower than ñ∗

2
, i.e., the entry deterrence caused by data is limited, as additional data stop

reducing firms’ profits after a threshold (due to the horizontal differentiation setting).

This result expands the entry barrier effect of data identified by de Cornière and Taylor

(2020) in a setting in which data affect the quality of the information held by firms. Our

analysis shows that the entry barrier effect emerges also when data carry information on

the consumers’ preferences and can thus be used for price discrimination.
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4.4. Consumer and Welfare Analysis

In the previous section we characterised the equilibrium, which sees the entry of n∗
H

firms and their purchase of the partition set P∗
H = (d∗H, 0, ..., d

∗
H, 0). In this section we

focus on the implications of this equilibrium on welfare and consumer surplus.

In our model, total welfare comprises consumer surplus, firm profits and the DB’

profits. In particular, let us express it as

TW = CS +
n−1∑
i=0

πi + απDB (12)

where α ∈ [0, 1] is the weight of DB’s profits in the welfare function. The following

proposition summarises the impact of the DB’s equilibrium strategy on consumers surplus

and welfare.

Proposition 10. In equilibrium, consumer surplus is lower and, if α is sufficiently

high, total welfare is higher than in the case in which consumer data are not available.

Proof. See Appendix X. □

Proposition 10 compares the result of our model in terms of consumer surplus and

welfare to the result of the standard Salop model. We find that the DB’s entry barrier

effect lowers consumer surplus. In fact, in our setup, consumer surplus under the sale to

alternating firms can be expressed as

CS = u− 5t

4n
+

ntd2H
9

(13)

The first two terms in Equation (13) are the consumer surplus in the standard Salop

model: as more firms enter the market, consumers have lower transportation costs, and

their surplus increases. The third term represents the effect of data on consumer surplus

for a given number n of firms. A higher quantity of data intensifies competition between

the entered firms and lowers basic prices, raising the surplus of (unidentified) consumers.

Therefore, if the number of firms is given, the third term is positive and increasing in

data, implying that the DB’s presence has a positive impact on consumer surplus, as

evidenced also by previous literature (Braulin and Valletti, 2016; Montes et al., 2019;

Bounie et al., 2021).

However, our results highlight that, when firm entry is endogenous, an entry barrier

effect of data arises. The limited entry hurts consumers: as fewer firms enter the market,

the average transportation cost paid by consumers increases, more than offsetting the

decrease in basic prices caused by the competition effect of data.
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It should be noted that the reduction of consumer surplus stems from the effect of

endogenous entry in the presence of a DB. In fact, Taylor and Wagman (2014) analyse

a Salop model with firm entry where all firms can price discriminate on all consumers

without the need of purchasing data, finding that consumer surplus is higher than in the

standard Salop model. The presence of a monopolist DB who owns data and can sell

them to firms can shape the downstream competition, resulting in consumer harm.

Proposition 10 also finds that total welfare is higher than in the benchmark case,

although it is mostly appropriated by the DB. As a monopolist, the DB addresses the

problem of excessive entry identified by Salop (1979), limiting the number of firms to the

efficient level. By doing so, the DB maximises industry profits which she can subsequently

extract. If the weight α of the DB’s profit in the welfare function is sufficiently low

(specifically, in the proof of Proposition 10 in the Appendix we show that it must be α ≤

0.84), total welfare is lower than in the benchmark. This result shows how the increase

in welfare is mainly driven by the increase of the DB’s profits, causing redistributive

concerns from a policymaking point of view.

5. Extensions

In this section, we extend our basic model along several directions. First, we show

how the reduction in firms’ entry and, in turn, in consumer surplus is robust to the

introduction of a consumer privacy cost. Second, we introduce variations in the DB’s

bargaining power by exploring different selling mechanisms for the data sale. Third, we

analyse a scenario where the DB can commit to the price of data before firms’ entry

decision. This alternative timing allows the DB to take into account the effect of data

on the number of entering firms when choosing her strategy, and provides her with more

bargaining power than in the basic model.

5.1. Introducing a Privacy Cost

In this section we assume that, when a consumer is offered a tailored price, she incurs

a disutility c > 0 due to her loss of privacy, for example due to the annoyance at being

price discriminated. Thus, when a consumer accepts a tailored offer, she obtains a utility

U(x, i) = v − pTi (x)− t ∗D(x, i)− c

Focusing on consumers between firm i and i+1, we can express firm i’s tailored price as

pTi (x) = pBi+1 − 2tx+
t

n
(2i+ 1)− c
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The privacy cost reduces the surplus that firms can extract through tailored prices. An

informed firm offers tailored prices to a consumer located in x only if

pTi (x) ≥ pBi (P) (14)

That is, only if the tailored price allows the firm to extract more surplus from that specific

consumer than the basic price. Results under the sale to alternating firms in the presence

of a privacy cost are summarised by the following proposition.

Proposition 11. In equilibrium, if consumers incur a disutility c > 0 when they are

offered a tailored price:

a) Consumer surplus is increasing in the privacy cost, i.e., ∂CS
∂c

> 0.

b) Total welfare is decreasing in the privacy cost, i.e., ∂TW
∂c

< 0.

c) DB’s profits are decreasing in the privacy cost, i.e., ∂πDB

∂c
< 0.

d) If c is sufficiently high, firms offer their basic prices regardless of data, and we

obtain the results of the standard Salop model.

Proof. See Appendix XI. □

For low values of c and d, Inequality (14) is satisfied for all consumers who belong to

firm i’s market segment. Then, firm i offers tailored prices to all identified consumers.

However, the reduction in surplus caused by the privacy cost lowers firm profits, if com-

pared to the case where the privacy cost is absent.

For sufficiently high values of c and dH, the tailored price for distant consumers does

no longer cover the privacy cost, and the informed firm prefers offering them its basic

price, even if it can identify them. In particular, an informed firm uses data as long as

dH ≥ 3
2n

− 3c
2t
. After this threshold, the informed firm prefers serving those consumers

through basic prices. Note that, if c ≥ t
n
, informed firms prefer offering their basic price

to all consumers and avoid using data.

We also find that the disutility c reduces the surplus extraction effect, but it does not

influence the competition effect. In particular, when c ≥ 2t
3n
, informed firms’ profits are

decreasing in data: even if Inequality (14) is satisfied for some consumers – i.e., a firm

can extract more surplus from some consumers by offering them tailored prices instead

of the basic price – the drop in its basic price results in overall lower profits.

Furthermore, the privacy cost reduces the DB’s entry barrier effect. In fact, as already

noted, when consumers face a privacy cost, a completely informed firm would still serve
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some consumers through its basic price. As a consequence, an uninformed firm faces

milder competition, which results in higher profits and more firms entering the market.

In a setup with privacy cost, the number of entering firms is

n∗
H =

t

2
√
tF − c

The number of entering firms increases with c: when c ≥ t
n∗ , no firms uses data, and the

number of entering firms is equal to that of the standard Salop model, n∗
H =

√
t
F
.

The magnitude of the privacy cost also affects the DB’s optimal strategy.

• For c < 2t
3n∗

H
= 4

5

√
tF , firms’ profits first follow an inverse U-shaped curve and

then become constant, similar to the ones shown in Figure 1: as such, the DB

offers the optimal amount of data d∗H = 6
7n∗

H
− 9c

7t
to maximise firms’ profits, and

firms offer their tailored prices to all the identified consumers.

• For 4
5

√
tF = 2t

3n∗
H
≤ c < t

n∗
H
=

√
tF , firms’ profits are decreasing with data, as

the competition effect always outweighs the surplus extraction effect: as such,

the DB offers d∗H = 0 in the auctions she wants to fulfil. Firms accept only to

avoid facing informed rivals, which would result in lower profits.

• For c ≥ t
n∗
H
=

√
tF , data has no value for firms since they prefer reaching all

consumers through basic prices. In this situation, the DB sells no data.

Overall, we conclude that, when using data for price discrimination entails a privacy

loss to consumers, consumer surplus increases via the reduction of the entry barrier effect.

The entry of a higher number of firms allows consumers to buy products closer to their

preferences, resulting in higher surplus. However, total welfare decreases, because the

total costs of entry increases with the number of entering firms.

5.2. Decreasing DB’s Bargaining Power: Alternative Selling Mechanisms

In the basic model, in line with the previous literature, we assume that the DB has

all the bargaining power. In fact, she is able to charge the maximum price for data by

threatening firms to sell massive amounts of data to their rivals through auctions with

reserve prices (AR). In this section, we relax this assumption in two ways. First, we

consider a case where a DB sets auctions without reserve prices (AU). In this case, firms

can underbid, thus reducing the DB’s profits. Second, we assume that the DB sells data

through a Take It Or Leave It (TIOLI) mechanism. In this scenario, the DB offers a

partition to each firm, and each firm individually and simultaneously accepts or declines
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the offer. Therefore, under the TIOLI mechanisms, and differently from auctions, the

DB cannot subsequently decide not to fulfil an offer, thus eroding her bargaining power.

We find that the selling mechanism adopted does not affect the DB’s strategy under

the sale to all firms, so that the results of Proposition 8 hold also under AU and TIOLI.

In fact, firms face the same choice under all selling mechanisms: if a firm accepts the

DB’s offer, all firms in the market are informed; if the firm declines it, it becomes the

only uninformed one. Conversely, the selling mechanism affects the DB’s strategy under

the sale to alternating firms.

Let us focus on AU. When the DB cannot set reserve prices, a firm can win its auction

simply by bidding above the valuations of the other firms, which are lower than its own

owing to their distance. Then, selling different partitions to firms would be detrimental

for the DB, as it would increase firms’ underbidding. Indeed, the DB maximises her

profits by offering same-sized partitions in all auctions, even in those that are not meant

to be fulfilled. The absence of reserve prices ultimately reduces the DB’s profit because

she cannot simultaneously maximise firms’ profits when winning and minimise them when

losing.

Let us now focus on TIOLI. Under this mechanism, the DB has no ex-post control on

the number of transactions she wants to conclude. In fact, differently from AR, the DB

must fulfil all her offers under TIOLI. Then, under the sale to alternating firms under

TIOLI, the DB offers the partition set PTIOLI
H =

(
dTIOLI
H , 0, . . . , 0, dTIOLI

H , 0, . . . , dTIOLI
H , 0

)
,

alternating the sale of same-sized data partitions and no data. To better understand the

implications of this selling mechanism, suppose that firm i refuses the DB’s offer. Under

TIOLI, the DB cannot threat firm i to sell data to its direct rivals, and firm i would thus

face uninformed rivals even when refusing the DB’s offer.

The main effects of adopting the alternative selling mechanisms AU or TIOLI, which

reduce the DB’s bargaining power, are summarised in the following proposition.

Proposition 12. Under AU and TIOLI, the quantity of data sold to downstream

firms, the number of entering firms and consumer surplus in equilibrium are higher than

under AR. While under AU the DB in equilibrium opts for the sale to alternating firms,

under TIOLI she adopts the sale to all firms strategy.

Proof. See Appendix XII. □
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The reduction of the DB’s bargaining power improves consumer surplus. Depending

on the selling mechanism and on the number of entering firms, consumer surplus can

either be lower or higher than in the absence of the DB. Under AR, the DB can always

threaten firms to make them face completely informed rivals. Thus, the DB sets dAR
H so

as to maximise firms’ profits when they win. However, this is no longer the case when

the DB’s bargaining power is reduced.

Under AU, if a firm loses its auction, its rivals obtain partitions of the same size

as the firm’s one. The threat of being uninformed is thus reduced when compared to

AR, where a losing firm always faces completely informed rivals. The DB’s equilibrium

strategy under AU involves the sale to alternating firms and the offer of dAU∗

H = 4
3n
, which

is larger than the partition sold under AR. Selling a larger partition allows the DB to

increase the threat to firms when losing their auction, thus increasing their willingness

to pay.

Under TIOLI, the sale to alternating firms would be suboptimal: the DB cannot

properly threaten firms under this selling mechanism, and this would result in a lower

willingness to pay. As a consequence, in equilibrium under TIOLI the DB opts for the

sale to all firms, following the same strategy described in Section 4.2.

The change in the DB’s strategy also spurs firms’ entry. Under AU, a losing firm does

not face completely informed rivals when losing, as they obtain dAU∗

H = 4
3n
. Firms’ profits

when losing are thus higher than under AR, thus reducing the number of entering firms

by 4
9
with respect to the benchmark. Conversely, under TIOLI, the number of entering

firms is reduced by a half when n∗ < n̂, and it is reduced by slightly less than 1
4
when

n∗ ≥ n̂.

As shown in Section 4.3, consumer surplus increases with the partition size and with

the number of entering firms. Since both are greater or equal under AU and TIOLI than

under AR, consumer surplus increases when decreasing the DB’s bargaining power. In

particular, we find that consumer surplus is at its highest under TIOLI. When n∗ < n̂, the

high amount of data sold to firms compensates the strong entry barrier effect: however,

consumer surplus is still lower than in the benchmark. On the other hand, when n∗ ≥ n̂,

consumer surplus is higher than in the benchmark, as the quantity of data sold more

than offsets the small reduction in firms’ entry.

To sum up, we find that lowering the DB’s bargaining power by adopting selling

mechanisms based on TIOLI offers is an effective way to reduce the consumer harm
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caused by her presence. However, consumers are only better off when the DB is forced

to sell through TIOLI and the downstream market is highly competitive.

5.3. Committing to the Price of Data: An Alternative Timing

In our baseline setup, firms enter the market in the initial stage, and then participate

in auctions to acquire data. This framework is for example consistent with markets that

are already established before the introduction of digital technologies and the possibility

to price discriminate through data. However, such a timing may be less intuitive in

the case of emerging digital markets, in which firms know already before entering that

obtaining consumer data would give them an edge over competition. In this section,

we explore the possibility that the DB sets up the auctions prior to firms’ entry. As a

consequence, firms make the entry decision only after observing the offer of data by the

DB. In particular, the timing we analyse in this section is as follows:

Stage 1. The DB chooses a partition set P, the reserve prices w, and the max-

imum number of auctions she will fulfil k. All this information is common know-

ledge.

Stage 2. Firms individually and simultaneously bid in the auctions.

Stage 3: The DB observes the bids and chooses a subset J of auctions to fulfil.

The winning firms receive their respective partitions and pay their price to the

DB, corresponding to wi = πW
i (P)− πL

i (P).

Stage 4. Firms enter the market and pay the fixed cost F .

Stage 5. Firms set basic prices pBi for the anonymous consumers.

Stage 6. Firms set tailored prices pi
T(x) for the identified consumers if they have

won an auction. Consumers purchase the product and profits are made.

Note that, in this setup, firms’ equilibrium prices are defined by the same functions as in

Section 3, as firms’ price setting stage takes place in the final stages of the game, as in

our baseline timing. However, the DB’s strategy substantially departs from that of our

basic model. In fact, in the basic model, the DB picks her strategy by taking the number

of entering firms as given. Conversely, under this alternative setting, the DB explicitly

anticipates the effect of the data sale on firms’ entry. We analyse the DB’s strategy under

all the selling mechanisms presented in Section 5.2. The main outcomes of this setting

are summarised in the following proposition.
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Proposition 13. If firms purchase data before entering the market, in equilibrium

the DB adopts the following strategies:

• Under the auction with reserve prices, the DB opts for the sale to alternating

firms, and offers d∗H in the auctions she wants to fulfil and the full dataset in the

ones she does not want to fulfil;

• Under the auction without reserve prices, the DB opts for the sale to alternating

firms and offers the full dataset in all auctions;

• Under Take It Or Leave It offers, the DB opts for the sale to all firms and offers

the full dataset to all entering firms.

All these strategies maximise the DB’s entry barrier effect, and the number of entering

firms is n∗
AR = n∗

AU = n∗
TIOLI = ñ∗

2
. DB’s profits are greater or equal, and consumer

surplus is lower or equal than in the basic model.

Proof. See Appendix XIII. □

When the DB anticipates the effect of her strategy on firms’ entry, we find that she

always benefits from maximising the entry barrier effect: as competition in the down-

stream market is reduced, entering firms make higher profits, which the DB can then

extract through the price of data. To better understand the implications of the different

timing, let us focus on specific selling mechanisms.

Under the auction with reserve prices (AR), the DB’s strategy maximises her profits

for any given number of entering firms, as firms’ profits when losing their auction do not

depend on dH . In equilibrium, firms’ expected profits when entering the market are the

same as in our basic model, leading to the same market outcomes.

Conversely, the alternative timing alters the DB’s strategy under the auction without

reserve prices (AU). While she still opts for the sale to alternating firms, as in our basic

model, she instead offers dAU∗

H = 1 (i.e., the whole dataset), as opposed to the amount

of data dAU∗

H = 4
3n

offered under our baseline timing. By doing so, the DB minimises

firms’ profits when they lose, and in turn the number of entering firms. Although the DB

cannot maximise her profits by maximising winning firms’ profits, she can still do so by

minimising competition in the downstream market.

Finally, under Take It Or Leave It (TIOLI), the DB offers the whole dataset to all

entering firms, regardless of n. The aim of this strategy is again to minimise competition

in the downstream market to extract higher profits, and it departs from the strategy

adopted under our baseline timing, which depends on the number of entering firms.
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To sum up, we find that if the data sale occurs before firms’ entry, the DB always

maximises her entry barrier effect. As her bargaining power is reduced, the DB floods the

downstream market with data as a way to decrease firms’ expected profits and, in turn,

their entry. Her strategy ultimately harms consumers, who are always worse off than in

the benchmark due to the increase of downstream market’s concentration. Nonetheless,

we find that consumer harm is minimised under TIOLI, consistently with the result

obtained in Section 5.2.

6. Conclusions

With the steady growth of online services, DBs have become central players in the di-

gital economy. Their ability to extract valuable information from consumers’ data allows

them to influence competition in retail markets, with important welfare implications. Our

work contributes to the growing literature on the competitive effects of DBs by modelling

an oligopoly market where the number of firms is endogenous.

We show that the presence of a DB reduces the entry of firms in the downstream

market. The DB benefits from the increased concentration, as she can then extract firms’

profits through the price of data. Previous literature on price discrimination in spatial

competition settings has often highlighted a pro-competitive effect of data, as firms engage

in price wars over the identified consumers. We show that, when entry endogenously

depends on the DB’s strategy, the entry barrier effect dominates the competition effect,

leading to an overall decrease in competition in the market.

We also find that the DB has the incentive to under-serve the market by selling data

to only a subset of firms. This result expands the insight developed in previous literature

(Braulin and Valletti, 2016; Montes et al., 2019; Bounie et al., 2021), which advocates for

a ban on exclusive data deals to benefit of consumers. We show that, when the number

of firms is endogenous, the ban of exclusive deals should address single portions of the

market. However, we also find that alternative mechanisms for the data sale (e.g., Take

It Or Leave It offers) could induce the DB to avoid exclusive deals.

Overall, our results show that consumer surplus is lower in the presence of a mono-

polistic DB, while total welfare is mostly appropriated by the DB. As a consequence, if

the weight of the DB’s profits in the welfare function is sufficiently low, the presence of

a DB is welfare decreasing.

The use of data by firms has implications not only for competition, but also in terms

of privacy. We show that, if the use of data for price discrimination entails a privacy
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loss to consumers, the potential of the DB to raise entry barriers through data sales is

reduced. As more firms enter the market, competition and consumer surplus increase.

Thus, our results imply that an increase in consumers’ privacy awareness can limit the

consumer harm caused by the DB.

From a policymaking point of view, our results suggest that the presence of a DB

that can manipulate the competitive dynamics by raising entry barriers is detrimental

for consumers, despite the fact that the use of data intensifies competition between firms.

However, we also find that consumer surplus can be raised by properly regulating the

DB’s selling mechanism. In particular, a competition authority could either mandate the

sale of data to all entering firms, or enforce the use of direct sales (i.e., TIOLI offers).

Such policies would effectively lower the DB’s bargaining power, but would also lead to

an increase in the amount of data sold. Therefore, the ensuing increase in competition

would also be accompanied by a lower degree of consumer privacy.

Finally, we find that the DB’s negative effect on welfare is stronger if firms purchase

data before they decide to enter the market, as in this scenario the DB always chooses

a strategy that minimises firms’ entry, further reducing consumer surplus. Similarly to

what we find in the basic model, reducing the DB’s bargaining power would have positive

effects on consumers. However, it would also lead the DB to flood the downstream market

with data, as this strategy allows her to minimise the number of entering firms.

An important issue that remains to be addressed deals with the presence of com-

petition in the collection of data at the DB’s level. Indeed, competition between DBs

would further limit the individual DB’s bargaining power, possibly tempering their entry

barrier effect. A careful analysis is needed to fully assess the implications of competition

between DBs for entry in the downstream market and for consumers.
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Appendix

I. Proof of Proposition 1

This proof proceeds in two steps. First, we demonstrate that the DB sells equally

sized partitions to all even-indexed firms and to all odd-indexed firms. In particular, the

DB can only offer partitions of size d̂ to even-indexed firms and of size d̃ to odd-indexed

firms. Thus, the DB only has four viable strategies:

1. Setting d̂ ̸= d̃, d̂ > 0, d̃ > 0. That is, she sells partitions of different sizes to all

firms, alternating between the partitions’ sizes.

2. Setting d̂ = d̃ > 0. That is, she sells equally sized partitions to all firms.

3. Setting d̂ ̸= d̃, d̂ = 0, d̃ > 0 That is, she only sells data to odd-indexed firms,

while she does not offer data to even-indexed firms

4. Setting d̂ = d̃ = 0. That is, she does not sell data.

Second, we show that strategies 1. and 4. are always suboptimal for the DB, and thus

that only strategies 2. and 3. can be the only Nash equilibria in pure strategies.

(I) The DB Sells Equally Sized Partitions to All Even-Indexed Firms and to All Odd-

Indexed Firms

DB’s profits are equal to the sum of the difference between firms’ profits when they

obtain their respective partition and when they do not obtain it:

πDB =
n−1∑
i=0

∆πi (A.1)

where

∆π0 = f (d0, d1, . . . , di−1, di, . . . , dn−1)

∆π1 = g (d0, d1, . . . , di−1, di, . . . , dn−1)

∆π2 = h (d0, d1, . . . , di−1, di, . . . , dn−1)

. . .

The different functions (e.g., f, g, h . . .) derive from the fact that, while firms’ profits

depend on all firms’ partitions, the way they do depends on the distribution of the

partitions compared to the analysed firm’s location.

Let us focus on ∆π0: the profits that the DB extracts from firm 0 depend on the

partitions she sells to all firms. Not every partition influences ∆π0 in the same way. For

example, the partition obtained by firm 1 (i.e., d1) will have a different effect on ∆π0
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than the partition obtained by firm 2 (i.e., d2) has on ∆π0. However, the symmetry of

the model allows us to draw conclusions regarding the effects of partitions obtained by

firms that are equidistant from firm 0. Since firm 1 and firm n−1 are identical and both

distant 1
n
from firm 0, their partitions have the same effect on ∆π0. The same holds true

for every pair of firms that are equidistant from firm 0, since firms are equally spaced on

the circle. We thus have

∂∆π0

∂dj
=

∂∆π0

∂dn−j

∀ j ∈
{
0, 1, 2, . . . ,

n

2

}
(A.2)

By symmetry, condition (A.2) can be applied to all i, obtaining

∂∆πi

∂dj
=

∂∆πi

∂dn−j

∀ j ∈
{
0, 1, 2, . . . ,

n

2

}
, i ∈ {0, 1, 2, . . . , n−1} (A.3)

Let us now focus on the relationship between ∆π0 and ∆π1. By the symmetry of firms,

the effect of d1 on ∆π1 is same that d0 has on ∆π0. The same holds true when analysing

the effect of equally distant firms. As an example, the effect of d1 on ∆π0 is same of d0

on ∆π1, as it is the effect that a direct rival’s partition has on the analysed firm’s profits

difference. We can thus write

∂∆πi

∂di+j

=
∂∆πk

∂dk+j

∀ i, k ∈ {0, 1, 2, . . . , n−1} , j ∈
{
0, 1, 2, . . . ,

n

2

}
(A.4)

We can now bring together (A.1), (A.3) and (A.4). The DB chooses the partition set

P =(d0,d1,d2, . . . , dn−1) to maximise the sum of ∆πi. Thus, at the equilibrium we have

∂πDB

∂d0
=

∂∆π0

∂d0
+

∂∆π1

∂d0
+

∂∆π2

∂d0
+ . . .+

∂∆πn−1

∂d0
= 0

∂πDB

∂d1
=

∂∆π0

∂d1
+

∂∆π1

∂d1
+

∂∆π2

∂d1
+ . . .+

∂∆πn−1

∂d1
= 0

∂πDB

∂d2
=

∂∆π0

∂d2
+

∂∆π1

∂d2
+

∂∆π2

∂d2
+ . . .+

∂∆πn−1

∂d2
= 0

. . .

From (A.4), we know that ∂∆π1

∂d0
= ∂∆π0

∂d1
, and the same can be applied to all the elements

on the right side of the equation. We can thus rewrite ∂πDB

∂d0
as

∂πDB

∂d0
=

∂∆π0

∂d0
+

∂∆π0

∂d1
+

∂∆π0

∂d2
+ . . . =

n−1∑
i=0

∂∆π0

∂di

By applying (A.4), we can trace back every partial derivative of πDB to the same form.

In a general form, we obtain

∂πDB

∂dk
=

n−1∑
i=0

∂∆π0

∂di
∀ k ∈ {0, 1, 2, . . . , n−1} (A.5)
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Equation (A.5) implies that the DB’s profits are influenced in the same way by the

partitions sold to any firm. Thus, the DB aims to maximise a given firm’s difference in

profits, and then she applies the same strategy to all other firms. We focus our analysis

on a generic firm i. From (A.3), we know that ∆πi is influenced in the same way by

di+1 and di−1. As such, in equilibrium the DB sets di+1 = di−1. The same holds true

for any pair di+j, di−j, as described in (A.3).The same reasoning can be applied when

focusing on all other firms. For example, by looking at firm 1 we can conclude that

d1+j = d1−j ∀ j ∈
{
0, 1, 2, . . . , n

2

}
. By putting together all the equations, we find that

the DB sells equally sized partitions to all even-indexed firms, which we denote as d̂, and

equally sized partitions to all odd-indexed firms, which we denote as d̃. Note how, under

this strategy, a firm always faces direct rivals that obtain same sized partitions: as such,

in equilibrium the DB offers partitions that are centred on firms’ locations. Suppose that

firm i is offered a partition d̃: since both its direct rivals obtain d̂, in equilibrium the DB

sells firm i a partition such that it can identify consumer segments of size d̃
2
on each arc

on which it competes.

(II) the DB Either Sells Equally Sized Partitions to All Firms or Equally Sized Partitions

to Alternating Firms

Step (I) leaves the DB with four possible strategies, as priorly described. We now

want to demonstrate that strategies 1. and 4. are suboptimal for the DB. First, we can

discard strategy 4.: since in our model the DB does not sustain any costs, her minimum

profits are 0. As such, a strategy where the DB sets d̂ = d̃ = 0, which results in her

profits being 0, can never dominate any other strategy.

We move on to strategy 1., where the DB sets d̂ ̸= d̃, d̂ > 0, d̃ > 0. We show that this

strategy is always dominated by strategy 2., where the DB sets d̂ = d̃ > 0. To do so,

we solve the model under strategy 1. The DB offers a partition set P =
(
d̃, d̂, d̃, . . . , d̂

)
.

Without loss of generality, we focus on a generic firm i, to which the DB offers a partition

d̃. The indifferent consumers between firms i, i+1 and i−1 can be obtained by equating

utility levels, and they are:

x̂i−1,i =
2i− 1

2n
+

pBi − pBi−1

2t
and x̂i,i+1 =

2i+ 1

2n
+

pBi+1 − pBi
2t

(A.6)
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Firm i offers a tailored price pTi (x) to the identified consumers, matching the competitor’s

offer in utility level. It sets a tailored price for each arc where it competes, resulting in

pTi (x) =

pBi−1 + 2tx− t
n
(2i− 1) for x ∈ [ i

n
− di

2
, i
n
]

pBi+1 − 2tx+ t
n
(2i+ 1) for x ∈ [ i

n
, i
n
+ di

2
]

(A.7)

Firm i’s profits are thus given by:

πW
i (P) =

∫ i
n

i
n
− d̃

2

pTi (x) dx+

∫ i
n
+ d̃

2

i
n

pTi (x) dx+ pBi (P)
(
x̂i,i+1 − x̂i−1,i − d̃

)
− F (A.8)

Using the expression of the indifferent consumers from (A.6) and of the tailored prices in

(A.7), we can rewrite the profits of the generic informed firm i in (A.8) as

πW
i (P) =

d̃

2n

(
2t+ npB

i−1 (P) + npB
i+1 (P)− ntd̃

)
+ pBi (P)

(
n
(
pBi+1 (P) + pBi−1 (P)− 2pBi (P)

)
+ 2t

2nt
− d̃

)
− F (A.9)

Similarly, the profits of its rival i+1 firm are

πW
i+1 (P) =

d̂

2n

(
2t+ npBi (P) + npBi+2 (P)− ntd̂

)
+ pBi+1 (P)

(
n
(
pBi (P) + pBi+2 (P)− 2pBi+1 (P)

)
+ 2t

2nt
− d̂

)
− F (A.10)

By taking the first-order condition of (A.9) with respect to pBi (P) and of (A.10) with

respect to pBi+1(P), we obtain firms’ reaction function on basic prices

pBi (P) =
t

2n
− td̃

2
+

pBi+1 (P) + pBi−1 (P)

4

and

pBi+1 (P) =
t

2n
− td̂

2
+

pBi (P) + pBi+2 (P)

4

(A.11)

The system of equations (A.11) for all i = 0, . . . , n−1 allows us to obtain the equilibrium

basic prices and, by replacing them in (A.9), firm i’s profits. In matrix form we have

A ∗ p = b, where p is the price vector, and b is the known terms vector. Assuming that
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the DB offers d̃ to even indexed firms, we obtain

4 −1 . . . 0 0 0 . . . −1

−1 4 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 4 −1 0 . . . 0

0 0 . . . −1 4 −1 . . . 0

0 0 . . . 0 −1 4 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

−1 0 . . . 0 0 0 . . . 4



∗



pB0 (P)

pB1 (P)

. . .

pBi−1 (P)

pBi (P)

pBi+1 (P)

. . .

pBn−1 (P)



=



2t
n
− 2td̃

2t
n
− 2td̂

. . .

2t
n
− 2td̂

2t
n
− 2td̃

2t
n
− 2td̂

. . .

2t
n
− 2td̂


Matrix A is circulant, tridiagonal and symmetric. The inverse of this type of matrix has

been computed by Searle (1979). We obtain

A−1 =


a0 a1 . . . an−1

an−1 a0 . . . an−2

. . . . . . . . . . . .

a1 a2 . . . a0


where, in our specific case, aj = − 1

2
√
3
∗
(

(2+
√
3)

j

1−(2+
√
3)

n − (2−
√
3)

j

1−(2−
√
3)

n

)
. A property of this

type of matrix is that aj = an−j ∀j ̸= 0, n
2
if n is even. Moreover, in our particular case,∑n−1

j=0 aj =
1
2
. We can now write p = A−1 ∗ b. We obtain

p0

p1

. . .

pn−1

 =


a0 a1 . . . an−1

an−1 a0 . . . an−2

. . . . . . . . . . . .

a1 a2 . . . a0

 ∗


2t
n
− 2td̃

2t
n
− 2td̂

. . .

2t
n
− 2td̂


Thus, we can write

pBi =

(
2t

n
∗

n−1∑
j=0

aj

)
− 2t

n−2
2∑

j=0

d̃a2j − 2t

n−2
2∑

j=0

d̂a2j+1

Since
∑n−1

j=0 aj =
1
2
, we can simplify and obtain

pBi =
t

n
− 2t

n−2
2∑

j=0

d̃a2j − 2t

n−2
2∑

j=0

d̂a2j+1
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Due to the symmetry properties of the coefficients aj, we also obtain a similar form for

pBi−1 and pBi−1:

pBi−1 = pBi+1 =
t

n
− 2t

n−2
2∑

j=0

d̂a2j − 2t

n−2
2∑

j=0

d̃a2j+1

We find that in our case
∑n−2

2
j=0 a2j =

1
3
and

∑n−2
2

j=0 a2j+1 =
1
6
. Thus, we can rewrite basic

prices as

pBi =
t

n
− 2

3
td̃− 1

3
td̂ and pBi−1 = pBi+1 =

t

n
− 2

3
td̂− 1

3
td̃ (A.12)

By replacing the basic prices from (A.12) in firms’ profits functions (A.9) and (A.10), we

obtain

πW
i (P) =

t

9n2

(
9− 2n

(
nd̂d̃+ d̃

(
7

4
nd̃− 3

)
− nd̂2 + 3d̂

))
− F (A.13)

πW
i−1 (P) = πW

i (P) =
t

9n2

(
9− 2n

(
nd̂d̃+ d̂

(
7

4
nd̂− 3

)
− nd̃2 + 3d̃

))
− F (A.14)

We now compute firms’ profits when they do not obtain their partition. Suppose that

firm i does not obtain its partition: as such, in equilibrium di = 0. By imposing it in

(A.9), we obtain that firm i’s profits are

πL
i (P) = pBi (P)

(
n
(
pBi+1 (P) + pBi−1 (P)− 2pBi (P)

)
+ 2t

2nt

)
− F (A.15)

We can again compute firms’ basic prices by solving the n-equations system. The only

difference from the already analysed subgame is that firm i’s known term has di = 0

instead of di = d̃. As such, we can compute the new basic prices by simply subtracting

d̃ai−j from the basic prices pBj computed in (A.12). Thus, we obtain

pBi =
t

n
− 2td̃

(
1

3
− a0

)
− 1

3
td̂ and pBi−1 = pBi+1 =

t

n
− 2

3
td̂− 2td̃

(
1

6
− a1

)
(A.16)

By replacing the basic prices of (A.16) in (A.15), we obtain

πL
i (P) =

t

9n2

(
6a0nd̃− 2nd̃− nd̂+ 3

)(
−6a0nd̃+ 6a1nd̃+ nd̃− nd̂+ 3

)
− F (A.17)

Following the same procedure, we obtain firm i+1’s profits in the subgame where it does

not obtain data:

πL
i+1 (P) =

t

9n2

(
6a0nd̂− 2nd̂− nd̃+ 3

)(
−6a0nd̂+ 6a1nd̂+ nd̂− nd̃+ 3

)
− F (A.18)

Finally, we compute DB’s profits. We can write them as

πDB =
n

2

(
πW
i (P)− πL

i (P)
)
+

n

2

(
πW
i+1 (P)− πL

i+1 (P)
)

(A.19)
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Replacing firms’ profits from (A.17) and (A.18) and simplifying, we obtain

πDB =
t

3

(
6na20

(
d̃2 + d̂2

)
− 6na0a1

(
d̃2 + d̂2

)
− 3na0

(
d̃2 + d̂2

)
+2na1

(
d̃2 + d̂2 + d̃d̂

)
− 3a1

(
d̃+ d̂

)
− n

4

(
d̃2 + d̂2

)
− nd̃d̂+

3

2
d̃+

3

2
d̂

)
(A.20)

By computing FOCs of (A.20) for both d̃ and d̂, we find that both partitions have the

same effect on DB’s profits; to maximise them, the DB would set d̃ = d̂. However, since

d̃ ̸= d̂ by hypothesis, we find that setting d̃ ̸= d̂ is suboptimal for the DB. On the other

hand, this case does not test the corner solution where either d̃ = 0 or d̂ = 0. Thus, we

are left with two cases: d̃ = d̂ or d̃ ̸= d̂, d̃ = 0 or d̂ = 0, which are the strategies 2. and 3.

II. Proof of Proposition 2

DB’s profits are equal to the sum of the reserve prices wi, which in turn are set equal

to firms’ difference in profits between winning or losing their specific auction. We can

thus write

πDB(PH,J) =
∑
i∈J

wi

with

wi = πW
i (PH)− πL

i (PH)

From the proof of Proposition 1, we know that under the sale to alternating firms the

DB only fulfils half of the auctions: as such, the subset J is given and has a cardinality

j = n
2
. We refer to the partition set sold in equilibrium as P∗

H, while the partition set

offered to firms is PH. The DB can also influence firms’ willingness to pay through the

auctions she does not fulfil. This is due to the fact if a firm loses its specific auction,

other firms can win theirs, and by the DB’s ability to claim the maximum number of

auctions k she is going to fulfil. First, we focus on firms’ profits when they win their

respective auctions, which are equal to those at the equilibrium. Therefore, these profits

do not depend neither on the auctions that are not fulfilled nor on the maximum number

of auctions that will be fulfilled, since in equilibrium the DB will fulfil the subset J which

is given under the sale to alternating firms. On the other hand, firms’ profits when losing

their respective auctions are influenced by k and, in turn, by the partitions offered by the

DB in the auctions she does not want to fulfil. Suppose that the DB offers a partition set

PH = (dH, d, . . . , d, dH , d, . . . , dH, d). At the equilibrium, the DB only fulfils the auctions

where she offers dH, resulting in P∗
H = (dH, 0, . . . , 0, dH, 0, . . . , dH, 0). Suppose that the

DB offers dH to firm i, and that she claims k = n
2
. Then, if firm i loses, the DB could
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fulfil one of the auctions where she offers d. In particular, she could fulfil the auctions of

one of firm i’s direct rivals, i+1 and i−1. This would reduce firm i’s profits when losing

its auction, as it would result in it being uninformed while facing an informed rival.

As such, the DB wants to set PH and k to minimise firms’ profits when they lose their

respective auctions in which she offers them dH. Intuitively, a firm’s profits are minimised

when it is uninformed and competing against direct rivals who obtain all consumer data,

as already observed by Bounie et al. (2021) in a duopoly setting. Thus, the DB sets

PH = (dH, 1, . . . , 1, dH , 1, . . . , dH, 1) and k = n
2
+ 1. This way, if firm i loses its auction,

the DB can fulfil both auctions of its direct rivals i+1 and i−1. This minimises firm i’s

profits when losing its auction, and in turn maximises its willingness to pay.

III. Proof of Proposition 3

We organise this proof by computing equilibrium prices and profits under two cases.

First, when winning firms serve both unidentified and identified firms: focusing on firm

i, this condition holds as long as

i

n
+

dH
2

< x̂i,i+1 (A.21)

that is, as long as winning firms cannot identify the indifferent consumers. When condi-

tion (A.21) holds, winning firms set basic prices greater than 0, as they still serve some

unidentified consumers. When condition (A.21) is no longer satisfied, winning firms only

serve identified consumers and we fall in the second case. Using the non-negative price

constraint (see, e.g., Montes et al., 2019 and Bounie et al., 2021), we assume that winning

firms set their basic prices equal to 0, and additional data do not longer influence firms’

decisions as they do not allow to conquer any new consumers.

(I) Winning Firms Serve Both Identified and Unidentified Consumers

When condition (A.21) holds, we need to solve an n-equations systems to compute

firms’ equilibrium prices, where the equations alternate between

pBi (PH) =
t

2n
−tdH

2
+
pBi+1 (PH) + pBi−1 (PH)

4
and pBi+1 (PH) =

t

2n
+
pBi+2 (PH) + pBi (PH)

4
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In matrix form we have A ∗p = b, where p is the price vector, and b is the known terms

vector. Assuming that the DB offers dH to firms 0, 2, . . . , i−2, i, .., n−2, we obtain

4 −1 . . . 0 0 0 . . . −1

−1 4 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 4 −1 0 . . . 0

0 0 . . . −1 4 −1 . . . 0

0 0 . . . 0 −1 4 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

−1 0 . . . 0 0 0 . . . 4



∗



pB0 (PH)

pB1 (PH)

. . .

pBi−1 (PH)

pBi (PH)

pBi+1 (PH)

. . .

pBn−1 (PH)



=



2t
n
− 2tdH
2t
n

. . .

2t
n

2t
n
− 2tdH
2t
n

. . .

2t
n


Matrix A is circulant, tridiagonal and symmetric. The inverse of this type of matrix has

been computed by Searle (1979). We obtain

A−1 =


a0 a1 . . . an−1

an−1 a0 . . . an−2

. . . . . . . . . . . .

a1 a2 . . . a0


Where, in our specific case, aj = − 1

2
√
3
∗
(

(2+
√
3)

j

1−(2+
√
3)

n − (2−
√
3)

j

1−(2−
√
3)

n

)
. It is worth noting that

aj > aj+1 ∀j ∈ {0, n
2
−1}. Another property of this type of matrix is that aj = an−j ∀j.

Moreover, in our particular case,
∑n−1

j=0 aj =
1
2
. We can now compute the vector of prices

p as p = A−1 ∗ b. We can thus write

pB0 (PH)

pB1 (PH)

. . .

pBi−1 (PH)

pBi (PH)

pBi+1 (PH)

. . .

pBn−1 (PH)



=



a0 a1 . . . ai−1 ai ai+1 . . . an−1

an−1 a0 . . . ai−2 ai−1 ai . . . an−2

. . . . . . . . . . . . . . . . . . . . . . . .

an−i+1 an−i+2 . . . a0 a1 a2 . . . an−i

an−i an−i+1 . . . an−1 a0 a1 . . . an−i−1

an−i−1 an−i . . . an−2 an−1 a0 . . . an−i−2

. . . . . . . . . . . . . . . . . . . . . . . .

a1 a2 . . . ai ai+1 ai+2 . . . a0



∗



2t
n
− 2tdH
2t
n

. . .

2t
n

2t
n
− 2tdH
2t
n

. . .

2t
n


We first focus on pBi . We have

pBi (PH) =

(
2t

n
∗

n−1∑
j=0

aj

)
− 2tdH (an−i + an−i+2 + . . .+ a0 + . . .+ an−i−2) (A.22)
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Using the properties described before, we can rewrite (A.22) as

pB∗
i (PH) =

t

n
− 2tdH

a0 + an
2
+ 2

n
4
−1∑

j=1

a2j

 =
t

n
− 2

3
tdH (A.23)

Following the same method, prices of uninformed firms are

pB∗
i+1 (PH) = pB∗

i−1 H =
t

n
− 1

3
tdH (A.24)

We obtain indifferent consumers’ locations by replacing (A.23) and (A.24) in (1), obtain-

ing

x̂i−1,i =
2i− 1

2n
− dH

6
and x̂i,i+1 =

2i+ 1

2n
+

dH
6

(A.25)

We can compute firm i’s profits by replacing (A.23), (A.24) and (A.25) in firm i’s profits

function, obtaining

πW∗
i (PH) =

t

n2
+

2dHt

3n
− 7td2H

18
− F

In the same way we can compute firm i+1’s profits, leading to

πL∗
i+1 (PH) =

t

n2
− 2dHt

3n
+

td2
H

9
− F

(II) Firms Only Serve Identified Consumers

We now focus on the case where winning firms only serve identified consumers. This

happens when
i

n
+

dH
2

≥ x̂i,i+1 =
2i+ 1

2n
+

dH
6

(A.26)

Solving (A.26), we obtain that firms only serve identified consumers when

dH ≥ 3

2n
(A.27)

While (A.27) holds, firm i sets its basic price pB∗
i H = 0, and we can rewrite its profits

function as

πW
i (PH) =

∫ i
n

x̂i−1,i

pTi (x) dx+

∫ x̂i,i+1

i
n

pTi (x) dx− F

While its rival’s profits are

πL
i+1 (PH) = pBi+1 (PH)

(
n
(
pBi+2 (PH) + pBi (PH)− 2pBi+1 (PH)

)
+ 2t

2nt

)
− F (A.28)

Since pBi+2 (PH) = pBi (PH) = 0, We can derive pBi+1 (PH) by taking the FOCs of (A.28),

obtaining pB∗
i+1 (PH) = t

2n
. The same reasoning can be applied to firm i−1 due to
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symmetry. By replacing the basic prices in the profits functions, we obtain

πW∗
i (PH) =

9t

8n2 − F and πL∗
i+1 (PH) =

t

4n2 − F

IV. Proof of Proposition 4

When firm i loses its auction, both its rivals obtain the whole dataset (i.e., di+1 =

di−1 = 1). This subgame is specular to the case where firm i wins the auction and di ≥ 3
2n
.

As such, firm i’s basic price and profits are equal to firm i+1’s ones in Step (II) of the

proof of Proposition 3, leading to

pB∗
i (PH) =

t

2n
and πL∗

i (PH) =
t

4n2 − F

V. Proof of Proposition 5

This proof separately examines two cases. The first is the case in which firm i serves

both identified and non-identified consumers. The second is the one in which firm i serves

only identified consumers.

(I) Firm i Serves Both Identified and Unidentified Consumers

Let us solve the n-equations system in its matrix form, which is



4 −1 0 0 . . . 0 −1

−1 4 −1 0 . . . 0 0

0 −1 4 −1 . . . 0 0

0 0 −1 4 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 4 −1

−1 0 0 0 . . . −1 4


∗



pB0 (PA)

pB1 (PA)

pB2 (PA)

pB3 (PA)

. . .

pBn−2 (PA)

pBn−1 (PA)


=



2t
n
− 2tdA

2t
n
− 2tdA

2t
n
− 2tdA

2t
n
− 2tdA

. . .

2t
n
− 2tdA

2t
n
− 2tdA


We can compute the vector of prices as p = A−1 ∗ b, obtaining

pB0 (PA)

pB1 (PA)

. . .

pBi−1 (PA)

pBi (PA)

pBi+1 (PA)

. . .

pBn−1 (PA)



=



a0 a1 . . . ai−1 ai ai+1 . . . an−1

an−1 a0 . . . ai−2 ai−1 ai . . . an−2

. . . . . . . . . . . . . . . . . . . . . . . .

an−i+1 an−i+2 . . . a0 a1 a2 . . . an−i

an−i an−i+1 . . . an−1 a0 a1 . . . an−i−1

an−i−1 an−i . . . an−2 an−1 a0 . . . an−i−2

. . . . . . . . . . . . . . . . . . . . . . . .

a1 a2 . . . ai ai+1 ai+2 . . . a0



∗



2t
n
− 2tdA

2t
n
− 2tdA

. . .

2t
n
− 2tdA

2t
n
− 2tdA

2t
n
− 2tdA

. . .

2t
n
− 2tdA


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We can thus write firm i’s basic price as pBi (PA) = (2t
n
− 2tdA) ∗

∑n−1
j=0 aj, obtaining

pB∗
i (PA) =

t
n
− tdA. By replacing the basic prices in firm i’s profits function, we obtain

πW∗
i (PA) =

t

n2
− td2A

2
− F

(II) Firm i Only Serves Identified Consumers

Let us apply the non-negative price constraint. Since pB∗
i (PA) =

t
n
−tdA, we conclude

that firm i only serves identified consumers when dA ≥ 1
n
. This corresponds to firm i

identifying the consumer at the centre of the arch between itself and its rivals. Since all

firms have the same amount of data, all of them set their basic prices equal to 0. By

replacing these basic prices in firm i’s profits, we obtain πW∗
i (PA) =

t
2n2 − F .

VI. Proof of Proposition 6

We organise this proof by examining three cases, depending on the firms’ ability to

identify consumers. In the first case, all informed firms serve at least some unidentified

consumers. In the second, all informed firms except firm i’s direct rivals only serve iden-

tified consumers. In the third, all informed firms only serve identified consumers.

(I) All Informed Firms Serve Both Identified and Unidentified Consumers

When firm i loses its auction under the sale to all firms, it becomes the only un-

informed firm in the market. We can rewrite the vector of prices as in the proof of

Proposition 5, except that the i-th component of vector b is 2t
n
instead of 2t

n
− 2tdA, as

firm i is uninformed. By using the aj coefficients’ properties, we can write the basic prices

as

pB∗
i (PA) =

t

n
− tdA+2tdAa0 and pB∗

i−j (PA) = pB∗
i+j (PA) =

t

n
− tdA+2tdAaj (A.29)

We recall that aj > aj+1∀j ∈ {0, n
2
− 1}. As such, firm i sets the highest basic price,

and each firm’s basic price decreases with its distance from firm i. By replacing (A.29)

in firm i’s profits function, we obtain

πL∗
i (PA) =

(
t

n
− tdA + 2tdAao

)(
2dA (a1 − a0) +

1

n

)
− F (A.30)

(II) All Informed Firms Except Firm i’s Direct Rivals Only Serve Identified Consumers

As above, the fact that firm i is the only uninformed firm in the market creates an

asymmetry, which causes firms’ basic prices to decrease with their distance from firm
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i. This also implies that the indifferent consumers’ positions are skewed toward firm i’s

location. Without loss of generality, let us focus on firms i−2 and i−1. The former sets a

lower basic price than the latter, as it is more distant from firm i. As such, the indifferent

consumer placed between them x̂i−2,i−1 is located closer to firm i−1 instead of at the

centre of the arch like in the proof of Proposition 5. By replacing the basic prices, the

indifferent consumer is located in x̂i−2,i−1 = 2i−3
2n

+ dA(a1 − a2). Firm i−2 can identify

consumers up to i−2
n

+dA. As such, we derive that if dA ≥ 1
2n( 1

2
+a1−a2)

, then firm i−2 only

serves identified consumers and sets its basic price equal to 0. For simplicity, we refer to

this threshold as d1. Moreover, as (aj − aj+1) decreases with j, all other informed firms

except i+1 and i−1 also set their basic prices equal to 0. Without loss of generality, we

focus on firms i−1 and i, as the model is symmetric with respect to firm i. Under these

conditions, firm i−1 identifies all consumers on the arch it shares with firm i−2, while it

still serves some unidentified consumers on the arch it shares with firm i. We can write

firms’ profits functions as

πW
i−1 (PA) =

∫ i−1
n

x̂i−2,i−1

pTi−1,i−2(x) dx+

∫ i−1
n

+dA

i−1
n

pTi−1,i(x) dx

+ pBi−1 (PA)

(
x̂i−1,i −

i− 1

n
− dA

)
− F (A.31)

The first term on the right-hand side represents firm i−1’s profits on the arch it shares

with firm i−2. The second represents the profits it extracts from the identified consumers

on the arch it shares with firm i. The third represents the profits firm i−1 makes on the

unidentified consumers on the arch it shares with firm i. Firm i’s profits are instead

πL
i (PA) = 2pBi (PA)

(
i

n
− x̂i−1,i

)
− F (A.32)

as the arches on which it competes are symmetric. We now replace the tailored prices

and the indifferent consumers’ location with the formulas provided in Equation (1) and

(2). By computing FOCs of (A.31) and (A.32) we obtain the equilibrium basic prices,

which are

pB∗
i−1 (PA) =

t (3− 2ndA)

5n
and pB∗

i (PA) =
t (4− ndA)

5n
(A.33)

Replacing the basic prices from (A.33) into firm i’s profits function, we obtain

πL∗
i (PA) =

t(ndA − 4)2

25n2 − F (A.34)
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(III) All Informed Firms Only Serve Identified Consumers

Finally, we focus on the case where also firms i−1 and i+1 only serve identified

consumers. With respect to firm i, this subgame is the same as the one analysed in the

proof of Proposition 4 where an uninformed firm competes against completely informed

rivals. As such, we find the same solution: when dA ≥ 3
2n
, all informed firms set their

basic prices equal to 0, leading to

pB∗
i (PA) =

t

2n
and πL∗

i (PA) =
t

4n2 − F (A.35)

To sum up, we put together results from the three cases when the DB opts for the

sale to all firms and firm i loses its auction. Firm i’s basic price, as shown in (A.29),

(A.33) and (A.35) is

pB∗
i (PA) =


t
n
− tdA + 2tdAa0 for dA < d1

t(4−ndA)
5n

for d1 ≤ dA < 3
2n

t
2n

for dA ≥ 3
2n

while its profits, as shown in (A.30), (A.34) and (A.35) are

πL
i (PA) =


(
t
n
− tdA + 2tdAao

) (
2dA (a1 − a0) +

1
n

)
− F for dA < d1

t(ndA−4)2

25n2 − F for d1 ≤ dA < 3
2n

t
4n2 − F for dA ≥ 3

2n

VII. Proof of Proposition 7

The DB solves the problem

max
dH

πDB =
n

2

(
πW∗
i (PH)− πL∗

i (PH)
)

(A.36)

where

πW∗
i (PH) =


t
n2 +

2dHt
3n

− 7td2H
18

− F for dH < 3
2n

9t
8n2 − F for dH ≥ 3

2n

πL∗
i (PH) =

t

4n2 − F for 0 ≤ dH ≤ 1

(A.37)

Thus, we can rewrite DB’s profits by replacing (A.37) in (A.36), obtaining

max
dH

πDB =


n
2

(
3t
4n2 +

2dHt
3n

− 7td2H
18

)
for dH < 3

2n

n
2

(
7t
8n2

)
for dH ≥ 3

2n
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When the DB sets dH < 3
2n
, she opts for d∗H = 6

7n
and derives profits π∗

DB = 29t
56n

.

When she sets dH ≥ 3
2n
, then her profits are constant and equal to π∗

DB = 7t
16n

. By

directly comparing the two results, we find that the DB maximises her profits by setting

d∗H = 6
7n
.

Finally, the number of entering firms would be such that their profits after paying for

entry and data are 0. We obtain the number of entering firms by solving

πL∗
i (PH) =

t

4n2 − F = 0

which results in

n∗
H =

1

2

√
t

F
(A.38)

VIII. Proof of Proposition 8

By using the expressions for πW∗
i (PA) and πL∗

i (PA) obtained in the proof of Propos-

ition 5 and 6, we can express the DB’s profits as

max
dA

πDB =



n
(

t
n2 −

td2A
2

−
(
t
n
− tdA + 2tdAao

) (
2dA (a1 − a0) +

1
n

))
for dA < d1

n
(

t
n2 −

td2A
2

− t(ndA−4)2

25n2

)
for d1 ≤ dA < 1

n

n
(

t
2n2 − t(ndA−4)2

25n2

)
for 1

n
≤ dA < 3

2n

n
(

t
2n2 − t

4n2

)
for dA ≥ 3

2n

First, we prove that the second and third part of DB’s profits are always suboptimal.

By computing FOC of the second part with respect to dA, we find that it is monotonically

decreasing in dA over its domain. Thus, the DB would always prefer the first part to the

second one. By computing FOC of the third part with respect to dA, we find that it is

monotonically increasing in dA over its domain. Thus, the DB would always prefer the

fourth part to the third one.

To assess the DB’s equilibrium strategy, we maximise her profits with respect to dA.

If the DB sets dA < d1, her profits are maximised for

d∗A =
1− 2a1

n (−8a20 + a0 (8a1 + 4)− 4a1 + 1)
(A.39)

By substituting (A.39) in DB’s profits, we obtain

πDB =
t

2
(1− 2a1)d

∗
A (A.40)

Instead, if the DB sets dA ≥ 3
2n
, her profits are equal to

πDB =
t

4n
(A.41)
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We now compare (A.40) and (A.41) to assess the DB’s equilibrium strategy. The DB sets

dA = d∗A if
(1− 2a1)

2

(−8a20 + a0(8a1 + 4)− 4a1 + 1)
≥ 1

2
(A.42)

While we are not able to find an explicit solution to (A.42), we find that the inequality

is satisfied for n ≥ n̂ ≈ 3.34. Thus, when n < n̂, the DB sets dA ≥ 3
2n
; when n ≥ n̂, the

DB sets dA = d∗A.

Having found the DB’s equilibrium strategy as a function of n, we now proceed to

the firms’ entry stage.

If n < n̂, the number of entering firms is given by solving

πL∗
i (PA) =

t

4n2 − F = 0

leading to n∗
A = 1

2

√
t
F
.

If instead n ≥ n̂, the number of entering firms is given by solving

πL∗
i (PA) =

(
t

n
− td∗A + 2td∗Aao

)(
2d∗A(a1 − a0) +

1

n

)
= 0 (A.43)

To isolate all the terms that depend exponentially from n, it is useful to rewrite d∗A as

d∗A =
α(n)

n
(A.44)

where

α(n) =
1− 2a1

−8a20 + a0(8a1 + 4)− 4a1 + 1

By replacing (A.44) in (A.43), we can rewrite it as

(1− α(n) + 2a0α(n)) (2(a1 − a0α(n) + 1) =
F

t
n2 (A.45)

We refer to the left-side of the equation as A(n). By studying A(n), we find that it is

monotonically decreasing in n and quickly approaches an asymptote:

lim
n→∞

A(n) =
36
√
3− 99

1644
√
3− 2915

To find the number of entering firms, we approximate A(n) with

A(n) ≈ 1

n3
+

36
√
3− 99

1644
√
3− 2915

(A.46)

This approximation overestimates the true value of A(n) by less than 1% over its domain

(i.e., n ≥ 2). We recall however that in our basic model the DB chooses her strategy

given n: as such, this approximation does not affect the DB’s strategy, and it is only

done to estimate the possible effect of the DB’s strategies on firm entry.
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By replacing (A.46) in (A.45), we obtain

1

n3
+

36
√
3− 99

1644
√
3− 2915

− F

t
n2 = 0 (A.47)

To find an explicit solution to (A.47), we use the Newton-Raphson approximation method.

This method starts by providing a first guess of the solution, denoted as x0, and iteratively

improving the approximation:

x1 = x0 −
f(x0)

f ′(x0)

By looking at (A.47), we see that the solution is close to 3
4

√
t
F
. Thus, by posing x0 =

3
4

√
t
F

we obtain

n∗
A ≈

√
t

F

4096
(
1644

√
3− 2915

)
F
t
+ 243

(
1708

√
3− 3091

)√
t
F

8
(
1644

√
3− 2915

) (
512F

t
+ 81

√
t
F

) (A.48)

By analysing (A.48), we find that the number of entering firms when the DB sets dA = d∗A

is slightly above 3
4

√
t
F
.

IX. Proof of Proposition 9

We directly compare results from the proof of Proposition 7 and 8. Under the sale to

alternating firms, the DB obtains π∗
DB(PH) =

29t
56n

.

Under the sale to all firms, when n < n̂, the DB obtains π∗
DB(PA) =

t
4n
. By comparing

profits with the sale to alternating firms, we find that the DB prefers it over the sale to

all firms.

When n ≥ n̂, DB’s profits are equal to

π∗
DB(PA) =

t

2
(1− 2a1)d

∗
A

where

d∗A =
1− 2a1

n (−8a20 + a0 (8a1 + 4)− 4a1 + 1)

The DB opts for the sale to alternating firms if

29

56
>

1

2

(1− 2a1)
2

−8a20 + a0 (8a1 + 4)− 4a1 + 1

Which is always satisfied for n ≥ 2. We can thus conclude that the DB always opts for

the sale to alternating firms, regardless of n.
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X. Proof of Proposition 10

Consumer utility after purchasing the product from a firm is equal to

U(x, i) = v − pi(x)− t

(
x− i

n

)
where pi,i+1(x) can either be pB∗

i (PH) if firm i does not identify the consumer located in

x or pTi (x) if it identifies it. Due to the model’s symmetry, we can derive the consumer

surplus by first computing it on the arch between firms i and i+1, and then by simply

multiplying this result by n.

In equilibrium, the DB sets d∗H = 6
7n∗

H
, as concluded in Proposition 7. Suppose that the

DB offers d∗H to firm i: as such, firm i serves both identified and unidentified consumers,

and it sets a basic price equal to pB∗
i (PH) =

t
n
− 2

3
tdH, while its rivals set a basic price

pB∗
i+1 (PH) = pB∗

i−1 (PH) =
t
n
− 1

3
tdH. Firm i’s tailored price is pT∗

i,i+1(x) = pB∗
i+1 (PH)−2tx+

t
n
(2i + 1). Finally, the indifferent consumer is located in x̂i,i+1 = 2i+1

2n
+ dH

6
. All these

results have been previously obtained in the proof of Proposition 3. We can now compute

consumer surplus on the arch between firms i and i+1. Consumers located between i
n

and i
n
+ dH

2
buy from firm i and pay the tailored price; consumers between i

n
+ dH

2
and

x̂i,i+1 buy from firm i and pay the basic price; consumers between x̂i,i+1 and
i+1
n

buy from

firm i+1 and pay its basic price. The sum of these terms must then be multiplied by n

to obtain the overall consumer surplus. Formally, we have

CS = n

(∫ i
n
+

dH
2

i
n

v − pT∗
i,i+1(x)− t

(
x− i

n

)
dx+

∫ x̂i,i+1

i
n
+

dH
2

v − pB∗
i (PH)− t

(
x− i

n

)
dx

+

∫ i+1
n

x̂i,i+1

v − pB∗
i+1 (PH)− t

(
i+ 1

n
− x

)
dx

)
(A.49)

By replacing the prices and the indifferent consumer’s location in (A.49), we obtain

CS = u− 5t

4n
+

ntd2H
9

(A.50)

Since d∗H = 6
7n∗

H
and n∗

H = 1
2

√
t
F
, we can further rewrite (A.50) as

CS = u− 229

98

√
tF (A.51)

Consumer surplus where data are absent is equal to CSBENCH = u − 5t
ñ∗ with ñ∗ =

√
t
F
.

This results in CSBENCH = u− 5
4

√
tF , which is always higher than the consumer surplus

reported in (A.51) (i.e., when the DB is present).
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We now compute total welfare. DB profits, as shown in the proof of Proposition 7,

are equal to

π∗
DB =

29t

56n∗
H

=
29

28

√
tF (A.52)

We recall how firms that win their auction are left with πL
i (PH) =

t
4n∗2

H
−F after paying for

data, while firms that do not win their auctions obtain πL∗
i+1 (PH) =

t
n∗2
H
− 2d∗Ht

3n∗
H
+

td∗2H
9

−F .

We can thus rewrite total firms’ profits as

π∗
firms =

n−1∑
i=0

πL
i (PH) =

n∗
H

2

(
t

4n∗2
H

− F

)
+

n∗
H

2

(
t

n∗2
H

− 2d∗Ht

3n∗
H

+
td∗2H
9

− F

)
(A.53)

By replacing d∗H = 6
7n∗

H
and n∗

H = 1
2

√
t
F
, in (A.53), we obtain

π∗
firms =

43

196

√
tF (A.54)

Finally, we compute total welfare as the sum of (A.51), (A.52) and (A.54). We obtain

TW = CS + π∗
DB + π∗

firms = u− 229

98

√
tF +

29

28

√
tF +

43

196

√
tF = u− 53

49

√
tF (A.55)

When data are absent, total welfare is equal to consumer surplus since firms make

profits equal to 0. As such, we find that total welfare increases under the DB’s presence.

On the other hand, most of the total welfare is appropriated by the DB. To show this, we

compare total welfare under the DB’s absence and presence, and we weight her profits

by a coefficient α. The aim is to show for which weight α total welfare in the presence of

a DB is lower than in the benchmark case. We can write

u− 5

4

√
tF > u− 229

98

√
tF +

43

196

√
tF + α

29

28

√
tF (A.56)

from which we obtain

α∗ <
170

203
(A.57)

Thus, as long as (A.57) holds, total welfare is lower than under the benchmark case.

XI. Proof of Proposition 11

We introduce a disutility c > 0 that consumers incur when firms offer them tailored

prices. We analyse this extension under the sale to alternating firms, which we have

proven being optimal for the DB. First, we compute firms’ profits when winning or losing

their respective auctions. Then, we assess the DB’s optimal strategy and her profits.

Finally, we compute consumer surplus and total welfare.
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(I) Equilibrium Prices

We focus on firm i, assuming that the DB offers it di = dH. Due to the added disutility,

firm i sets tailored prices equal to

pTi (x) =

pBi−1 + 2tx− t
n
(2i− 1)− c for x ∈ [ i

n
− dH

2
, i
n
]

pBi+1 − 2tx+ t
n
(2i+ 1)− c for x ∈ [ i

n
, i
n
+ dH

2
]

(A.58)

By substituting (A.58) in (4) we obtain

πW
i (PH) =

dH
2n

(
2t+ npBi−1 (PH) + npBi+1 (PH)− ntdH − 2nc

)
+ pBi (PH)

(
n
(
pBi+1 (PH) + pBi−1 (PH)− 2pBi (PH)

)
+ 2t

2nt
− dH

)
− F (A.59)

While its rivals’ profits are

πL
i+1(PH) = pBi+1(PH)

(
n
(
pBi+2(PH) + pBi (PH)− 2pBi+1(PH)

)
+ 2t

2nt

)
− F (A.60)

Comparing the profits functions with Equation (4) and (5), we can see how the disutility

does not affect firm i or firm i+1’s basic prices. As such, we obtain the same basic prices

as in Section 3.1:

pB∗
i (PH) =

t

n
− 2

3
tdH and pB∗

i+1 (PH) =
t

n
− 1

3
tdH (A.61)

By substituting (A.61) in (A.59) and (A.60), we obtain

πW∗
i (PH) =

t

n2
+ dH

(
2t

3n
− c

)
− 7

18
td2H − F

and

πL∗
i+1 (PH) =

t

n2
− 2tdH

3n
+

1

9
td2H − F

(A.62)

These profits functions hold as long as firm i benefits from offering tailored prices instead

of basic prices to all identified consumers. Given the model’s symmetry, we focus on the

arch between firm i and i+1 without loss of generality. Thus, the profits functions hold

as long as

pB∗
i (PH) ≤ pTi (x)

We rewrite it as
t

n
− 2

3
tdH ≤ t

n
− 1

3
tdH − 2tx+

t

n
(2i+ 1)− c (A.63)

The inequality (A.63) must hold for any consumer identified by firm i. We recall that,

on the arch between firm i and firm i+1, firm i identifies consumers up to the location
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i
n
+ dH

2
. If (A.63) holds for the farthest identified consumer, then it also holds for all the

other identified consumers, as tailored prices allow to extract more surplus from closer

consumers (while the surplus extraction through basic prices is independent from the

consumers’ locations). By setting x = i
n
+ dH

2
and solving with respect to dH, we find

dH ≤ 3

2n
− 3c

2t
(A.64)

Thus, as long as (A.64) holds, firm i offers tailored prices to all identified consumers.

After this threshold, firm i offers its basic price to the newly identified consumers, as

doing so grants it higher profits. From (A.64) we can also see how, if c ≥ t
n
, then firm i

would never opt for the use of tailored prices. As such, we can conclude that, if c ≥ t
n
,

no firm would buy data.

We now consider the case in which (A.64) does not hold. In this case, firm i only

offers its tailored prices to consumers located between i
n
− 3

4n
+ 3c

4t
and i

n
+ 3

4n
− 3c

4t
. We

can thus rewrite its profits as

πW
i (PH) =

∫ i
n

i
n
− 3

4n
+ 3c

4t

pTi (x) dx+

∫ i
n
+ 3

4n
− 3c

4t

i
n

pTi (x) dx

+ pBi (PH)

(
x̂i,i+1 − x̂i−1,i −

(
3

2n
− 3c

2t

))
− F

which can be rewritten as

πW
i (PH) =

3(cn− t)

8tn2

(
cn− 2t− 2npBi+1 (PH)− 2npBi−1 (PH)

)
+ pBi (PH)

(
n
(
pBi+1 (PH) + pBi−1 (PH)− 2pBi (PH) + 3c

)
− t

2nt

)
− F (A.65)

On the other hand, its rivals’ profits maintain the same form presented before. We

compute FOCs of (A.60) and (A.65) with respect to the basic prices, obtaining

∂πW
i (PH)

∂pBi (PH)
= 4pBi (PH)− pBi+1 (PH)− pBi−1 (PH)− 3c+

t

n
= 0

∂πW
i+1 (PH)

∂pBi+1 (PH)
= 4pBi+1 (PH)− pBi (PH)− pBi+2 (PH)−

2t

n
= 0

(A.66)

We solve the n-equations system in its matrix form, and obtain

pB∗
i (PH) =

(
3c− t

n

)a0 + an
2
+ 2

n
4
−1∑

j=1

a2j

+
2t

n

1

2
− a0 − an

2
− 2

n
4
−1∑

j=1

a2j


=

1

3

(
3c− t

n

)
+

1

6

2t

n
= c (A.67)
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pB∗
i+1 (PH) = pB∗

i−1 (PH) =

(
3c− t

n

)1

2
− a0 − an

2
− 2

n
4
−1∑

j=1

a2j


+

2t

n

a0 + an
2
+ 2

n
4
−1∑

j=1

a2j

 =
1

6

(
3c− t

n

)
+

1

3

2t

n
=

t

2n
+

c

2
(A.68)

By substituting (A.67) and (A.68) in the profits functions, we obtain

πW∗
i (PH) =

9t2 − 6cnt+ 5c2n2

8tn2
− F and πL∗

i+1 (PH) =
(t+ cn)2

4tn2
− F

(II) DB’s Profits

Like in the basic model, DB’s profits are equal to the sum of the difference in firms’

profits between winning and losing their auction. When a firm wins, it obtains di = dH;

when it loses, both its direct rivals obtain the whole dataset. We also recall that, if c ≥ t
n
,

then no firms would buy data, and the DB’s profits would thus be 0. DB’s profits are

equal to

max
dH

πDB =


n
2

(
t
n2 + dH

(
2t
3n

− c
)
− 7

18
td2H − (t+cn)2

4tn2

)
for dH ≤ 3

2n
− 3c

2t

n
2

(
9t2−6cnt+5c2n2

8tn2 − (t+cn)2

4tn2

)
for dH > 3

2n
− 3c

2t (A.69)

We start from the case where dH ≤ 3
2n

− 3c
2t
. We can rewrite DB’s profits as

πDB =
3t

8n
+

dHt

3
− c

4
− c2n

8t
− cndH

2
− 7ntd2H

36
(A.70)

By computing the FOC of (A.70) with respect to dH, we obtain

d∗H =
6

7n
− 9c

7t
(A.71)

The number of entering firms is instead given by equating to 0 firms’ profits when losing

their auction. Since a losing firm faces completely informed rivals, we obtain the number

of entering firms by solving

πL∗
i =

(t+ cn)2

4tn2
− F = 0

from which we obtain

n∗
H =

t

2
√
tF − c

(A.72)

By replacing (A.72) in the inequality c ≥ t
n
, we obtain that, if c ≥

√
tF , no firm would

buy data and the DB’s profits would be 0. We can rewrite the optimal partition size set
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by the DB, (A.71), as

d∗H =
12
√
tF

7t
− 15c

7t
(A.73)

The partition size d∗H is greater than 0 only if c < 4
5

√
tF . After this threshold, the DB is

better off not offering data in the auctions she wants to conclude, while still threatening

firms to sell the whole dataset to their rivals. The reason is the following: when c ≥ 4
5

√
tF ,

firm i’s profits when winning its auction become monotonically decreasing in dH. The

disutility in using tailored prices is so high that, while tailored prices could still extract

more surplus on individual consumers than the basic prices, the overall effect on profits is

negative due to the competition effect. As such, the DB is better off offering a partition

of size 0. Thus, when dH ≤ 3
2n

− 3c
2t
, DB’s profits are

π∗
DB =


9
√
tF

14
− 39c

28
+ 11tF

14(2
√
tF−c)

for c < 4
5

√
tF

(
√
tF−c)(3

√
tF−c)

2(2
√
tF−c)

for 4
5

√
tF ≤ c <

√
tF

(A.74)

We refer to the first part as πclow∗
DB , and to the second as π

chigh∗
DB

We now move to the case where dH > 3
2n

− 3c
2t
. The number of entering firms is still

n∗
H = t

2
√
tF−c

. Thus, we can rewrite DB’s profits as

π∗
DB =

5c2 − 12c
√
tF + 7tF

4
(
2
√
tF − c

) (A.75)

By comparing (A.74) and (A.75), we find that DB’s profits are always maximised when

dH ≤ 3
2n

− 3c
2t

for any 0 ≤ c <
√
tF , t > F > 0. Moreover, DB’s profits are decreasing in

c.

(III) Consumer Surplus and Total Welfare

We start by computing consumer surplus when c < 4
5

√
tF . First, we note that firms’

basic prices are not influenced by the disutility c. Second, as shown in Step (I), firms

internalise the disutility by subtracting c from their tailored prices. As such, the direct

net effect on consumers is 0: while consumers incur it, they are compensated with a

reduced price. As such, the computation of consumer surplus under this scenario is equal

to the one shown in the proof of Proposition 10, and we obtain

CS = u− 5t

4n∗
H

+
4

9
n∗
Hd

∗2
H t (A.76)
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However, both the number of entering firms and the amount of data sold depend on c:

by substituting (A.72) and (A.73) in (A.76) we find

CSclow = u− 5

4

(
2
√
tF − c

)
+

(
5c− 4

√
tF
)2

98
√
tF − 49c

(A.77)

By computing the FOC with respect to c, we find that (A.77) is increasing in c. When

4
5

√
tF ≤ c <

√
tF , at the equilibrium no firm has data, and the general formula for

consumer surplus is the same as in the standard Salop model: however, the number of

entering firms is still influenced by the DB’s presence and the disutility, as they affect

firms’ willingness to pay for data. Thus, we obtain

CSchigh = u− 5t

4n∗
H

= u− 5

4

(
2
√
tF − c

)
(A.78)

which is also increasing in c.

Finally, we need to compute total firms’ profits to assess the effect of privacy loss on

total welfare. First, winning firms are left with zero profits after paying the entry cost

F , as the DB extracts all the extra profits they can make. Thus, total firms’ profits are

only composed of the profits of firms that do not obtain data. When c < 4
5

√
tF , the DB

sells partitions of size d∗H = 12
√
tF

7t
− 15c

7t
, and total firms’ profits are

πclow∗
firms =

n∗
H

2
πL∗
i+1 (PH) =

n∗
H

2

(
t

n∗2
H

− 2td∗H
3n∗

H

+
1

9
td∗2H − F

)
which we can rewrite as

πclow∗
firms =

t

4
√
tF − 2c


(
7
(
2
√
tF − c

)
+
(
5c− 4

√
tF
))2

49t
− F

 (A.79)

On the other hand, when 4
5

√
tF ≤ c <

√
tF , at the equilibrium the DB does not sell

data. Firms’ profits are thus equal to the ones in the standard Salop model, although

the number of entering firms still depends on the disutility c. We find

π
chigh∗
firms =

n∗
H

2

(
t

n∗2
H

− F

)
=

c2 − 4c
√
tF + 3tF

4
√
tF − 2c

(A.80)
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We can now compute total welfare. When c < 4
5

√
tF , total welfare is given by the

sum of (A.74), (A.77) and (A.79), obtaining

TW clow =
9
√
tF

14
− 39c

28
+

11tF

14
(
2
√
tF − c

) + u− 5

4

(
2
√
tF − c

)
+

(
5c− 4

√
tF
)2

98
√
tF − 49c

+
t

4
√
tF − 2c


(
7
(
2
√
tF − c

)
+
(
5c− 4

√
tF
))2

49t
− F


When 4

5

√
tF ≤ c <

√
tF , total welfare is the sum of (A.74), (A.78) and (A.80), obtaining

TW chigh =

(√
tF − c

)(
3
√
tF − c

)
2
(
2
√
tF − c

) + u− 5

4

(
2
√
tF − c

)
+

c2 − 4c
√
tF + 3tF

4
√
tF − 2c

By computing the FOC with respect to c under both scenarios, we find that total welfare

is always decreasing in c.

XII. Proof of Proposition 12

To analyse the effects of decreasing the DB’s bargaining power, we search for the DB’s

equilibrium strategies under the auction without reserve prices (suffix AU) and Take It

Or Leave It (suffix TIOLI) mechanisms. We recall how the sale to all firms leads to the

same result under all selling mechanisms, so that the results of proofs of Proposition 5,

Proposition 6 and Proposition 8 are still valid under these selling mechanisms. Instead,

we need to solve the model again under the sale to alternating firms.

(I) Auction Without Reserve Prices

Under the sale to alternating firms, the partition set sold isP∗
H= (dH, 0, dH, 0, . . . , dH, 0).

However, as discussed in Section 2.3, the DB can offer a partition set PH which is differ-

ent from P∗
H, as she can decide to not fulfil some of the auctions she sets up. When the

DB can set reserve prices, she offers a partition set PH= (dH, 1, dH, 1, . . . , dH, 1) and then

only fulfils the auctions where she offers dH, as shown in the proof of Proposition 2. In-

stead suppose that the DB offers a generic partition set PH= (dH, d1, dH, d3, . . . , dH, dn−1).

First, due to the result on model’s symmetry obtained in the proof of Proposition 1, we

can conclude that the DB would set d1 = d3 = . . . = dn−1 = d. Second, since we know

that in equilibrium the DB sells data to half of the firms, the cardinality of the subset J

of fulfilled auctions is j = n
2
. Without loss of generality, we focus on firms 0 and 1. If

firm 0 wins its auction, all other firms that are offered dH win, as they are identical to
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it and have access to the same set of information. On the other hand, if firm 0 loses, all

the firms that are offered dH lose. The same reasoning can be applied to firm 1 and the

other firms that are offered d. Thus, firms’ willingness to pay for data are equal to

πW
0 (dH, 0, dH, 0, . . . , dH, 0)− πL

0 (0, d, 0, d, . . . , 0, d)

and

πW
1 (0, d, 0, d, . . . , 0, d)− πL

1 (dH, 0, dH, 0, . . . , dH, 0)

We want to show that d = dH in equilibrium. Suppose that d > dH (the opposite case

is solved similarly): then it is straightforward to show that

πW
1 (0, d, 0, d, . . . , 0, d)− πL

1 (dH, 0, dH, 0, . . . , dH, 0 >

πW
0 (dH, 0, dH, 0, . . . , dH, 0)− πL

0 (0, d, 0, d, . . . , 0, d)

That is, firm 1’s willingness to pay is higher than firm 0’s one. Since there are no reserve

prices, firm 1 can win its auction by offering firm 0’s willingness to pay plus ε, where ε

is an arbitrary small number. As such, the DB chooses d as low as possible to maximise

firm 0’s willingness to pay and, in turn, firm 1’s: that is, she chooses d = dH.

Under AU, the DB offers a partition set PH= (dH, dH, dH, dH, . . . , dH, dH), and the par-

tition set sold in equilibrium is P∗
H= (dH, 0, dH, 0, . . . , dH, 0). Since all firms are symmetric

and are offered same-sized partitions, the DB is indifferent between fulfilling the auctions

of even-indexed or odd-indexed firms. This change from the auction with reserve prices

(AR) has implications on firms’ expected profits when they lose their auction. Under

AR, a firm knew that, if it tried to deviate, the DB would fulfil its direct rivals’ auctions.

On the other hand, under AU, an even-indexed firm knows that, if it loses its auction,

the DB will fulfil all the odd-indexed firms’ auctions. Without loss of generality, we can

focus on firm 0. If firm 0 wins, its profits are

πW AU
0 (dH, 0, dH, 0, . . . , dH, 0)

If it loses, they are

πL AU
0 (0, dH, 0, dH, . . . , 0, dH)

Firm 0’s profits when winning have already been computed in the proof of Proposition

3. We find

πW AU∗
0 (PH) =


t
n2 +

2dHt
3n

− 7td2H
18

− F for dH < 3
2n

9t
8n2 − F for dH ≥ 3

2n

(A.81)
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In a similar way, firm 0’s profits when losing are equal to firm i+1’s profits derived in the

proof of Proposition 3. We find

πL AU∗
0 (PH) =


t
n2 − 2dHt

3n
+

td2H
9

− F for dH < 3
2n

t
4n2 − F for dH ≥ 3

2n

(A.82)

Thus, we can compute DB’s profits as

max
dH

πAU
DB =


n
2

(
t
n2 +

2dHt
3n

− 7td2H
18

− F −
(

t
n2 − 2dHt

3n
+

td2H
9

− F
))

for dH < 3
2n

n
2

(
9t
8n2 − F −

(
t

4n2 − F
))

for dH ≥ 3
2n

which we can rewrite as

max
dH

πAU
DB =


dHt(8−3dHn)

12
for dH < 3

2n

7t
16n

for dH ≥ 3
2n

(A.83)

When dH < 3
2n
, we obtain DB’s profits by equating to 0 the FOC of the first part of

(A.83) with respect to dH, obtaining d∗H. Since
4t
9n

> 7t
16n

is always satisfied, we find that

the DB’s equilibrium strategy under the sale to alternating firms implies d∗H = 4
3n
.

We now compare the DB’s profits under the sale to all firms and the sale to alternating

firms, following the same approach as in the proof of Proposition 9. Under the sale to

alternating firms, the DB obtains πAU∗

DB (PH) =
4t
9n
.

Under the sale to all firms, when n < n̂, the DB obtains πAU∗

DB (PA) = t
4n
. By

comparing profits with the sale to alternating firms, we find that the DB prefers the

latter.

When n ≥ n̂, DB’s profits are equal to

π∗
DB(PA) =

t

2
(1− 2a1)d

∗
A

where

d∗A =
1− 2a1

n (−8a20 + a0 (8a1 + 4)− 4a1 + 1)

The DB opts for the sale to alternating firms if

4

9
>

1

2

(1− 2a1)
2

−8a20 + a0 (8a1 + 4)− 4a1 + 1

which is always satisfied for n ≥ 2. To sum up, the DB always opts for the sale to

alternating firms, regardless of n.
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We now derive the number of entering firms, which is is given by binding the first

part of the piecewise function (A.82), so that

t

n2
− 2d∗Ht

3n
+

td∗H
2

9
− F = 0 (A.84)

Solving (A.84) with respect to n gives us

n∗
H =

9
√
tF − 3d∗Ht

9F − td∗H
2 =

5

9

√
t

F
(A.85)

leading to DB’s profits being

πAU∗
DB =

4

5

√
tF

To compute consumer surplus, we can use the general formula for the sale to altern-

ating firms provided in the proof of Proposition 10. In our case, we obtain

CSAU = u− 5t

4n∗
H

+
n∗
Htd

∗2
H

9
(A.86)

where d∗H = 4
3n∗

H
and n∗

H = 5
9

√
t
F
. By replacing these values, we can rewrite (A.86) as

CSAU = u− 341

180

√
tF

(II) Take It Or Leave It Offers

Under TIOLI, the DB cannot offer a partition set different from the one that results

in equilibrium, as she has to fulfil all the offers she makes if firms are willing to pay

the corresponding price. In the proof of Proposition 1, we concluded that the DB offers

same-sized partitions to every other firm, i.e., P =
(
d̃, d̂, d̃, . . . , d̂

)
. We proved that d̃

and d̂ could not be different: however, our demonstration did not rule out the corner

solution where either d̃ or d̂ were equal to 0. This is because, under both AU and AR,

firms that at the equilibrium do not obtain data could have had data offered to them in

auctions that the DB did not fulfil, and these offers influence firms’ willingness to pay.

This is not the case under TIOLI. As already shown in the proofs of Proposition 3 and 5,

firms are always better off when they obtain data. As such, under this mechanism, only

those firms to which the DB does not offer data will have no data at the equilibrium.

Thus, under TIOLI, the analysis shown in the proof of Proposition 1 allows us to also

discard the corner solution, leaving only the sale to all firms as a viable strategy. As

already derived in the proof of Proposition 8, the DB’s strategy depends on the number

of entering firms.
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If n < n̂, the DB offers the whole dataset to all firms. The number of entering firms

is n∗
A = 1

2

√
t
F
, and her profits are

πTIOLI∗
DB =

1

2

√
tF

Regarding consumer surplus, we first note that all firms set basic prices equal to 0, as

they identify all the consumers they serve. As such, indifferent consumers are located at

the centre of each arch, which is split in two identical halves. We can thus write consumer

surplus as

CSTIOLI = 2n∗
A

∫ 2i+1
2n∗

A

i
n∗
A

v − pT∗
i (x)− t

(
x− i

n∗
A

)
dx

 (A.87)

where

pTi (x) = −2tx+
t

n∗
A

(2i+ 1) (A.88)

By substituting (A.88) in (A.87) and solving, we obtain

CSTIOLI = u− 3t

4n∗
A

= u− 3

2

√
tF

Instead, when n ≥ n̂, the DB sets

d∗A =
1− 2a1

n (−8a20 + a0 (8a1 + 4)− 4a1 + 1)

In the proof of Proposition 8, we have approximated the number of entering firms as

n∗
A ≈

√
t

F

4096
(
1644

√
3− 2915

)
F
t
+ 243

(
1708

√
3− 3091

)√
t
F

8
(
1644

√
3− 2915

) (
512F

t
+ 81

√
t
F

)
DB’s profits are equal to

πTIOLI
DB =

t

2
(1− 2a1)d

∗
A

Note how all firms offer equal basic prices and have equal market shares. As such, we

can compute consumer surplus as that gained on an arch between a firm’s location and

its closest indifferent consumer, multiplied by 2n∗
A. We can thus write

CS = 2n∗
A

∫ i
n
+

d∗A
2

i
n

v − pT∗
i,i+1(x)− t

(
x− i

n

)
dx+

∫ x̂i,i+1

i
n
+

d∗
A
2

v − pB∗
i (PA)− t

(
x− i

n

)
dx

)
(A.89)

Under the sale to all firms, firm i’s basic price is pB∗
i (PA) = t

n∗
A
− td∗A, the indifferent

consumer is located in x̂i,i+1 = i
n∗
A
+ 1

2n∗
A
and firm i’s tailored price is pT∗

i,i+1(x) = pB∗
i+1 −
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2tx + t
n∗
A
(2i + 1). By replacing these values in (A.89), we can rewrite consumer surplus

as

CS = v − 5t

4n∗
A

+ 2n∗
Atd

∗
A
2

As we can see, consumer surplus is increasing in n∗
A: thus, our overestimation of the

number of entering firms in (A.48) is an upper bound on consumer surplus. To properly

compare results, we do a second approximation by underestimating A(n): this in turn

underestimates the number of entering firms, and gives us a lower bound on consumer

surplus. We find that

A(n) ≈ 1

n3
+

53

100
(A.90)

always underestimates A(n). Through the Newton-Raphson approximation method, we

find that the lower bound for the number of entering firms is

n∗
A low ≈

102400F
t
+ 11799

√
t
F

200

(
512
t
F

3
2
+ 81

) (A.91)

By comparing DB’s profits, consumer surplus and the quantity of data sold under

the different selling mechanisms, we conclude that the first decreases while the others

increase, as the DB’s bargaining power is lowered. Moreover, consumer surplus is higher

than in the benchmark only under TIOLI when n ≥ n̂, even when underestimating n as

in (A.91), while it is lower in all the other scenarios.

XIII. Proof of Proposition 13

This proof is organised in five parts. First, we assess the sale to all firms, as its

outcomes do not vary when changing the selling mechanism. Then, we individually

assess the DB’s strategy in equilibrium under the three selling mechanisms: auctions

with reserve prices (AR), auctions without reserve prices (AU) and Take It Or Leave It

offers (TIOLI). Finally, we compare our findings. We recall that, since the DB anticipates

the effect of her data sale on firm entry, the DB first anticipates the number of entering

firms with respect to her strategy, and then she chooses the amount of data she sells so

as to maximise her profits. Moreover, the number of entering firms is given by posing

firms’ profits after paying for entry and data equal to 0.

(I) Sale to All Firms

The proof for the sale to all firms proceeds in two steps. First, we show that the
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DB either sets dA < d1 or dA ≥ 3
2n
, where d1 = 1

2n( 1
2
+a1−a2)

. Then, we show that she

maximises her profits by setting dA ≥ 3
2n
.

(I.1) The DB Either Sets dA < d1 or dA ≥ 3
2n

By using the expressions for πW∗
i (PA) and πL∗

i (PA) obtained in the proof of Propos-

ition 5 and 6, we can express the DB’s constrained maximisation problem as

max
dA

πDB =



n
(

t
n2 −

td2A
2

−
(
t
n
− tdA + 2tdAao

) (
2dA (a1 − a0) +

1
n

))
for dA < d1

n
(

t
n2 −

td2A
2

− t(ndA−4)2

25n2

)
for d1 ≤ dA < 1

n

n
(

t
2n2 − t(ndA−4)2

25n2

)
for 1

n
≤ dA < 3

2n

n
(

t
2n2 − t

4n2

)
for dA ≥ 3

2n

subject to the following constraint:

s.t.


(
t
n
− tdA + 2tdAao

) (
2dA (a1 − a0) +

1
n

)
− F ≥ 0 for dA < d1

t(ndA−4)2

25n2 − F ≥ 0 for d1 ≤ dA < 3
2n

t
4n2 − F ≥ 0 for dA ≥ 3

2n

where the constraint is equal to firms’ profits after paying for the entry cost and data.

We focus on the second, third and fourth part of the DB’s profits function: in particular,

we want to show that, if the DB sets dA ≥ d1, then she sets dA ≥ 3
2n
. To do so, we

first note from Figure 1 how the constraint regarding entering firms is decreasing in dA,

and it becomes fixed for dA ≥ 3
2n
. Moreover, DB’s profits are inversely proportional to

the number of entering firms, while they are directly proportional to firms’ willingness

to pay for data. Thus, if a given dA grants a higher willingness to pay by firms and a

smaller number of entering firms than another one, then the former strategy dominates

the latter.

The number of entering firms is minimised when dA ≥ 3
2n
. As such, strategies where

d1 ≤ dA < 1
n
or 1

n
≤ dA < 3

2n
can only be optimal if they allow the DB to extract more

surplus from individual firms than the strategy where dA ≥ 3
2n
.

Suppose that the number of entering firms n is given: we can rewrite DB’s profits

when d1 ≤ dA < 1
n
as

πDB

(
d1 ≤ dA <

1

n

)
=

9t

25n
+

8dAt

25
− 27d2Atn

50

Which is a downward facing parabolic function with its maximum in dA = 8
27n

. Since

8
27n

< d1 ∀ n, we find that this function is decreasing in dA over its domain. As such, if

71



the DB sets d1 ≤ dA < 1
n
, she opts for d∗A = d1 =

1
2n( 1

2
+a1−a2)

. On the other hand, when

the DB sets dA ≥ 3
2n
, her profits are

πDB

(
dA ≥ 3

2n

)
=

t

4n

We want to show that

πDB

(
dA ≥ 3

2n

)
> πDB (d1) ∀ n

We can rewrite the inequality as

1 >
36

25
+

32nd1
25

− 108d21n
2

50
(A.92)

The right-hand side of (A.92) is monotonically increasing in n, and

lim
n→∞

36

25
+

32nd1
25

− 108d21n
2

50
≈ 0.85 < 1

Thus, we can conclude that the DB would opt for dA ≥ 3
2n

instead of d1 ≤ dA < 1
n
, as

it allows her to better extract surplus from firms and to further hinder their entry. We

can apply the same reasoning for the case where 1
n
≤ dA < 3

2n
. From Figure 1 we can see

how firms’ profits when winning are the same when 1
n
≤ dA < 3

2n
or when dA ≥ 3

2n
, while

their profits when they lose are minimised when dA ≥ 3
2n
. Thus, setting dA ≥ 3

2n
enables

the DB to extract more surplus from firms. Since this amount of data also minimises the

number of entering firms, we can conclude that the set of strategies where 1
n
≤ dA < 3

2n

is also dominated by setting dA ≥ 3
2n
. By putting together the two results, we conclude

that if the DB sets dA ≥ d1, then she opts for dA ≥ 3
2n
.

(I.2) DB’s Profits Are Maximised When Setting dA ≥ 3
2n

For simplicity, we refer to the DB setting dA ≥ 3
2n

as dhigh, while we refer to the DB

setting dA < d1 as dlow. When the DB sets dA ≥ 3
2n
, she maximises

πDB(PA
dhigh) =

t

4n
(A.93)

under the constraint

πi
L(PA

dhigh) =
t

4n2 − F ≥ 0 (A.94)

Firms enter as long as (A.94) holds. By binding the constraint – i.e., setting πi
L(PA

dhigh) =

0 – we obtain

n∗
dhigh

=
1

2

√
t

F
(A.95)

By replacing (A.95) in (A.93) we obtain

πDB(PA
dhigh) =

1

2

√
tF (A.96)
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The DB maximises

πDB(PA
dlow) = n

(
t

n2
− td2low −

(
t

n
− tdlow + tdlowao

)
∗
(
2dlow (a1 − a0) +

1

n

))
which can be rewritten as

πDB(PA
dlow) = t

(
dlow (1− 2a1)− n

d2low
2

(1 + 4 (1− 2a0) (a0 − a1))

)
(A.97)

under the constraint

πi
L(PA

dlow) =

(
t

n
− tdlow + 2tdlowao

)(
2dlow (a1 − a0) +

1

n

)
− F ≥ 0 (A.98)

We want to show that

πDB(PA
dlow) < πDB(PA

dhigh) (A.99)

for all relevant values of dlow, t and F . In particular, we recall that 0 ≤ dlow < 1
n
, t > 0,

F > 0, t > F . The last condition is needed so that at least one firm enters the market

(as such, n ≥ 1). It is useful to express F
t
= k, with 0 < k < 1. We can rewrite (A.99) as

2dlow (1− 2a1)− nd2low (1 + 4 (1− 2a0) (a0 − a1)) <
√
k (A.100)

To solve (A.100), we bind the constraint (A.98), find the number of entering firms and

replace it in (A.97). However, we recall that a0 and a1 are exponential functions in n,

and as such they heavily complicate this process. To find an explicit solution, we operate

a series of round ups on the left-hand side of (A.100). By showing that the left side

is smaller than the right side even after the round ups, we prove that also the original

inequality holds.

First, we compute the number of entering firms when d = dlow. Since firms enter as

long as their outside option is no lower than 0, the number of entering firms is given by

binding the constraint (A.98):

πi
L(PA

dlow) =

(
t

n
− tdlow + 2tdlowao

)(
2dlow (a1 − a0) +

1

n

)
− F = 0 (A.101)

By replacing the explicit forms of a0 and a1 in (A.101), we can rewrite it as

1

n2
− 2dlow√

3n
f(n) +

1

3
d2lowf(n)

2 − F

t
= 0 (A.102)

where

f(n) =

(√
3− 1

) (
2 +

√
3
)n

+
(
1 +

√
3
) (

2−
√
3
)n − 2

√
3(

2 +
√
3
)n

+
(
2−

√
3
)n − 2

(A.103)

Our objective would be to solve (A.102) with respect to n, to obtain n(dlow). However,

(A.102) depends on n both linearly and exponentially, which increases the complexity of

finding an explicit form of n(d). On the other hand, the equality is a second-order
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polynomial in dlow: as such, we can easily obtain d(n). By solving (A.102) with respect

to d we obtain

d∗1(n) =

√
3
(
n
√
k + 1

)
nf(n)

and d∗2(n) = −

√
3
(
1− n

√
k
)

nf(n)
(A.104)

where k = F
t
. From Salop (1979) we know that, if a DB is absent, the number of

entering firms is n =
√

t
F
. As such, our solution must satisfy dlow

(√
t
F

)
= 0, which

gives us dlow = d∗2(n). Having found dlow(n), we need to invert the function to obtain

n(dlow). However, the presence of the exponential function f(n) still poses problems

when searching for an explicit solution. As such, we round f(n) to find an explicit

form of n(dlow). We recall that we want to round up πDB(PA
dlow), which is inversely

proportional to n. As such, we need to round down n(dlow), which requires rounding up

f(n). Through a study of the function, we find that 0.61971.0489n−1.0566
0.7806n−0.4757

is always higher

than f(n) ∀ n ≥ 1, while it closely approximates its trend. As such, we approximate

(A.103) as

f(n) ≈ 0.6197 ∗ 1.0489n− 1.0566

0.7806n− 0.4757
(A.105)

Replacing (A.105) in the correct solution from (A.104), we obtain

dlow(n) = −

√
3
(
1− n

√
k
)
(0.7806n− 0.4757)

n ∗ 0.6197(1.0489n− 1.0566)
(A.106)

We can now replace (A.106) in (A.102), obtaining

n2
(
0.6197 + 1.0489dlow + 0.7806

√
3k
)

− n
(
0.6197 ∗ 1.0566dlow + 0.7806

√
3 + 0.4757

√
3k
)
+ 0.4757

√
3 = 0

Being a second-order polynomial in n, we find two explicit solutions:

n (dlow) =
0.66dlow + 0.4757

√
3k + 0.7806

√
3

1.3d+ 1.56
√
3k

±
1.31

√
−0.277

√
3
(
2.6dlow + 3.12

√
3k
)
+
(
0.5dlow + 0.363

√
3k − 0.597

√
3
)2

2.6dlow + 1.56
√
3k

Since we know that n(0) =
√

t
F
=
√

1
k
, we can conclude that the correct solution is the

one with the plus sign.

We have obtained n (dlow) rounded down, which in turn rounds up πDB(PA
dlow). Next,

we aim to round the exponential terms present in the left side of (A.100) to increase it.

We first focus on (1− 2a1). This function is monotonically increasing in n, and its limit
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is

lim
n→∞

(1− 2a1) = 2− 2√
3

The term (1− 2a1) has a positive effect on the left side of (A.100); as such, by rounding

up (1− 2a1) we are also rounding up the left side of (A.100). Thus, we approximate

(1− 2a1) ≈ 2− 2√
3

(A.107)

Next, we focus on (1 + 4 (1− 2a0) (a0 − a1)) . This function is monotonically increasing in

n, and has a negative effect on the left side of (A.100); since we want to round up that side,

we need to round down (1 + 4 (1− 2a0) (a0 − a1)). Through a study of the function, we

find that the function 1.368n−1
8n+2

is always lower than (1 + 4 (1− 2a0) (a0 − a1)) ∀ n ≥ 1,

while it closely approximates its trend. As such, we approximate

(1 + 4 (1− 2a0) (a0 − a1)) ≈ 1.36
8n− 1

8n+ 2
(A.108)

By replacing (A.107) and (A.108) in (A.100) and setting n = n (dlow) we obtain(
2− 2√

3

)
2dlow − n (dlow) d

2
low

(
1.36

8n (dlow)− 1

8n (dlow) + 2

)
−
√
k < 0 (A.109)

The inequality (A.109) only depends on dlow and k, with 0 < dlow < 1
n(dlow)

, and

0 < k < 1. As such, we can plot the left-hand function for all the proper couples (dlow, k).

As we can see in Figure A.1, the inequality always holds: thus, the DB’s strategy is the

same as the one adopted in the basic model when n < n̂: the DB sets dA ≥ 3
2n∗

A
with

n∗
A = 1

2

√
t
F
, obtaining πDB(PA

dhigh) = 1
2

√
tF , while consumer surplus is equal to

CS = u− 3t

4n∗
A

= u− 3

2

√
tF
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Figure A.1. Difference in DB’s Profits Between Selling dhigh and dlow

This figure shows the left term of inequality (A.109) for 0 < dlow < 1
2n(dlow) and 0 < k < 1.

(II) Auction With Reserve Prices

As priorly stated, the difference between the basic model and this extension is that

the DB’s strategy is directly influenced by the number of entering firms, as she anticipates

the effect of the data sale on it. However, under the auction with reserve prices (AR), the

number of entering firms is constant, as a losing firm always faces completely informed

rivals. Thus, we find that the DB adopts the strategy already described in the proof

of Proposition 7. By comparing DB’s profits under the sale to all firms and the sale

to alternating firms, we find that the DB still opts for the latter, leading to the market

outcomes already described in the proofs of Proposition 9 and 10.

(III) Auction Without Reserve Prices

Under AU, as already shown in the proof of Proposition 12, the DB offers same sized

partitions in all the auctions. Without loss of generality, we focus our analysis on firm 0.

Firm 0’s profits when winning have already been computed in the proof of Proposition

3. We find

πW AU∗
0 (PH) =


t
n2 +

2dHt
3n

− 7td2H
18

− F for dH < 3
2n

9t
8n2 − F for dH ≥ 3

2n

(A.110)
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In a similar way, firm 0’s profits when losing are equal to firm i+1’s profits derived in the

proof of Proposition 3. We find

πL AU∗
0 (PH) =


t
n2 − 2dHt

3n
+

td2H
9

− F for dH < 3
2n

t
4n2 − F for dH ≥ 3

2n

(A.111)

Thus, we can compute DB’s profits as

max
dH

πAU
DB =


n
2

(
t
n2 +

2dHt
3n

− 7td2H
18

− F −
(

t
n2 − 2dHt

3n
+

td2H
9

− F
))

for dH < 3
2n

n
2

(
9t
8n2 − F −

(
t

4n2 − F
))

for dH ≥ 3
2n

which we can rewrite as

max
dH

πAU
DB =


dHt(8−3dHn)

12
for dH < 3

2n

7t
16n

for dH ≥ 3
2n

(A.112)

When dH < 3
2n
, we obtain the number of entering firms by binding the first part of the

piecewise function (A.111), so that

t

n2
− 2dHt

3n
+

td2
H

9
− F = 0 (A.113)

Solving (A.113) with respect to n gives us

n∗
H =

9
√
tF − 3dHt

9F − td2H
(A.114)

When dH ≥ 3
2n
, the number of entering firms is constant and given by binding the second

part of the piecewise function (A.111), so that

t

4n2 − F = 0 (A.115)

Solving (A.115) with respect to n, we obtain

n∗
H =

1

2

√
t

F
(A.116)

By substituting (A.114) and (A.116) in (A.112), we can rewrite DB’s profits as

max
dH

πAU
DB =


dHt(72F+td2H−27dH

√
tF)

108F−12td2H
for dH < 3

2n∗
H

7
8

√
tF for dH ≥ 3

2n∗
H

(A.117)

By computing FOCs of (A.117) for dH < 3
2n∗

H
with respect to dH, we find that DB’s profits

are monotonically increasing in dH. As such, the DB opts for d∗H ≥ 3
2n∗

H
and obtains profits

πAU∗
DB =

7

8

√
tF (A.118)
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As profits in (A.118) are higher than under the sale to all firms, in equilibrium the DB

opts for the sale to alternating firms. To compute consumer surplus, we can use the

general formula for the sale to alternating firms provided in the proof of Proposition 10.

In our case we obtain

CSAU = u− 5t

4n∗
H

+
n∗
Htd

∗2
H

9
(A.119)

where n∗
H = 1

2

√
t
F

and d∗H = 3
2n∗

H
, as it is the limit case after which data exhaust their

marginal effect. We can rewrite (A.119) as

CSAU = u− t

n∗
H

= u− 2
√
tF

(IV) Take It Or Leave It Offers

As already described in the proof of Proposition 12, the sale to alternating firms is

always suboptimal under TIOLI, as the DB cannot properly threat firms when they refuse

to buy data. Thus, the DB opts fort the sale to all firms, leading to the market outcomes

already described in the first part of this proof.

(V) Comparison

By comparing the market outcomes under the three selling mechanisms, we find that

DB’s profits decrease and consumer surplus increases as the DB’s bargaining power is

reduced. However, consumer surplus is always lower than in the benchmark case, and

the number of entering firms is always minimised.
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CHAPTER 2

The Impact of Privacy Regulation on Web Traffic: Evidence

From the GDPR∗

Raffaele Congiu†, Lorien Sabatino†, Geza Sapi‡

We use traffic data from around 5, 000 web domains in Europe and United
States to investigate the effect of the European Union’s General Data Protec-
tion Regulation (GDPR) on website visits and user behaviour. We document
an overall traffic reduction of approximately 15% in the long-run and find a
measurable reduction of engagement with websites. Traffic from direct vis-
its, organic search, email marketing, social media links, display advertising
and referrals dropped significantly, but paid search traffic – mainly Google
search ads – was barely affected. We observe an inverted U-shaped relation-
ship between website size and traffic reduction due to privacy regulation: the
smallest and largest websites lost visitors, while medium ones were less af-
fected. Our results appear consistent with the view that users care about
privacy and may defer visits in response to website data handling policies.
Privacy regulation can impact market structure and may increase depend-
ence on large advertising service providers. Enforcement matters as well:
the effects were amplified considerably in the long-run, following the first
significant fine issued eight months after the entry into force of the GDPR.

*We thank Similarweb (www.similarweb.com) for providing us the data used in this work. The
views expressed in this article are solely those of the authors and may not, under any circumstances, be
regarded as representing an official position of organizations the authors are affiliated with.

†Politecnico di Torino, Department of Management, Corso Duca degli Abruzzi, 24, 10129 Turin,
Italy.

‡Düsseldorf Institute for Competition Economics (DICE), Heinrich Heine University of Düsseldorf.
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1. Introduction

The rise of the internet has enabled new products and services, revolutionising the

ways we work and interact. In the United States (US), as in other mature economies,

the growth of the internet economy exceeds that of other sectors by orders of magnitude

(Interactive Advertising Bureau, 2021). The shift of private and commercial activities

to the internet goes hand in hand with increased attention to online security, privacy

and the protection of data.1 In recent years, policy makers around the world reacted to

increased data protection concerns by putting in place a wave of regulations with the aim

of protecting online and offline privacy, thereby limiting the ways companies collect and

use data.2 Typically, the goal of such privacy regulations is to empower consumers by

giving them additional control over how firms gather and use their personal information.

One of the most far-reaching regulatory interventions to boost privacy is without

doubt the General Data Protection Regulation (GDPR) of the European Union (EU). The

GDPR entered into force in May 2018 with the intention of protecting personal privacy

across all domains, both online and offline. The regulation mandates data protection “by

design and by default” and prescribes several principles and tools for managing data. It

requires data controllers to inform individuals about the collection and use of data. Firms

collecting personal data must obtain the users’ informed opt-in consent to such practices.

The regulation assigns liability to firms handling data and – for the first time – imposes

significant fines on privacy breaches up to 4% of global turnover.

While the GDPR applies both online and offline to any entity handling personal in-

formation, no other economic domain is expected to be as heavily affected by it as the

internet ecosystem. Today’s internet relies heavily on the collection and use of visitor

data. Websites attract visitors by offering a broad spectrum of content ranging from

news, music and entertainment, to commerce and other services. More often than not,

websites monetise at least in part by tracking their visitors and providing targeted advert-

isements to individuals or homogeneous groups of users. Digital stars such as Google and

Facebook grew to titans of the internet by harvesting user data from millions of websites,

1In Europe, in 2011 around 40% of survey respondents were concerned about their behaviour being
recorded through the internet when browsing, downloading files, and accessing content online (European
Commission, 2011), in 2015 less than a quarter of respondents reported to trust online businesses to pro-
tect their personal data (European Commission, 2015). Growing online privacy concerns likely followed
the general trend in internet use (Ourworldindata.org, 2021), and likely reach back to the early 2000s
(Auxier et al., 2019).

2At the time of writing this article, the Australian Privacy Act of 1988 is under review (Coos, 2020),
and legislation strengthening privacy is under way in Canada and the United States (Government of
Canada, 2020; IAPP, 2021).
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connecting users’ browsing paths, aggregating these signals into user profiles and offering

advertising services to third parties to target consumers based on their specific interests

and characteristics.3

Since its introduction, the GDPR has attracted considerable interest from researchers,

policy-makers, and industry players across the globe.4 So far, less attention has been

devoted to understanding the consequences of the GDPR on website’s ability to attract

internet users and the altered ability and likelihood of those users to engage with website

content. Our research aims to fill this gap. We investigate the effect of the GDPR on

online traffic and user behaviour in the European Union (EU).

We use data on traffic – broken down by channel – for about 5, 000 websites in Europe

and the United States. We exploit the fact that the GDPR applies to European users,

leaving the non-European audience unaffected. We apply a difference-in-differences (DiD)

analysis that exploits the geographic origin of website traffic. In particular, our treatment

assignment identifies the traffic originated from EU countries, leaving US traffic in the

control group. This implies that multinational websites having visitors from both the EU

and abroad are treated only for the portion of traffic coming from EU countries.

Overall, we find that the GDPR led to a reduction in web traffic, and website visits

decrease by approximately 15% in the long-run. This effect unfolded fully with a delay,

several months after the hard date of the GDPR entry into force, and following the

issuance of the first large fine. We break down the overall traffic reduction into detailed

traffic acquisition channels. In the short-run, direct website traffic and visits triggered

by email marketing messages reduced by 4.5% and 7% respectively. In the long-run –

coinciding with the first large fine – traffic reduction amplified significantly. Email and

display advertising traffic collapsed by 35% and 29%, respectively. Visits from referrals

(such as links on 3rd party websites) and from social media reduced too, together with

direct (−9.5%) and organic search visits (7%). Strikingly, against this backdrop we find

that website traffic from paid search – mainly Google search advertisement – was barely

affected.

The GDPR was much anticipated and was feared to affect predominantly small busi-

nesses negatively (Kottasová, 2018; BBC, 2018). We in turn find an inverted U-shaped

3The tracker networks of Google and Facebook have been found embedded into respectively 80% and
37% of the most popular websites (Hu et al., 2020).

4The first research articles assessing the impact of the GDPR came from the computer science
domain, and revolved around measuring websites’ technical compliance with the regulation (Nouwens
et al., 2020; Utz et al., 2019; Matte et al., 2020; Sørensen and Kosta, 2019).
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relationship between website size (measured in visits) and the traffic reduction due to the

privacy regulation. Small websites lost traffic, but so did the largest ones, while medium

websites remained unaffected and may have even grown. On the intensive margin, we

observe a significant deterioration of user engagement with websites following the GDPR,

both in the short and in the long term. We estimate a significant reduction in average

visit duration and the number of web pages visited, as well as a measurable increase in

website bounce rate – the share of website visitors that leave almost immediately after

arriving on a website.

This paper makes several contributions to the fast-growing literature on the impact of

the GDPR in the digital market. First, we investigate how the GDPR affected web traffic

and user engagement, which measure the extensive and intensive margins of internet

consumption. Second, we are able to explore both short- and long-run effects of the

GDPR. This is important, as most of the effects unfold several months after the enactment

of the regulation. Third, contrary to other related studies (Peukert et al., 2020; Goldberg

et al., 2019), our empirical strategy is based on the geographical source of website traffic,

rather than on the country domain.5 In such a framework, the treatment assignment

targets precisely the European audience that falls under the scope of the GDPR. Finally,

we assess empirically the differentiated effects of privacy regulation based on website size

(Campbell et al., 2015; Dimakopoulos and Sudaric, 2018; Sabatino and Sapi, 2019). To

the best of our knowledge, we are the first in providing evidence of an inverted U-shaped

relationship between website size and privacy regulation effects.

All in all, we document and measure some anticipated and less anticipated effects of

the GDPR. While the effects we emphasise here indicate an overall loss of traffic via most

channels and less interaction with websites, this in itself does not imply that the GDPR

is a harmful regulation. On the contrary: the decline of direct website traffic – the largest

source of website visits – may be the result of users’ conscious choice, after the increased

prominence of privacy policies and websites’ pop-ups to obtain consent to these policies.

The remainder of the paper is organised as follows. Section 2 presents an overview

of the related literature and our contribution. Section 3 describes the main provisions

of the GDPR. Section 4 introduces the data used in our empirical analysis. Section 5

discusses our empirical strategy. Section 6 reports our main findings. Section 7 provides

robustness checks. Section 8 concludes.

5A country domain is for example .de for Germany, and .fr for France in a website’s URL.
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2. Literature Review

Our research draws from the growing body of the economic literature on data and

privacy regulation, surveyed recently and extensively by Acquisti et al. (2016). This

literature emphasises the trade-off between consumer protection from data exploitation

and market efficiency. In their seminal paper, Goldfarb and Tucker (2011) study the

effectiveness of advertising in the EU after the implementation of the 2002 EU ePrivacy

Directive, finding that the policy change reduced advertising effectiveness. Campbell et

al. (2015) argue that privacy regulation imposes costs on all firms, but disproportionately

on smaller ones. On the contrary, focusing on the 2009 European E-privacy Directive,

Sabatino and Sapi (2019) find that mainly large firms were negatively affected, while

small firms experienced no significant negative effects. Our results partially support both

views: while we observe the greater traffic reduction for small websites, the largest ones

lose traffic as well, while medium ones remain unaffected.

Our work adds to the recent line of empirical research studying the impact of the

GDPR in digital markets. Gal and Aviv (2020) argue that, under certain market condi-

tions, the GDPRmay reduce welfare by increasing data market concentration and limiting

synergies. Johnson et al. (2020) find a 15% reduction in website operators’ use of web

technology providers following the GDPR, although this drop was reabsorbed within a

few months. Moreover, they find that small providers were more strongly affected, and

that Google and Facebook’s market shares increased as a consequence of websites substi-

tuting from smaller to larger technology vendors. Peukert et al. (2020) report a decrease

in third-party trackers and cookies and an increase in first-party trackers following the

introduction of the GDPR. They identify a significant increase in the prominence of the

leading firm, Google, at the expense of competitors.

In the same strand, Libert et al. (2018) observe significantly less third-party cookies

set without consent on a sample of EU news websites in the period immediately before

and after the introduction of the legislation, but Sørensen and Kosta (2019) do not

find conclusive evidence of a reduction in the number of third party requests. Still in

this strand, Aridor et al. (2020) investigate the effect of the GDPR on firms’ ability to

track users and generate revenues through online advertising. Their findings highlight

a reduction in the number of consumers, but also an increase in the effectiveness of

tracking on the remaining users. We contribute to this literature by providing evidence
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of the impact of the GDPR on website traffic – a measure of consumption in the digital

domain – and user engagement.

Two recent papers are closely related to our research. Goldberg et al. (2019) examine

the GDPR’s impact on website pageviews (and revenue) for over a thousand websites,

using data for 32 weeks around the GDPR’s enactment from Adobe’s website analytics

platform. The study documents a reduction of approximately 12% in both EU user web-

site pageviews and website e-commerce revenue after the GDPR’s enforcement deadline.

The reduction is larger for traffic originating from email and display advertisement. The

authors find no evidence that consent interfaces would dissuade users from browsing sites.

Our paper departs from Goldberg et al. (2019) in several respects. First, our data

includes more than 6, 500 country-domain pairs. The large number of domains in our

dataset allows us to analyse heterogeneous effects by domain size category (in terms of

visits). This allows us to identify significantly different effects of the privacy regulation

by website size. Second, we analyse a longer time period, with our data encompassing 95

weeks, from the 5th of January 2018 to the 25th of October 2019. This is an important

addition, because we document larger effects in the long-run, possibly linked to the issu-

ance of the first large GDPR fine in early 2019. Finally, our identification strategy differs

from that of Goldberg et al. (2019). The authors take as preferred control group the

same set of sites in the year before GDPR enactment. Since we observe traffic by source

country, we can assign treatment based on the geographic source of traffic, rather than a

domain’s location.6 Despite these differences, some of our main findings are remarkably

close to those of Goldberg et al. (2019). Most notably, we also observe an around 10%

reduction in website visits, and a particularly large reduction of traffic originating from

email marketing and display advertising.

Another closely related paper developed independently from ours is Schmitt et al.

(2021). The authors analyse the impact of the GDPR on web traffic and user engagement

using the same data provider as we do in this article. In line with our findings, Schmitt

et al. (2021) also report an increasing long term negative effect of the GDPR on web

traffic. Our study differs from Schmitt et al. (2021) in several ways. First, we exploit

additional disaggregation of the data to observe not only the country of traffic origin but

also the channel that generate traffic. This is important, as we find that some paid traffic

6Since the GDPR applies to EU residents, regardless where the website they visit is located, our
identification strategy is fully in line with the logic of the GDPR.
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acquisition channels are particularly adversely affected. Second, we find significant long-

run effects, consistent with the step up of enforcement and the issuance of the first large

fine by the French regulator in January 2019. Finally, we are the first to provide evidence

on a possible inverted U-shaped relationship between the traffic reduction induced by

the privacy regulation and website size, as measured by the number of visits before the

GDPR.

There is a small but growing body of empirical literature analysing the broader eco-

nomic impact of the GDPR. Jia et al. (2021) study the effect of the regulation on venture

capital investment in new technology firms, finding a reduction in the number of monthly

deals in the EU compared to the US. Zhuo et al. (2021) study the effect of the GDPR

on interconnections among network operators. The authors report that the legislation

had no impact on the number and type of agreements at the internet layer and may

have had a minor effect on the entry and the number of network customers. Through

an experiment with a large telecom provider, Godinho de Matos and Adjerid (2021) find

evidence suggesting that more informed final user consent to data processing mandated

by the GDPR can have positive effects to both consumers and firms.

3. Institutional Background

The General Data Protection Regulation (GDPR) was passed in April 2016 and came

into effect on the 25th of May 2018 across the EU. The regulation is labelled “general”

because it applies to any firm handling data, offline and online likewise. The regula-

tion was well anticipated, and the market had a two-year period between enactment and

entry-into-force to prepare. The GDPR aims to strengthen and harmonise the legislation

concerning privacy, data collection and processing within the European Union. It re-

shapes the way personal data of EU residents are collected and processed, providing new

rights to access and control these data. These improved user rights relate mainly to ac-

cess, rectification, erasure, and portability of user data. The GDPR places the burden of

justifying data processing with lawful motivation upon data controllers, who are obliged

to obtain explicit and informed consent from data subjects in order to handle those data.

The legislation imposes obligations on organisations operating anywhere in the world as

long as they collect or process EU residents’ data. Furthermore, it imposes large fines for

infractions, up to €20 million or 4% of worldwide annual revenues, whichever is higher.7

7The global scope of the legislation and the severity of the fines are key differences compared to
Directive 95/46/EC, which the GDPR replaced.
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The GDPR can impact website traffic by reducing the intensity and effectiveness of

online advertising in (at least) three ways. First, by interfering with tracking technolo-

gies such as cookies, trackers, fingerprinting, beacons – which are used to gather data

on users’ activities throughout the Internet.8 Typically, such tracking happens without

the user being aware of it (The Economist, 2014). The GDPR affects this mechanism by

limiting data processing to well-specified cases.9 Moreover, a website using web techno-

logies to identify and target users can do so only after obtaining explicit and informed

consent.10 Restrictions in data collection and processing can reduce both the effective-

ness and the intensity of advertising (Goldfarb and Tucker, 2011). The intensity can be

reduced because of higher costs incurred by firms to perform advertising or because some

forms of it become unlawful. For example, email advertising may decrease because email

lists might have been redacted as a result of the GDPR since email addresses qualify

as data protected by the regulation. Therefore, firms cannot send unsolicited emails to

any address they collected. On the other hand, the effectiveness of advertisement may

decrease because, as fewer users consent to data collection and processing, advertisement

becomes less tailored to the specific user.

The second way through which the GDPR can impact online advertising is by affecting

the perceived legal risks of website operators. Under the GDPR, websites are jointly

responsible with third-party providers. As a consequence, both may reduce advertisement

to avoid the risk of sanctions. Peukert et al. (2020) find evidence that fear of legal

repercussions led to an increase in concentration in the website technology vendor market,

as website operators perceived top players as more trustworthy.

Finally, the GDPR can impact advertising by affecting online user behaviour. From its

approval to its enforcement, the legislation has been widely discussed, bringing privacy

8Through the collection and processing of these data, the operator – either the website or a third-party
web technology vendor – can infer user preferences: websites can exchange and pool visitor identifiers and
visit logs. By combining these logs and linking them to individual visitors, the online advertising industry
is able to create detailed user profiles with visit histories, interests and purchases. This information can
then be used for targeting advertisements to the user when she visits an ad-supported webpage.

9Specifically, the fulfilment of a legal obligation or a contract, the protection of vital interests of
a person, reasons of public interest, firm or a third party’s legitimate interest and, finally, consumer
consent. Whether online tracking does or does not fall into these motivations is debated. At the very
least however, the GDPR increased the risk for firms to wrongly classify their practices into these bins,
since they are liable and are subject to fines.

10The GDPR is not the first regulation to introduce the prerequisite of user explicit consent (opt-in)
for data collection. Already under the revised 2009 ePrivacy Directive, consent was needed to place
cookies on a users’ device. Thus, the key difference of the GDPR has been to extend the scope of the
territorial applicability, to sensibly increase fines in case of infringements, and to adopt a technology-
neutral approach.
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concerns to the forefront of public debate.11 The boom in online pop-ups asking for

consent to place cookies on the user’s device has been hard to miss. European internet

users will also long remember the storm of emails from various websites asking to opt-

in to various mailing lists before and shortly after the enactment of the GDPR. The

greater awareness, in turn, can influence the degree to which users actively try to protect

their privacy. User can impact advertising by avoiding websites that are recognised as

more intrusive, choosing not to opt-in to data handling policies, or increasingly using

technologies that limit tracking and advertisement.

From a legal perspective, there has been little enforcement following the entry into

force of the GDPR. In the second half of 2018, only nine fines for GDPR infringements

were imposed around Europe, for a total of only €440,000. The first significant fine – the

third largest to date – came on the 21st of January 2019. On that occasion, the French

regulator imposed a €50 million penalty on Google “for lack of transparency, inadequate

information and lack of valid consent regarding the ads personalization” (CNIL, 2019).

That fine was perceived by some commentators as the end of an unofficial grace period,

with The Economist going as far as calling it “the start of a war” (The Economist, 2019).

Figure 1. Cumulated Fines Under the GDPR

This figure shows the cumulated fines following GDPR infringements. The
jump in January 2019 refers to the financial penalty imposed by the French
privacy authority (CNIL) against Google. Source: GDPR Enforcement Tracker
at https://www.enforcementtracker.com/.

11A search on Google Trends on the term “GDPR” illustrates this well: there was a large surge in
English language web-searches on this keyword around May 2018, the entry into force of the regulation.
https://trends.google.com/trends/explore?date=2018-01-01%202019-12-31&geo=GB&q=gdpr.
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Figure 1 shows the cumulated fines from July 2018 to October 2019. The jump in

January 2019 coincides with the French Google penalty. In retrospect, the following

months do not show an increase in regulatory enforcement on a comparable level with

the expectations of the time. However, the prominence of the first large fine – issued to

a company as visible as Google – might have influenced firms’ compliance decisions.

4. Data

4.1. Data Description and Summary Statistics

Our main source of data is Similarweb, a web analytics service provider.12 It tracks

information on website traffic volume – i.e. the total number of visits for each domain

– as well as several measures of user online behaviour. The provider records daily data

along the following key metrics:

• Visits: Total visits to a domain via all traffic channels. A visit is the access of

a user to one or more pages of a website. All subsequent page views belong to

the same visit, until the visitor is inactive for 30 minutes.13

• Average visit duration: The average visit length measured in seconds, which

is calculated as the time elapsed between the first and last page view of a visit.

• Average pages per visit: The average number of pages viewed per visit.

• Bounce rate: The share of users who close the website after landing on it

without loading other pages.

Visits is our main outcome of interest. We refer to the other three outcomes as engage-

ment measures, as they provide information on the way users interact with the website.

A website is defined by its domain, so we use both terms interchangeably.14 A domain

can receive traffic from different countries and through different channels. For instance,

a visitor from the UK can land on an e-commerce website registered anywhere in the

world through an advertisement seen on a social platform. Our data allow us to observe

the visits by country of origin of the visitor, as well as the traffic channel through which

the website was reached. In particular, Similarweb categorises traffic into the following

channels:15

12www.similarweb.com
13We use the terms visits and traffic interchangeably.
14This means that we treat google.com and google.fr as different domains. While a domain like

sites.google.com may host several websites, they constitute a single domain for our analysis.
15Note that these are the same traffic channels Google Analytics tracks. They can be therefore seen

as the industry standard classification.
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• Direct: Website visits by users directly typing the website address into the URL

bar in a browser. Direct traffic also covers clicking on a bookmark or on a link

from outside the browser (but not in emails).

• Display Advertising: Traffic from users clicking on an advertising banner or

video advertisement shown on a third-party website (except social networks).

• Email: Website visits following the user clicking on a link provided by a web-

based mail client. For example, clicks in marketing emails on links pointing to

the website.

• Organic search: Traffic originating from the organic (i.e. non-paid) results in

an internet search engine, such as Google or Bing.

• Paid search: Traffic originating from clicks on paid advertisements on the result

page of a search engine, such as Google or Bing.

• Referral: Traffic generated by third-party links on most other websites than

social networks and search engines. This includes paid links in blogs and other

affiliates, and free traffic such as media coverage.

• Social: Traffic coming from social media websites such as Facebook or YouTube,

either through users posting links for free or advertisement.

Finally, for every domain Similarweb also reports the share of traffic originating from

each country at a monthly level, along with domain’s traffic rank in that country.

We select the largest websites active in the US and in major European countries.

In particular, we observe the top 1,000 domains in five EU countries: France, Germany,

Italy, Netherlands and United Kingdom, together with the top 2,000 US domains in terms

of visits. Since domains are ranked by traffic volume within each country, we collect 7,000

domain-country pairs. However, as some domains belong to more than one country’s top

thousand (e.g. amazon.com), we have data for 5,300 unique domains. Of these, we keep

the 4,957 websites that were active both before and after the GDPR.

Traffic data is further disaggregated by channel, so that the cross-section is defined

by the triple domain-country-channel and comes in daily frequency.16 Our data span

two years from the 1st of November 2017 to the 31st of October 2019, covering about

seven months before and 17 months after the GDPR’s implementation. The panel is

unbalanced, as some domain-country couples have missing data for various periods, with

16An observation in our dataset for example corresponds to the number of daily visits to bbc.com in
the United Kingdom via clicks on organic search results.
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no clear pattern.17 Since traffic data show a high degree of daily volatility, we aggregate

the observations at the weekly level. We define a week as a Friday-to-Friday period, as the

GDPR entered into force on Friday, 25th of May 2018. The panel covers 94 weeks, from

the 5th of January 2017 to the 25th of October 2019. The final dataset covers around 4

million observations at the channel-domain-country-week level. Summary statistics are

provided in Table 1.

Table 1. Summary Statistics

Mean SD Min Max Observations

Overall
Traffic 315,112 9,973,771 0 1,970,498,007 4,338,812
Avg. Visit Duration (seconds) 394.45 876.99 0 86,235 3,844,734
Avg. Pages Visited (N) 6.40 9.54 0.10 1,263.59 3,984,617
Bounce Rate 0.45 0.24 0.00 1.00 3,839,368

Traffic by channel
Direct 1,485,277 26,116,612 17 1,970,498,007 619,999
Display Advertising 13,611.48 92,249.68 0 6,042,370 619,760
Email 55,130.18 614,207.90 0 83,178,035 619,959
Organic Search 443,680.79 3,275,475 0 225,132,942 619,998
Paid Search 21,493.86 191,691.46 0 21,070,592 619,106
Referrals 103,117.49 618,041.18 0 28,195,818 619,995
Social 82,916.88 896,998.53 0 51,305,963 619,995

Traffic by size
Small 46,461.67 99,237.95 0 5,154,861 1,956,409
Medium 146,163.58 330,465.12 0 9,629,733 1,241,459
Large 317,105.24 1,457,990 0 40,895,073 986,016
Giant 5,048,721 52,419,507 0 1,970,498,007 154,928

This table shows summary statistics for the main variables used in the empirical analysis. Source:
authors’ elaboration of Similarweb data.

We consider our list of websites very extensive. The websites in our dataset cover

a very significant share of websites typical users in the selected countries ever visited.

Website traffic appears highly concentrated, as reflected in our data: Figure 2 shows

the average weekly traffic by percentile of the distribution of domain’s worldwide traffic

before the GDPR.18 The traffic for every percentile is shown on the left panel, while the

right panel removes the top 1st percentile to avoid flattening the scale. It is evident that

the distribution is highly skewed towards the top: the handful of most visited websites

attract the vast majority of internet visits. Therefore, selecting the top 1,000 domain by

country (2,000 for the US) ensures that our sample covers a high share of internet traffic

in these countries and can be regarded as representative.

17Missing observations do not happen systematically over time or across websites.
18We obtain this distribution by taking each domain’s weekly worldwide traffic (i.e., not limited to

the six countries in our analysis) and averaging it across the time periods that precede the introduction
of the GDPR. Then, for each percentile, we calculate the average weekly traffic depicted in Figure 2.
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Figure 2. Concentration in the Digital Market

This figure shows average visits (in thousands) for each percentile of the distribution of worldwide
traffic before the GDPR. On the left, all percentiles are listed. On the right panel, the top 1st
percentile is excluded. Source: Similarweb data.

Our data by channel allows us to distinguish between paid and unpaid traffic. The

former generates either a remuneration to a third party (e.g. advertisement fees for

Google) or is the result of an internal marketing strategy (e.g. email campaign, where

email addresses may be purchased). The latter does not induce any remuneration to a

third-party website, such as the traffic generated by directly typing a domain’s URL into

the browser. In this view, we consider Direct traffic and Organic Search as unpaid traffic,

while the other channels are labelled as paid.

Figure 3 shows the traffic distributed by channel. The left panel reports the contri-

bution of each channel on total website traffic. Most of the traffic comes from the Direct

channel, amounting to about 67% of total website traffic. Organic search makes up for

another 20%. Taken together, these unpaid channels amount to almost 90% of overall

traffic. The remaining 12% of overall website traffic can be regarded as paid. The right

panel of Figure 3 shows the channel shares for paid traffic only. While referrals and social

networks constitute the bulk of paid traffic, each channel has a non-negligible share, with

email amounting to 20% of website paid traffic.
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Figure 3. Distribution of Web Traffic Across Channels

This figure shows the traffic share by channel. On the left, all traffic is con-
sidered when determining each channel’s share. On the right, only paid traffic
is considered. Source: Similarweb data.

4.2. Recording Bias

A potential concern affecting our data is that the GDPR may have had an impact

on the ability of our data provider to measure website traffic and usage. Goldberg et al.

(2019) refer to this as the recording bias. For example, if users increasingly opt-out of any

form of data sharing with third-parties, websites may have been less able to report data

about these metrics. We took several steps to investigate to what extent the recording

bias may arise on our data.

First, we explicitly inquired with Similarweb about a potential bias in measurement

associated with the GDPR. Similarweb confirmed in writing that this was not the case.

Second, according to publicly available information and Similarweb’s own account,

the data provider combines data from several sources, including directly from websites,

internet providers, public data sources as well as an anonymised panel of users through

browser extensions.19 Much of these data are not individually identifiable, and therefore

largely fall outside the GDPR.20 No user-level data is necessary for any of the analysis we

do. Similarweb also declares publicly to not rely on any personally identifiable data in its

19https://licreativetechnologies.com/seo/how-to-track-website-traffic-similarweb/, retrieved on the
1st of February 2022.

20This even applies to such seemingly sensitive items as gender, which we do not use in our analysis:
https://support.similarweb.com/hc/en-us/articles/360001253797-Website-Demographic-Data,
retrieved on the 1st of February 2022.
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collection and elaboration process, again, largely rendering it immune to measurement

issues due to the GDPR.21 In particular, it explains that: “We employ a multi-step verific-

ation process to ensure data collected is devoid of any Personally Identifiable Information

(PII) [...] Behavioral data is shared anonymously and aggregated at the site- and app-

level rather than the user-level [...] Data is never used for advertising or targeting, and

we don’t use “cookies” to collect behavioral data.”

Third, we also gather additional information on Similarweb’s user panel, which is

partly based on tracking users’ browsing behaviour through its own browser extension.22

Similarweb makes users of the web extension aware of being tracked, and in exchange it

provides statistics on the websites they visit. In February 2022, the add-on had more than

800, 000 users in the Chrome web store alone, not counting users of other browsers. Given

that we focus on the top few thousand websites in the largest European countries and

the United States, it appears to us that solely based on such a panel Similarweb would

be able to capture the metrics we analyse in great detail. As the Chrome extension was

already available on the 10th of August 2017, it appears unlikely that users of such a

browser extension would have revoked their consent to be tracked due to the GDPR.23

Finally, Similarweb is a widely audited industry-standard source of website traffic

information, providing data to several companies engaged deeply in web-traffic measure-

ment, such as Adobe, Google and The Economist, as well as to researchers (Calzada and

Gil, 2020; Lu et al., 2020; Schmitt et al., 2021). Schmitt et al. (2021) compare Similar-

web’s data with a German data provider on web audience (AGOF) which was likely not

affected by GDPR, finding no significant deviation between the two sources.

Overall, we conclude that our data are fit for purpose and unlikely to suffer from the

recording bias. We now turn to the results of our main analysis.

5. Empirical Model

Our main interest is understanding how the GDPR affected website traffic as well as

user behaviour on the internet, in the short and in the long term. Our empirical strategy

21https://support.similarweb.com/hc/en-us/articles/360001631538-Similarweb-Data-Methodology,
retrieved on the 1st of February 2022.

22See for example https://chrome.google.com/webstore/detail/similarweb-traffic-rank-w/hoklmmg
fnpapgjgcpechhaamimifchmp, retrieved on the 2nd of February 2022.

23We found the first historic version of the web page from the Wayback Machine, https://web.archiv
e.org/web/20170810122245/https://chrome.google.com/webstore/detail/similarweb-traffic-rank-w/hok
lmmgfnpapgjgcpechhaamimifchmp
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applies a difference-in-differences (DiD) approach to compare our outcomes of interest in

EU countries with the US, before and after the introduction of the GDPR.

Our data are unique as they allow us to identify the geographic origin of a website’s

audience, as opposed to the country of registration of the domain. Our treatment assign-

ment reflects the main provision of the GDPR, since it is defined as the traffic coming

from one of the EU countries that fall under the GDPR. Therefore, our definition of

treatment and control groups is very precise: it does not derive from the domain of the

observed website, but rather on the geographical source of traffic for the specific website.

As a consequence, each website can be partially treated if its traffic comes from both

the US and EU countries. Another important dimension that we exploit refers to the

different types of traffic channel. That is, for a specific geographical source of traffic,

we observe the channel through which the website is reached. This further increases the

sources of variation in our analysis, and allows us to investigate potential heterogeneous

effects of the GDPR on specific traffic channels.

Our baseline model takes the following form:

yi,k,c,t = β0 + β1Postt + β2EUc + β3Postt × EUc + αi + κk + ϵi,k,c,t (1)

where yi,k,c,t is one of our outcomes of interest24 for website i, from channel k and country c

at time (weekly date) t.25 Post is an indicator identifying the period from the introduction

of the GDPR onward (the 25th of May, 2018). EU is a dummy identifying whether the

country from which website traffic comes is an EU member state. α and κ are website

and channel fixed effects respectively. Finally, ϵ is a mean-zero error term.

The main coefficient of interest in Equation (1) is β3, which captures the average

causal impact of the GDPR on website outcomes across channels. For example, taking

website visits as the dependent variable, the estimated coefficient measures the average

(percentage) difference in traffic coming from the EU and the US induced by the GDPR.26

Since we also want to assess the main channels through which the GDPR affects web

traffic, we further interact Post, EU Post × EU with a full set of dummies identifying

24Our dependent variables are visits, average visit duration, pages visited, and bounce rate. For the
first three variables we apply the following monotonic increasing transformation ln(x+1), so as to include
null values in the estimation. Since the bounce rate takes values between zero and one, we do not apply
any transformation to it.

25As explained in Section 4, the traffic acquisition channels are Direct, Display Advertising, Paid and
Organic Search, Referrals, Social and Email.

26The logic is analogous when the depend variable is one of our engagement measures.
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traffic channel k. In this setting, we estimate differentiated causal effects of the GDPR

for each traffic channel.

Equation (1) does not allow us to disentangle short and long term impacts of the

GDPR. In particular, if website operators anticipated weak enforcement of the regulation

during the subsequent months following the GDPR’s introduction, then we might expect

to see little effect during such a period. In this case, β3 would underestimate the true

effect of the regulation. For this reason we also run the following alternative model

yi,k,c,t = β0 + βS
1 PostSt + βL

1 PostLt +

+β2EUc + βS
3 PostSt × EUc + βL

3 PostLt × EUc + αi + κk + ϵi,k,c,t (2)

where PostS identifies the period between the 25th of May 2018 and the week before the

21st of January 2019, that is the period between the entry into force of the GDPR and

the French fine on Google, while PostL is active from the end of January 2019 onward.

Thus, in this specification the coefficient βS
3 identifies the short-run causal impact of

the GDPR, while βL
3 identifies the long-run effect on the outcome variables. Additional

interactions of PostS, PostL, EU , PostS × EU , and PostL × EU with channel-specific

dummies allow us to identify diverse effects across traffic channels both in the short and

in the long term.

Finally, to understand the dynamics behind the estimated parameters of interest in

both (1) and (2), we interact our treatment (EU) dummy with time specific dummies,

leading to the following equation:

yi,k,c,t = β0 +
∑
t

β1,tTimet × EUc + αi + τt + γc + κk + ϵi,k,c,t (3)

where τ and γ denote time and country fixed effects respectively. We also estimate

Equation (3) by traffic channel in order to assess potential differential dynamics across

those channels.

5.1. Parallel Trends Test

Equations (1) and (2) identify the causal impact of the GDPR on web traffic and

user engagement if US online behaviour provides a valid counterfactual for EU countries.

The identifying assumption is that, absent the GDPR, EU and US traffic would have

had a similar pattern. We test such an assumption by checking for parallel trends before

GDPR enactment. Conditional on fixed effects, we should observe a similar trend in the

dependent variables between treatment and control pre-GDPR.
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We start by estimating the following equation separately for the US and EU:

yi,k,c,t = β0 + τt + αi + κk + ϵi,k,c,t. (4)

We then plot the estimated coefficients associated to the time dummies τt for both the

US and the EU in Figure 4, together with the corresponding 95% confidence interval.

In doing so, we exclude the first-period dummy to avoid multicollinearity. Hence, each

coefficient represents a (percentage) variation of the dependent variable normalised to

the first week.

Figure 4. Parallel Trends: Graphical Evidence

(a) Traffic (b) Avg Visit Duration

(c) Avg Pages Visited (d) Bounce Rate

This figure shows the OLS coefficients of the time dummies τt of Equation (4) for both the US (gray
line) and the EU (blue line), together with the corresponding 95% confidence interval. The first-period
dummy is excluded to avoid multicollinearity. Robust standard errors are clustered by domain.

Each panel corresponds to one of our variables of interest, namely web traffic (Panel

A), average visit duration (Panel B), average pages visited (Panel C), and bounce rate

(Panel D). It is reassuring to observe that, before the GDPR, the US and the EU behave

similarly for all dependent variables, suggesting that the US provides a valid counter-

factual for European online behaviour. What is more, US and EU follow a similar path
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after the GDPR, reacting very similarly to seasonal shocks.27 The picture also shows a

significant reduction in European traffic with respect to the US, both in the short and

in the long term, with a similar pattern emerging also for average visit duration. On

the contrary, as for average pages visited and bounce rate, we only observe a long-run

separation of the two trends. These preliminary pieces of evidence suggest that (i) the

US and Europe behaved similarly before the GDPR, and (ii) the regulation negatively

affected web traffic and user engagement in European countries.

We also test formally for parallel linear trends before the GDPR between our treat-

ment and control groups by estimating the following equation:

yi,k,c,t = β0 + γ1TrendEU + γ2TrendUS + αi + κk + ϵi,k,c,t, (5)

where TrendEU and TrendUS are European-specific and US-specific linear trends respect-

ively. We estimate Equation (5) only for the period before the GDPR. Ideally, one would

like to observe similar estimates for γ1 and γ2, implying no differential trends between

treatment and control before the shock.

Table 2 shows the estimated coefficients of Equation (5) for each variable of interest.

Overall, we observe similar trends between the US and Europe, particularly for the en-

gagement measures (Columns 2-4). In fact, when we test for the equality of the two

coefficients of interest, we cannot reject the null hypothesis for average visit duration,

average pages visited and bounce rate. On the contrary, we do reject that the two trends

are equal for web traffic at the 5% level (Column 1). However, the difference between the

two coefficients is fairly small (0.0016), most likely determined by the minor jump few

weeks before the GDPR that we observe in Figure 4 Panel (A).

27For instance, looking at Figure 4 Panel (A), we observe a drop in web traffic few weeks before and
after Google’s fine both in the EU and US. The same happens for the engagement metrics, where the
two curves react in parallel over time.
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Table 2. Parallel Trends Estimates

(1) (2) (3) (4)
VARIABLES Traffic Avg Visit Duration Avg Pages Visited Bounce Rate

TrendEU -0.0004 -0.0016*** -0.0011*** 0.0005***
(0.0006) (0.0003) (0.0002) (0.0001)

TrendUS -0.0020*** -0.0010** -0.0011*** 0.0005***
(0.0007) (0.0005) (0.0002) (0.0001)

H0: TrendEU =TrendUS

F-test 4.40 0.88 0.05 0.09
Observations 906,899 807,279 834,344 806,740
R-squared 0.719 0.422 0.601 0.497

Presented are OLS estimated coefficients of Equation (5). The dependent variable is the ln(x+1),
where x is the number of visits to domain i from channel k and country c, at time (weekly date)
t. The Post dummy takes value 1 from GDPR introduction onward, while EU is an indicator that
identifies traffic generated from European countries. Robust standard errors clustered by domain
in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

In summary, our parallel trends tests suggest that US traffic provides a valid control

group for European traffic. When we analyse non-parametrically both trends, we find

no systematic deviations before the GDPR. When we run a formal test of equal linear

trends, we reject the null hypothesis of equal trends only for traffic. However, both the

magnitude of the difference in trends and the F-test are small, suggesting the absence of

a significant divergence in trends between treatment and control group.

6. Results

We start with the results on website visits, looking first at the overall impact of the

GDPR on traffic and then analysing effects by traffic channel and website size category.

We then discuss the results for visitor engagement.

6.1. Website Traffic: Average Effect

Table 3 reports Ordinary Least Square (OLS) estimated coefficients for different spe-

cifications of Equation (1) when the dependent variable is the natural logarithm of website

traffic (plus one). The first column collects estimates from our baseline model. The coef-

ficient associated to Post is positive and statistically significant, suggesting a general

expansion in web traffic over time. At the opposite end, the coefficient associated to EU

is strongly negative, implying that European countries experience lower traffic compared

to the US. The coefficient associated to Post×EU captures the impact of the GDPR on

web traffic. The coefficient is negative and strongly significant, and points to a reduction
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Table 3. Diff-in-Diff on Web Traffic

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Traffic Traffic Traffic Traffic Traffic Traffic Traffic

Post × EU -0.104*** -0.104*** -0.104*** -0.104*** -0.104*** -0.106*** -0.064***

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.014)

Post 0.034***
(0.011)

Europe -2.190*** -2.190***
(0.044) (0.044)

Domain FE X X X X

Channel FE X X X

Time FE X X
Country FE X

Channel-Time FE X X X X

Country-Channel FE X X
Domain-Channel FE X

Domain-Channel-Country FE X X

Domain-Time FE X

Observations 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812
R-squared 0.694 0.694 0.700 0.706 0.928 0.942 0.956

Presented are OLS estimated coefficients of Equation (1). The dependent variable is the ln(x + 1), where x is the

number of visits to domain i from channel k and country c, at time (weekly date) t. The Post dummy takes value 1

from GDPR introduction onward, while EU is an indicator that identifies traffic generated from European countries.
Robust standard errors clustered by domain in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

in web traffic of about 10%.28 Hence, following the introduction of the GDPR, European

website traffic experienced a significant reduction compared to US traffic.

Columns (2)-(6) report estimated coefficients of Equation (1) as we add different sets

of fixed effects. It is interesting to observe that Post×EU coefficient barely moves, which

increases our confidence in the baseline specification. Finally, in Column (7) we also con-

trol non-parametrically for website-specific time trends by including domain-time fixed

effects. This specification identifies the main parameter of interest by exploiting time-

variation across country of origin within each domain, which implies that only domains

receiving traffic from more than one country contribute to the estimation of Post×EU .

That is, the estimated coefficient captures the causal impact of the GDPR only for web-

sites with multinational traffic. The coefficient is still negative and strongly significant,

although smaller in magnitude. Since multinational domains are typically larger websites,

at this point we might expect potential heterogeneous effects of the GDPR on web traffic

based on website size (Section 6.3).

To identify long and short term effects of the GDPR on web traffic, we iterate the

same battery of regressions on Equation (2), where we split the Post dummy into PostS

and PostL, which identify short- and long-run periods from the GDPR introduction

respectively. In particular, PostS is active from the GDPR’s enactment (25th of May

2018) until the week before the French fine imposed on Google – the so-called “start of

28This is fully in line with the estimated traffic drop reported by Goldberg et al. (2019).
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a war” by data protection authorities against privacy violators (The Economist, 2019) –

which happened on the 21st of January 2019. On the other hand, PostL takes value one

from that date onward. Hence, the interactions PostS×EU and PostL×EU identify the

causal impact of the GDPR on web traffic in the short and in the long term respectively.

Table 4 collects estimated coefficients of Equation (2). From Column (1) we observe

that both PostS and PostL are positive and significant, with the latter being larger in

magnitude. The coefficients associated with PostS × EU and PostL × EU are both

negative and significant. Moreover, they are statistically different from each other. The

estimated PostS × EU coefficient implies a reduction of 4% of web traffic induced by

the policy change in the eight months after the introduction of the GDPR, while the

PostL×EU estimated coefficient suggests a much larger effect in the long-run of −15.7%.

Again, estimates barely move when we add different sets of fixed effects (Columns 2-6).

When we exploit only multinational website heterogeneity, the coefficients follow a similar

path, although both short and long term effects are lower in magnitude. Thus, results

from Table 4 suggest that most of the negative effect on web traffic materialises in the

long-run, after January 2019. As a consequence, the timing of enforcement might have

played a major role in spurring compliance with the law and, therefore, on the variation

in website traffic.

What are the dynamics behind the aforementioned results? One possibility is that

DiD estimates may hide potential time-varying treatment effects. That is, the impact of

the GDPR on web traffic increases over time, implying a divergent path in the post-GDPR

period between EU and US traffic. Another possibility is the existence of a transitory

period that may coincide with the lack of enforcement and compliance characterising a

grace period in the months right after GDPR enactment. In such a case, a potential

impact on web traffic may take some time to materialise. We investigate this issue

by estimating Equation (3), in which we interact the EU identifier with time-specific

dummies after controlling for domain, channel, time, and country fixed effects.
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Table 4. Diff-in-Diff on Web Traffic in the Short- and Long-Run

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Traffic Traffic Traffic Traffic Traffic Traffic Traffic

PostS × EU -0.040*** -0.040*** -0.040*** -0.040*** -0.040*** -0.042*** -0.027**

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012)

PostL × EU -0.157*** -0.157*** -0.157*** -0.157*** -0.157*** -0.159*** -0.094***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.017)

PostS 0.026***
(0.010)

PostL 0.042***

(0.014)
EU -2.190*** -2.190***

(0.044) (0.044)

Domain FE X X X X

Channel FE X X X
Time FE X X

Country FE X

Channel-Time FE X X X X
Country-Channel FE X X

Domain-Channel FE X

Domain-Channel-Country FE X X
Domain-Time FE X

Observations 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812

R-squared 0.694 0.694 0.700 0.706 0.928 0.942 0.956

Presented are OLS estimated coefficients of Equation (2). The dependent variable is the ln(x + 1), where x is the
number of visits to domain i from channel k and country c, at time (weekly date) t. PostS is a dummy taking value

1 from GDPR introduction to the week before the fine imposed by the French privacy authority to Google (21st of

January 2109), while PostL activates from that date onward. EU is an indicator that identifies traffic generated from
European countries. Robust standard errors clustered by domain in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Figure 5 displays the estimated coefficients (hard black line) and 95% confidence

intervals (dashed lines) from the dynamic DiD of Equation (3). Red vertical lines identify

the entry into force of the GDPR and the end of the grace period identified by the

French financial penalty imposed to Google. First, we notice that pre-GDPR estimated

coefficients are fairly constant, and almost all of them are not statistically different from

zero. This is in line with our parallel trends test, as it suggests no diversified trends

between treatment and control groups before the policy change.

Second, we observe a negative trend in EU web traffic vis-à-vis the US starting after

the 25th of May 2018 – the date of GDPR enactment – which stops after Google’s fine.

Third, estimated coefficients stabilise in the long-run, implying an average 15% reduction

in web traffic compared to the pre-GDPR period. Hence, the dynamic DiD highlights that

the downward shift in the EU web traffic does not materialise right after the introduction

of the GDPR. Consistently with the idea of a strict relation between enforcement and

compliance, the negative impact of the GDPR on EU web traffic arises eight months later

the regulation’s entry into force.
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Figure 5. Web Traffic: Dynamic Effect

This figure shows the β̂1,t coefficients from Equation (3) with the
associated 95% confidence interval. The first-period dummy is ex-
cluded to avoid multicollinearity. The dependent variable is the
ln(x+ 1), where x is the number of visits to domain i from channel
k and country c, at time (weekly date) t. Robust standard errors
are clustered by domain.

In summary, our DiD estimates suggest a negative effect of the GDPR on web traffic.

The effect is large and economically significant, implying an average 15% reduction in

long-run web traffic. However, this effect does not materialise immediately after the

entry into force of the GDPR, but unfolds fully the following year. The dynamic DiD

highlights that the transition started during the grace period and stopped a few weeks

after the end of the regulatory holiday period, emphasising the role of enforcement on

website compliance with GDPR rules.

6.2. Analysis by Traffic Acquisition Channel

How did the GDPR affect website traffic by various traffic channels? If the effect

by such channel differs, is the loss of a specific channel counterbalanced by an increase

in traffic in another channel? We answer these questions by interacting PostS,PostL,

PostS ×EU , and PostL×EU from Equation (2) with channel-specific dummies in order

to identify diversified effects across traffic channels both in the short and in the long term.

Table 5 collects estimated coefficients PostS × EU and PostL × EU for each traffic

channel. First, we notice that the short-run effects are smaller in magnitude compared to

long-run ones for every channel. We observe a short-run negative impact of the GDPR in

selected channels, including Direct, Email, Referrals, and Social. The largest coefficient

is for Email traffic, suggesting a reduction of about 8% in this channel. A smaller but
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Table 5. Heterogeneous Effects on Web Traffic by Traffic Channel

(1) (2) (3) (4) (5) (6)
VARIABLES Traffic Traffic Traffic Traffic Traffic Traffic

PostS × EU × Direct -0.039*** -0.039*** -0.038*** -0.040*** -0.041*** -0.026**
(0.010) (0.010) (0.010) (0.009) (0.009) (0.013)

PostS × EU × Display Advertising -0.053** -0.053** -0.052** -0.055** -0.058** -0.043*
(0.026) (0.026) (0.026) (0.025) (0.025) (0.024)

PostS × EU × Email -0.079*** -0.079*** -0.079*** -0.075*** -0.077*** -0.062***
(0.017) (0.017) (0.017) (0.016) (0.016) (0.017)

PostS × EU × Organic Search -0.010 -0.010 -0.010 -0.007 -0.009 0.006
(0.011) (0.011) (0.011) (0.010) (0.010) (0.013)

PostS × EU × Paid Search -0.029 -0.028 -0.028 -0.038 -0.040 -0.026
(0.030) (0.030) (0.030) (0.030) (0.030) (0.029)

PostS × EU × Referrals -0.028* -0.028* -0.028* -0.028* -0.029* -0.014
(0.016) (0.016) (0.015) (0.015) (0.015) (0.017)

PostS × EU × Social -0.042*** -0.042*** -0.042*** -0.040*** -0.041*** -0.026*
(0.013) (0.013) (0.013) (0.013) (0.013) (0.014)

PostL × EU × Direct -0.088*** -0.088*** -0.088*** -0.088*** -0.089*** -0.023
(0.013) (0.013) (0.013) (0.013) (0.013) (0.019)

PostL × EU × Display Advertising -0.381*** -0.381*** -0.380*** -0.381*** -0.386*** -0.320***
(0.037) (0.037) (0.037) (0.036) (0.036) (0.034)

PostL × EU × Email -0.291*** -0.291*** -0.291*** -0.287*** -0.288*** -0.223***
(0.025) (0.025) (0.025) (0.024) (0.024) (0.025)

PostL × EU × Organic Search -0.073*** -0.073*** -0.073*** -0.071*** -0.072*** -0.007
(0.016) (0.016) (0.016) (0.015) (0.015) (0.019)

PostL × EU × Paid Search -0.068* -0.068* -0.067* -0.075* -0.079** -0.013
(0.040) (0.040) (0.040) (0.039) (0.039) (0.039)

PostL × EU × Referrals -0.079*** -0.079*** -0.079*** -0.080*** -0.081*** -0.016
(0.022) (0.022) (0.022) (0.022) (0.022) (0.024)

PostL × EU × Social -0.123*** -0.123*** -0.123*** -0.120*** -0.121*** -0.055***
(0.019) (0.019) (0.019) (0.019) (0.019) (0.020)

Domain FE X X X
Channel FE X
Channel-Time FE X X X X X
Country-Channel FE X X
Domain-Channel FE X
Domain-Channel-Country FE X X
Domain-Time FE X

Observations 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812 4,338,812
R-squared 0.696 0.696 0.707 0.928 0.942 0.956

Presented are OLS estimated coefficients of Equation (2) interacted with channel-specific dummies. Channels
are categorised in Section 4, and identify the way through which the website is reached. The dependent variable
is the ln(x + 1), where x is the number of visits to domain i from channel k and country c, at time (weekly
date) t. PostS is a dummy taking value 1 from GDPR introduction to the week before the fine imposed by
the French privacy authority to Google (21st of January 2109), while PostL activates from that date onward.
EU is an indicator that identifies traffic generated from European countries. Robust standard errors clustered
by domain in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

strongly significant effect concerns Direct traffic, where the coefficient implies a reduction

of about 4%. Hence, also unpaid traffic channels have been affected by GDPR restriction,

and in the same direction as paid channels.29

29This is consistent with the view that different traffic acquisition channels are complements, rather
than substitutes.
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Most of the negative effect of the GDPR on web traffic materialises in the long-run,

specifically after the grace period, at the beginning of 2019. This is true for each traffic

channel, as shown by the channel-specific PostL×EU coefficients in Table 5. The impact

on the Email and Display advertising channels is particularly severe, as the coefficients

imply a reduction in traffic induced by the GDPR of about 35% and 29% respectively.30

Although these coefficient estimates are rather large for email and display advertising

traffic, they also reflect the relatively small amount of traffic coming from those specific

channels. In fact, on average less than 3% of website traffic comes from Email and

Display Advertising (Figure 3), implying that even a small absolute reduction in traffic

may account for a large variation in percentage points.

We also observe a significant reduction in traffic coming from other paid channels, such

as Referrals and Social. Only the coefficient associated to Paid Search is not statistically

significant at 5%, neither in the short nor in the long term.31 What is more, unpaid

channels are negatively affected too. Our results suggest a reduction in Direct traffic of

about 9%, while traffic from Organic Search experience a 7% reduction. This is somewhat

surprising because we would not expect these channels to rely on targeted messages to

the same extent as paid advertising does. The effect likely comes through increased user

awareness about privacy: the GDPR triggered an increased use of various information

banners where websites seek user consent to data handling upon entry. A not insignificant

group of users likely turn away from websites upon being presented these pop-ups.

We find that both paid and unpaid website traffic channels are negatively affected

by the GDPR in the long-run. Paid channels are more severely affected, although also

Organic Search and Direct traffic reduce. Finally, the coefficients in Column (6) of Table 5

suggest that the impact of the GDPR on traffic is significantly smaller for multinational

websites. In the long-run only paid channels such as Email, Display Advertising, and

Social are negatively affected, with the magnitude being significantly lower compared to

the ones in Columns (1)-(5). Hence, potential heterogeneity may arise depending on firm

size, paving the way to our dedicated analysis in Section 6.3.

30The strong negative effect on email traffic is in line with industry testimonies about the “death of
email marketing” (Harris, 2018).

31This is as expected. Personal data is not used much in paid search. As explained by a recent report
of the UK competition authority: “search ads rely only in a limited way on personalisation, rather they
are primarily targeted to match key search terms entered on search engines (ie the ‘search query’), which
typically provides most of the information needed to serve a relevant ad”, https://assets.publishing.servic
e.gov.uk/media/61b86aee8fa8f5037ffaa347/Appendix I - Considering the impacts of Apples ATT.pdf,
retrieved on the 1st of February 2022.
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6.3. Analysis by Website Size

We now turn to the analysis of the effect of the GDPR on traffic by website size cat-

egory. Figure 2 shows average visits (in thousands) for each percentile of the distribution

of worldwide traffic before the GDPR. It highlights how website traffic is distributed in a

highly heterogeneous way, with the presence of a sizeable group (59%) of small websites

that however account only for a small share of total traffic (6%), a modest group (30%)

of medium ones (13% of traffic), few (10%) large websites (23% of traffic) and a handful

(1%) of giant websites that account for the largest share of traffic (57%). Due to the

significant heterogeneity in website size, we analyse whether the effects of the GDPR

differ for domains of different size. We take into account the high skewness of the traffic

distribution when classifying websites by size. We split domains in four categories ac-

cording to the percentile of worldwide traffic they fall in: small (1 ≤ p ≤ 59), medium

(60 ≤ p ≤ 89), large (90 ≤ p ≤ 99), giant (p = 100)

Table 6 reports estimated coefficients for two different specifications of Equation 2

by website size. We observe that the short-run effect (PostS × EU) is negative and

statistically significant only for small websites, implying a traffic reduction of about 14%.

The long term effect (PostL×EU) is negative and statistically significant for all websites

but medium ones. The coefficient varies strongly by website size, implying a reduction of

website traffic of about 41% for small websites, and 7% and 16% for large and very large

websites, respectively. These results are robust to different specifications, with coefficients

remaining practically unchanged when adding interacted fixed effects.

Overall, our results point to an inverted U-shaped long-run relationship between web-

site size and traffic change due to privacy regulation: the smallest and the largest websites

registered a significant drop in visits, while medium ones lost fewer visitors. This is an

important result that nuances policy discussions preceding the GDPR, where comment-

ators warned about small firms being particularly severely affected by privacy regulation

(Cherry, 2017). The European Commission called the allegation that “GDPR is over-

whelming for small businesses” a “myth” (European Commission, 2019). Our results

show that small websites were indeed hit particularly hard by the GDPR. However, so

were large websites as well. Medium websites in turn remained largely spared from asso-

ciated traffic loss.
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Table 6. Diff-in-Diff on Web Traffic by Website Size

Small Medium Large Giants
(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Traffic Traffic Traffic Traffic Traffic Traffic Traffic Traffic

PostS × EU -0.142*** -0.143*** 0.024 0.024 -0.008 -0.009 -0.046 -0.046

(0.025) (0.025) (0.016) (0.016) (0.016) (0.016) (0.031) (0.031)

PostL × EU -0.394*** -0.394*** -0.038 -0.038 -0.073*** -0.073*** -0.155*** -0.155***
(0.035) (0.035) (0.024) (0.024) (0.024) (0.024) (0.047) (0.047)

Domain FE X X X X

Channel FE X X X X
Time FE X X X X

Country FE X X X X

Channel-Time FE X X X X
Country-Channel FE X X X X

Domain-Channel FE X X X X

Observations 1,956,409 1,956,409 1,241,459 1,241,459 986,016 986,016 154,928 154,928

R-Squared 0.658 0.925 0.704 0.936 0.725 0.917 0.819 0.909

Presented are OLS estimated coefficients of Equation (2). The dependent variable is the ln(x+1), where x is the number
of visits to domain i from channel k and country c, at time (weekly date) t. PostS is a dummy taking value 1 from GDPR

introduction to the week before the fine imposed by the French privacy authority to Google (21st of January 2109), while

PostL activates from that date onward. EU is an indicator that identifies traffic generated from European countries.
Robust standard errors clustered by domain in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

6.4. User Engagement

Results from Tables 3-4 suggest a reduction in website traffic due to the GDPR’s

enforcement. That is, websites receive less visits from users. However, the restrictions

imposed by the GDPR may affect also user behaviour once the visitor has effectively

reached the website. Hence, the policy change can affect both the extensive (website

visits) and intensive margin (website engagement) of online behaviour. For instance, a

less effective display ad may drive the user to a dull website for which she has no particular

interest. In such a situation, we can expect the user to quickly shift to another activity,

either offline or online.

We investigate whether the GDPR has affected also the intensive margin of online

behaviour by estimating Equation 2 on three metrics of user engagement, namely average

visit duration, average pages visited, and bounce rate.32 Table 7 collects OLS coefficients

from such regressions. Focusing on average visit duration (first column) we observe a

significant reduction both in the short- and in the long-run of 1.7% and 3.5% respectively.

A similar pattern emerges for the average number of pages visited within the website,

with estimates pointing to a reduction of 0.7% and 1.5% in the short and long term

respectively. As for the bounce rate, results point toward a reduction in engagement only

in the long-run of 0.006 percentage points. Thus, the GDPR has a negative impact on

both intensive and extensive margins. Consistently with previous results on web traffic,

32For a description of the three variables see Section 4.
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the adverse effect on user engagement induced by the GDPR materialises mostly in the

long-run.

Table 7. Diff-in-Diff on User Engagement

(1) (2) (3)
VARIABLES Avg Visit Duration Avg Pages Visited Bounce Rate

PostS × EU -0.017*** -0.007** 0.000
(0.006) (0.003) (0.001)

PostL × EU -0.035*** -0.015*** 0.006***
(0.007) (0.005) (0.002)

Channel-Time FE X X X
Country-Channel FE X X X
Domain-Channel FE X X X

Observations 3,844,720 3,984,614 3,839,355
R-squared 0.550 0.721 0.697

Presented are OLS estimated coefficients of Equation (2). In the first two columns,
the dependent variable is the ln(x + 1), where x is the average visit duration
measured in seconds (Column 1) and the number of pages visited (Column 2),
while in Column (3) the dependent variable is the bounce rate on domain i, for
traffic coming from channel k and country c, at time (weekly date) t. PostS is
a dummy taking value 1 from GDPR introduction to the week before the fine
imposed by the French privacy authority to Google (21st of January 2109), while
PostL activates from that date onward. EU is an indicator that identifies traffic
generated from European countries. Robust standard errors clustered by domain
in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Are the results driven by specific channels? Table 8 suggests that that is the case.

When we disentangle heterogeneous effects by traffic channel, we find that the negative

impact of the GDPR on user engagement comes from those users reaching the website

mainly through email, although also engagement from social networks and organic search

traffic is significantly impacted both in the short and long term. In the long-run, average

visit duration decreases mainly for paid traffic channels, including Email, Referrals, Paid

Search, and Social, thus indicating online advertising being less effective also in terms of

engagement.

All in all, this battery of results highlights another adverse effect in addition to the

drop in web traffic. User engagement is negatively affected, and particularly following

the effective enforcement of the GDPR after the issuance of the first large fine. The

policy change affected disproportionally paid channels, although we find also evidence

of a negative effect from organic search traffic engagement, pointing toward potential

complementarities across channels also in the intensive margin.
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Table 8. Heterogeneous Effects on User Engagement by Traffic Channel

(1) (2) (3)
VARIABLES Avg Visit Duration Avg Pages Visited Bounce Rate

PostS × EU × Direct -0.003 -0.002 -0.002*
(0.005) (0.004) (0.001)

PostS × EU × Display Advertising 0.009 -0.001 -0.002
(0.022) (0.009) (0.004)

PostS × EU × Email -0.051*** -0.026*** 0.009***
(0.012) (0.006) (0.002)

PostS × EU × Organic Search -0.010* -0.010** 0.003
(0.006) (0.004) (0.002)

PostS × EU × Paid Search -0.042* 0.003 -0.004
(0.022) (0.010) (0.004)

PostS × EU × Referrals -0.001 0.005 -0.006***
(0.008) (0.005) (0.002)

PostS × EU × Social -0.025*** -0.013** 0.002
(0.010) (0.005) (0.002)

PostL × EU × Direct -0.002 0.002 0.001
(0.007) (0.006) (0.002)

PostL × EU × Display Advertising 0.010 0.000 0.003
(0.024) (0.010) (0.004)

PostL × EU × Email -0.090*** -0.057*** 0.022***
(0.015) (0.008) (0.003)

PostL × EU × Organic Search -0.013* -0.008 0.005**
(0.007) (0.005) (0.002)

PostL × EU × Paid Search -0.079*** -0.019* -0.001
(0.023) (0.011) (0.005)

PostL × EU × Referrals -0.028*** -0.004 -0.000
(0.010) (0.007) (0.003)

PostL × EU × Social -0.052*** -0.020*** 0.007***
(0.012) (0.007) (0.002)

Channel-Time FE X X X
Country-Channel FE X X X
Domain-Channel FE X X X

Observations 3,844,720 3,984,614 3,839,355
R-squared 0.550 0.721 0.697

Presented are OLS estimated coefficients of Equation (2) interacted with channel-specific dum-
mies. Channels are categorised in Section 4, and they identify the way through which the website
is reached. In the first two columns, the dependent variable is the ln(x + 1), where x is the av-
erage visit duration measured in seconds (Column 1) and the number of pages visited (Column
2), while in Column 3 the dependent variable is the bounce rate on domain i, for traffic com-
ing from channel k and country c, at time (weekly date) t. PostS is a dummy taking value 1
from GDPR introduction to the week before the fine imposed by the French privacy authority to
Google (21st of January 2109), while PostL activates from that date onward. EU is an indicator
that identifies traffic generated from European countries. Robust standard errors clustered by
domain in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

7. Robustness Checks

We run two series of robustness checks that consider the presence of potential spillovers.

The first one deals with the presence of multinational traffic, which might generate

spillovers between treatment and control if multinational domains apply a uniform privacy

policy to both US and EU visitors. The second robustness check assesses the presence

of differential effects for websites located in the EU compared to those in the US, which
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may also suggest potential spillovers. This might happen if EU websites comply with the

GDPR also when serving US visitors, or if US websites do not comply with the GDPR at

all. Both robustness checks confirm our main results, namely a reduction in web traffic

and user engagement following the entry into force of the GDPR, and in particular in the

long-run.

7.1. Excluding Multinational Traffic

In Equations (1) and (2) the treatment assignment covers traffic originating from the

EU. Since a website can receive visitors from more than one country, this implies that

multinational websites are treated only for the portion of traffic coming from Europe.

This is in line with the main provision of the GDPR, which aims to protect all EU

residents regardless of the website’s actual location. However, an implicit assumption for

the identification of the causal impact of the GDPR on web traffic is that multinational

domains comply with the GDPR only for EU visitors. That is, websites are assumed

to apply a different privacy policy for EU visitors and to visits coming from the US.

Although we do informally observe websites treating visitors from the US and the EU

differently, this may not always be the case.33 It may be possible that websites with a

high share of EU traffic comply tout court, while domains with most of the traffic coming

from the US may prefer not to comply with the limitations imposed by the GDPR. In

the extreme case, websites may decide to block access to EU visitors altogether.34

We test for this issue by focusing only on websites that receive most of the traffic from

one of the countries of our analysis. In particular, we focus on domains with more than

85% of their global traffic pre-GDPR coming from either one of the EU countries in our

analysis (i.e., France, Germany, Italy, Netherlands, and the UK) or the US.35 Moreover,

we select only the traffic originated from the country that meets the 85% threshold. In

this way, we clean the dataset from multinational domains (such as facebook.com), as well

as from country traffic that cannot be clearly allocated between treatment and control

group.

33We casually surfed several multinational websites using a VPN service that allows us to manually
set our IP address as US or European. A large number of websites provide a different experience tailored
to the perceived country of origin.

34There is some evidence that US news websites blocked EU users right after the enactment of
GDPR, because they were not able to comply with the new data protection rules in the short term.
See https://digiday.com/media/u-s-sites-continue-block-european-visitors-post-gdpr/.

35Despite the focus on specific EU countries, Similarweb provides metric for global traffic for each
domain. Given a domain’s global traffic, we can derive the share of traffic coming from each of the
observed countries at each point in time and for each domain.
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Table 9. Robustness Check - No Multinational Traffic

(1) (2) (3) (4)
VARIABLES Traffic Avg Visit Duration Avg Pages Visited Bounce Rate

PostS × EU -0.037** -0.032*** -0.015*** 0.004**
(0.017) (0.009) (0.005) (0.002)

PostL × EU -0.179*** -0.053*** -0.022*** 0.010***
(0.024) (0.011) (0.007) (0.002)

Channel-Time FE X X X X
Country-Channel FE X X X X
Domain-Channel FE X X X X

Observations 1,864,121 1,658,465 1,710,556 1,649,193
R-squared 0.938 0.574 0.739 0.731

Presented are OLS estimated coefficients of Equation (2). The dependent variable is the
ln(x + 1), where x is the number of visits (Column 1), the average visit duration measured
in seconds (Column 2), and the number of pages visited (Column 3), while in Column (4),
the dependent variable is the bounce rate on domain i, for traffic coming from channel k
and country c, at time (weekly date) t. PostS is a dummy taking value 1 from the GDPR
introduction to the week before the fine imposed by the French privacy authority to Google
(21st of January 2109), while PostL activates from that date onward. EU is an indicator
that identifies traffic generated from European countries. Robust standard errors clustered by
domain in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table 9 collects the estimated coefficients of Equation (2) in this setting. By looking at

website traffic (Column 1), we find that both the short and long term (negative) effects of

the GDPR remain intact. The estimated coefficients are very much in line with our main

results (Table 4 Column 5), suggesting an increasing long-run effect, with the magnitudes

also being similar. The short-run effect remains largely unchanged (0.3% difference),

while the long-run effect increases slightly by 2%. This suggests that increasing the

precision of the treatment assignment rises the estimated impact, as one would expect.

However, it also highlights that the potential bias is fairly small, which in turn increases

our confidence in the research design.

A similar argument applies for the engagement measures. A comparison with Table

7 shows that, if anything, cleaning from multinational traffic increases the estimated

coefficients. In this case, the difference between the two estimates is significantly larger.

For instance, the long-run impact on average visit duration goes from −3.5% to −5.3%,

which implies a 50% increase in magnitude. Moreover, while results from Table 7 Column

(3) do not suggest any significant short term effect on the bounce rate, we now observe

a short term increase of about 0.4 percentage points.

In conclusion, the results from this robustness check confirm our main findings, namely

a negative impact of the GDPR on web traffic and user engagement. Although the

bias from multinational traffic does not significantly affect estimates on web traffic, it
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somewhat underestimates the impact on user engagement metrics, implying that results

from Table 7 are likely even conservative.

7.2. US vs. EU Websites

Another potential source of concern might arise if websites apply a uniform privacy

policy based on their home country rather than the users’ location. This may happen

if EU-based websites comply with the GDPR tout court, or if US-based domains fail

to comply with the GDPR for the EU visitors, or both. We deal with this issue by

differentiating US- and EU-based websites through their domains. In particular, we

categorise the “.com” URLs as US-based domains, and “.fr” and “.de” as French and

German, respectively, and proceed for the other EU-countries in our dataset analogously.

We then estimate Equation (2) separately for US- and EU-based domains. In this way,

we check for the presence of spillovers between treatment and control traffic within US-

or EU-based domains.

Table 10 collects estimated coefficients from such an experiment. In Columns (1)-

(4) only EU-based domains are used. The estimates are qualitatively the same as in

our main analysis. The long-run impact on web traffic is however larger, suggesting

(not surprisingly) that EU-based websites might have complied more rigorously with the

GDPR. The same holds for user engagement measures, as the long-run effects are gener-

ally higher than the ones in Table 7, with the difference being sizeable only for average

visit duration. Even when we focus on US-based domains (Columns 5-8) the results

are qualitatively stable, implying long-run increasing effects of the GDPR. Estimates are

slightly lower in magnitude compared with our main results, but the difference is not

particularly large. Hence, also EU traffic for US-based websites have been affected by the

GDPR.

Overall, our robustness checks confirm the results in the main analysis, pointing to a

reduction in web traffic and user engagement induced by the GDPR, particularly in the

long-run. They also validate our empirical design, since we do not detect large biases

induced by spillovers between treatment and control.
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8. Conclusions

In this paper we investigated the effect of the European Union’s General Data Pro-

tection Regulation on websites’ ability to attract visitors and on users’ interaction with

websites. We document an overall average traffic reduction of 15% in the long-run follow-

ing the GDPR’s implementation, and a measurable reduction of user engagement with

websites. Traffic from direct visits, organic search, email marketing and social media

links, display advertising and referrals dropped significantly after the GDPR. Email mar-

keting and display advertising experienced a large, near 30% reduction of traffic in the

long-run.

Our results carry relevance for broader economic policy. They appear consistent with

the view that users care about privacy and actively opt out of visits as a result of better

information about website data handling policies. Paid search traffic – mainly Google

search advertisement – was barely affected. Privacy regulations can therefore impact

market structure and may increase dependence on large advertising service providers. Our

results also indicate that enforcement matters. The effects were amplified considerably

following the first large fine issued eight months after full entry into force of the regulation.

We furthermore document an inverted U-shaped relationship between website size and

the change in traffic due to privacy regulation. While the smallest and largest websites

lost visits, medium websites remained largely unaffected and may have even gained from

the GDPR. This confirms pre-GDPR worries about a potential adverse effect of privacy

regulation on small firms, but nuance it by finding a negative impact also on large firms.

While there is a positive correlation between traffic and revenues in the internet

economy, our results are not directly translatable into welfare effects of the regulation.

First, digital platforms may better monetise from the remaining users, and this in turn

may offset the revenue loss from lower visitors. Second, we do not measure consumer

privacy benefits, nor can we reliably convert lost visits into costs. Overall however, it

appears to us that additional consumer benefits may easily outweigh the implied losses

of website traffic. Web traffic is probably the domain where consumer reaction to privacy

regulation is the largest as some website visits may be deferred. And this loss of visits

may not be equivalent to economic harm. For example, the decline of direct website

visits may be the result of users’ choice to refrain from interacting with privacy-intrusive

websites. Since the GDPR enabled such informed choice by mandating that websites
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obtain informed consent to data policies, even lost website visits may imply net welfare

gains.

Overall, our analysis demonstrates that privacy regulation had a measurable impact

on the online economy. We take a step towards better understanding how these effects

are distributed across different players on various levels of the value chain. However,

better understanding the impact mechanism behind these results – i.e., what is driving

the reduction in traffic and user engagement – remains an important task for further

research.
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CHAPTER 3

The Uneven Effect of Airbnb on the Housing Market. Evidence

Across and Within Italian Cities∗

Raffaele Congiu, Flavio Pino, Laura Rondi†

We investigate whether the diffusion of Airbnb may exacerbate the differ-
ences between central and suburban areas by affecting residential property
values and rents. We leverage on the heterogeneity across five Italian cities
– Florence, Milan, Naples, Rome, and Turin – that differ for touristic in-
tensity, housing costs, and disparity between centre and periphery. To relate
our analysis to existing literature, we first quantify the overall and the city-
specific effects of Airbnb intensity. Then we estimate whether the impact
is constant across city centre and suburbs and, finally, what is the effect of
Airbnb’s diffusion in the centre on the periphery. We find that Airbnb growth
increases rents and, more significantly, sale prices. Overall, a 1 pp increase
in listing density leads to an increase of 44.24 €/m2 in house prices between
2014 and 2019. However, the impact differs both across cities and within
cities (more in the centre). Finally, Airbnb diffusion in the centre is related
to a price decrease in the suburbs, in line with the idea that home-sharing
Airbnb might contribute to reinforce inequality by raising the attractiveness
of the city centre. Overall, the high heterogeneity of the effects suggests that
Airbnb’s diffusion benefits some parts of the city while leaving others behind.
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1. Introduction

Airbnb is probably the most well-known face of the sharing economy. The platform’s

claim is to provide hosts with an additional source of income from what was previously

unused capacity, and to present guests with an affordable and personal accommodation

experience. While this appears economically efficient, the diffusion of the platform has

been criticised by residents and local administrators, who complain that Airbnb bene-

fits landlords and tourists at the expense of local renters by raising rental rates. Not

surprisingly, a growing number of academic studies has inquired into the positive and

negative externalities of short-term rental platforms and provided empirical evidence of

their impact on the real estate market (Horn and Merante, 2017; Garcia-López et al.,

2020; Barron et al., 2020; Duso et al., 2020; Ayouba et al., 2020; Koster et al., 2021;

Franco and Santos, 2021). Recently, the literature has started to question the distribu-

tional impact of the heterogeneous presence of Airbnb in cities highly exposed to visitor

flows, postulating a spillover effect of Airbnb entry in one part of the city on prices in

other parts of the city (Calder-Wang, 2021). This effect may result from an endogen-

ous increase of the attractiveness of one part at the expense of the other (Almagro and

Domı́nguez-Iino, 2021; Xu and Xu, 2021).

Our paper embraces this view and, after estimating the impact of Airbnb density

on house prices and rents overall and at the city level for five Italian cities, it digs into

within-city effects and, ultimately, it estimates the impact of Airbnb presence in the

city centre on the property values and rental rates in the periphery. Due to its tourist

vocation, Italy has been particularly affected by Airbnb’s diffusion, though its pressure

is not uniformly distributed across towns. We are motivated to this research question

by the inherent variety characterising the five cities we study – Rome, Florence, Milan,

Turin, and Naples – and by the spatial dimension of the inequality between their central

and peripheral areas, which itself differs city by city.

The five cities vary from each other in terms of size, tourist inflow and seasonality,

business vocation, topographic constraints and economic performance. Florence is the

epitome of the arts town, with a relatively small and highly protected centre. Rome is

both a touristic and a political attraction, being the capital of Italy, while Milan is the

economic and financial centre of Italy, but over the years its fashion industry has more

and more allured millions of visitors (even surpassing Florence numerically). Both have

large peripheries where the living conditions may be harsh. Naples is especially alluring in

120



the summer as it is located on the seaside, while it also attracts tourists (albeit less than

previous cities) due to the artistic value of its (very congested) city centre. Finally, Turin

is an industrial city, headquarter of a motor vehicle company (FIAT) that has deeply

affected the suburban areas as well as the demographics, but is also close to ski resorts in

the Alps and home to an admired and consistent baroque city centre. Although average

income is higher in Milan and in Rome and lower in Naples and Turin, the highest income

inequality is in Milan (second highest, Rome) and the lowest in Florence.

All in all, the five cities aptly represent the heterogeneity of the housing market and of

the tourist industry in the Italian cities interested by the Airbnb phenomenon. To grasp

what this heterogeneity implies, it is worth noting that although the number of listings has

more than tripled in all cities, Rome has three times the number of visitors of Florence,

which in turn triples the visitors of Turin and Naples. However, from 2014 to 2019, the

number of tourists has grown faster in Naples and in Rome than in Florence (ISTAT,

2016, 2020). At the same time, the average listing density of Airbnb has increased more

in Milan – where property values have skyrocketed – and in Naples – where they declined

– than in Florence and Rome.

Digging into this disparate picture, our paper provides evidence of Airbnb’s impact

on house prices and rents in this representative sample of towns. We set the scene by

estimating the effect of Airbnb on the cities altogether. We then explore the heterogeneity

of the housing market by estimating how the impact differs across towns. Next, we turn

to within-city effects. First, we estimate whether Airbnb only affects the city centre or

if its impact also extends to the periphery. Second, we investigate whether the increase

in Airbnb’s penetration in the city centre might also influence the periphery through

spillovers and cross effects.

To address these questions, we collected data from a variety of sources. Daily data

on individual Airbnb listings were obtained from AirDNA, a large provider of short-term

rental analytics. Rent and sale prices were provided by Idealista, a major online real estate

portal. Our unit of observation is the zone (i.e., the neighbourhood into which Idealista

divides the housing market of each city) and the time dimension is the year-quarter, from

2014 to 2019.

Estimation of these impacts raises potential endogeneity concerns that derive from

omitted variable bias as well as from simultaneity problems due to shocks to rents and

sale prices that could affect the decision to list an apartment on the platform but are
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unrelated to Airbnb. We address these concerns by including a large set of control

variables, zone-specific fixed effects and spatial-time interacted effects to account for

city-specific seasonality and within-city housing market trends. Moreover, we implement

an instrumental variable approach (Barron et al., 2020) that exploits the interaction of

an out-of-sample measure of tourist attraction that varies within cities (derived from

Tripadvisor) with a measure of public awareness of Airbnb that varies over time (derived

from Google searches). We control for identification threats that may come from the high

correlation between tourist attraction and centrality by including centre- and suburbs-

specific year-level fixed effects and zone-level time-varying controls associated with urban

revival processes.

We find that Airbnb’s diffusion has determined an increase of both rents and house

prices, where the latter appears more affected. The impact differs by city and, within

each city, between the centre and the suburban areas. Overall, our analysis shows that,

on average, an increase of 1 percentage point in Airbnb density leads to an increase in

sale prices of 44.38 €/m2 over the period of the analysis, but the impact differs across

cities, from an average increase of 162.31 €/m2 in Milan to 72.04 €/m2 in Florence

and only 19.37 €/m2 in Rome. The effect on rent is more significant in Florence and

Naples, with an estimated increase of 19 and 37 €cent/m2 respectively, which, compared

to rents’ variation over time, implies that Airbnb is responsible for 10% and 65% of the

rent increases in the two cities. When we focus on within-city effects, the picture confirms

to be extremely heterogeneous. We find that the effect of Airbnb density on house value

is positive and significant both in the city centre and in the suburbs in Florence, Milan

and Rome, but only in the city centre of Naples and Turin. However, quantitatively

the effect differs greatly, as the increases in Milan and Rome’s city centres are much

higher than those in the suburbs, whereas in Florence the price increase is higher in

the periphery. Our findings from the analysis on spillover effects, running from Airbnb’s

growing presence in the centre to house prices and rents in the suburbs, shows that the

increase in density in central areas has a negative effect on the property values in the

suburbs. The evidence is stronger for Milan and Rome – which have the largest gap

between neighbourhoods with the highest and lowest average income – and weaker for

Turin, but the direction of the effect is the same. Overall, this suggests that the presence

of Airbnb in the centre and the related boost to the supply of localised amenities may

reinforce the core’s attractiveness at the expense of the peripheries. On the opposite
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side, we find that in Florence the presence of Airbnb has a stronger positive effect on the

suburbs than on the centre’s prices, seemingly leading prices to converge. As Florence is

the smallest of the analysed cities and its centre has the highest listing density, this could

result from the fact that the suburbs are becoming more desirable, as they are relatively

close to the city centre.

Considering that in the starting year, the wedge between the prices in the centre and in

the suburbs was smaller in Florence and larger in Milan and Rome, these findings suggest

that the Airbnb presence has a reinforcing effect on the housing market, by widening large

gaps and reducing small ones. Therefore, our analysis hints that the impact of Airbnb on

within-city inequality depends on the initial conditions of the different areas. The urban

policies and the calls for regulation of home sharing activity by individual cities should

take into account these initial conditions and to what extent central and suburban areas

are adequately equipped to deal with short-term rental platforms and, possibly, to benefit

from them.

We contribute to the literature in several ways. First, although Italy has a strong

touristic vocation, this is the first study estimating the impact of Airbnb on the Italian

housing market, to the best of our knowledge. Second, by focusing on five cities with

heterogeneous housing markets and socio-economic characteristics, we provide evidence

of an overarching effect but also of the need for bespoke policies. Third, by disentangling

Airbnb’s effect within the cities, we show the unevenness of Airbnb’s effect between city

centres and suburbs and the potential spillovers between them, in line with the findings

of the recent literature that studies the distributional impact of home-sharing platforms

and the mechanisms behind the reinforcement of residential sorting. Overall, our findings

can help to better understand whether Airbnb’s diffusion is benefiting some parts of the

city while leaving other neighbourhoods behind.

The paper is organised as follows. In Section 2 we review the relevant literature from

which we derive our conceptual framework. In Section 3 we describe the geographical

scope of our study and briefly characterise the heterogeneity of the five cities. In Section

4 we describe the data and, in Section 5, the empirical strategy. In Section 6 we present

the results and in Section 7 we conclude.
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2. Related Literature and Conceptual Framework

2.1. Empirical Evidence

Our work contributes to a growing literature that studies the economic impact of

short-term rentals on the housing market. Sheppard and Udell (2016) study Airbnb’s

impact on the value of New York City’s residential property. They argue that Airbnb’s

diffusion can increase property value – e.g., by offering new income streams to house

owners, thus reducing the cost of ownership; increasing the demand for space due to a

growth in local tourist population; raising the quality of a neighbourhood due to the local

economic impact of tourists – or decreasing it, when the presence of tourists generates

negative externalities to residents. They find that doubling the number of Airbnb listings

in a 300m radius around a property leads to a 6% to 11% increase in its value. Horn

and Merante (2017) inquire into the short-term effects on rents of Airbnb’s penetration

in Boston. They find that an increase in density of Airbnb listings equal to a standard

deviation rises rents by 0.4% and reduces the number of units offered for rent by 5.9%.

The increase in rental rates reaches 3.1% for neighbourhoods in the top decile of Airbnb

density. Barron et al. (2020) study the impact of Airbnb on house prices and rents in the

USA. They find that a 1% increase in Airbnb listings leads to a 0.018% increase in rents

and 0.026% in sale prices. They underline how the impact decreases with the share of

owner-occupiers, suggesting that the price increase is driven by a reallocation of supply

from the long-term to the short-term rental market. Koster et al. (2021) investigates the

impact of the platform on Los Angeles County. They exploit the exogenous shock offered

by the introduction of a legislation restricting short-term rentals which affected only some

cities of the County. They find a significant reduction in rents and house prices of about

2% following the introduction of the legislation.

A branch of this literature assesses Airbnb’s impact on European housing markets.

Ayouba et al. (2020) investigate whether Airbnb listings affect rental prices in eight

French cities. They find that an increase in the number of Airbnb listings is linked to a

raise in rental prices for some cities. A one percent increase in Airbnb density in a given

neighbourhood leads to a 0.5 percent increase in rents in Pairs, which is the town affected

the most. However, when focusing on commercial listings, they find that the impact more

than doubles to 1.2 percent. In some cities, Airbnb impact surprisingly increases with the

share of home-occupiers, and it decreases with hotel density. Garcia-López et al. (2020)

study the impact of Airbnb’s diffusion in Barcelona’s housing market. They find that
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Airbnb had a significant effect on housing rents and sale prices in Barcelona, especially in

the city’s most touristic areas, where they attribute to Airbnb’s presence a 7% increase

in rents and a 17% and 14% increase in transaction and posted prices. They impute this

effect to the reduction in the long-term supply of housing units. Duso et al. (2020) assess

Airbnb’s impact on rental prices in Berlin. They exploit the exogenous shock to the

market caused by the enforcement of a law that limits short-term rentals to identify the

impact on rents. They find that an additional Airbnb listing increases by at least seven

cents the average monthly rents per square meter. Finally, Franco and Santos (2021)

investigate Airbnb’s impact on house prices and rents in Portugal. They find that one

percentage point increase in Airbnb density results in a 3.7% increase in house prices,

while they find no evidence of an effect on rents. The impact on sale prices is greater in

city centres and tourist areas. In line with the literature, we find that Airbnb’s presence

increases rent and, more significantly, sale prices. The effect varies greatly both across

and within cities, suggesting that Airbnb’s effect strongly depends on the cities’ inherent

characteristics. Table 1 provides a summarised view of the empirical methods adopted

by the reviewed literature.
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Table 1. The Literature on the Impact of Airbnb on House Prices and Rents

Author Objective Method Dependent variable Independent variable Control variables

Sheppard and

Udell (2016)

Impact of Airbnb on

house prices in New

York City.

Fixed-effect model (hedonic) and diff-in-

diff. SE clustered at the census tract level.

Sale price of a given

house. Data from 2003 to

2015

Number of active (i.e., first re-

view) listings in a 300m radius

from the property sold. Al-

ternative measures: price, capa-

city, bedroom, beds, reviews. 12

points in time during 2015-2016.

Information about the house being sold; areas of

interest (e.g., parks, cemeteries, airports, subway

entrances); tax lot; census tract level informa-

tion on education, racial and ethnic demograph-

ics, employment measures; crimes by precinct.

Year of sale and neighbourhood fixed effects. Not

all data is at census-tract level.

Horn and

Merante

(2017)

Impact of Airbnb on

asking rents and on

the number of houses

available for rent in

Boston.

Fixed-effect model. Asking rents used with

a 1-month lag with respect to the Airbnb

density measure to minimise the risk of re-

verse causality. SE clustered at the census

tract level.

Asking rent of a given

house at a given month.

Data for the six months

from 08-2015 to 01-2016.

Density of Airbnb in a census

tract in the previous month:

number of listings over number

of housing units.

Number of beds and bathrooms, square footage.

Number of newly built rental units in a given

tract. Population, housing units, crime level,

building permits and restaurant licenses issuances

at the tract level. Census tract and month fixed

effects.

Barron et al.

(2020)

Impact of Airbnb on

house prices and rents

in the USA.

IV is the interaction of Google Trends

global search index with a measure of how

touristy a zipcode is in 2010 (proxied by

establishments in the accommodation and

food industries). SE clustered at the zip-

code level.

Median sale price of

houses at zipcode-month

level. Median long-term

rental price of houses at

zipcode-month level.

Number of active listings in each

zipcode (active starting from

host join date). Data from 2008

to 2016.

Zipcode level 5-year estimates of income level,

population, education, employment rate, owner-

occupancy rate. 1-year estimates of housing va-

cancy rates at the metropolitan area (CBSA).

Zipcode fixed effects, CBSA time varying effects,

correlated with number of listings.

Koster et al.

(2021)

Impact of Airbnb on

house prices and rents

in L.A. County

Spatial regression discontinuity design

which compares changes in prices across

municipality borders after localised bans

to Airbnb. Diff-in-diff to estimate effect

on rents. SE clustered at the census block

level.

Transaction price and

monthly rent of a given

house. Data from 2014

to 2018.

Density of Airbnb listings in

a 200m radius from the prop-

erty. Monthly data of 15 points

in time from October 2014 to

September 2018.

Property and neighbourhood characteristics, loc-

ation controls (distance to beach and to the

Home-Sharing Ordinance municipality border).

Census block and area-month fixed effects.

Ayouba et al.

(2020)

Impact of Airbnb on

asking rents in eight

French cities.

Hedonic regression allowing for heterosce-

dasticity and spatial error autocorrelation

of unknown forms. Distinction between

nonprofessional and professional renters

and on all tenancy agreements and only new

ones. B-spline functions for some controls.

Lagged variables to limit endogeneity.

Asking monthly rent of

a given apartment at a

given year for 2014-2015.

Density of Airbnb listings in a

given neighbourhood for a given

year. A differentiation is made

between professional and non-

professional hosts.

Structural characteristics of dwellings, accessibil-

ity to jobs and services, socioeconomic context,

environmental quality around housing. Time

fixed effects.
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Author Objective Method Dependent variable Independent variable Control variables

Garcia-López

et al. (2020)

Impact of Airbnb on

housing market in

Barcelona.

Fixed-effect models (hedonic). IV is the in-

teraction of Google Trends local search in-

dex with a measure of how touristy a zip-

code is (obtained from Tripadvisor reviews).

SE clustered at the neighbourhood level.

Residual resulting from a

hedonic regression of log

rents or prices on time

dummies and unit char-

acteristics, from 2007 to

2017.

Number of Airbnb listings. 21

points in time, from 2015 to

2018.

Neighbourhood and time fixed effects. Neigh-

bourhood level time trends and demographic ef-

fects (i.e., average age, population density, av-

erage household occupancy rate, unemployment

rate, relative income, and percentage of foreign

residents).

Duso et al.

(2020)

Impact of Airbnb on

asking rents in Berlin.

IV using an exogenous shock: introduction

of ban on the use of apartments as short-

term rentals. They consider only “entire

home” dwelling types because only these

are affected by the law. SE clustered at the

zipcode level.

Asking monthly rent per

m2 of a given apartment

for 2013-2018.

Number of active listings in a

250m radius from the property

sold. Monthly data from 2015 to

2018.

Neighbourhood characteristics: number of res-

taurants, bus stops, supermarkets, level of noise,

air quality, age of buildings. Apartment char-

acteristics: size, number of rooms, parking lot.

Linear and quadratic monthly trend and zipcodes

fixed effects.

Franco and

Santos (2021)

Impact of Airbnb on

house prices and rents

in Portugal.

IV is the interaction of Google Trends

global search index with a measure of how

touristy a municipality or parish is pre-

Airbnb expansion (proxied by Airbnb dens-

ity). Diff-in-diff to compare results. SE

clustered at the municipality or parish level.

Average housing rent

and transaction price in

a given municipality or

parish at a given quarter.

Data from 2010 to 2016.

Density of Airbnb listings in a

given municipality or parish in

a given quarter. Data from

September 2016.

Census data on socio-demographic characterist-

ics, number of dwellings, population. Further

data on area and building characteristics at the

parish level for the cities of Porto and Lisbon.

List of time-invariant amenities. Year-quarter

fixed effects.

1
2
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2.2. The Effect of Short-Term Rental Platforms on the Housing Market

A few studies have enquired into the transmission mechanism through which short-

term rental platforms can impact the housing market, highlighting how the effect can go

in opposite directions. This section summarises the main contributions.

First and foremost, short-term rental platforms have reduced many of the frictions

that were present in the short-term rental market, both on a transactional and on a trust

level (Einav et al., 2016), driving some homeowners to switch from the long-term to the

short-term rental market. Since, especially in the short term, housing supply is inelastic,

this substitution leads to a price increase in the former market and to a reduction in the

latter, as observed by Horn and Merante (2017) and Zervas et al. (2017). The magnitude

of the substitution effect depends on many factors. Short-term rental prices are usually

higher than long-term prices, and they often elude or are subject to a more lenient revenue

taxation. On the one hand, owners can be attracted by the fewer restrictions given by

short-term contracts, especially so in jurisdictions with strong tenant protection laws. On

the other hand, owners could prefer long-term rentals due to risk aversion (e.g., due to

fear of property depreciation caused by impolite short-term renters) or to reduce effort

costs required by managing a short-term rental. In the long run, the quantity of houses

that can supply short- and long-term rentals should increase, reducing the impact of

home-sharing on the supply side. However, the increase in supply may not happen as

it depends on a variety of factors such as land availability and building regulations, as

documented by Gyourko and Molloy (2015).

Second, short-term rental platforms can increase the attractiveness of previously less

interesting city areas: this effect, documented for the US by Farronato and Fradkin (2018)

and Coles et al. (2018), can drive both long-term and short-term prices upwards due to

a general demand increase. Relatedly, harsh increases in tourist presence may lower the

attractiveness of an area for local residents, as pointed out by Filippas and Horton (2018)

in a study on New York City.

Finally, short-term rental platforms’ effects on rental prices also reflect on sale prices.

House value can be measured by the present value of all future revenues and costs,

including possible incomes from renting (Poterba, 1984). As such, any change in the

rental market is reflected on the sale market with a higher magnitude. Moreover, since

short-term rental platforms allow the host to rent unused capacity, this additional source

of possible future income should drive up sale prices even further.
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Although the literature identifies various and, to some extent, discordant effects, both

theoretical and empirical studies suggest that the predominant one is the substitution

effect. Indeed, our results show a general increase in both rent and sale prices. Moreover,

these effects are stronger in the city centre, where Airbnb’s presence has raised the most

during the analysed time period.

2.3. The Welfare Redistribution Effect of Short-Term Rental Platform Within

Cities

A few recent studies have focused on how the effect of short-term rental platforms

can actively shape the welfare distribution within a city, leading to heterogeneous effects

on different areas and demographic groups as documented for Amsterdam by Almagro

and Domı́nguez-Iino (2021). First, the entry of short-term rental platforms can actively

shape touristic flows and, in turn, the distribution of amenities within the city. As

such, amenities in touristic areas start focusing on satisfying the tourists’ taste, which

are misaligned with that of residents. In the end, the damage that short-term rental

platforms do to residents is two-fold: their average rent raises, and the amenities shift

farther from their taste as they try to accommodate tourists. Both of these effects are

directly proportional to the magnitude of touristic flows, and thus are more concerning

in more touristically attractive areas such as the city centres.

A similar analysis on the heterogeneous effect of short-term rental platforms has also

been carried out in New York by Calder-Wang (2021). Her results show how the entry of

short-term rental platforms causes a substantial welfare loss for renters, as the increase

in rent prices more than offsets the additional gains from short-term renting. Moreover,

this loss is particularly high in rich neighbourhoods, mostly inhabited by high-income and

well-educated white people. This is due to the higher penetration of short-term rentals

platforms, and the fact that high-income renters’ preferences are more aligned with those

of tourists.

Koster et al. (2021) take a quasi-experimental approach on the subject, analysing the

differences of short-term rental platforms’ effect in cities in Los Angeles County where

Home Sharing Ordinances (HSOs) are in place. Their results suggest that HSOs reduces

short-term rental platforms’ supply and, in turn, housing prices and rents. This effect is

particularly strong in areas with high touristic attractiveness. Moreover, they argue how

short-term rental platforms redistribute welfare from long-term renters to homeowners as

more supply is located in the platforms, and how HSOs can reduce this welfare transfer.
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Finally, short-term rental platforms can also have a role in the distribution of capital

investments within a city. As documented for Chicago by Xu and Xu (2021), the entry

of shot-term rental platforms increases the number of residential renovation projects, as

landlords are more inclined towards renovating to better compete on the short-term rental

market. Moreover, they observe how the elasticity of renovation projects with respect to

short-term rental platforms’ penetration increases within declining neighbourhoods; that

is, the investment responses have been stronger in non-gentrified neighbourhoods, likely

due to lower investment costs.

We contribute to this strand of literature by investigating whether an increase of

Airbnb’s presence in the city centre affects prices in that city’s suburbs. Indeed, we find

a significant negative effect in most cities, hinting that the presence of Airbnb in the

centre and the related boost to the supply of localised amenities may actually reinforce

its attractiveness at the expense of the peripheries. We suggest that the distributional

impact of Airbnb within cities depends on the initial conditions of the areas, indicating

that urban policy calls for regulation should take them into account.

3. Geographical Scope of the Analysis

In Figure 1, the left pane shows the location of the five cities, their population and

the number of visitors in 2019, while the right pane reports the overall number of listings

per quarter in the five cities, testifying to the explosive growth of the platform in the

country.

Our choice of cities – Florence, Milan, Naples, Rome, and Turin – is driven by their

importance in the economic and political life of the country as well as their symbolic,

worldwide fame as touristic attractions and their inherent variety. In this section we

describe how they differ in terms of Airbnb density, housing market indicators, demo-

graphic and economic conditions. Interestingly, these differences amplify when we focus

on the comparison between the city centre and the peripheries. Indeed, one purpose of

this paper is to start from the heterogeneity of the initial conditions to investigate how

the impact of Airbnb’s presence changes with the specific characteristics of each city. We

then proceed to further disentangle the effect of Airbnb within cities. More precisely,

we divide each city into the city centre, which typically attracts the large majority of

tourists, and the suburbs, which might be only residually affected by house sharing –

when the centre is saturated or through spillovers from the centre.

130



Figure 1. The Five Cities

Left pane: Location, number of residents and visitor as of 2019. Right pane: Total number of listings
(the dashed line is the linear fit). Sources: AirDNA and ISTAT.

Table 2 summarises information on rents and sales prices as well as Airbnb’s listing

density (the number of listings divided by the number of dwellings) in each city and

overall, at the beginning and the end of the sample period (i.e., the last quarters of 2014

and 2019). Airbnb’s presence has grown overall, both in Florence – where it increased from

1.20% to 5.84% – and in Turin, where it was almost non-existent in 2014. However, the

evolution of the housing market indicators is flat in most towns, probably as a consequence

of the financial crisis of 2008. This suggests that a potential role of Airbnb’s presence

might be to slow down, or reverse, the descent of prices, at least in some cities.

Rome – the capital – is by far the most populous and most visited city in the country,

with almost 3 million citizens and over 33 million visitors in 2019. Its rents and sale prices

are about average with respect to our sample, but property values decreased, on average,

over the period. Milan is the second most populous and third most visited city in Italy as

well as the economic and financial capital. It is a highly productive and dynamic city, as

shown by the highest and growing average income. Not surprisingly, Milan exhibits the

highest sale prices and rental rates. Florence is significantly smaller than the previous

two cities but ranks first in terms of tourist density and second as Italy’s most visited

town, after Rome. Its high attractiveness together with its limited geographical extension

result in the highest average Airbnb density in our sample, together with high house

prices and rents, the highest after Milan. Finally, Naples, a touristic seaside town rich

of archaeological sites (e.g., Pompei) and Turin, an industrial town (headquarter of the
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Table 2. Housing Market Characteristics by City at the Beginning and
the End of the Period

2014q4 2014
Monthly Rent Sale Price Airbnb Density Store Density Revenue Tourists/capita

Average 12.11 3,338.79 0.41% 12.45 24,954 7.52
Florence 12.90 3,504.76 1.20% 8.64 23,624 22.82
Milan 13.65 3,557.11 0.29% 17.48 30,156 7.73
Naples 9.28 2,759.34 0.15% 15.28 19,880 2.96
Rome 12.63 3,633.47 0.43% 9.87 24,577 8.26
Turin 7.90 1,945.49 0.11% 9.83 22,542 3.39

2019q4 2019
Monthly Rent Sale Price Airbnb Density Store Density Revenue Tourists/capita

Average 13.47 3,147.18 2.32% 12.98 26,019 9.75
Florence 14.73 3,827.65 5.84% 8.81 24,444 30.28
Milan 17.71 3,891.87 2.11% 18.90 32,330 8.92
Naples 9.85 2,231.41 2.23% 15.59 19,757 4.00
Rome 12.65 3,076.66 1.87% 10.01 25,262 11.11
Turin 7.57 1,584.09 0.74% 10.15 23,793 4.27

This table shows average values for monthly rent, sale price, listing and store density – overall and by city –
for the last quarter of 2014 and 2019. Average revenue and tourists per capita at the yearly level are shown for
year 2014 and 2019. Rent and sale prices are expressed in euros per square meter. Sources: AirDNA Idealista,
ISTAT and OMI.

motor vehicle company FIAT, now Stellantis, i.e., FIAT, Chrysler and PSA), complete

our analysis. These cities attract relatively less tourists but still rank tenth and twelfth

as most visited cities in Italy, respectively. Compared to the previous cities, house prices,

rents and Airbnb’s presence are sensibly lower, especially in Turin (property values are

40.7% of Milan’s), as well as per capita income, especially in Naples (61% of Milan’s).

Figure 2 shows the evolution over time of average rents, sale prices and Airbnb density

for each city. Rents and sale prices are shown from the first quarter of 2012 and are

normalised to the last quarter of 2014. Listing density is shown from the last quarter of

2014 as the average of all zones (light grey) as the average of zones located in the city

centre (dark grey).1

1To classify whether a zone belongs to the centre or the periphery, we adopt the definitions of OMI,
the Italian register of the real estate market of the Internal Revenue Service. See the data section for
further details.
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Figure 2. Airbnb Density, Rents and House Prices From 2012 to 2019
(Average Data by Zone)

This figure shows the evolution over time of average rents, sale prices and Airbnb density for each
city. Rents and sale prices are shown from the first quarter of 2012 and are normalised to the last
quarter of 2014. Average listing density is shown from the last quarter of 2014 for both the average
zone (light grey) and for the city centre (dark grey). Sources: AirDNA, Idealista, OMI.

The five cities exhibit different trends of house prices and rents. Starting from 2014,

when the home sharing phenomenon was dawning, Florence and Milan experienced a

steady increase in both rents and sales prices. In the other cities, sale prices have been

falling over time, although in Rome and especially in Turin the descent reduced its speed

at the end of 2017. The evolution of rents is similar in Rome, Naples and Turin, as they

first declined until around 2015 and afterwards stabilised or slightly reverted the trend.

Airbnb density also varies greatly between cities. Florence approaches densities of 30%

in the top decile. Rome and Milan reach peaks of about 15% and 10% respectively, while

Turin stays below 3% even in top decile zones.
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3.1. A Closer Look Within the Five Cities: Centre vs. Suburbs

All cities exhibit, to a great extent, large differences between the city centre and the

peripheries under many aspects. Table 3 reports the average values of the main variables

in the city centre and in the suburbs. In Appendix I we also provide maps for individual

cities showing, for each zone, Airbnb’s density and a measure of tourist attraction derived

from Trip Advisor (defined tourist attraction score throughout the paper, as explained in

Section 5.1.1).

Table 3. Airbnb Presence and Housing Market Characteristics Within
City

2014q4 Suburbs Center
Monthly
Rent

Sale
Price

Airbnb
Density

Store
Density

Monthly
Rent

Sale
Price

Airbnb
Density

Store
Density

Average 11.09 2817.53 0.10% 6.97 14.18 4392.28 1.05% 23.51
Florence 12.41 3193.87 0.25% 3.77 13.28 3746.57 1.94% 12.44
Milan 12.24 2764.23 0.16% 8.50 17.08 5487.60 0.59% 39.34
Naples 8.19 2300.23 0.02% 8.04 10.58 3310.27 0.31% 23.96
Rome 11.49 3116.82 0.06% 6.46 15.92 5114.53 1.49% 19.64
Turin 7.45 1778.04 0.04% 6.08 8.79 2280.38 0.24% 17.35

2019q4 Suburbs Center
Monthly
Rent

Sale
Price

Airbnb
Density

Store
Density

Monthly
Rent

Sale
Price

Airbnb
Density

Store
Density

Average 12.22 2487.49 0.70% 7.35 16.02 4480.45 5.58% 24.36
Florence 14.01 3372.26 1.46% 3.85 15.29 4181.84 9.25% 12.66
Milan 15.93 2709.56 1.29% 9.31 22.04 6770.54 4.13% 42.24
Naples 8.16 1759.23 0.60% 8.23 11.88 2798.04 4.19% 24.42
Rome 11.43 2595.42 0.28% 6.68 16.14 4456.20 6.42% 19.57
Turin 7.07 1321.08 0.36% 6.27 8.58 2110.10 1.51% 17.91

This table shows average values for monthly rent, sale price, listing and store density – in the
suburbs and in the city centre – for the last quarter of 2014 and 2019. Sources: AirDNA Idealista
and OMI.

First, as expected, the density of Airbnb listings is much higher in the centre than

in the suburbs in all cities, but particularly so in Florence and Rome. This is in line

with the tourist attractions distribution, which is heavily skewed towards the city centre,

as we can see from the maps in Appendix I. The gap between centre and suburbs was

modest at the beginning of the period, but then, as the home sharing phenomenon set

off, it has become remarkable. Second, house prices and rents are also very different,

especially in Milan and Rome whereas in Florence the gap is smaller. Turin’s home

market confirms to be the most stagnant, with the lowest prices in both years and in

both areas, and the gap seems to have widened from 2014 to 2019. Third, when we focus

on the demographic characteristics described by the time invariant variables (Appendix
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Table A.1), we find that the share of graduated and employed people is much higher in

the centre in all cities. The share of elderly residents is slightly higher in the city centre,

except in Milan and Turin, whereas the share of houses occupied by owners (more than

60% on average) is slightly higher in the suburbs, except in Naples. According to Barron

et al. (2020), the impact of Airbnb presence on house prices and rents is lower where

the share of owner occupancy is higher. Finally, to compare average income levels, we

rely on data by the Ministry of Economy and Finance (MEF) for the poorest and the

richest postal code (zip code) neighbourhoods in 2019 (Appendix Table A.2 ), as the

information about income distribution at the Idealista zone level was unavailable (MEF,

2021). Assuming that the poorest zip code is in the periphery and the richest in the

centre, we find that income inequality within city is highest in Milan (where the ratio

“highest to lowest income” is as high as 5.3) and Rome (4.2) and lowest in Florence (1.97),

whereas Naples and Turin stand in the middle (3.5). More in general, it is worth noting

that the heterogeneity across cities is much higher amongst the “rich” zip codes (the

ratio between Milan and Florence is 2.48) than amongst “poor” zip codes (the Florence

to Naples ratio is 1.65), thus suggesting that suburban areas in Italy tend to share similar

disadvantaged conditions.

4. Data

4.1. Rent and Sale Prices Data and Neighbourhood Definition

Our source of rent and sale prices is Idealista, a major online real estate portal oper-

ating in the Italian market (Idealista, 2021). Idealista divides each city into zones, that

is, geographical areas sharing common characteristics. We will use the term zone and

neighbourhood interchangeably. Idealista data cover 287 zones from the first quarter of

2012 to the first quarter of 2020, and the number of zones per city varies significantly

according to each city’s characteristics. For each zone, Idealista provides an estimate of

the monthly rental rates and the transaction prices per square meter at the trimester

level. We can thus think of the identification of a zone as being equivalent to that of a

relevant market. By choosing Idealista’s zones as our definition of neighbourhood, we can

approximate the geographical scope of the individual housing market, as the real estate

company has likely chosen the zones to minimise the area-specific heterogeneity and the

information costs. This mapping allows us to compare different zones both across and
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within cities controlling for unobserved zone-level factors and helps us identify the impact

of Airbnb.

4.2. Airbnb Data

Data on Airbnb come from AirDNA, a provider of short-term rental data and analyt-

ics, which collects information directly from Airbnb’s website (AirDNA, 2021). AirDNA

provides two datasets: a property one and a daily one. The property dataset provides in-

formation on dwelling characteristics, ownership and rental conditions The daily dataset

provides, for each dwelling, rental outcomes such as whether the dwelling was available,

rented, blocked and, if rented, at what price. This fine-grained detail allows us to measure

Airbnb supply reliably: rather than using reviews or the listing’s creation date as a proxy

of activity, we can look at the actual days in which the property was available or rented.

AirDNA data covers the period from October 2014 to December 2019. The datasets re-

port the coordinates of each dwelling, albeit with a margin of error. For privacy reasons,

in fact, Airbnb scrambles these coordinates so that the reported location of the dwelling

is within a 150m radius from the actual ones. As the anonymised data change over time,

AirDNA provides an average of these values, therefore increasing geolocation precision.

We merge the AirDNA and the Idealista datasets by assigning the listings to the

zones, and we finally obtain two measures of Airbnb intensity at the zone-trimester level:

the number of listings and the listing density. The former is derived as the number of

listings being offered for rent in a given trimester and reserved at least once during the

year – a constraint needed to expunge listings that are not really active. The latter is

defined as the ratio between the number of listings and the number of houses in a given

zone.

4.3. Final Dataset

To characterise each zone according to the attributes of its real estate and the so-

ciodemographic and economic dimensions, we rely on two additional sources: the OMI

(Osservatorio del Mercato Immobiliare, the Italian register of the real estate market) data-

set and the Italian 2011 census by the Italian National Institute of Statistics (ISTAT).

OMI provides, for its own geographical partitions, the annual number of housing units,

their average number of rooms, the number of commercial activities, their average size

in square meters, and the number of garages. Data are available from 2016 to 2019 for

every city but Rome, for which they start from 2017. To match the time series of Airbnb
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data, we extrapolate the OMI data for 2015 (also 2016 for the city of Rome) and the last

quarter of 2014, assuming a linear trend. We assigned Idealista zones to their respective

OMI partitions – with some minor approximation. OMI partitions are smaller than

Idealista’s zones and, typically, they are contained within the Idealista’s zone. When the

two geographical units do not completely overlap, we merge the respective data (under

the assumption that the real estate market is uniformly distributed within the OMI

partition) and assign a share equal to the percentage of overlap to the Idealista zone.

OMI partitions are further characterised as central, semi-central, peripheral, suburban

and rural. We make use of this distinction to define a binary variable – which we call

area – that identifies an Idealista zone as belonging to either the “city centre” or the

“suburbs”. We define a zone as belonging to the city centre area if it is either a central or

semi-central zone. Conversely, a zone is defined as belonging to the suburbs area if it is

either peripheral, suburban or rural. In the empirical analysis, we exploit this dichotomy

to investigate whether the impact of Airbnb presence differs contingent on the centrality

of the zone and to account for centrality-driven unobserved factors through time-varying

area fixed effects.

Through OMI data, now attributed to the Idealista zone, we calculate Airbnb density

as the ratio between the number of listings and the number of houses. Similarly, we

compute the housing, store and garage densities by dividing the corresponding stock to

the area of the Idealista zone, expressed in hectares.

To find additional pre-determined control variables we exploited the 2011 census which

provides a wealth of (time-invariant) data on demographics, education, occupation and

housing characteristics (ISTAT, 2021) at the census tract level for the cities in the analysis.

We collected the number of residents, characterised by age, education level, employment

status and citizenship; the number of owner-occupiers; the number of houses, further

characterised by occupancy and physical condition. To give an idea of the geographical

resolution of census data, note that, while Rome is divided into 117 Idealista zones, it

consists of about 13,000 census tracts. Therefore, by appropriately rearranging the data,

it is possible to characterise an Idealista zone accurately with census variables.

The resulting dataset consists of a balanced panel of 6,027 observations at the zone-

trimester level. It comprises 287 zones and 21 time intervals from the last trimester of

2014 to the last of 2019. Table 4 presents summary statistics at the zone-trimester level

except for census variables, which are time invariant.
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Table 4. Summary Statistics

Mean SD Min Max N

Idealista
Rent [€/m²] 12.60 3.65 4.41 32.22 6,027
Sale [€/m²] 3,131.35 1,391.56 694.44 10,889.59 6,027

Airbnb
Airbnb Listings 161.06 370.62 0 5,353.00 6,027
Airbnb Density 1.55% 3.43% 0.00% 31.12% 6,027

OMI
House Density 43.89 33.46 0.61 161.09 6,027
Store Density 12.75 12.94 0.22 75.95 6,027
Garage Density 15.69 11.25 0.28 43.77 6,027
Avg. House Rooms 5.11 0.67 3.78 9.19 6,027
Avg. Store m² 45.06 13.44 9.84 98.29 6,027

CENSUS
Num. Residents 20,300.74 13,683.38 1,072.05 71,855.31 6,027
% Owner-occupancy 0.65 0.10 0.29 0.83 6,027
% 20-39 years 0.24 0.04 0.17 0.45 6,027
% >60 years 0.22 0.05 0.06 0.36 6,027
% Graduates 0.19 0.10 0.03 0.44 6,027
% Working 0.41 0.06 0.18 0.57 6,027
% Foreigners 0.10 0.06 0.01 0.37 6,027
% Full houses 0.93 0.06 0.61 1.00 6,027
Num. Houses 9,675.36 6,477.95 248.57 30,495.69 6,027
% House in poor condition 0.15 0.13 0.01 0.78 6,027

This table shows summary statistics for the main variables used in the empirical ana-
lysis. Sources: AirDNA Idealista, ISTAT and OMI.

5. Empirical Methods

The empirical analysis starts by estimating the overall impact of Airbnb presence on

monthly rents and sale prices for the five cities altogether. Next, we turn to the main

research questions, and we exploit the heterogeneity in our dataset: we first disentangle

the individual Airbnb effect in each city, then we investigate within-city differences by

estimating the impact of listing density on the city centre and on the suburbs. Finally, we

address the potential externalities on the real estate market by investigating if (and how)

the intensification of Airbnb presence in the city centre affects the housing market in the

periphery. Our research strategy accounts for endogeneity concerns in several ways. For

a start, we lag the variable of interest to reduce reverse causality concerns and we include

a large set of control variables to address the problem of omitted variable bias, including

spatial (city, area and zone) and time (year and quarter) fixed effects as well as spatial-

time interactions. Controlling for spurious correlations is crucial because there may be

city-and area-specific trends and seasonal factors that affect sale and rental prices but

are unrelated to Airbnb, for example a divergence between nicer and less areas over time,

which is important to account for. Then we estimate 2SLS regressions using shift-share
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instrumental variables that exploit two alternative sources to construct the cross-sectional

part of the instrument (Section 5.1), and we also estimate a dynamic panel data model

using with the GMM-System estimator to allow for dynamic effects in the housing market

(Section 6.4.1). We cluster standard errors at the zone level to account for correlation

across the time-dimension within zones and, because neighbourhood effects may exhibit

patterns of mutual dependence across zones, we also allow for spatial correlation by

calculating Driscoll and Kraay (1998) standard errors that we report below the robust

standard errors clustered by zone. A battery of robustness tests concludes the analysis.

To estimate the overall impact of Airbnb we start with the following baseline OLS

equation:

log (Yn,t) = βAirbnb Intensityn,t−1 + γXn,t + δFn + τy + εn,t (1)

where Yn,t is either rents or sale prices in zone n at year-quarter t. Airbnb Intensityn,t−1

is the listing density in zone n at time t−1.2 As the dependent variable is expressed as

natural logarithms, our estimates represent the semi-elasticity of rents and prices with

respect to Airbnb intensity. Xn,t is a matrix of time-varying controls in zone n at time t,

and Fn is a matrix of time-invariant demographic characteristics of zone n. τy are year

fixed effects. εn,t is a mean-zero error term.

Our coefficient of interest in Equation (1) is β, which captures the overall effect of

the Airbnb intensity measure on the dependent variable. We address the risk of omitted

variable bias by controlling for both time-varying and time-invariant demographic and

structural characteristics at the zone level as well as year fixed effects.

Starting from the second model, we include zone fixed effects as well as city and

area-specific time effects in order to control for differences in time trends and seasonality

amongst and within cities which imply different pricing dynamics that, if unaccounted

for, may bias the estimate of the overall impact of Airbnb via spurious correlations. As

shown in Section 3, the five cities are indeed differently exposed to tourist flows, business-

related traffic, occurrence of shows and exhibitions and subject to different seasonality

of the flows. Moreover, they are characterised by different economic performances and

conditions, income levels and distribution, and degree of marginalisation of the peripher-

ies; as such, housing market dynamics are expected to differ not only across cities but

also within cities. We thus refine the specification by introducing an appropriate set of

2In Section 6.4.4 we also use the number of listings to measure the intensity of Airbnb.
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interacted time and location fixed effects, at different levels, as per the following model:

log (Yn,t) = βAirbnb Intensityn,t−1 + γXn,t + πs,i + τy,i,a + µn + εn,t (2)

where all terms have the same meaning as before, except for µn which is a zone-specific

fixed effect, πs,i is the interaction between city i and quarter s (to account for city-specific

seasonality) and τy,i,a is the interaction among the year, the city and the area, i.e., city

centre vs. periphery.

When we add the zone fixed effects, the time-invariant controls for sociodemographic

factors cannot be estimated, even though they may still display, over time, an impact

on sale and rental prices unrelated to Airbnb. Because part of this impact can escape

the spatial-time fixed-effects interactions we add in Equation (2), we adopt an additional

strategy to account for these factors, by interacting the time invariant zone-level controls

for demographic, education, occupation and housing characteristics with the growth rate

of each city population in the base year 2011. Plausibly, these additional variables should

be correlated with the remaining unobserved factors that influence the housing market

at the zone level, contributing to reduce the problem of spurious correlations (see also

Section 5.1.2). Moreover, by comparing these results with those from Equation (2), we

can also check to what extent we actually miss the effect of dynamic confounding factors

unobserved to us.

The previous models do not allow to estimate a city-specific effect of the impact

of Airbnb nor allow for different effects between the city centre and its periphery. To

investigate these further issues, we estimate the following models:

log (Yn,t) = βAirbnb Intensityn,t−1 × cityi + γXn,t + πs,i + τy,i,a + µn + εn,t (3)

and

log (Yn,t) = βAirbnb Intensityn,t−1× cityi× centreb+ γXn,t+πs,i+ τy,i,a+µn+ εn,t (4)

where all terms have the same meaning as before, except for Airbnb Intensityn,t × cityi

which is the interaction between listing density in zone n at time t with the city i, and

Airbnb Intensityn,t × cityi × centreb, which is the interaction among listing density in

zone n at time t with city i and the indicator variable that denotes the city centre.

Finally, we turn to our research question on the distributional impact of Airbnb on

the city residents in the centre and in the suburbs by investigating whether the diffusion

of Airbnb in the centre impacts also the property values and rents of suburban zones. To
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perform this analysis, we focus on the sub-sample of peripheral zones, and we calculate

the aggregate Airbnb density in the city centre, while keeping zone-level density as a

measure of Airbnb presence in the suburbs – as in previous regressions – to control for

its effect as well. We then estimate the following model:

log (Yn,t) = β1Airbnb Intensityn,t−1 × cityi + β2Airbnb Intensity Centrei,t−1

+γXn,t + πs,i + τy,i,a + µn + εn,t

(5)

where n represents here the subsample of suburban zones. Through this model, we

investigate whether the diffusion of Airbnb in the city centre (i) has consequences also

on the property values and rents of suburban zones (n), after controlling for the effect of

zone-specific Airbnb density on each suburban zone.

Controlling for Different Evolution Over Time of Centre and Suburbs. In our

setting, a key threat to our identification strategy is that neighbourhoods with a higher

tourist attractiveness aTAn – and therefore a higher Airbnb penetration – could also be

undergoing a process of sociodemographic transformation which might have an impact

on house prices and rents (Garcia-López et al., 2020). Our specifications controls for

this phenomenon through the inclusion of zone-level time-varying housing characteristics

associated with urban revival processes (such as that of gentrification) and, more to the

point, centre- and suburbs-specific year-level fixed effects. In particular, these fixed effects

control for any spurious correlation that comes from the fact that a high tourist attraction

score is a good proxy of centrality of a neighbourhood. However, we might still miss some

trends due to the unavailability of time varying socio-demographic variables.

5.1. Instrumental Variable Estimation

Our previous specifications control for unobserved factors at the zone and city-centre-

year and city-quarter level, but do not yet account for unobserved zones-specific and

time-varying factors contained in the error term εn,t and correlated with the measure of

Airbnb intensity Airbnb Intensityn,t. To address these and other endogeneity concerns,

we employ an instrumental variable method that follows the approach introduced by

Bartik (1991), which has previously been adopted in the literature studying the impact

of Airbnb on the housing market by Garcia-López et al. (2020) and Barron et al. (2020).

The approach makes use of a shift-share instrumental variable that combines a cross-

sectional variation across zones of a measure of tourist attraction, and an aggregate

time variation of a measure of Airbnb intensity. We will provide evidence of how this
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instrument is plausibly uncorrelated with local shocks to the housing market εn,t while

affecting the intensity of Airbnb penetration.

5.1.1. Construction of the Instrument

The cross-sectional part (share) of the shift-share instrument is a measure of tourist

attractiveness of a given zone, which we draw from Tripadvisor. For each city, we scrape

the list of the top 150 tourist attractions, their geographical coordinates and their respect-

ive number of reviews until the end of 2013, that is, before the beginning of our analysis’

time window, in order to prevent reverse causality concerns. We define a measure of the

tourist attractiveness of a zone as follows:

aTAn =
K∑
k

reviewsk
distn,k

where n represents the zone, k the tourist attraction, reviewsk the number of reviews of

attraction k, distn,k the distance of attraction k from the centroid of zone n expressed in

kilometres. This variable predicts where Airbnb listings locate, as the presence of tourist

attractions increases tourists’ willingness to pay, which in turn raises both listing price

and Airbnb activity (Garcia-López et al., 2020).

In addition, we construct an alternative measure of tourist attractiveness that we use

as a robustness test, based on Lonely Planet guidebooks. Lonely Planet lists, the top 10

sites of interest for each city in their books and websites, ordering them by popularity.

We geolocate these sites using Google Maps’ API to get the coordinates, and we define

the alternative share component as follows:

aLPn =
10∑
k

1/positionk

distn,k

where positionk is the position of the attraction in Lonely Planet’s list, and the other

terms have the same meaning as before.

The shift-share instrument’s temporal part (shift) is a measure of Airbnb intensity

over time, which we refer to as gt and we derive from Google Trends by retrieving the

number of worldwide searches of the word “Airbnb” at the monthly level. Google Trends

provides percentages relative to the month with the highest number of searches. We

convert these into absolute numbers by matching them with data from WordTracker, a

website that provides numbers of searches for the last 12 months. This variable provides

a proxy of Airbnb intensity by representing the extent of public awareness of the platform

on both the demand and supply sides. As pointed out by Barron et al. (2020), the limited
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time window of the analysis makes it unlikely that the shift component reflects the growth

of overall tourism demand, while it should reflect the growth of the short-term housing

supply only where caused by Airbnb. Notably, we use a global measure of searches rather

than a city specific one so that correlation with tourist flows at the local level is unlikely.

Our instrument, referred to as touristiness, is thus the product of the cross-sectional

and temporal components (see Garcia-López et al., 2020 and Barron et al., 2020 for a

similar approach), as follows:

zn,t = aTAn × gt

Its intuitive rationale is that the attractiveness score aTAn predicts where Airbnb listings

appear, while the number of searches gt predicts when they are offered. The working of

the instrument is presented graphically in Figure 3.

Figure 3. Working of the Instrument

On the left pane, the figure shows the number of Airbnb listings as a function of the natural logarithm
of the tourist attractiveness score. The dots are the deciles of the tourist attractiveness distribution,
while the dashed line is the quadratic fit. On the right pane, the figure shows the number of Airbnb
listings by quarter (blue line) and the natural logarithm of Google worldwide searches of the word
“Airbnb” (dashed line).

The left pane shows the number of listings in a zone as a function of the natural

logarithm of the tourist attractiveness score, where the dots are the deciles of the tourist

attractiveness distribution. We can see how zones with a higher tourist attractiveness

score have a larger number of listings. The right pane shows the number of listings over

time and the number of Google searches of the word Airbnb. We can see how the number

of Google searches approximates well the number of listings in a given quarter. While

Figure 3 provides graphical evidence of the relevance of the instrument, in Section 6.1 we

provide further proof by reporting the first-stage estimates.

The effectiveness of the instrument hinges on the fact that property owners become

increasingly likely to offer their property on Airbnb after becoming aware of the platform.
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Following Barron et al. (2020), we test this hypothesis by looking at the relationship

between Google searches and the difference in the number of listings between tourist and

non-tourist zones.3 Figure 4 provides a visual representation that the hypothesis holds,

as this difference increases with the number of Google searches.

Figure 4. Instrument Effectiveness

This figure shows the average difference in the number of listings
between high- and low-tourist attractiveness zones – i.e., the zones
above or below the median – as a function of the number of Google
worldwide searches of the word “Airbnb” (blue dots). The dashed
line is the linear fit.

5.1.2. Instrument Validity

The popularity of shift-share instruments has spurred the growth of a recent literat-

ure that studies their validity conditions (Christian and Barrett, 2017; Borusyak et al.,

2018; Goldsmith-Pinkham et al., 2020). These works highlight how the consistency of

the estimator can derive from the exogeneity of either of its terms, even when the other is

endogenous.4 However, the literature also underlines how – usually – the main identific-

ation threats come from the share component (Goldsmith-Pinkham et al., 2020). In our

case, the exogeneity of the shares requires that the tourist attractiveness aTAn is uncorrel-

ated with unobservable zone-specific time-varying shocks captured by the error term εn,t.

That is to say, the tourist attractiveness of a zone should be correlated with changes in

house prices and rents only through the density of Airbnb – after controlling for our set

of covariates and fixed effects. Our empirical strategy already accounts for identification

3We split zones according to touristic attractiveness depending on whether they are below or above
the median.

4Among others, consistency of the estimator can derive from the sole shift component where a long
time series having weak serial dependence is present, even when there is a single shock per period
(Borusyak et al., 2018).
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threats attributable to the high correlation between tourist attraction and centrality by

including centre- and suburbs-specific year-level fixed effects and zone-level time-varying

controls associated with urban revival processes. However, in this section we make three

further arguments for why the exogeneity condition is likely to hold in our setting.

Parallel Pre-Trends. Goldsmith-Pinkham et al. (2020) note how, as the shift-share

instrument makes use of level differences in the share component, the validity of the

following assumption should be assessed: that the shock (i.e., awareness of the Airbnb

platform, as opposed to pre-existing conditions) is what determines the difference in the

changes in house prices and rents. We can do so by looking at the trends in changes prior

to the shock, similarly to a parallel pre-trend test in a difference-in-differences analysis.

We split neighbourhoods according to the tourist attraction score aTAn , distinguishing

between non-tourist zones (first quartile of the distribution of aTAn , our control group) and

tourist zones (the other three quartiles, the treatment group). While our data on actual

Airbnb supply starts from 2014, we can see from Figure 1 how the number of listings in

that year is still low compared to the following years.5 We therefore take the first quarter

of 2014 as the treatment period. Figure 5 shows the average house price (left pane) and

rents (right pane), normalised to the first quarter of 2012.

Figure 5. Parallel Pre-Trends

On the left pane, the figure shows the number of Airbnb listings as a function of the natural logarithm
of the tourist attractiveness score. The dots are the deciles of the tourist attractiveness distribution,
while the dashed line is the quadratic fit. On the right pane, the figure shows the number of Airbnb
listings by quarter (blue line) and the natural logarithm of Google worldwide searches of the word
“Airbnb” (dashed line).

No differential pre-trends appear between tourist and non-tourist zones for both house

prices and rents: the trends start to diverge only after the diffusion of Airbnb. This

5When looking at the creation date of the listing, we can approximate Airbnb supply from 2008
onwards. Even when using this measure of supply, we can identify in the beginning of 2014 the moment
at which Airbnb’s diffusion started to pick up pace.
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graphical evidence suggests that the neighbourhoods with a different tourist attraction

score did not generally have different long-run house price and rent trends.

IV Impact on Non-Airbnb Zones. We perform a second test by checking whether

our touristiness instrument finds a significant effect in neighbourhoods that never re-

gistered an impactful Airbnb activity. For the instrument to be valid, it should find an

effect only in those zones where listings are present. If an effect is found outside of those

cases, the instrument does not predict house prices and rents only through the Airbnb

density, and it is therefore capturing a spurious correlation.

We test this by estimating Equation 2, our most complete specification, regressing

the natural logarithm of sale prices directly on the instrumental variable (without 2SLS).

We do so in three subsamples:

1. Zones that never registered any Airbnb activity.

2. Zones that registered very little Airbnb activity.

3. Zones that registered a significant Airbnb activity.

Subsample 2 consists of zones having at most 100 listings throughout the entire time

period, i.e., a maximum average of 5 listings per quarter. Subsample 3 is composed of

neighbourhoods belonging to the top three quartiles of the distribution of listings. We

do not limit the analysis to the first and third subsamples because the neighbourhoods

that do not have any listing throughout the time period are very few. Furthermore, we

perform this test only for the sale variable because – as we will see in Section 6 – we find

a significant effect for rents only when estimating by city effects. Table 5 reports our

findings, where the three columns represent the different subsamples.

Columns 1 and 2 of the table show that, after controlling for our set of covariates

and fixed effects, there is no evidence of a statistically significant relationship between

our instrument and house prices. The effect is significant only for the third column,

where neighbourhoods with Airbnb activity are considered. This finding provides further

evidence that the instrument predicts house prices only through the Airbnb intensity.
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Table 5. Correlation Between Instrument and House
Prices in Zones With No Airbnb Presence

Dep. Var: Log Sale
(1) (2) (3)

Touristiness at t−1 3.60e-10 4.37e-10 1.85e-11**
(2.98e-10) (3.17e-10) (8.91e-12)

Controls
Time varying controls X X X

Fixed Effects
Zone FE X X X
Quarter#City FE X X X
Year#City#Area FE X X X

Observations 680 1,040 2,860
Adjusted R2 0.969 0.951 0.986

FE estimates of Equation 2. The dependent variable is the natural
logarithm of the sale price, while the variable of interest is the lagged
touristiness. Columns 1 to 3 show the coefficients for the three differ-
ent subsamples according to Airbnb activity. Robust standard errors
clustered by zone in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Placebo Test. We further assess the exogeneity of our instrument by means of a

placebo test, following Christian and Barrett (2017) and Barron et al. (2020). Through

this analysis, we test whether the effects we estimate can be reasonably attributed to a

causal relation or depend on spurious time trends. To this end, we randomise our measure

of Airbnb intensity by swapping the number of listings among zones that have at least

some degree of Airbnb penetration by the end of the time period (i.e., one listing by the

last quarter of 2019). The swap is consistent between periods: if zone i is swapped with

zone j, this is true for every quarter t. We keep constant every other variable of our

analysis. Through this transformation we maintain any pre-existing correlation between

a hypothetical omitted variable and the overall trend in Airbnb’s diffusion, while losing

any relationship between the instrument and the number of listings in each zone.6 As

a consequence, should the significance of our 2SLS coefficients be driven mainly by a

spurious correlation with whether a zone has any Airbnb presence, we would expect the

resulting 2SLS estimates to be significant also in the placebo. Conversely, if it is the in-

tensity of Airbnb that truly drives our results, then the instrument should become weak,

and the coefficients in the placebo should be insignificant.

We perform 5,000 iterations, reassigning Airbnb listings to different zip codes in each

one. We then estimate the 2SLS specification of Equations 2 (overall effect) and 3 (effect

6Barron et al. (2020) aptly describe it as preserving the impact of touristiness on the extensive margin
of Airbnb’s diffusion (whether there are any listings) while eliminating its impact on the intensive margin
(how many listings are there).

147



by city) with the scrambled dataset. Table 6 reports the share of iterations in which the

estimated coefficient is significant at the 5% level, i.e., those that challenge the validity of

the instrumental variable. The results for the overall impact show that the 2SLS placebo

coefficient is insignificant at the 5% level in 100% of the randomised draws in the rents

regressions and in 99% of the draws in the regressions for house prices. As such, we do

not identify any spurious time trends.

Table 6. Placebo Test

Effect Share of significant iterations

Sale Rent

Overall 1.10% 0.00%

Florence 1.64% 0.44%
Milan 0.02% 0.02%
Naples 1.88% 1.44%
Rome 0.50% 0.00%
Turin 5.52% 0.34%

The table shows, out of the 5,000 iterations, the share
of them in which the coefficient of the variable of in-
terest of Equations 2 and 3 (i.e., overall and by city)
estimated with 2SLS is significant at the 5% level.

The evidence is similar when looking at the impact by city: the share of significant

coefficients in the placebo tests is well below 2% in all cities except for Turin’s sale prices

(5.52%). As shown in Table 2, Turin has, by far, the lowest Airbnb density as compared to

the other cities, and we will be particularly cautious when assessing this city’s coefficients.

Overall, these preliminary tests suggest that the touristiness variable we employ in

the instrumental variable estimations is effective and that spurious time trends should

not bias the results in our main analysis, providing evidence in favour of the robustness

of our identification strategy.

6. Results

6.1. The Overall Effect of Airbnb Density

Table 7 and Table 8 present the results estimating the overall impact of Airbnb on

rents and sale prices (€/m2) for the five Italian cities over the period 2014-2019. The

intensity of Airbnb is measured by listing density at the neighbourhood level.7 Columns

(1) and (2) report the OLS and fixed effect results, and Columns (3) and (4) the 2SLS

estimates. First-stage results are at the bottom of the table.

7In Section 6.4.4 we report the results when using the number of listings as the variable of interest.
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Table 7. Overall Effect on Sale

Dep. Var: Log Sale
(1) OLS (2) FE (3) 2SLS (4) 2SLS

Airbnb Density at t−1 0.937 0.561 0.630 0.618
(0.479)* (0.149)*** (0.161)*** (0.157)***

(0.121)*** (0.0701)*** (0.117)*** (0.114)***

House Density -0.00114 0.00336 0.00321 0.00402
(0.000677)* (0.00267) (0.00266) (0.00261)

(0.000104)*** (0.00170)* (0.00169)* (0.00144)**
Store Density 0.00764 0.0166 0.0172 0.0152

(0.00192)*** (0.00959)* (0.00990)* (0.00971)
(0.000194)*** (0.00764)** (0.00756)** (0.00695)**

Garage Density -0.00675 0.00305 0.00297 0.00373
(0.00149)*** (0.00568) (0.00570) (0.00567)
(0.000156)*** (0.00482) (0.00483) (0.00486)

Avg. House Rooms 0.00360 0.0372 0.0369 0.0457
(0.0310) (0.0528) (0.0527) (0.0516)
(0.00241) (0.0316) (0.0316) (0.0287)

Avg. Store Mq -0.000275 0.00360 0.00356 0.00334
(0.000900) (0.00280) (0.00280) (0.00280)
(0.000238) (0.00102)*** (0.00102)*** (0.000913)***

Num. Residents 0.0000140 5.38e-08
(0.00000552)** (0.000000307)
(0.00000145)*** (0.000000143)

% Owner-occupancy -0.473 -0.00893
(0.178)*** (0.0185)
(0.0211)*** (0.0112)

% 20-39 years 0.323 0.210
(0.809) (0.101)**

(0.123)** (0.0787)**
% >60 years 1.121 0.0774

(0.487)** (0.0647)
(0.156)*** (0.0545)

% Graduates 2.836 0.0298
(0.256)*** (0.0268)
(0.0788)*** (0.0147)*

% Working 2.120 -0.0555
(0.431)*** (0.0573)
(0.156)*** -0.0327

% Foreigners -0.984 0.0344
(0.308)*** (0.0172)**
(0.0515)*** (0.0235)

% Houses in use 0.480 0.102
(0.275)* (0.0411)**

(0.0168)*** (0.0267)***
Num. Houses -0.0000296 -0.000000439

(0.0000119)** (0.000000718)
(0.00000353)*** (0.000000319)

% House in poor condition -0.0505 0.00146
(0.103) (0.00442)

(0.0148)*** (0.00489)

First Stage
Touristiness at t−1 5.82e-11 5.80e-11

(6.21e-12)*** (6.16e-12)***
(7.68e-12)*** (7.67e-12)***

F-stat. excluded instrument 87.712 88.689
57.370 57.167

Controls
Interacted census controls X

Fixed Effects
Year FE X
Zone FE X X X
Quarter#City FE X X X
Year#City#Area FE X X X

Observations 5,740 5,740 5,740 5,740
Adjusted R2 0.799 0.981

OLS estimates of Equation (1) in Column (1); FE estimates of (2) in Column (2); 2SLS estimates of
(2) in Column (3) and (4), with the latter including the interaction of the time invariant zone-level
controls for demographic, education, occupation and housing characteristics with the growth rate of
each city population in the base year 2011. The dependent variable is the natural logarithm of the sale

price. The instrument in Columns (3) and (4) is aTA
n × gt. For each coefficient, the first parenthesis

shows robust standard errors clustered by zone, the second shows D-K standard errors. The same
order is followed when showing the F-statistic of the excluded instrument, while the adjusted R2 is
shown only for clustered standard errors. *** p<0.01, ** p<0.05, * p<0.1
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In Table 7 we find that Airbnb density positively and significantly affects house prices.

The OLS estimates in Column (1) show the relationships between house prices and our

large set of control variables. We find that, on average, prices are higher in zones where

houses are smaller and less likely to be empty, shop density is higher and parking lots are

fewer, hence most probably in the city centre. Moreover, houses are more expensive where

the proportion of elderly and more educated people is higher. In contrast, the average

price is lower in zones where the share of foreign residents and unemployed people is

higher. Finally, house prices are lower in zones where the share of owner-occupier is

higher.

In Column (2), where we account for zone specific fixed effects and for year-city-area

and quarter-city time effects, the size of the coefficient reduces to 0.561. Based on this

estimate, an increase of one percentage point in Airbnb density leads to a 0.561% increase

in price per square meter.

Column (3) reports the 2SLS regression with Tripadvisor’s touristiness as the instru-

ment. At the bottom of the table, the first-stage results show that the correlation between

Airbnb density and the instrument is very strong. The IV coefficient is statistically sig-

nificant at the 1% level and its size of 0.63 implies a sale price increase of 0.63% for a one

percentage point increase of Airbnb density. In Section 6.4.3 we compare these estimates

with those using the listing’s creation date, as done by most of the previous literature.

Finally, in Column (4) we report the results of the IV regression adding the time

invariant zone-level controls interacted with the percentage change of the population

for each city. This allows us to control for the spurious correlations which survived

to the inclusion of our large set of spatial-time interactions. We find that the coefficient

estimated by this augmented model is 0.618, quite similar to Column (3) and comfortingly

suggesting that our estimate of the impact of Airbnb does not appear to be (too) biased

by unaccounted dynamic factors influencing the housing market beyond that of Airbnb.

Our model estimates an impact in terms of percentage change of sale prices and rents

as a consequence of a one percentage point increase in Airbnb density. To express this in

meaningful economic terms, we convert it to the change in euros of the sale and monthly

rental prices per m2. To do so, we take the change in Airbnb density registered during

the time period at the zone level. We then multiply the average of these density changes

with the estimated coefficient of Airbnb intensity, β. Finally, we express this impact in

euro terms by multiplying it by the average monthly rent and sale price. Relying on the
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Airbnb coefficient in Column (3), we find that Airbnb’s growth over our analysed time

period accounts for an increase of 44.24 €/m2 in sale prices.

Table 8. Overall Effect on Rent

Dep. Var: Log Rent
(1) OLS (2) FE (3) 2SLS (4) 2SLS

Airbnb Density at t−1 0.438 0.174 0.106 0.116
(0.362) (0.138) (0.128) (0.128)

(0.0740)*** (0.0708)** (0.115) (0.117)

House Density -0.000727 -0.000971 -0.000819 -0.00222
(0.000606) (0.00234) (0.00239) (0.00220)

(0.000121)*** (0.00100) (0.000963) (0.00165)
Store Density 0.00631 0.00965 0.00900 0.0117

(0.00176)*** (0.00925) (0.00924) (0.00896)
(0.000157)*** (0.00471)* (0.00434)* (0.00471)**

Garage Density -0.00586 0.00157 0.00165 0.00186
(0.00137)*** (0.00449) (0.00448) (0.00442)
(0.000100)*** (0.00225) (0.00226) (0.00242)

Avg. House Rooms -0.0792 -0.108 -0.108 -0.118
(0.0212)*** (0.0708) (0.0709) (0.0661)*
(0.00932)*** (0.0182)*** (0.0182)*** (0.0181)***

Avg. Store Mq -0.00104 0.00174 0.00177 0.00172
(0.000707) (0.00173) (0.00173) (0.00161)

(0.000106)*** (0.000812)** (0.000854)* (0.000843)*

Num. Residents 0.00000717 -0.000000312
(0.00000502) (0.000000280)

(0.00000121)*** (0.000000170)*
% Owner-occupancy -0.251 0.0249

(0.148)* (0.0187)
(0.0132)*** (0.0177)

% 20-39 years -1.329 0.0386
(0.542)** (0.0741)
(0.139)*** (0.0343)

% >60 years 0.369 -0.125
(0.370) (0.0569)**

(0.0602)*** (0.0200)***
% Graduates 1.345 0.0193

(0.204)*** (0.0291)
(0.0418)*** (0.0111)*

% Working 1.963 -0.0106
(0.362)*** (0.0690)
(0.0607)*** (0.0415)

% Foreigners 0.692 -0.0239
(0.253)*** (0.0178)
(0.0828)*** (0.00884)**

% Houses in use 0.399 0.0561
(0.199)** (0.0297)*

(0.0534)*** (0.00854)***
Num. Houses -0.0000200 0.000000723

(0.0000113)* (0.000000580)
(0.00000308)*** (0.000000358)*

% House in poor condition 0.0121 -0.0167
(0.0827) (0.00556)***
(0.0126) (0.00643)**

First Stage
Touristiness at t−1 5.82e-11 5.80e-11

(6.21e-12)*** (6.16e-12)***
(7.68e-12)*** (7.67e-12)***

F-stat. excluded instrument 87.712 88.689
57.370 57.167

Controls
Interacted census controls X

Fixed Effects
Year FE X
Zone FE X X X
Quarter#City FE X X X
Year#City#Area FE X X X

Observations 5,740 5,740 5,740 5,740
Adjusted R2 0.699 0.962

OLS estimates of Equation (1) in Column (1); FE estimates of (2) in Column (2); 2SLS estimates of
(2) in Column (3) and (4), with the latter including the interaction of the time invariant zone-level
controls for demographic, education, occupation and housing characteristics with the growth rate of
each city population in the base year 2011. The dependent variable is the natural logarithm of the rent

price. The instrument in Columns (3) and (4) is aTA
n × gt. For each coefficient, the first parenthesis

shows robust standard errors clustered by zone, the second shows D-K standard errors. The same order
is followed when showing the F-statistic of the excluded instrument, while the adjusted R2 is shown
only for clustered standard errors. *** p<0.01, ** p<0.05, * p<0.1
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Table 8 estimates the same models with the log of rental monthly rates as the depend-

ent variable. The evidence is weaker, though, as compared to house sale prices. The OLS

specification in Column (1) tells us that an increase of one percentage point in Airbnb

density leads to an increase of 0.438% of rent per square meter. Most control variables

correlate with rents similarly to sale prices. An exception is the positive coefficient on

foreign residents, probably because it correlates to zones where the rental turnover is

higher, thus enabling the landlord to increase the rent more often. When we move to

the specification in Column (2), with zone and spatial-time fixed effects, the coefficient

drops to 0.174, while the IV estimates in Columns (3) and (4) are insignificant, despite

the good performance of the instrument in the first-stage regression. Using the estimates

of Column (3), an increase of one percentage point in Airbnb density leads to an increase

in average monthly rent per square meter of 0.106%, corresponding to a 3 €cent/m2 rent

increase over the analysed time period. The weak significance of the overall Airbnb effect

in the rental market may be due to the high heterogeneity of the five cities. Moreover, the

rental market in Italy is influenced by a housing policy that grants below-market rents

in the social housing sector, assigns favourable tax-regimes to assisted tenancies and re-

stricts free-market rents to long-term contracts (4 years) (Baldini and Poggio, 2012). As

a result, the rental prices may be less responsive to the pressure of increasing Airbnb

density. The next step of our analysis investigates the city-specific effects.

6.2. The Effect of Airbnb Density by City

In this section, we disentangle the impact of Airbnb presence on sale prices and rents

by city. Results in Table 9 and Table 10 show that the impact of Airbnb on the housing

market is very different across the five cities, thus suggesting that trying to estimate an

overall Airbnb effect with a large pool of different cities may veil the evidence.

In Table 9, the IV results show that the effect of Airbnb density on house prices is

always positive and significant. In order to appreciate the magnitude of the impact, how-

ever, coefficients must be adjusted considering the market prices in each city, which differ

widely (see Table 2). For example, 2019 prices in Florence and Milan are significantly

higher than in Rome, which in turn are much higher than in Naples and double those in

Turin. Following the approach of Section 6.1, we compute Airbnb’s effect on the average

zone by using the coefficients from Column (3). Airbnb’s growth over the period has led

to an increase of 162.31 €/m2 in Milan, 127.69 €/m2 in Turin, 91.00 €/m2 in Naples,

152



Table 9. Effect on Sale by City

Dep. Var: Log Sale
(1) OLS (2) FE (3) FE (4) 2SLS

Airbnb Density at t−1 in:
Florence -0.134 0.439 0.437 0.438

(0.303) (0.106)*** (0.139)*** (0.140)***
(0.124) (0.0642)*** (0.0803)*** (0.0808)***

Milan 2.098 2.233 2.509 2.508
(1.414) (1.029)** (1.276)* (1.275)*

(0.767)** (0.340)*** (0.719)*** (0.706)***
Naples 0.380 1.447 1.778 1.981

(1.293) (0.760)* (0.712)** (0.772)**
(0.329) (0.575)** (0.608)*** (0.534)***

Rome 2.244 0.198 0.410 0.404
(0.524)*** (0.149) (0.144)*** (0.144)***
(0.314)*** (0.101)* (0.133)*** (0.133)***

Turin -27.48 11.24 12.05 12.04
(8.124)*** (2.670)*** (3.384)*** (2.967)***
(1.999)*** (1.633)*** (2.795)*** (2.928)***

Controls
Time invariant controls X
Time varying controls X X X X
Interacted census controls X

Fixed Effects
Year FE X
Zone FE X X X
Quarter#City FE X X X
Year#City#Area FE X X X

Observations 5,740 5,740 5,740 5,740
Adjusted R2 0.83 0.98

OLS, FE and 2SLS estimates of Equation (3) with the inclusion of progressively more
fixed effects (full specification from Column (2)) and, in Column (4), of the interaction
of the time invariant zone-level controls for demographic, education, occupation and
housing characteristics with the growth rate of each city population in the base year
2011. The dependent variable is the natural logarithm of the sale price. The instrument
in Columns (3) and (4) is aTA

n × gt × cityi. Robust standard errors clustered by zone
in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

72.04 €/m2 in Florence and 19.37 €/m2 in Rome. The effect is remarkable when com-

pared to the sale prices variation during the time period: Airbnb’s growth is accountable

for 48% of the increase in sale prices in Milan, and for 22% of the increase in Florence.

Interestingly, Airbnb impact on property values is highest not only in Florence, the city

with the highest listing density and number of tourists per resident, but also in Milan, or

even Turin, where the business-related component of visitors is relatively more important.

If we were expecting to find a difference in the nature of the demand by tourist and by

the business communities, our results suggest that both these demand segments count on

Airbnb to satisfy their needs. This evidence confirms that the role of Airbnb has gone

well beyond the accommodation of tourists in search of a “sharing” experience but has

grown into a major online rental estate portal.
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Table 10. Effect on Rent by City

Dep. Var: Log Rent
(1) OLS (2) FE (3) FE (4) 2SLS

Airbnb Density at t−1 in:
Florence -0.334 0.240 0.293 0.299

(0.187)* (0.172) (0.142)** (0.142)**
(0.0549)*** (0.0865)** (0.148)* (0.146)*

Milan 4.100 -0.0131 -1.533 -1.517
(1.220)*** (0.609) (1.222) (1.222)
(0.404)*** (0.326) (1.022) (1.034)

Naples 1.251 1.838 1.909 1.763
(1.206) (0.320)*** (0.420)*** (0.436)***

(0.133)*** (0.300)*** (0.390)*** (0.423)***
Rome 1.306 -0.218 0.121 0.131

(0.341)*** (0.181) (0.151) (0.150)
(0.153)*** (0.116)* (0.0978) (0.102)

Turin -32.65 -2.466 -2.140 -1.039
(7.210)*** (1.269)* (0.941)** (1.195)
(1.971)*** (0.784)*** (1.086)* (1.430)

Controls
Time invariant controls X
Time varying controls X X X X
Interacted census controls X

Fixed Effects
Year FE X
Zone FE X X X
Quarter#City FE X X X
Year#City#Area FE X X X

Observations 5,740 5,740 5,740 5,740
Adjusted R2 0.83 0.98

OLS, FE and 2SLS estimates of Equation (3) with the inclusion of progressively
more fixed effects (full specification from Column (2)) and, in Column (4), of the
interaction of the time invariant zone-level controls for demographic, education,
occupation and housing characteristics with the growth rate of each city population
in the base year 2011. The dependent variable is the natural logarithm of the rent
price. The instrument in Columns (3) and (4) is aTA

n × gt × cityi. Robust standard
errors clustered by zone in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Turning to the IV estimates for rents in Table 10, we find that the effect is significant

and positive in Florence and Naples, insignificant in Milan and Rome, even negative in

Turin. Average rents are more similar across cities than house prices, with Milan ranking

first and Turin last. Based on coefficients from Column (4), the estimated impacts over the

period show increases of 37 and 19 €cent/m2 in Naples and Florence. While these values

may seem low, they are significant when compared to the rental rates variation from 2015

to 2019, as Airbnb’s growth is accountable for 65% and 10% of rent increases in Naples

and Florence, respectively. We further disaggregate Airbnb’s impact by investigating

within-cities effects.
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6.3. Airbnb’s Effect and Neighbourhood Characteristics

The literature typically assumes that the main impact of Airbnb on the real estate

market materialises through the substitution of long term with short term rentals and

ultimately affects sale and rental prices (see Table 1). However, a few studies address

the problem of externalities generated by Airbnb in cities where visitors’ inflow and

Airbnb density are particularly high (Sheppard and Udell, 2016; Filippas and Horton,

2018; Barron et al., 2020). On the one hand, should Airbnb density and visitor turnover

make the neighbourhood noisy, congested and unsafe, residents may decide to leave the

area, depressing property values in the long run. On the other hand, if landlords of

properties in the city centre switch from long-term to short-term rental they reduce the

housing supply, raising the rents and ultimately house prices (i.e., substitution effect),

and forcing low-income long-term home-seekers to move from centre to suburbs. More

recently, some studies have focused on the consequences of Airbnb’s impact on welfare

distribution among residents as well as the possibility that it may concur to a spatial

dimension of inequality through the reinforcement of residential sorting (Almagro and

Domı́nguez-Iino, 2021; Calder-Wang, 2021; Xu and Xu, 2021). These studies highlight

how the substitution effect can be endogenously enhanced if the growth of touristic flows

increases the supply of amenities (shops, bar, restaurants, theatres, museums) and, in

turn, the attractiveness of highly touristic areas, typically the centre. This would in

turn attract city residents who are willing to pay higher rents or house prices in order

to live in the centre (Couture et al., 2019). The net effect of these different impacts,

however, depends on many factors, such as whether or not properties in the centre are

vacant, occupied by owners or by long-term tenants, whether the suburbs are attractive

and safe, houses in periphery are easy to renovate or whether there is enough space

to build new houses. Since these features vary across and within cities, it is not easy

to predict ex-ante how the presence of Airbnb may reshape the housing market and

whether it might ultimately contribute to the spatial dimension of inequality, but we

can expect that neighbourhoods’ characteristics and location can lead to differentiated

impacts within a city. Therefore, in this section we explore these issues by dividing each

city in a central area (“centre”) and a peripheral one (“suburbs”), as described in Section

4.3. It is worth noting that, contrary to many US cities, in Italy and in Continental

Europe, the centre is typically the area where middle-class and well-off people live, while

residents in the suburbs are often poorer and marginalised. A quick look to Appendix
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Table A.2 reporting the average income in the richest and poorest postal code in the five

cities provides descriptive evidence on this issue.

6.3.1. Is the Effect of Airbnb Constant Across City Centre and Suburbs?

We start by providing evidence, for each city, about the different effect of Airbnb

in the city centre and in the suburbs. Our purpose is to determine whether the overall

Airbnb’s impact at the city level is driven by its diffusion in the city centre or if it

is also significant in the suburbs, and whether the sign of the impact is the same. In

addition, we assess the magnitude of the impact in the two sub-city areas, calibrating the

quantitative effects based on the area-specific listing density changes and housing market

characteristics. We estimate Equation (4) with a FE and a 2SLS estimators that control

for unobserved zone-specific and time-varying variables factors and report the results in

Table 11. The specification allows us to estimate the effect of Airbnb presence in each

zone in each area (centre or periphery) on the prices in that zone.

The estimated impact of Airbnb is more evident on sale prices than on rents, same as

in the previous analyses. Looking at the IV estimates, we find that the effect of Airbnb

density on house value is positive and significant both in the city centre and in the suburbs

in Florence, Milan and Rome,8 but only in the city centre of Naples and Turin. However,

whether the magnitude of the coefficient is larger in the centre or suburbs changes on a by

city basis. In the period 2014-2019, Airbnb’s growth in Florence accounts for an increase

of 159.30 €/m2 in the suburbs and of 132.48 €/m2 in the city centre, even though listing

density has tripled. The evidence suggests that the growth of Airbnb’s presence in the

suburbs generates a value-increasing process in the area, possibly leading the property

values to become more similar to the centre over time as the central Florence becomes

more and more congested. In contrast, Milan shows an opposite trend: Airbnb’s growth

appears to account for an increase of 505.03 €/m2 in the city centre, where the density

has doubled over time, but of 262.72 €/m2 in the suburbs, suggesting that Milan’s city

centre is increasing its attractiveness faster than the suburbs. The evidence is similar

in Rome, with a larger price increase in the centre, where Airbnb density has doubled

over time, and a smaller effect in the suburbs, where density is low and stable. Notably,

in Milan and Rome the average income difference between the richest and the poorest

postcode (Appendix Table A.2) is much larger than in any other city (5.3 and 4.2 times

higher for Milan and Rome, respectively). Finally, in Naples and Turin, the two cities

8The difference between each pair of coefficients is (at least) statistically significant at the 10% level
for all cities.
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Table 11. Effects on Rent and Sale Within City

Dep. Var: Log Sale Log Rent
(1) FE (2) 2SLS (3) FE (4) 2SLS

Airbnb Density at t−1 in:
Florence suburbs 0.528 4.194** -1.720 1.356

(1.406) (2.013) (3.400) (5.866)
Florence central 0.438*** 0.469*** 0.250 0.301*

(0.106) (0.149) (0.169) (0.172)
Milan suburbs 4.534*** 8.950** 1.260 -0.120

(1.734) (4.185) (1.183) (2.448)
Milan central 1.106 2.458** -0.636 -1.557

(0.760) (1.167) (0.549) (1.213)
Naples suburbs -2.773** -1.876 -0.300 -1.676

(1.343) (3.433) (0.992) (3.044)
Naples central 1.902*** 1.849*** 2.073*** 2.027***

(0.440) (0.636) (0.307) (0.394)
Rome suburbs 3.463* 5.548* -0.643 1.309

(1.798) (3.065) (2.390) (3.384)
Rome central 0.167 0.312** -0.217 0.0975

(0.148) (0.141) (0.181) (0.143)
Turin suburbs 26.57*** -10.53 2.796 -6.553

(6.503) (26.90) (6.207) (10.76)
Turin central 9.163*** 12.84*** -3.179*** -1.974**

(2.782) (2.950) (1.020) (0.909)

Controls
Time varying controls X X X X

Fixed Effects
Year FE
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Observations 5,740 5,740 5,740 5,740
Adjusted R2 0.98 0.96

FE and 2SLS estimates of Equation 4. The dependent variable is the natural
logarithm of sale (Columns (1) and (2)) and rent prices (Columns (3) and (4)).
The instrument in Columns (2) and (4) is aTA

n × gt × cityi × centreb. Robust
standard errors clustered by zone in parenthesis. *** p<0.01, ** p<0.05, *
p<0.1

with the lowest income per capita and the lowest listing densities, the impact on sale

prices is significantly positive only in the city centre, as the effect in the suburbs does not

survive in IV estimation. To sum up, in Milan and Rome, the presence of Airbnb appears

to generate a divergence between the property values in the centre and the suburbs while

in Florence it seems to contribute to a convergence of such values. In Turin and Naples

Airbnb seems to bring an advantage to the centre – in terms of revamping property values

comparatively very low and even decreasing over time, but no benefit to the suburbs.

The analysis on rents is less informative. We find a positive effect of Airbnb density on

rents in the city centre of Florence and Naples, while the effect seems negative in Turin.

Although this finding could be suggestive of a negative externality of Airbnb, the usual
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caution for the city of Turin applies. The impact of Airbnb’s growth on Florence and

Naples city centres accounts for an increase of 31 €cent/m2 and 87 €cent/m2 respectively.

6.3.2. What Is the Effect of Airbnb’s Diffusion in the City Centre on the

Suburbs?

To provide further evidence on the heterogeneous impact of Airbnb, we now investigate

if the increase of Airbnb’s diffusion in the city centre affects the suburbs by exacerbating

their disparity in terms of property values, attractiveness and living conditions or by

reducing such gap. We recall that by generating an endogenous response of the centre’s

amenities, Airbnb can reinforce residential sorting (Almagro and Domı́nguez-Iino, 2021)

increasing – or decreasing – the attractiveness of the area and the house prices (see also

Xu and Xu, 2021). In this analysis we restrict the estimation sample to the full set of

peripheral zones, and we use the aggregate listing density in the city-centre as the variable

of interest to estimate its impact on the suburbs, while controlling for the effect of the

zone-specific density on the zone prices. We estimate Equation (5) with FE and 2SLS,

including the usual set of spatial and time-spatial interacted fixed effects, and adding the

interaction of time invariant socio-demographic characteristics of the zone with the growth

rate of the population, to reduce the concern about spurious correlations. With this

model, we investigate whether the diffusion of Airbnb in the city centre has consequences

also on the property values and rents of suburban zones, other than the effect due to the

Airbnb presence in the suburban zone itself. Such spillover could happen for a variety of

reasons. For example, residents in the centre could reallocate their properties to short-

term rental and move to the suburbs, thus increasing the demand for housing and the

house prices. Alternatively, the increase in Airbnb’s presence in the centre could attract

larger tourist volumes due to the augmented accommodation’s capacity and, in turn, a

richer provision of local amenities, shifting the attention of developers and investors from

the suburbs to the city centre as a consequence of the impact this inflow could have on the

business. This process would widen the gap between centre and periphery even further.

The FE and 2SLS results for sale prices and rents are shown in Table 12. In the upper

panel, where we report the impact of zone-specific Airbnb densities in the suburbs, the

results are, not surprisingly, very similar to the fixed effect coefficients in Table 11. In

the lower panel we estimate the relationship between the aggregate density in the city

centre and the sale and rental prices in the suburbs.
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Table 12. Cross-Effect From Centre to Suburbs

Dep. Var: Log Sale Suburbs Log Rent Suburbs
(1) FE (2) 2SLS (3) FE (4) 2SLS

Airbnb Density at t−1 in:
Florence 0.616 16.04 -1.411 8.350

(1.692) (14.38) (4.313) (23.73)
Milan 5.304*** 17.43*** 1.883 3.617

(1.754) (5.709) (1.217) (2.804)
Naples -3.263*** -2.482 -2.135** -6.759

(1.046) (3.545) (1.046) (4.946)
Rome 3.873** 7.541** -0.605 -0.708

(1.835) (3.383) (2.404) (3.555)
Turin 28.71*** -15.26 6.201 -20.17

(6.394) (32.94) (6.311) (14.93)

Airbnb Density in Centre at t−1 in:
Florence -4.086*** -0.214 -3.920 -34.34**

(1.235) (9.748) (3.079) (15.78)
Milan -2.680** -11.35*** -2.113** -2.279

(1.057) (3.123) (1.038) (2.291)
Naples 1.894 -32.33 6.681 50.50

(5.984) (67.52) (5.655) (84.64)
Rome -3.855*** -5.022*** -0.650 -3.523

(0.471) (1.724) (0.725) (2.869)
Turin -17.45*** -34.06 -18.32*** -52.71***

(6.546) (26.21) (4.183) (17.44)

Controls
Time varying controls X X X X
Interacted census controls X X

Fixed Effects
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Observations 3,840 3,840 3,840 3,840
Adjusted R2 0.94 0.94

FE and 2SLS estimates of Equation 5. The sample is limited to those zones belonging to the
suburbs. The dependent variable is the natural logarithm of sale (Columns (1) and (2)) and
rent prices (Columns (3) and (4)). The instrument in Columns (2) and (4) are aTA

n ×gt×cityi

and aTA
b × gt × cityi. Robust standard errors clustered by zone in parenthesis. *** p<0.01,

** p<0.05, * p<0.1

Looking at the IV estimates for sale prices in Column (2), we find in the lower panel

that increases in the presence of Airbnb in the centre are significantly related to a loss in

property values in the peripheries of Milan and Rome, controlling for the effect of zone-

specific listing density (which is positive for Milan and Rome). This evidence confirms

the interpretation we gave of the results in Table 8 of a possible negative net effect of

the increasing density in the centre. At face value, our estimates imply that, controlling

for the impact of peripheral zone density, an increase of one percentage point in Airbnb

density in the centre leads to a decrease in the price per square meter in the suburbs of

3.86% in Rome and 2.67% in Milan.
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Overall, our results suggest that, at least for the two largest cities in Italy, the hous-

ing market in the city’s periphery is negatively affected by the revaluation that Airbnb

brings to the centres of our five cities. We take this as the consequence of an increasing

capacity of the city centre to attract tourists, investments as well as local residents keen

on living in the centre following the diffusion of Airbnb and the positive spillovers on the

area. This result is in line with the findings by Xu and Xu (2021) of a positive effect of

Airbnb on private capital investments, and with the ongoing debate regarding the impact

of overtourism in major cities. As highlighted by Calder-Wang (2021) and Almagro and

Domı́nguez-Iino (2021), city centres are increasing their profitability as they evolve to

accommodate every tourist’s desires. As investments become ever more concentrated in

the centre, the suburbs may pay the cost by becoming more marginalised, even though

Airbnb presence has, per se, a positive effect on house prices in the suburbs. Considering

together the two last sets of results, we have provided some evidence that this process

may be ongoing in Milan and Rome. As to Florence, the city with the highest density

of tourists and listings, we found that the presence of Airbnb seems to bring about a

convergence in house prices between the centre and the periphery over time, which sug-

gests an overall positive impact. Notably, the centre of Florence is a relatively small and

closely watched jewel that, thanks to the legal protection of artistic areas and buildings,

does not allow real estate developments. Hence, what our results suggest is that positive

spillovers can occur in the suburbs, possibly, through renovation investments.

Overall, it appears that the impact of Airbnb’s presence on the metropolitan housing

markets is not neutral. Airbnb almost certainly benefits the centre, while leaving the

peripheries behind by making them relatively less attractive, at least is some cases. Our

analysis has shown the importance of estimating the effect by city, and within cities,

without forgoing the cross-effects that may exists between centre and suburbs. Moreover,

we have also shown that the dynamics of the response of the housing market to the

presence of Airbnb deeply depends on the initial conditions in the local economy, such

as the present stance – depressed or booming – of the real estate prices and the average

income differences between the centre and the suburbs.

6.4. Robustness

In the previous sections, we have shown that Airbnb’s diffusion has a positive and

significant effect on the real estate market’s prices in Italy, although with some differences

between the impact on sale prices and rents and a lot of heterogeneity across towns. To
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further corroborate this evidence, in this section we challenge our main results through

a battery of robustness tests.

6.4.1. Allowing for Dynamic Effects in the Housing Market: A Dynamic Panel

Model

A dynamic approach is complementary to the scope of this work: housing units (and,

in turn, rental prices) are often evaluated by comparison with similar dwellings, and their

prices are then adjusted to account for differences. As such, aside from exogenous shocks,

it is reasonable to assume that a house valuation strongly depends on its previous values,

making sale and rental prices persistent over time. This approach has been recently

used in literature, to analyse the effect of Airbnb’s expansion on London’s house prices

(Beńıtez-Aurioles and Tussyadiah, 2021). In this section we proceed by estimating a

dynamic version of the model that studies the relationship between sale or rental prices

and Airbnb density.

The model has the following form:

log(Y n,t) = αlog(Yn,t−1) + βAirbnb Intensityn,t−1 + γXn,t + τt + µn + εn,t (6)

This specification includes the lagged dependent variable Yn,t−1 to account for its persist-

ence over time. To account for the dynamic panel bias that arises from the correlation

between the lagged dependent variable and the fixed effect in the error term (Nickell,

1981), we adopt the GMM-SYS approach (Arellano and Bond, 1991; Blundell and Bond,

1998). We use the Blundell-Bond estimator with the Windmeijer’s finite sample correc-

tion (Windmeijer, 2005), dealing with situations where the lagged dependent variable is

persistent (i.e., the autoregressive parameter is large). This model estimates a system of

first-differenced and level equations and uses lags of variables in levels as instruments for

equations in first-differences and lags of first-differenced variables as instruments for equa-

tions in levels, in which the instruments must be orthogonal to the firm-specific effects.

For the validity of the GMM estimates, it is crucial that the instruments are exogenous,

so we report the appropriate tests: the Arellano and Bond (1991) autocorrelation tests

to control for first-order and second-order correlation in the residuals, and the two-step

Sargan-Hansen statistic to test the joint validity of the instruments. Standard errors are

robust to heteroskedasticity and arbitrary patterns of autocorrelations within firms.

Both the lagged dependent variable and the variable of interest (i.e., Airbnb’s density)

are treated as endogenous and are instrumented with the GMM approach; to keep the
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number of instruments under control, we constrain the moment conditions regarding

time intervals, depending on the individual specifications, reporting the ratio between

instruments and groups at the bottom of the table. We include both the temporal

effects and the instrumental variables for touristiness (based on Google searches and

Tripadvisor’s tourist attraction score) as external instruments in the estimation. The

temporal effects control for seasonality at the city level as well as for year effects at the

area level (i.e., centre and suburbs) in each city.

In Appendix Table A.3, we report the one-step GMM-SYS estimates of the dynamic

specification and the (inconsistent) fixed effects results for comparison. The autocorrel-

ation tests for second-order correlation in the residuals and the two-step Sargan-Hansen

statistic suggest that our estimates are valid (although in the rent equation we can reject

the null that instruments are invalid at the 5%, but not at the 10% level). The ratio

between instruments and groups is well below one.

Comfortingly, the GMM-SYS estimates show that also when we account for dynamic

effects and apply a different estimator, Airbnb intensity affects positively and significantly

both rental rates and sale prices, consistent with our previous evidence. Moreover, the

coefficient of the lagged dependent variable confirms that prices in the housing market

are quite persistent, particularly sale prices.

6.4.2. Alternative Measure of Tourist Attraction in the Instrumental Variable

Analysis

We test the robustness of our instrument by constructing another shift-share IV

against which to compare our previous estimates. Specifically, we define a second meas-

ure of the share component (i.e., tourist attractiveness) based on the rankings by Lonely

Planet guidebooks and websites, which orders by popularity the top 10 attractions of each

city (refer to Section 5.1.1). The shift component remains the same, based on worldwide

Google searches of the word Airbnb.

The rationale behind this alternative instrument is similar to the one based on Tripad-

visor but differs in two respects. On the one hand the Lonely Planet instrument, largely

based on time invariant touristic-artistic-archaeological and geographical sites, may be

less precise and responsive in the identification of the most popular locations. On the

other hand, compared to the Tripadvisor rating system, the tighter but steadier classi-

fication of Lonely Planet attractions is less sensitive to tourist trends and fads, hence
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ultimately less influenced by Airbnb diffusion (a feature that motivated us to scrape the

data for the Ttripadvisor share component at a date earlier than our estimation period).

Appendix Table A.4 and A.5 report the 2SLS estimates overall and by city, in Columns

(2) and (4) using the new IV, while showing in Columns (1) and (3) the corresponding

2SLS results of the main analysis, for ease of comparison. Looking at Appendix Table

A.4, we find that the coefficient is significant for sale prices, but not for rents, similar

to previous evidence. The first-stage results show a strong correlation between Airbnb

density and the instrument based on Lonely Planet. Turning to the analysis by city, we

note that the results for sale prices are very similar to those obtained when we use the

Tripadvisor instrument. As for rents, the only difference is that the coefficient of Milan

has turned significant while the estimate for Turin is no longer significant.

6.4.3. Alternative Measures of Airbnb Supply: Listings by Creation Date

The literature has highlighted the difficulty of precisely measuring Airbnb activity

either through scraping Airbnb’s website or using publicly available databases. Since most

of the previous studies used datasets that captured listings’ activity (i.e., whether they

are blocked, available for rent, or reserved) through occasional scrapes of the platform’s

website, quantifying the number of active listings per time period required some degree

of approximation.9 To estimate supply, one can ultimately apply one of the following

strategies. First, one can assume that the listing’s entry date is the date of its first review

and that, thereafter, the listing never exited the market, which leads to overestimating

Airbnb supply. A slightly different strategy defines active any listing that has received at

least a review during the quarter, a method that underestimates Airbnb supply as listings

can be active even when they do not receive a review for a period. However, Airbnb pushes

guests as well as hosts to leave reviews about their stay, hence this approach leads to a

smaller bias than in the case where no exit from the market is assumed. Other studies

use the host’s registration date as a proxy for the listing’s entry, which also overestimates

supply since a host may open additional listings after the first one, but all subsequent

listings would be erroneously backdated to the time of the earliest apartment.

In this paper, to the contrary, we leverage on the fine-grained detail of the AirDNA

database, based on daily scrapes, an information that allows us to pinpoint the activity of

each listing on a daily basis. In the following robustness test, we estimate the impact of

9See Sheppard and Udell (2016), Horn and Merante (2017), Barron et al. (2020) and Garcia-López
et al. (2020). Ayouba et al. (2020) is the only work we are aware of that, like us, uses daily scrapes to
measure Airbnb supply.
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Airbnb intensity by using the approach based on the listing’s creation date that assumes

no exit and we compare the results with our previous findings in Table 7, 8, 9 and 10. The

results are in Columns (2) and (4) of Appendix Table A.6 and A.7. We find that using

listings’ creation date to measure Airbnb supply leads to lower estimates of the impact,

with coefficients being about half as large as in Columns (1) and (3), thus confirming that

measuring Airbnb intensity with the creation date approach leads to underestimating its

impact on the real estate market.10

6.4.4. Alternative Measures of Airbnb Intensity: Number of Listings

The impact of Airbnb’s diffusion can also be tested by using the number of listings

to measure Airbnb intensity, instead of listing density (e.g., Barron et al., 2020; Garcia-

López et al., 2020, among the others). The rationale of our preference for listing density

is that it allows us to account for size differences of the various zones, which are highly

heterogeneous in our dataset. However, for completeness, we re-estimate our models

using the number of listings as our variable of interest. The results in Appendix Table

A.8 and A.9 show the effect of an increase of 100 listings in a given zone on sale prices

and rent. Overall, we find that the direction of the effect is similar to previous evidence

using listing density, but the coefficients are less precisely estimated, both overall and

by-city.

Looking at the 2SLS results in Column (4) in Appendix Table A.8, our estimates imply

that an increase in 100 Airbnb listings in a neighbourhood translates to an increase in

sale price of 0.6%. The impact of Airbnb on rent and sale prices across cities computed

using the number of listings instead of their density gives comparable results to the one

presented in Section 6.1: we find an increase in sale prices of 40.67 €/m2 and in rent

prices of 2.7 €cent/m2 during the analysed time period. Appendix Table A.9 shows the

effect on sale prices and rent by city.11 In cities where Airbnb’s impact is significant,

we again find consistent results with the analysis shown in Section 6.2. Regarding sale

prices, Airbnb’s growth has led to an increase of 83.58 €/m2 and 49.60 €/m2 in Turin

and Florence respectively. Regarding rent prices, Airbnb increased them in Naples and

10The difference is statistically significant at the 1% level for the overall coefficients, at least at the
5% level for significant coefficients of the analysis by city except for Milan and Naples (10% level).

11As a further robustness test, we have also estimated the impact of Airbnb intensity by focusing on
the supply of “professional listings”, i.e., entire apartments that are either reserved for at least 90 days
per year or belonging to a multi-host. The results are similar, confirming the previous evidence, with
slightly larger coefficients indicating that in zones where the density of professional listings is higher the
impact on the real estate market is also more pronounced.
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Florence by 62.7 €cent/m2 and 18.6 €cent/m2 in Naples and Florence respectively, while

it decreased them of 8.1 €cent/m2 in Turin.

7. Conclusions

The diffusion of home-sharing platforms has recently sparked interest on their poten-

tial distributional impact on the participants in the housing market. In this paper, we

have studied how Airbnb’ growth has affected house prices and rents in five important

cities which aptly represent the heterogeneity of the Italian housing market: Florence,

Milan, Naples, Rome, and Turin. After quantifying the overall and city-specific effects

of Airbnb diffusion, we have estimated whether the impact is constant across city core

and periphery and, finally, what is the effect of Airbnb listing density growth in the

centre on the periphery. To address endogeneity concerns we applied an instrumental

variable approach which interacts an out-of-sample measure of tourist attraction that

varies within cities (derived from Tripadvisor), and a measure of public awareness of

Airbnb that varies over time (derived from Google searches). We accounted for possible

identification threats deriving from the high correlation between tourist attraction and

centrality through the inclusion of centre- and suburbs-specific year-level fixed effects and

zone-level time-varying controls associated with urban revival processes.

Our findings suggest that Airbnb diffusion has caused an increase of rents and, espe-

cially, of house prices. Our overall results indicate that an increase of 1 percentage point

in Airbnb density leads to an average 0.63% rise in sale prices. Over the period of the

analysis, this translates to an increase of 44.24 €/m2. We find that this impact strongly

differs across cities. Looking at city specific effects, the increase ranges from the 162.31

€/m2 of Milan to the 19.37 €/m2 of Rome. The impact on rents is significant for the

cities of Florence and Naples, with an estimated increase of 19 and 37 €cent/m2 over the

time period.

Interestingly, when looking within cities at the different impact on central and sub-

urban areas, we find cases where not only the centre, but the suburbs too are driving

these results. Centre and suburbs differences are again key when assessing the magnitude

of the coefficients: the increases in Milan and Rome’s city centres are much higher than

those in the suburbs, whereas in Florence the price increase is higher in the periphery.

Finally, we find evidence of spillover effects: the increase in listing density in central

areas has a negative impact on property values in the suburbs. The evidence is stronger

for Milan and Rome, which report the largest gap between neighbourhoods with the
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highest and lowest average income. Overall, this suggests that the presence of Airbnb in

the centre and the related boost to the supply of localised amenities may reinforce its

attractiveness at the expense of the peripheries. On the opposite side, in Florence Airbnb

presence has a stronger positive effect on the suburbs than on the city centre’s prices and

is seemingly leading prices to converge.

Our results speak of an overarching effect, but also of differentiated impacts which

require context-specific policies. Indeed, the consequences of these impacts on prices need

to be evaluated on a case-by-case basis, as they have the potential of being either positive

for residents – for example, if they help invert a trend toward strong property devaluation

– or negative, as the debate on overtourism and gentrification suggests. Our analysis can

inform the debate on the regulation of the platform on both a national and municipal

level and help understand whether Airbnb’s diffusion is benefiting some parts of the city

while leaving other neighbourhoods behind.
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Appendix

I. Maps of the Five Cities

Each map shows a city divided in the Idealista zones. The zones’ colours reflect the

level of Airbnb density as of 2019, divided in quintiles. The size of the white circles refers

to the level of touristiness of each zone, computed as in Section 5.1.1. Note that the

circles’ sizes are relative to each city, and as such are not comparable across cities.

Figure A.1. Florence
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Figure A.2. Milan

Figure A.3. Naples
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Figure A.4. Rome

Figure A.5. Turin
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II. Additional Descriptive Tables

Table A.1. Sociodemographic and Economic Time-Invariant Characteristics
Within City

Suburbs
% Owner Occupancy % >60 years % Graduates % Working Household Size

Average 64.83% 22.43% 14.56% 40.03% 2.24
Florence 69.14% 26.26% 14.64% 42.04% 2.16
Milan 63.31% 25.44% 16.43% 43.13% 2.03
Naples 46.00% 15.45% 6.14% 23.02% 3.00
Rome 68.56% 20.57% 15.88% 41.45% 2.29
Turin 67.23% 25.95% 10.84% 39.00% 2.13

Centre
% Owner Occupancy % >60 years % Graduates % Working Household Size

Average 64.43% 24.16% 26.69% 41.87% 2.06
Florence 68.21% 26.30% 23.72% 43.70% 2.02
Milan 62.91% 23.59% 34.32% 47.54% 1.95
Naples 58.52% 20.33% 17.72% 30.40% 2.52
Rome 67.32% 25.60% 28.66% 41.81% 1.99
Turin 61.03% 22.90% 21.49% 43.01% 1.98

This table shows – at the city centre and suburbs level for each city – average values for owner occupancy,
share of residents older than sixty, share of graduates, share of employed, average household size. All
data come from the 2011 Census. Source: ISTAT.

Table A.2. Revenue Disparity by City

Low Revenue Postal Code High Revenue Postal Code Ratio High to Low

Florence 20,523 40,527 1.97
Milan 18,926 100,489 5.31
Naples 13,462 47,316 3.51
Rome 16,298 68,264 4.19
Turin 18,158 64,094 3.53

This table shows average revenues by city in low and high revenue postal codes, while reporting
they ratio. Source: MEF.
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III. Robustness Regression Tables

Table A.3. GMM-SYS - Lagged Density in GMM (Both in Levels
and in Difference)

Dep. Var: Log Sale Log Rent
(1) FE (2) GMM-SYS (3) FE (4) GMM-SYS

Dep. Var. at t−1 0.651*** 0.890*** 0.439*** 0.496***
(0.030) (0.013) (0.022) (0.051)

Airbnb Density at t−1 0.098 0.100** 0.173* 0.444***
(0.072) (0.044) (0.089) (0.131)

House Density 0.0004 -0.0002*** -0.0003 -0.0008***
(0.0009) (0.00008) (0.0014) (0.0002)

Store Density 0.0049 0.0004** 0.0021 0.0018***
(0.0042) (0.0001) (0.0049) (0.0005)

Garage Density -0.0016 0.0003* -0.0001 0.0003
(0.0029) (0.0002) (0.0041) (0.0004)

Avg. House Rooms -0.0084 -0.0052 -0.0001 -0.0339***
(0.0219) (0.0036) (0.0501) (0.0094)

Avg. Store Mq 0.0022** 0.0002** 0.0015 0.0002
(0.0010) (0.0001) (0.0011) (0.0003)

Fixed Effects
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Num Instruments 261 135
Num Instruments/p 0.91 0.47
AR(1) -9.38*** -9.99***
AR(2) 0.95 -0.21
Hansen test (P-value) 0.124 0.085
Observations 4879 4879 4879 4879

Estimates of Equation (6). One-step GMM-SYS estimates (Columns (2) and (4)) and
inconsistent fixed effects results (Columns (1) and (3)) for comparison. The dependent
variable is the natural logarithm of sale (Columns (1) and (2)) and rent prices (Columns
(3) and (4)). The variable of interest is the lagged Airbnb density, both in levels and
in differences. Robust standard errors clustered by zone in parenthesis. *** p<0.01, **
p<0.05, * p<0.1
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Table A.4. IV Lonely Planet - Overall Effect

Dep. Var: Log Sale Log Rent
(1) TA (2) LP (3) TA (4) LP

Airbnb Density at t−1 0.630*** 1.154*** 0.106 0.290
(0.161) (0.310) (0.128) (0.247)

First Stage
Touristiness at t−1 5.82e-11*** 0.000000769*** 5.82e-11*** 0.000000769***

(6.21e-12) (0.000000138) (6.21e-12) (0.000000138)
F-stat. excluded instrument 87.712 30.960 87.712 30.960

Controls
Time varying controls X X X X

Fixed Effects
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Observations 5,740 5,740 5,740 5,740

2SLS estimates of Equation (2). The dependent variable is the natural logarithm of sale (Columns (1)
and (2)) and rent prices (Columns (3) and (4)). The instrument in Columns (2) and (4) is aLP

n × gt,
while Columns (1) and (3) report the results from Column (4) of Table 7 and 8 – where the instrument is
aTA
n × gt – for ease of comparison. Robust standard errors clustered by zone in parenthesis. *** p<0.01,

** p<0.05, * p<0.1

Table A.5. IV Lonely Planet - by City Effect

Dep. Var: Log Sale Log Rent
(1) TA (2) LP (3) TA (4) LP

Airbnb Density at t−1 in:
Florence 0.437*** 0.475*** 0.293** 0.313**

(0.139) (0.134) (0.142) (0.157)
Milan 2.509* 3.477*** -1.533 -2.268**

(1.276) (1.194) (1.222) (1.103)
Naples 1.778** 1.772*** 1.909*** 2.472***

(0.712) (0.564) (0.420) (0.431)
Rome 0.410*** 0.463*** 0.121 0.198

(0.144) (0.149) (0.151) (0.164)
Turin 12.05*** 9.036* -2.140** -1.684

(3.384) (5.436) (0.941) (1.133)

Controls
Time varying controls X X X X

Fixed Effects
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Observations 5,740 5,740 5,740 5,740

2SLS estimates of Equation (3). The dependent variable is the natural log-
arithm of sale (Columns (1) and (2)) and rent prices (Columns (3) and (4)).
The instrument in Columns (2) and (4) is aLP

n × gt × cityi, while Columns (1)
and (3) report the results from Column (4) of Table 9 and 10 – where the
instrument is aTA

n ×gt× cityi – for ease of comparison. Robust standard errors
clustered by zone in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table A.6. Creation Date - Overall Effect

Dep. Var: Log Sale Log Rent
(1) Baseline (2) Creation Date (3) Baseline (4) Creation Date

Airbnb Density at t−1 0.630*** 0.294*** 0.106 0.0496
(0.161) (0.0745) (0.128) (0.0599)

Controls
Time varying controls X X X X

Fixed Effects
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Observations 5,740 5,740 5,740 5,740

2SLS estimates of Equation (2). The dependent variable is the natural logarithm of sale (Columns
(1) and (2)) and rent prices (Columns (3) and (4)). The instrument is aLP

n × gt. Columns (1) and (3)
report the results from Column (4) of Table 7 and 8 for ease of comparison. In Columns (2) and (4), the
measure of Airbnb density in the first stage is obtained from listings’ creation date. Robust standard
errors clustered by zone in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table A.7. Creation Date - by City Effect

Dep. Var: Log Sale Log Rent
(1) Baseline (2) Creation Date (3) Baseline (4) Creation Date

Airbnb Density at t−1 in:
Florence 0.437*** 0.204*** 0.293** 0.139**

(0.139) (0.0652) (0.142) (0.0666)
Milan 2.509* 1.293** -1.533 -0.785

(1.276) (0.650) (1.222) (0.633)
Naples 1.778** 1.005** 1.909*** 1.083***

(0.712) (0.396) (0.420) (0.244)
Rome 0.410*** 0.186*** 0.121 0.0575

(0.144) (0.0673) (0.151) (0.0697)
Turin 12.05*** 4.635*** -2.140** -0.839**

(3.384) (1.326) (0.941) (0.367)

Controls
Time varying controls X X X X

Fixed Effects
Zone FE X X X X
Quarter#City FE X X X X
Year#City#Area FE X X X X

Observations 5,740 5,740 5,740 5,740

2SLS estimates of Equation (3). The dependent variable is the natural logarithm of sale (Columns (1)
and (2)) and rent prices (Columns (3) and (4)). The instrument is aLP

n × gt × cityi. Columns (1) and (3)
report the results from Column (4) of Table 9 and 10 for ease of comparison. In Columns (2) and (4),
the measure of Airbnb density in the first stage is obtained from listings’ creation date. Robust standard
errors clustered by zone in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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