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Abstract
In early design stages, a team of designersmay often express conflicting preferences on a set of design alternatives, formulating
individual rankings that must then be aggregated into a collective one. The scientific literature encompasses a variety ofmodels
to perform this aggregation, showing strengths and weaknesses. In particular situations, some of these models can lead to
paradoxical results, i.e., contrary to logic and common sense. This article focuses on one of these paradoxes, known as
multiple-district paradox, providing a new methodology aimed at identifying the reason of its potential triggering. This
methodology can be a valid support for several decision problems. Some examples accompany the description.

Keywords Design decisions · Expert rankings · Industrial quality · Multiple-district paradox · Collective ranking · Kendall’s
coefficient of concordance · W (m+1)

k Test

1 Introduction

Several decision-making problems in design concern the for-
mulation of rankings amongst alternative design solutions [1,
2]. A very popular problem in the early design stage is that
in which m engineering designers (or more simply experts:
D1 to Dm) formulate their individual rankings of n design
alternatives (or more simply alternatives: O1 to On) [3–9].
This problem may concern design activities devoted to both
incremental and disruptive forms of innovation [54, 55].

For the sake of simplicity, this paper will consider com-
plete rankings where: (i) each expert is able to rank all
the alternatives of interest, and (ii) each ranking can be
decomposed into paired-comparison relationships of strict
preference (e.g., O1 � O2 or O1 ≺ O2) and/or indifference
(e.g., O1 ~ O2) [10].

Since designers often have conflicting opinions about the
possible design alternatives, their rankings – which form
the so-called preference profile – can be characterized by
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a certain degree of variability or discordance [11–13]. The
objective of the problem of interest is to aggregate the expert
rankings into a collective one, which is supposed to reflect
them as much as possible, even in the presence of diverging
preferences [14–25]. For this reason, the collective ranking
is also defined as social, consensus or compromise ranking
[2, 16, 26].

The scientific literature includes a variety of possiblemod-
els to perform this aggregation. Different aggregationmodels
often lead to different collective rankings [13, 22] and – para-
phrasing what was theorized by Arrow – any aggregation
model, in specific situations, is by its nature imperfect [23,
57].

In general, the choice of the most suitable model may
depend on the specific objective(s) of the expert group and/or
(ii) the characteristics of the preference profile [27–32]. In
addition, some aggregation models can occasionally cause
paradoxical results that are (at least apparently) logically
unreasonable or self-contradictory [33, 34].

This paper focuses on a specific paradox, known as
“multiple-district paradox”, which can be summarized as fol-
lows: although an alternative can be the most preferred one
in two (or more) sub-groups (districts) of rankings, yet it
cannot necessarily be the most preferred one when merging
the sub-groups of rankings into a single combined group [35,
36]. In other words, this paradox occurs when one alternative
wins in every district but loses when merging them [37]. The
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expression “multiple-district” derives from the Voting The-
ory context, in which this paradox was originally studied.

This paradox is of potential interest even today, as it can
occur in design problems involving distributed teams, whose
local decisions should bemerged into a single global decision
[38]. Some practical examples concerning the Quality and
Reliability field can be found in [56, 58].

This paper analyses the multiple-district paradox, provid-
ing a new “diagnostic” methodology aimed at identifying the
reason of its potential triggering.

The remainder of this paper is organized into three sec-
tions. Section2 conducts a qualitative analysis of the paradox,
highlighting the typical conditions behind its occurrence,
such as characteristics of the preference profile and/or the
aggregation model. Section 3 illustrates the new diagnostic
methodology, which is based on (i) some indicators rep-
resenting the degree of concordance between the expert
rankings and (ii) other indicators representing the consis-
tency between the expert rankings and the collective ranking.
The new methodology allows to investigate the causes of the
paradox, on a case-by-case basis. Finally, Sect. 4 summarizes
the original contributions of this paper and its practical impli-
cations, limitations and suggestions for future research. The
Appendix section provides further details on the indicators
used in the analysis.

2 Themultiple-district paradox

This section illustrates themultiple-district paradox, with the
support of several examples in the context of product design.
The rest of the section is organized in three sub-sections,
respectively dedicated to:

1. Exemplifying the occurrence of the paradox and rais-
ing some research questions through a preliminary case
study;

2. Showing that the paradox may concern different aggre-
gation models, depending on the preference profile of
interest;

3. Identifying the typical conditions that favor the occur-
rence of the paradox.

2.1 Case study

Let us consider the interior design of a luxury car. It is
assumed that three alternative interior-design concepts (i.e.
O1, O2, O3) should be assessed by two sub-groups of
experts, with the aim of identifying the best concept in
terms of aesthetics. Sub-group A is composed of seventeen
engineering-design experts (i.e. eA1 to eA17) from a specific
headquarters of a major design company, while sub-group B

is composed of fifteen engineering-design experts (i.e. eB1 to
eB15) from another headquarters of the same company.

The notion of aesthetics is defined from a triple perspec-
tive: (i) colour matching; (ii) harmonious design; and (iii)
comfort and practicality. Since the aesthetics assessment is
intrinsically subjective, each expert is asked to formulate
his/her individual ranking of O1, O2 and O3, as summarized
in Table 1a and b, for sub-group A and B respectively.

The team leader decides to aggregate the expert rankings
into a collective one, through an aggregation model called
Instant-Runoff Voting (IRV), sometimes referred to as Alter-
native Vote [22, 36]. The IRV was originally conceived as
part of the Voting Theory in single-seat elections with more
than two candidates [37]. Instead of voting support for only
one candidate, voters in IRV elections can rank the candi-
dates in order of preference. Ballots are initially counted for
each voter’s first-choice. If a candidate obtains more than
half of the votes based on first-choices, that candidate wins.
If not, the candidate with the fewest votes is eliminated. The
voters who selected the defeated candidate as a first-choice
then have their votes added to the totals of their next choice.
This process continues until a candidate has more than half
of the votes. Of course, the application of the IRV model can
be extended to other contexts, such as that of product design,
where candidates are replaced with alternative design con-
cepts and voters are replaced with design experts.

Returning to the case study, the IRVmodel can be applied
separately to the two previous expert sub-groups (districts),
obtaining the results below.

Sub-group A

• In the first round (see Table 1-d), the design concept O1

obtains 4 first-choices, O2 obtains 6 first-choices, and O3

obtains 7 first-choices. Since no alternative has obtained
more than half of the preferences based on first-choices,
O1 – i.e., the alternative with fewest first-choices – is elim-
inated.

• In the head-to-head comparison between O2 and O3, O2

obtains 10 first-choices while O3 obtains 7 first-choices.
The winner is then O2.

• The resulting collective ranking for sub-group A is: O2 �
O3 � O1.

Sub-group B
• In the first round, the design concept O1 obtains 6 first-
choices, O2 obtains 8 first-choices, and O3 obtains 1
first-choice. O2 obtains more than half of the preferences
based on first-choices, while O3 is the one with fewest
first-choices.

• The resulting collective ranking for sub-group B is: O2 �
O1 � O3.
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Table 1 Rankings of three interior-design concepts (i.e., alternativesO1,O2,O3), formulated by two sub-groups of engineering designers (experts):
a sub-group A (eA1 toeA17 ) and b sub-group B (eB1 toeB15 ). c These sub-groups are then merged into a single combined group (A + B). d Synthesis
of the experts’ rankings

(a) Sub-group A (b) Sub-group B (c) Combined group (A + B)

Expert Ranking Expert Ranking Expert Ranking Expert Ranking

eA1 O1 � O2 � O3 eB1 O1 � O3 � O2 eA1 O1 � O2 � O3 eB8 O2 � O3 � O1

eA2 O1 � O2 � O3 eB2 O1 � O3 � O2 eA2 O1 � O2 � O3 eB9 O2 � O3 � O1

eA3 O1 � O2 � O3 eB3 O1 � O3 � O2 eA3 O1 � O2 � O3 eB10 O2 � O3 � O1

eA4 O1 � O2 � O3 eB4 O1 � O3 � O2 eA4 O1 � O2 � O3 eB11 O2 � O3 � O1

eA5 O2 � O1 � O3 eB5 O1 � O3 � O2 eB1 O1 � O3 � O2 eB12 O2 � O3 � O1

eA6 O2 � O3 � O1 eB6 O1 � O3 � O2 eB2 O1 � O3 � O2 eB13 O2 � O3 � O1

eA7 O2 � O3 � O1 eB7 O2 � O3 � O1 eB3 O1 � O3 � O2 eB14 O2 � O3 � O1

eA8 O2 � O3 � O1 eB8 O2 � O3 � O1 eB4 O1 � O3 � O2 eA11 O3 � O1 � O2

eA9 O2 � O3 � O1 eB9 O2 � O3 � O1 eB5 O1 � O3 � O2 eA12 O3 � O1 � O2

eA10 O2 � O3 � O1 eB10 O2 � O3 � O1 eB6 O1 � O3 � O2 eA13 O3 � O1 � O2

eA11 O3 � O1 � O2 eB11 O2 � O3 � O1 eA5 O2 � O1 � O3 eA14 O3 � O1 � O2

eA12 O3 � O1 � O2 eB12 O2 � O3 � O1 eA6 O2 � O3 � O1 eA15 O3 � O1 � O2

eA13 O3 � O1 � O2 eB13 O2 � O3 � O1 eA7 O2 � O3 � O1 eA16 O3 � O1 � O2

eA14 O3 � O1 � O2 eB14 O2 � O3 � O1 eA8 O2 � O3 � O1 eA17 O3 � O2 � O1

eA15 O3 � O1 � O2 eB15 O3 � O1 � O2 eA9 O2 � O3 � O1 eB15 O3 � O1 � O2

eA16 O3 � O1 � O2 eA10 O2 � O3 � O1

eA17 O3 � O2 � O1 eB7 O2 � O3 � O1

(d) Synthesis of the experts’ rankings

Sub-group A Sub-group B Combined group (A + B)

Expert Ranking Expert Ranking Expert Ranking

4 O1 � O2 � O3 6 O1 � O3 � O2 4 O1 � O2 � O3

1 O2 � O1 � O3 8 O2 � O3 � O1 6 O1 � O3 � O2

5 O2 � O3 � O1 1 O3 � O1 � O2 1 O2 � O1 � O3

6 O3 � O1 � O2 13 O2 � O3 � O1

1 O3 � O2 � O1 7 O3 � O1 � O2

1 O3 � O2 � O1

Total: 17 Total: 15 Total: 32

Combined group
Assuming that, ceteris paribus, the two expert sub-groups
A and B are merged into a combined group (A + B) of
thirty-two experts (see Table 1c), the IRV can be applied
to all their merged rankings as follows.

• In the first round, the design concept O1 obtains 10 first-
choices,O2 obtains 14 first-choices, andO3 obtains 8 first-
choices. Since no alternative has obtained more than half
of the preferences based on first-choices,O3 – i.e., the one
with fewest first-choices – is eliminated.

• In the head-to-head comparison between O1 and O2, O1

obtains 17 first-choices while O2 obtains 15 first-choices.
The winner is then O1.

• The resulting collective ranking for the combined group
(A + B) is: O1 � O2 � O3.
The above results are paradoxical: considering both the
two sub-groups A and B separately, the most preferred
alternative is O2, while combining the two sub-groups,
the most preferred alternative becomes O1. This result is
difficult to justify since it is (at least apparently) contra-
dictory and against logic: how could the team leader (or
whoever) tolerate that – although O2 is the best design
concept according to each individual sub-group – when
combining the two sub-groups, O1 is the (new) best one?
Table 2a summarizes the results obtained from the three
previous applications of the IRV aggregation model.
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The aforementioned paradox example raises some research
questions, which will be addressed in the remainder of the
paper:

(1) Is the multiple-district paradox originated by a specific
aggregation model or a specific preference profile, or
both?

(2) Can we develop an operational procedure to quantita-
tively analyse the reasons behind the occurrence of this
paradox?

2.2 Changing aggregationmodel and preference
profile

Theprevious example showed the occurrence of themultiple-
district paradox when applying the IRV aggregation model
to a certain preference profile. However, what would happen
if changing the aggregation model? And what would happen
if changing the preference profile?

Let us consider two further aggregation models, respec-
tively (i) the one proposed by Coombs [39, 40] and (ii) the
so-called Borda Count model [22, 41, 42], applying them to
each of the same three (sub-)groups of rankings (i.e., A, B
and A + B). The following sub-sections illustrate the results
obtained through the application of these other aggregation
models.

2.2.1 Coombs’ aggregation model

This model is very similar to the IRV, except that the alter-
native eliminated in a certain round is the one ranked last by
the largest number of experts, not the one ranked first by the
smallest number of experts [36].

By applying the Coombs’ model to the individual sub-
groups (A and B) of rankings in Table 1, the following results
can be obtained.

Sub-group A
In the first round for sub-group A, the design concept O1

obtains 6 last-choices, O2 obtains 6 last-choices, and O3

obtains 5 last-choices. Being the alternatives with the largest
number of last-choices, O1 and O2 are then eliminated and
the winner is O3.

The collective ranking for sub-group A is then: O3 �
O1 ∼ O2.

Sub-group B
In the first round for sub-group B, the design concept O1

obtains 8 last-choices, O2 obtains 7 last-choices, and O3

obtains no last-choice. Being the alternative with the largest
number of last-choices, O1 is then eliminated.

In the head-to-head comparison between O2 and O3, O2

obtains 7 last-choices while O3 obtains 8 last-choices. O3 is
then eliminated and the winner is O2.

The collective ranking for sub-group B is then: O2 �
O3 � O1.

Combined group
The Coombs’ model can then be applied to the combined
group (A + B) of thirty-two rankings, as follows.

In the first round, the design concept O1 obtains 14 last-
choices, O2 obtains 13 last-choices, and O3 obtains 5 last-
choices. Being the alternative with the largest number of last-
choices, O1 is then eliminated.

In the head-to-head comparison between O2 and O3, O2

obtains 14 last-choices while O3 obtains 18 last-choices. O3

is then eliminated and the winner is O2.
The collective ranking for the combined group (A + B) is

then: O2 � O3 � O1.
It can be noticed that the collective ranking related to

the combined group coincides with that of the sub-group
B. Therefore, the multiple-district paradox does not occur in
this case.

Table 2b summarizes the afore-described results.

2.2.2 Borda count model

The Borda Count (BC) model works as follows. For each
expert ranking, the first alternative obtains one point, the sec-
ond two points, and so on [22, 41, 42]. Thus, the cumulative
score of one alternative can be calculated by cumulating the
corresponding scores obtained in each ranking.Applying this
model to the three (sub-)groups of rankings – A, B and (A +
B) – in Table 1, the following results are obtained (see also
Table 2c).

Sub-group A
With reference to the rankings in sub-group A, the so-called
Borda Counts related to the three alternatives (i.e. O1, O2

and O3) can be calculated as:

BCA(O1) � 4 · 1 + 1 · 2 + 5 · 3 + 6 · 2 + 1 · 3 � 36

BCA(O2) � 4 · 2 + 1 · 1 + 5 · 1 + 6 · 3 + 1 · 2 � 34

BCA(O3) � 4 · 3 + 1 · 3 + 5 · 2 + 6 · 1 + 1 · 1 � 32

(1)

Of course, the degree of preference of an i-th alternative
decreases as the corresponding BCA(Oi ) value increases.
The collective ranking for sub-group A is then: O3 � O2 �
O1.
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Table 2 Collective rankings obtained by applying the: a IRV, b Coombs’ and c BCmodels to the sub-groups (A and B) of experts and the combined
group (A + B). The corresponding expert rankings are reported in Table 1

No. of experts (a) IRV (b) Coombs’ (c) BC

Sub-group A 17 O2 � O3 � O1 O3 � O1 ∼ O2 O3 � O2 � O1

Sub-group B 15 O2 � O1 � O3 O2 � O3 � O1 O2 ∼ O3 � O1

Combined group (A + B) 32 O1 � O2 � O3 O2 � O3 � O1 O3 � O2 � O1

Sub-group B
With reference to the rankings in sub-group B, the Borda
Counts (BCB) are:

BCB(O1) � 6 · 1 + 8 · 3 + 1 · 2 � 32

BCB(O2) � 6 · 3 + 8 · 1 + 1 · 3 � 29

BCB(O3) � 6 · 2 + 8 · 2 + 1 · 1 � 29

(2)

the collective ranking for the sample (B) then is: O2 ∼ O3 �
O1.

Combined group
The Borda Counts related to the alternatives in the rankings
of the combined-group BCA+B(Oi ) are:

BCA+B(O1) � 4 · 1 + 6 · 1 + 1 · 2 + 13 · 3 + 7 · 2 + 1 · 3 � 68

BCA+B(O2) � 4 · 2 + 6 · 3 + 1 · 1 + 13 · 1 + 7 · 3 + 1 · 2 � 63

BCA+B(O3) � 4 · 3 + 6 · 2 + 1 · 3 + 13 · 2 + 7 · 1 + 1 · 1 � 61
(3)

The collective ranking for the combined group (A + B)
is then O3 � O2 � O1, which coincides with that of the
sub-group A. Again, the paradox observed when applying
the IRV model (see Sect. 2.1) does not occur.

It is worth remarking that the BC aggregation model guar-
antees a sort of “overlapping of effects”, which results in the
following additive relationship:

BCA+B(Oi ) � BCA(Oi ) + BCB(Oi )∀i ∈ [1, n]. (4)

In addition, the BC aggregation model can be classified as
positional scoring procedure (PSP), since the scores assigned
to alternatives are based on their respective position on the
ranking [36, 43]. On the other hand, the IRV or Coombs’
models are not PSPs, as the differences between the points
awarded to alternatives in other positions than the first- or
last-choices are equal.

With reference to the preference profile in Table 1, the IRV
seems more prone to the multiple-district paradox than the
Coombs’ or BC model. Even though this rule is not neces-
sarily general, what happens when changing the preference
profile?

2.2.3 Further case study

TheLet us consider a second case study, which is similar to
the previous one but characterized by a different repartition of
the (new) expert rankings into two (new) sub-groups (A’ and
B’). Table 3 shows a first sub-group (A’) consisting of thirty-
four experts (i.e., eA′

1
to eA′

34
) and corresponding rankings,

and a second sub-group (B’) consisting of seven experts and
corresponding rankings.

application of the three aggregation models (IRV,
Coombs’ andBC) to the new (sub-)groups of rankings (A’, B’
andA’+B’ inTable 3) results into the nine collective rankings
in Table 4. Interestingly, the multiple-district paradox occurs
when applying the Coombs’ model, while it does not occur
when applying the IRV or BC models. It can be noticed that
when expert rankings are very “polarized”, as for sub-group
B’, the three different aggregation models tend to converge
towards the same collective ranking (e.g., O2 � O1 � O3 in
this case) (Table 4).

The previous examples show that the occurrence of para-
doxes is not easily predictable. In general, paradoxes may
arise from a difficult-to-predict combination between the
characteristics of (i) the aggregation model, (ii) the expert
rankings and (iii) their repartition into sub-groups.

Predicting a paradox is a very complex issue and still
an open problem [44]. However, it is proven that so-called
PSPs (see definition in Sect. 2.2.2), like the BC model, are
“immune” from the multiple-district paradox, due to their
structural features [36, 43].

2.3 Triggering factors of the paradox

Besides providing some examples of occurrence of the
multiple-district paradox, the previous sub-sections showed
that this paradox can affect different aggregation models,
depending on the specific preference profile. Let us go deeper
into the issue, trying to identify the main "triggers" of the
paradox, as explained in the following points.

1. This paradox can be seen as a manifestation of inco-
herence in the positioning of top alternatives within
collective rankings, namely: (i) thewinning alternative of
the sub-groups’ collective rankings and (ii) the winning
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Table 3 Rankings of three interior-design concepts (i.e. O1, O2, O3) formulated by two sub-groups of engineering designers: a sub-group A’ (eA′
1

to eA′
34
) and b sub-group B’ (eB′

1
to eB′

7
). c These sub-groups are then merged into a single combined group (A’ + B’). d Synthesis of the experts’

rankings

(a) Sub-group A’ (b) Sub-group B’ (c) Combined group (A’ + B’)

Expert Ranking Expert Ranking Expert Ranking Expert Ranking Expert Ranking

eA′
1

O1 � O2 � O3 eA′
22

O3 � O1 � O2 eB′
1

O1 � O2 � O3 eA′
1

O1 � O2 � O3 eA′
21

O3 � O1 � O2

eA′
2

O1 � O2 � O3 eA′
23

O3 � O1 � O2 eB′
2

O2 � O1 � O3 eA′
2

O1 � O2 � O3 eA′
22

O3 � O1 � O2

eA′
3

O1 � O2 � O3 eA′
24

O3 � O1 � O2 eB′
3

O2 � O1 � O3 eA′
3

O1 � O2 � O3 eA′
23

O3 � O1 � O2

eA′
4

O1 � O2 � O3 eA′
25

O3 � O1 � O2 eB′
4

O2 � O1 � O3 eA′
4

O1 � O2 � O3 eA′
24

O3 � O1 � O2

eA′
5

O1 � O2 � O3 eA′
26

O3 � O1 � O2 eB′
5

O2 � O1 � O3 eA′
5

O1 � O2 � O3 eA′
25

O3 � O1 � O2

eA′
6

O1 � O2 � O3 eA′
27

O3 � O1 � O2 eB′
6

O2 � O1 � O3 eA′
6

O1 � O2 � O3 eA′
26

O3 � O1 � O2

eA′
7

O1 � O2 � O3 eA′
28

O3 � O1 � O2 eB′
7

O2 � O1 � O3 eA′
7

O1 � O2 � O3 eA′
27

O3 � O1 � O2

eA′
8

O1 � O2 � O3 eA′
29

O3 � O1 � O2 eA′
8

O1 � O2 � O3 eA′
28

O3 � O1 � O2

eA′
9

O1 � O2 � O3 eA′
30

O3 � O2 � O1 eA′
9

O1 � O2 � O3 eA′
29

O3 � O1 � O2

eA′
10

O2 � O3 � O1 eA′
31

O3 � O2 � O1 eB′
1

O1 � O2 � O3 eA′
30

O3 � O2 � O1

eA′
11

O2 � O3 � O1 eA′
32

O3 � O2 � O1 eA′
10

O2 � O3 � O1 eA′
31

O3 � O2 � O1

eA′
12

O2 � O3 � O1 eA′
33

O3 � O2 � O1 eA′
11

O2 � O3 � O1 eA′
32

O3 � O2 � O1

eA′
13

O2 � O3 � O1 eA′
34

O3 � O2 � O1 eA′
12

O2 � O3 � O1 eA′
33

O3 � O2 � O1

eA′
14

O2 � O3 � O1 eA′
13

O2 � O3 � O1 eA′
34

O3 � O2 � O1

eA′
15

O2 � O3 � O1 eA′
14

O2 � O3 � O1 eB′
2

O2 � O1 � O3

eA′
16

O2 � O3 � O1 O2 � O3 � O1 eB′
3

O2 � O1 � O3

eA′
17

O2 � O3 � O1 eA′
16

O2 � O3 � O1 eB′
4

O2 � O1 � O3

eA′
18

O2 � O3 � O1 eA′
17

O2 � O3 � O1 eB′
5

O2 � O1 � O3

eA′
19

O3 � O1 � O2 eA′
18

O2 � O3 � O1 eB′
6

O2 � O1 � O3

eA′
20

O3 � O1 � O2 eA′
19

O3 � O1 � O2 eB′
7

O2 � O1 � O3

eA′
21

O3 � O1 � O2 eA′
20

O3 � O1 � O2

(d) Synthesis of the experts’ rankings

Sub-group A Sub-group B Combined group (A + B)

Expert Ranking Expert Ranking Expert Ranking

9 O1 � O2 � O3 1 O1 � O2 � O3 10 O1 � O2 � O3

9 O2 � O3 � O1 6 O2 � O1 � O3 6 O2 � O1 � O3

11 O3 � O1 � O2 9 O2 � O3 � O1

5 O3 � O2 � O1 11 O3 � O1 � O2

5 O3 � O2 � O1

Total: 34 Total: 7 Total: 41

Table 4 Collective rankings obtained by applying the IRV, Coombs’, and BC models to the sub-groups (A’ and B’) of experts and the combined
group (A’ + B’). For Coombs’ model, the effect of the multiple-district paradox on the top alternatives is highlighted in bold. The corresponding
expert rankings are reported in Table 3

No. of experts (a) IRV (b) Coombs’ (c) BC

Sub-group A’ 34 O3 � O1 ∼ O2 O2 � O3 � O1 O3 � O2 � O1

Sub-group B’ 7 O2 � O1 � O3 O2 � O1 � O3 O2 � O1 � O3

Combined group (A’ and B’) 41 O2 � O3 � O1 O1 � O2 � O3 O2 � O3 � O1
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alternative of the combined group’s collective ranking.
Of course, similar manifestations of incoherence could
also affect other alternatives in intermediate or bottom
positions – especially for rankings characterized by a rel-
atively large number of alternatives – without producing
the paradox.

2. The paradox is probably more likely to occur for
decision-making problems characterized by a relatively
high degree of discordance among the expert rankings,
with particular reference to the alternatives in the top
positions. For example, returning to the seventeen rank-
ings of sub-group A in Table 1, O1would prevail overO2

for ten rankings, while O2 would prevail over O1 for the
remaining seven rankings. For sub-group B, the overall
result from the comparison betweenO1 andO2 would be
7 versus 8.

3. The paradox seems not to affect the so-called PSPs, con-
firming what rigorously demonstrated by some authors
[36, 43].

3 Methodology

This section proposes a new methodology for “diagnosing”
the multiple-district paradox, based on the use of some indi-
cators of concordance and coherence. The description is
organized in three sub-sections:

• The first one briefly recalls the aforementioned indicators;
• The second one illustrates the use of these indicators for
decision-making problems involving rankings with a rela-
tively limited number of alternatives (as those previously
exemplified);

• The third part shows a step-by-step technique – denomi-
nated technique of partialized rankings – able to identify
the potential triggering reasons of the paradox.

3.1 Concordance and coherence indicators

The proposed methodology is based on the use of three indi-
cators:

1. The first one is the Kendall’s concordance coefficient,
W (m), able to express the so-called degree of concor-
dance (or agreement) between a set of m-rankings into
a single number [14, 45, 46, 54]. The range of W (m) is
[0, 1]; it has unit value in the case of perfect agreement
(i.e., all rankings coincide), while it is null in the case of
total disagreement (i.e., all rankings are completely unre-
lated). For more detailed information on the construction

and meaning of W (m), the reader is referred to Sect. A.1
(in the Appendix).

2. The second indicator, W (m+1)
k , was recently proposed by

the authors to depict the coherence between the expert
rankings and the collective ranking resulting from the
application of a generic (k-th) aggregation model [47].
This indicator is nothingmore than the Kendall’s concor-
dance coefficient, applied to (m + 1) rankings consisting
of:

3. The m-expert rankings, denoting the preference profile;
4. The collective ranking obtained applying the (k-th)

aggregation model to the previous expert rankings.

The coherence between the collective ranking and the
expert rankings is evaluated in relative terms, comparing
W (m+1)

k with W (m). W (m+1)
k ≥ W (m) denotes coherence

(or positive coherence) between the collective ranking and
m-rankings, while W (m+1)

k < W (m) denotes incoherence
(or negative coherence) [47]. The latter situation can occur
when a collective ranking is somehow conflicting with the
m-rankings.

Tomake the coherence assessment easier, a third synthetic
indicator can be used:

b(m)
k � W (m+1)

k

W (m)
(5)

It can be proven that b(m)
k ∈ ]0, +∞] [47]. For a spe-

cific set of m rankings, b(m)
k ≥ 1 indicates that the (k-th)

aggregation model provides a somehow coherent collective
ranking (positive coherence), while b(m)

k < 1 indicates that it
provides a somehow incoherent collective ranking (negative
coherence).

3.2 Interpretation of the paradox

Table 5 exemplifies the application of the three indicators,
W (m), W (m+1)

k and b(m)
k , to the decision-making problem in

Table 1, when considering the collective rankings resulting
from the application of the (a) IRV, (b) Coombs’ and (c) BC
models respectively (cf. Table 2). Regardless of the aggrega-
tion model in use, the preference profile is characterized by a
very low degree of concordance among experts, as evidenced
by the very low W (m) values, both for sub-groups A and B
and for their combination (A + B).

The coherence of the collective rankings with the corre-
sponding preference profiles can be assessed by comparing
the W (m+1)

k values with the relevant W (m) values and/or by

observing the synthetic indicator b(m)
k . The Coombs’ and BC

models do not trigger the paradox; W (m+1)
k and b(m)

k show
positive coherence either when considering A, B and A + B
(see Table 5b). On the other hand, the IRVmodel triggers the
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Table 5 W (m), W (m+1)
k and b(m)

k
values related to sub-groups A, B
and the corresponding combined
group (A + B), for each of the
three aggregation models: k �
{IRV, Coombs’, BC}. Expert
rankings are reported in Table 1

k-th model (Sub-)group No. of experts Collect. ranking W (m) W (m+1)
k b(m)

k

(a)

IRV Sub-group A 17 O2 � O3 � O1 1.38% 2.16% 1.56

Sub-group B 15 O2 � O1 � O3 1.35% 1.56% 1.15

Combined group (A
and B)

32 O1 � O2 � O3 1.27% 0.64% 0.51

(b)

Coombs’ Sub-group A 17 O3 � O1 ∼ O2 1.38% 2.42% 1.75

Sub-group B 15 O2 � O3 � O1 1.35% 2.73% 2.02

Combined group (A
and B)

32 O2 � O3 � O1 1.27% 1.70% 1.34

(c)

BC Sub-group A 17 O3 � O2 � O1 1.38% 2.77% 2.00

Sub-group B 15 O2 ∼ O3 � O1 1.35% 2.68% 1.98

Combined group (A
and B)

32 O3 � O2 � O1 1.27% 1.93% 1.52

paradox; we notice positive coherence (b(m)
k ≥ 1) for sub-

groups A and B, but negative coherence (b(m)
k < 1) for A +

B (see Table 5a).
Moving our attention to the second application example

in Table 3, something similar happens: all the b(m)
k values

related to the IRV and BCmodels denote positive coherence,
while that one related to theCoombs’model denotes negative
coherence for the combined group. Again, the multiple-
district paradox results in an incoherence between collective
ranking and expert rankings at the combined-group level (see
Table 6).

The indicatorsW (m),W (m+1)
k and b(m)

k are therefore useful
to explain the reasons of the occurrence of the multiple-
district paradox. However, the examples proposed so far have
two distinctive, but not necessarily general, features:

1. Rankings have a relatively limited number of alterna-
tives (i.e., just three) and the W (m+1)

k and b(m)
k indicators

well respond to the incoherence that characterizes the
multiple-district paradox.However, it cannot be excluded
that – for rankings with a larger number of alternatives
– the above indicators would not be equally responsive.
Section 3.3 exemplifies a situation in which – in the pres-
ence of the paradox – the (local) incoherences concerning
a small number (e.g., 2 or 3) of alternatives in the top of
the rankings can be “masked” by other (local) incoher-
ences concerning the alternatives in the middle and/or at
the bottom of the rankings.

2. In the presence of the paradox, the previous examples
show incoherences at the combined-group level but never
at the level of single sub-groups. However, it cannot be

excluded that the paradox could be triggered by incoher-
ence in one of the sub-groups and not in the combined
group.

3.3 The technique of partialized rankings

Let us exemplify a new decision-making problem with a
plurality of expert rankings of four alternatives (O1 to O4),
organized into two sub-groups: A” and B”, including 17 and
15 rankings respectively (see Table 7).

It can be noticed that these rankings are "compatible" with
those in Table 1: eliminating the alternative O4 from each of
the rankings in Table 7, the rankings in Table 1 are obtained
[24, 31]; for example, the ranking by eA′′

7
(O2 � O3 � O4 �

O1) in Table 7 is turned into the ranking by eA7 (O2 � O3 �
O1) in Table 1. It can also be noticed that the alternative O4

is generally placed in the bottom positions of the rankings.
Applying the IRV model to the various (sub-)groups of

rankings, the same paradox seen for the example in Table 1
occurs: the winner of sub-groups A” and B” isO2, while that
for the combined-group (A” +B”) isO1. Not surprisingly, the
alternative O4 is placed at the bottom of all three respective
collective rankings (see Table 8-Step 3).

Applying the indicators W (m), W (m+1)
k and b(m)

k to
the rankings in Table 7, somehow unexpected results are
obtained (see Table 8-Step 3).

• The degree of concordance between expert rankings is
not as dramatically low as in the previous examples. The
introduction of the new alternative O4, which is typically
placed by the experts in the bottom positions, contributes
to increase the W (m) indicator compared to the example
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Table 6 W (m), W (m+1)
k and b(m)

k
values related to sub-groups A’,
B’ and the corresponding
combined group (A’ + B’), for
each of the three aggregation
models: k � {IRV, Coombs’,
BC}. Expert rankings are
reported in Table 3

k-th
model

(Sub-)group No. of
experts

Collect. ranking W (m) W (m+1)
k b(m)

k

(a)

IRV Sub-group A’ 34 O3 � O1 ∼ O2 3.37% 4.13% 1.22

Sub-group B’ 7 O2 � O1 � O3 87.7% 89.0% 1.01

Combined group (A’ and
B’)

41 O2 � O3 � O1 0.95% 1.42% 1.49

(b)

Coombs’ Sub-group A’ 34 O2 � O3 � O1 3.37% 3.51% 1.04

Sub-group B’ 7 O2 � O1 � O3 87.7% 89.0% 1.01

Combined group (A’ and
B’)

41 O1 � O2 � O3 0.95% 0.74% 0.77

(c)

BC Sub-group A’ 34 O3 � O2 � O1 3.37% 4.24% 1.26

Sub-group B’ 7 O2 � O1 � O3 87.7% 89.0% 1.01

Combined group (A’ and
B’)

41 O2 � O3 � O1 0.95% 1.42% 1.49

Table 7 Rankings of four interior-design concepts (i.e. O1 to O4) formulated by two sub-groups of engineering designers: A” (eA′′
1
to eA′′

17
) and B”

(eB′′
1
to eB′′

15
). These sub-groups are then merged into a single combined group (A” + B”). It can be noticed that these rankings are "compatible"

with those in the example in Table 1: if we eliminate the alternative O4 from each of these rankings, we obtain those ones in Table 1

(a) Sub-group A” (b) Sub-group B” (c) Combined group (A” + B”)

Expert Ranking Expert Ranking Expert Ranking Expert Ranking

eA′′
1

O1 � O2 � O3 � O4 eB′′
1

O1 � O3 � O2 � O4 eA′′
1

O1 � O2 � O3 � O4 eA′′
7

O2 � O3 � O4 � O1

eA′′
2

O1 � O2 � O3 � O4 eB′′
2

O1 � O3 � O2 � O4 eA′′
2

O1 � O2 � O3 � O4 eA′′
12

O3 � O1 � O2 � O4

eA′′
3

O1 � O2 � O3 � O4 eB′′
3

O1 � O3 � O2 � O4 eA′′
3

O1 � O2 � O3 � O4 eA′′
14

O3 � O1 � O2 � O4

eA′′
4

O4 � O1 � O2 � O3 eB′′
4

O1 � O3 � O2 � O4 eA′′
4

O4 � O1 � O2 � O3 eA′′
15

O3 � O1 � O2 � O4

eA′′
5

O2 � O1 � O3 � O4 eB′′
5

O1 � O3 � O2 � O4 eA′′
5

O2 � O1 � O3 � O4 eA′′
16

O3 � O1 � O2 � O4

eA′′
6

O2 � O3 � O1 � O4 eB′′
6

O1 � O3 � O2 � O4 eA′′
6

O2 � O3 � O1 � O4 eA′′
17

O3 � O2 � O1 � O4

eA′′
7

O2 � O3 � O4 � O1 eB′′
7

O2 � O3 � O1 � O4 eA′′
8

O2 � O3 � O1 � O4 eA′′
11

O3 � O1 � O2 � O4

eA′′
8

O2 � O3 � O1 � O4 eB′′
8

O2 � O3 � O1 � O4 eA′′
9

O2 � O3 � O1 � O4 eB′′
15

O3 � O1 � O2 � O4

eA′′
9

O2 � O3 � O1 � O4 eB′′
9

O2 � O3 � O1 � O4 eA′′
10

O2 � O3 � O1 � O4 eA′′
13

O3 � O1 � O4 � O2

eA′′
10

O2 � O3 � O1 � O4 eB′′
10

O2 � O3 � O1 � O4 eB′′
7

O2 � O3 � O1 � O4 eB′′
1

O1 � O3 � O2 � O4

eA′′
11

O3 � O1 � O2 � O4 eB′′
11

O2 � O3 � O1 � O4 eB′′
8

O2 � O3 � O1 � O4 eB′′
2

O1 � O3 � O2 � O4

eA′′
12

O3 � O1 � O2 � O4 eB′′
12

O2 � O3 � O1 � O4 eB′′
9

O2 � O3 � O1 � O4 eB′′
3

O1 � O3 � O2 � O4

eA′′
13

O3 � O1 � O4 � O2 eB′′
13

O2 � O3 � O1 � O4 eB′′
10

O2 � O3 � O1 � O4 eB′′
4

O1 � O3 � O2 � O4

eA′′
14

O3 � O1 � O2 � O4 eB′′
14

O2 � O3 � O1 � O4 eB′′
11

O2 � O3 � O1 � O4 eB′′
5

O1 � O3 � O2 � O4

eA′′
15

O3 � O1 � O2 � O4 eB′′
15

O3 � O1 � O2 � O4 eB′′
12

O2 � O3 � O1 � O4 eB′′
6

O1 � O3 � O2 � O4

eA′′
16

O3 � O1 � O2 � O4 eB′′
13

O2 � O3 � O1 � O4

eA′′
17

O3 � O2 � O1 � O4 eB′′
14

O2 � O3 � O1 � O4

in Table 1, "masking" the discordance related to the posi-
tioning of O1, O2 and O3. Indicators are sensitive to the
presence of all alternatives and to the so-called “irrelevant
alternatives” too [22, 23].

• Despite the occurrence of the paradox, W (m+1)
k ≥ W (m)

and b(m)
k ≥ 1, denoting positive coherence between (the

three) collective rankings and the relevant expert rankings;
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Table 8 Results of the application of the step-by-step procedure to the problem in Table 7. We observe that the reasons for the paradox are already
visible by excluding only the O4 alternative from the initial complete rankings 1. The effect of the multiple-district paradox on the top alternatives
is highlighted in bold

Step (Sub-)group No. of experts (Partialized) collect. ranking W (m) W (m+1)
k b(m)

k

(Step 1) “Partialized” rankings
excluding O3 and O4

Sub-group A” 17 O1 � O2 3.11% 4.94% 1.586

Sub-group B” 15 O2 � O1 0.44% 1.56% 3.516

Combined group 32 O1 � O2 0.39% 0.83% 2.116

(Step 2) “Partialized” rankings
excluding O4

Sub-group A” 17 O2 � O3 � O1 1.38% 2.16% 1.561

Sub-group B” 15 O2 � O1 � O3 1.33% 1.56% 1.172

Combined group 32 O1 � O2 � O3 1.27% 0.64% 0.506

(Step 3) Complete rankings Sub-group A” 17 O2 � O3 � O1 � O4 39.65% 40.99% 1.034

Sub-group B” 15 O2 � O1 � O3 � O4 60.53% 60.63% 1.002

Combined group 32 O1 � O2 � O3 � O4 48.79% 48.83% 1.001

again, the (local) incoherence due to the presence of the
paradox seems to be compensated by a relative coherence
of the alternatives in non-top positions. In this case,W (m),
W (m+1)

k and b(m)
k do not “respond” to the paradox, which

only concerns the top alternatives (O1 and O2).

The example shows that, for problems including expert
rankingswith a relatively large number of alternatives,W (m),
W (m+1)

k and b(m)
k can lose effectiveness in identifying the

incoherence behind the occurrence of the multiple-district
paradox. This weakness can be overcome with a simple con-
trivance, as illustrated below.

The basic idea is to “partialize”1 the initial rankings,
excluding the alternatives with lower impact on the top posi-
tions and recalculating the three indicators of interest. This
process can be implemented iteratively, initially considering
only the top alternatives (i.e., excluding the remaining ones)
and then gradually adding the alternatives in the non-top posi-
tions. Precisely:

1. The starting point of the procedure is the collective rank-
ing generated when applying the aggregation model to
the combined group, which is conventionally considered
as the one that best reflects the global positioning of
alternatives.Observing this collective ranking (e.g.,O1 �
O2 � O3 � O4 for the problem in Table 7), it is possible
to discriminate roughly between the top two alternatives
(O1 and O2) and the remaining ones (O3 and O4).

2. The first iteration considers the partialized rankings,
related to the sub-groups and the combined group, with

1 The term “partialize” indicates that the initially complete rankings
are modified, excluding some of the alternatives and obtaining new
incomplete rankings, which can also be classified as partial [10, 54].

the two top alternatives only (e.g.,O1 andO2 in the prob-
lem in Table 7). The indicators W (m+1)

k , W (m), b(m)
k are

then calculated and analysed.
3. In the i-th iteration, the procedure is repeated consider-

ing the partialized rankings related to the sub-groups and
the combined group of the first (i + 1) top alternatives.
Again, the indicators W (m+1)

k , W (m), b(m)
k are calculated

and analysed.
4. The procedure is repeated until the (n – 1)-th iteration,

which considers the complete rankings with all n alter-
natives.

5. Analysing the indicators determined in each iteration,
it is possible to identify the underlying reasons for the
occurrence of the paradox.

Returning to the example in Table 7, let us exemplify the
technique of "partial rankings"when applying the IRVaggre-
gationmodel. For the (sub-)groups of rankings, the collective
rankings in Table 8-Step 3 are obtained. Leaving aside the
multiple-district paradox, which concerns only the two top
alternatives (O1 and O2) – the (collective) ranking that con-
ventionally best reflects the global positioning of the totality
of the alternatives based on expert rankings is the one related
to the combined group: O1 � O2 � O3 � O4.

Next, both the experts’ and the collective rankings are
“partialized”, omitting the non-top alternatives. The first iter-
ation considers the partialized rankings with the two top
alternatives only (O1 and O2), omitting the remaining ones
(O3 and O4). The application of the IRV to the (sub-)groups
of rankings in Table 7 leads to the collective rankings in
Table 8-Step 1. Although (i) the paradox does not occur and
(ii) the indicators W (m+1)

k and b(m)
k denote positive coher-

ence for sub-groups A”, B” and for the combined group, the
W (m) values related to sub-group B” and the combined group
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denote a significant degree of discordance among the corre-
sponding partialized expert rankings.

The second iteration includes the three top alternatives:
O1, O2, O3 (see Table 8-Step 2). In this case, the multiple-
district paradox occurs and the underlying incoherence is
detected by the W (m+1)

k and b(m)
k values related to the com-

bined group (A” + B”) of partialized rankings.
The procedure can be further iterated considering the

complete rankings (see Table 8-Step 3). In this case the
paradox occurs but is not detected by the indicators in use.
As noted earlier, the “irrelevant” alternative O4 undermines
the effectiveness of the indicators in identifying the para-
dox incoherence. In other words, the irrelevant alternative
O4 attenuates the sensitivity ofW

(m+1)
k and b(m)

k , which both
grow, denoting an increase in concordance among experts; in
this case, for example, all experts agree in locating the alter-
native O4 in the last position. This growth of concordance
among experts masks the incoherence due to the paradox.

4 Conclusions

Thepaper focusedon the reasons behind theoccurrenceof the
multiple-district paradox in ranking-aggregation problems.
Summarizing, it was found that:

• The occurrence of the paradox is typically associated with
a very low degree of concordance among the expert rank-
ings, with particular reference to the alternatives in the top
positions.

• The occurrence of the paradox may concern different
aggregation models, depending on the specific (i) pref-
erence profile and (ii) repartition of the rankings into
sub-groups.

• The choice of a method to aggregate the expert rankings
into a collective onemay affects the results evenmore than
the preference profile.

• Some aggregation models, classified as PSPs, are “im-
mune” from the multiple-district paradox [43].

It was proposed a methodology based on the use of three
indicators:

• W (m), which measures the concordance between expert
rankings;

• W (m+1)
k and b(m)

k , which measure the consistency between
the expert rankings and the collective ranking obtained
through a certain (k-th) aggregation model.

The proposed methodology allows to highlight the inco-
herence characterizing the paradox occurrence, distinguish-
ing whether it occurs at the level of sub-groups (districts) or
combined groups (multiple districts).

For rankings with a relatively large number of alter-
natives, the above indicators can lose responsiveness. To
overcome this obstacle, a step-by-step procedure based on
the progressive "partialization" of rankings was proposed.
This procedure is a valid support tool for design problems
involving distributed teamswith (partly) conflicting opinions
[38]. Additionally, the proposed methodology can be used
to assess the robustness of the collective ranking obtained
through a certain aggregation model [59].

Some limitations of this research are as follows:

• The proposed methodology is based on application of spe-
cific (concordance and consistency) indicators. The choice
of other indicators could lead to (at least partially) different
outcomes [54].

• Although the multiple-district paradox is especially inter-
esting for design decision-making problems in which the
best alternative should be determined, it remains one-and-
one-only of the possible paradoxes documented in the
scientific literature; e.g., other paradoxes are the so-called
no-shows, preference inversion, absolute majority loser,
etc. [34].

Regarding the future, we plan to extend the proposed
methodology (i) to the use of new concordance and coher-
ence indicators, and (ii) to investigate further paradoxes.
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is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix: Theoretical remarks onW (m) and
W (m+1)

k

The scientific literature includes a popular indicator to eval-
uate the overall concordance or association for more than
two expert rankings, i.e., the so-called Kendall’s coefficient
of concordance, which is defined as [14, 32, 45, 46, 48–51,
53]:
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W (m) � 12 · (∑n
i�1 R

2
i ) − 3 · m2 · n · (n + 1)2

m2 · n · (
n2 − 1

) − m · (∑m
j�1 Tj )

(6)

where:

• Ri � ∑m
j�1 ri j is the sum of the rank positions for the

i-th object, rij being the rank position of the object Oi

according to the j-th expert;
• n is the total number of objects;
• m is the total number of rankings;
• Tj � ∑g j

i�1

(
t3i − ti

)
, ∀ j � 1, . . . , m, being ti the number

of objects in the i-th group of ties (a group is a set of tied
objects), and g j is the number of groups of ties in the
ranking by the j-th expert. If there are no ties in the j-th
ranking, then Tj � 0.

Regarding the rank positions of the tied objects (rij), a
convention is adopted whereby they should be the average
rank positions that each set of tied objects would occupy if a
strict dominance relationship could be expressed [52]. This
convention guarantees that – for a certain j-th ranking and
regardless of the presence of ties – the sum of the objects’
rank positions is an invariant:

n∑

i�1

ri j � n · (n + 1)

2
(7)

In terms of range, W (m) ∈ [0, 1]. W (m) � 0 indicates
the absence of concordance, while W (m) � 1 indicates the
complete concordance (or unanimity). The superscript “(m)”
is added by the authors to underline that the coefficient of
concordance is applied to the m expert rankings and to dis-
tinguish it from another indicator – referred to as W (m+1)

k , –
which will be applied to m + 1 rankings.

The basic idea of W (m+1)
k , recently proposed by the

authors, is to analyse the level of coherence between the
expert rankings and the collective ranking resulting from
the application of the (k-th) aggregation model [47]. The
test is based on the construction of an indicator, which is
nothingmore than theKendall’s concordance coefficient (see
Eq.A.1), applied to the (m+1) rankings consistingof (i) them
expert rankings, involved in an EngineeringDesign decision-
making problem, and (ii) the collective ranking obtained by
applying a generic (k-th) aggregation model to the previous
m rankings. The collective ranking is actually treated as an
additional (m + 1)-th ranking.

The formula of the indicator W (m+1)
k follows:

W (m+1)
k � 12 · [∑n

i�1(Ri + ri )2
] − 3 · (m + 1)2 · n · (n + 1)2

(m + 1)2 · n · (
n2 − 1

) − (m + 1) · (∑m
j�1 Tj ) − (m + 1) · Tm+1

(8)

where ri is the rank position of the i-th object in the collec-
tive ranking (ri ∈ [1, n]). In case of tied objects, the same
convention described above is adopted.
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