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Motorway speed pattern identification from floating vehicle data for freight 

applications 
 

A. Pascale*, F. Deflorio†, M. Nicoli*, B. Dalla Chiara†, M. Pedroli‡ 

 
Abstract 

 
Nowadays, the diffusion of in-car navigators, location-enabled smartphones and various reasons for tracking vehicles 

- either for insurance and recovery, fleet management or for electronic tolling - are making floating car data (FCD) a 

leading solution for traffic monitoring. In the next years, this solution might be much more strengthened by the introduc-

tion and diffusion of black boxes, installed on commercial or private vehicles devoted to monitor or validate new safety 

technologies§. FCD, possibly integrated with data coming from infrastructure-based monitoring systems, represents a 

valuable platform for intelligent transport systems (ITS). Traffic monitoring based on FCD relies on a processing algo-

rithm for aggregating the measured data into an accurate and complete traffic map. In this paper we present an experi-

mental study on FCD processing based on a unique large amount of data in Italy, provided by heavy-duty vehicles used 

as probes over the Italian A4 motorway. A processing procedure is proposed for identifying the typical speed patterns, to 

be used as baseline for automatic anomaly detection, transport planning or traffic analysis applications. A first assess-

ment based on real traffic-event information shows that the comparison of the probe data to previously identified histori-

cal speed patterns allows a clear detection of anomalous events. 

 
Keywords 

 
ITS; traffic monitoring; freight probe vehicles; floating car data; anomaly detection; cluster analysis; level of service,  

motorways; travel time estimation. 

 
* Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Milano, Italy  
† Politecnico di Torino, Dept. DIATI, Engineering - Transport Systems, Italy 
† W.A.Y. srl, Torino, Italy  

 

Corresponding author: Monica Nicoli 

 
§ More details can be found on the official website of the European Commission for Mobility and Transport,  

http://ec.europa.eu/transport/road_safety/specialist/knowledge/esave/esafety_measures_known_safety_effects/black_box

es_in_vehicle_data_recorders.htm, and of the European Parliament,   

http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+PV+20140225+ITEM-013+DOC+XML+V0//EN  

http://ec.europa.eu/transport/road_safety/specialist/knowledge/esave/esafety_measures_known_safety_effects/black_boxes_in_vehicle_data_recorders.htm
http://ec.europa.eu/transport/road_safety/specialist/knowledge/esave/esafety_measures_known_safety_effects/black_boxes_in_vehicle_data_recorders.htm
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+PV+20140225+ITEM-013+DOC+XML+V0//EN


 

 2 

 

 

1. Introduction 
 

Monitoring technologies based on probe vehicles have been emerging, in recent years, both as 

self-working solutions and in cooperation with infrastructure-based systems (Yoon et al., 2007) 

(Kerner et al., 2005) (De Fabritiis et al., 2008) (Wei et al., 2007). Floating car data (FCD) systems 

are based on a set of probe vehicles equipped with satellite positioning and wireless connectivity - 

usually GPRS - to periodically send position-speed data to a central unit at a control room. Data are 

aggregated and processed by the central unit to draw the traffic information needed for the specific 

application. Applications range from traffic monitoring and forecasting, travel time estimation, con-

struction of historical database to enable identification of anomalies or incident detection, fleet man-

agement, and dynamic navigation based on real-time traffic conditions (Yang, 2005) (Sethi et al., 

1995) (Treiber et al., 2010). 

For many services in transport systems, reliable speed data are useful to predict or estimate the 

expected travel time along a route, which is a sequence of road segments where traffic conditions 

usually change over time. In fleet management operations, for example, useful information for both 

operators and end users is the estimation of a reliable travel time for on-time pickup and delivery op-

erations, if the freight distribution service is managed to comply with time constraints. A reliable 

baseline for speed data along the road network should be exploited to meet the time requirements. 

Furthermore, any event that may cause a delay in traffic is important to be detected in order to give 

update information on the speed observed along the route. In this context, the computation of typical 

speed patterns characterizing the traffic behavior over the various road sections and the detection of 

anomalies causing relevant delays are useful tools for the fleet management.  

During the last years, the interest in FCD has been sensibly growing thanks to the diffusion of 

GPS navigators - enhanced in Europe with EGNOS - and location-enabled smartphones, as well as to 

the impressive surge of location-based services. An increasing number of dedicated compa-

nies/agencies is now dealing with data collection for fleet management, accident data recording, and 

vehicle insurance. The growing number of monitored vehicles, together with the extended connectiv-

ity provided by new communication systems (connecting vehicles to the central unit and also vehi-

cles to vehicles) are making FCD a leading, sometimes even consolidated, solution for traffic moni-

toring.  

One of the main problems, however, is the reliability of data collection which may be limited by 

the local penetration rate. In probe systems, sampling of traffic parameters is non-uniform and also 

time-varying due to the probe mobility. Resolution depends on a combination of factors including 

number of probes, traffic demand patterns, traffic conditions and road features (Kwon et al., 2007) 

(Vandenberghe et al., 2012) (Herrera et al., 2010) (Rahmani et al., 2013) (Fangfang et al., 2013). In 

such a complex scenario, data processing represents the key engine for integrating the sparsely sam-

pled data into accurate and reliable traffic information, overcoming as much as possible the limits 

due to low penetration rate and/or non-uniform sampling. 

In this paper we focus on processing of floating truck data (FTD) collected by a fleet of heavy-

duty vehicles over the Italian A4 motorway, connecting Turin to Venice. We propose a procedure for 

the computation of mean speed patterns characterizing the typical traffic conditions along the road, to 

be used for construction of historical database and for detection of anomalous traffic events. GPS po-

sition-time measurements provided locally and instantaneously by single vehicles are processed to 

estimate the mean speed that results from aggregated vehicles in each road segment and each 

timeslot. Different methods based on the study of traffic daily patterns have been proposed in the lit-

erature (Rakha et al., 1995) (Wild, 1997) (Chrobok et al., 2004) (Chung, 2003) (Kerper et al., 2011) 
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using data coming from either probe vehicles or loops. The analysis considered in this paper, based 

on probe vehicles, is particularly challenging as the available dataset relies mainly on truck meas-

urements, it has moderate dimensions (3 months) and low penetration rate (estimated around 0.25% 

in capacity condition), resulting in a fragmented observation of the velocity field. To overcome this 

limit, we propose to estimate the typical velocity profile in each road segment using a clustering pro-

cedure that exploits data from probes in different segments, relying on the fact that speed profiles 

usually share common features over large sections of the road. A preliminary analysis is carried out 

to select reliable vehicle data, match the data samples to the road segments and compute the mean 

speed. A clustering procedure based on the Ward’s method (Weijermsrs et al., 2005) is then applied 

for aggregating the road segments into homogeneous classes of speed trends and compute the typical 

speed profile associated to each class of segments. We also propose to exploit these typical profiles 

as reference for detection of anomalous traffic conditions and unusual events causing relevant delays. 

Our principle aim was to ascertain if typical speed patterns can be identified, even in scenarios 

with a fragmented observation of the velocity field due to low penetration rate, relying on the fact 

that speed profiles usually share common features over large sections of the road. This basic idea al-

lows the computation of a reliable set of speed profiles using a conventional clustering approach as 

the Ward’s method. Other hierarchical clustering approaches can be used, but the evaluation of their 

performance was out of the scope of this paper, because we focused on the whole procedure and not 

on the single element. 

 Even though the analysis is based on truck measurements and thus restricted to working days 

where heavy traffic is allowed (week-ends or holidays are excluded), the proposed method can be 

easily applied to extended datasets including also other vehicle-type data, if available from other 

sources. The analysis is validated using information broadcasted by the national provider of road 

traffic information, named CCISS (Centro di Coordinamento Informazioni sulla Sicurezza Stradale), 

by collecting all the anomalous events registered by CCISS over the considered motorway. The com-

parison to CCISS data shows that the anomalies recognized using the reference profiles correspond 

to real congestion events, confirming the reliability of the proposed approach.  
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2. Data analysis: method and procedures 
 

The analysis herein considered is based on FTD provided by a system designed and managed by 

the Italian company W.A.Y. (Torino, Italy). Data are collected by an operation center which has got 

one of the most extended databases in Italy in this field; it receives signals from various fleets 

equipped with on-board devices, for a total number of more than 13000 probe vehicles. Each road is 

divided in segments and data from any vehicle are mapped to a road segment only if the vehicle is 

localized within the Italian motorway network or an important highway, such as a ring road. The 

scenario considered in this paper refers to the motorways of north Italy as shown in Fig. 1. A prelim-

inary analysis of these data has been presented in (Pascale et al. 2013).  

Objective of this work is to derive from vehicle-based information the space-based information 

concerning the historical speed trends along defined roads on the map. As shown in Fig. 2, the pro-

cess starts from speed samples collected at given time instants and locations by the on-board devices 

and forwarded to the central unit. Speed samples are used together with map information to compute 

daily velocity trends over the road network.  

 For a complete characterization of the speed pattern, a daily speed profile has to be computed for 

each road segment. To this aim, taking into account the limited amount of measurements available 

per each segment and timeslot, we propose an aggregation and filtering process based on clustering 

of speed data: segments are clustered in few classes with similar speed behavior and the speed profile 

of each class is computed by averaging the data collected in all segments of the class. An example of 

velocity map obtained by this process for the road section in Fig. 1 is shown on the bottom of Fig. 2. 

Once the typical speed profiles have been computed, these profiles are used as a reference for identi-

fication of anomalous events.  

The main steps of the proposed processing methodology are summarized in Fig. 3. The procedure 

starts with the computation of a preliminary speed profile for each road segment, referred to as the 

segment speed profile (steps A,B,C,D). A classification procedure (step  E) is then conducted to rec-

ognize the typical daily trends (referred to as the typical speed profiles) and to identify anomalous 

traffic behaviors (step F). Details of the processing steps are given in the following subsection. 
 

 

 

 
 

Figure 1. Map of north Italy motorways and look on A4 (Turin-Venice) highway, section Milan-Brescia. Circles denote the ve-

hicle velocity samples  matched to highway segments. 
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Figure 2. Scheme describing the stream of data from probe vehicles to the central unit, which processes the data in order to ex-

tract the speed map information for the selected road section A4 Brescia→ Milan.  

 

2.1 Data provided by the FCD system 
 

Each motorway is divided into a set of segments, with length 100m ≤lS ≤ 1300m (on average 

500m), and indexed in the direction of traffic as s = 1,2,…,NS. Temporal sampling ranges from 20s to 

3min. Probe vehicles send to the central unit an array of data composed by: time stamp tm [da-

ta,hh:mm:ss], vehicle ID [#], GPS position [lat,long], instantaneous velocity [km/h], incremental dis-

tance covered by the vehicle [km]. At the central unit, raw vehicle data are associated to the closest 

segment on the geographical map based on the computation of the distances between the GPS vehi-

cle position and the segments. Velocities after map matching, v [km/h], are shown in Fig. 1 for the 

motorways of North Italy. For the subsequent analysis we focus on the section Brescia→Milan 

(BS→MI) of the motorway A4, as highlighted in the box, covering a total number of NS =166 seg-

ments. This road section has a length of more than 90 km and provides a challenging testing scenario 

thanks to the variegated and highly time-varying traffic behaviors that are observed along the way, 

ranging from suburban areas to congested urban sections in the area of Milan. 

For the analysis we consider two different datasets collected over the motorway A4 BS→MI: the 

first obtained by a fleet of 5327 trucks (truck paths) during the months of February, March and May 

2011; the second one collected by a fleet of 3882 vehicles in the month of June 2011. The former set 

is used in this section to develop the processing method and in Section 3 to compute the typical 

speed profiles; the latter is used in Section 4 for validation on specific applications. 
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Figure 3. Main steps of the processing method for the evaluation of typical speed profiles and the identification of anomalies.  

 

2.2 Processing steps for computation of speed profiles 
 

We focus our attention on the first dataset. The dataset was obtained starting from data of vehicle 

positions and velocities after the map-matching procedure. From the 3-months data we extracted a 

subset by selecting 63 working days and performing a consistency check. To give an idea of sample 

size, Fig. 4 shows the number of monitored vehicles for all segments during Mondays; data are ag-

gregated over 1 hour. The overall penetration rate has been estimated to be approximately 0.25% in 

capacity condition.  

For the computation of speed profiles associated with segments, we use only data collected by 

vehicles that have been active for a time window of at least 30min, in order to exclude unreliable da-

ta from vehicles with either sporadic or non-constant transmission rate. First processing steps are 

those described in blocks A and B of Fig. 3. We compute the velocity sample of vehicle i at time tm 

as the ratio between the incremental distance covered from the last measurement, ∆si,m, and the time 

interval, ∆ti,m = tm – tm-1, elapsed from the last measurement: vi,m=∆si,m/∆ti,m. We do not use instanta-

neous velocity from GPS data as it is not averaged over ∆ti,m  and thus it may be less reliable for our 

analysis. The time interval ∆ti,m in the considered FCD system can vary over time and from vehicle to 

vehicle; typically it is 20s ≤ ∆ti,m  ≤ 3min. The evaluated velocity is assigned to the two segments as-

sociated with the measurement (i.e., the segments matched with the GPS positions at times tm-1 and 

tm) and also to the intermediate ones that the vehicle passed during the time ∆ti,m. This step prevents 

that fast vehicles generate less samples per segment than slow vehicles.  

As regards vehicle filtering (blocks C in Fig. 3), we divide vehicles into classes based on their 

maximum detected speed, vi
max, using ranges of 10km/h, in a period of 2 months along the same 

highway. The large extension of the observed time period ensures a reliable estimation of the free 

flow speed for every detected vehicle. 

 Recalling that most of the probes of the considered system are trucks, to avoid polarization of re-

sults by outliers with faster or slower vehicles (e.g., few cars belonging to the probe fleet), we ex-

clude from the analysis vehicles that have not a homogeneous behaviour. We thus focus our attention 

on vehicles with 80km/h≤vi
max ≤100km/h, which represent the two classes with more vehicles in our 

dataset.  
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Figure 4. Average number of monitored vehicles on Mondays. 

 

Next step (block D in Fig. 3) is the computation of an average speed vs. time profile for each 

segment. Speed samples provided by the vehicles are associated with the segments by map matching. 

Then, speed samples are aggregated in timeslots and averaged. The time interval used for aggrega-

tion is T = 15min or T =30min, depending on the specific analysis (different analyses will be carried 

out throughout the paper, as explained in next section). We observe that in case of low traffic vol-

ume, the sample size obtained with T = 15min could be inadequate for a proper data analysis, but this 

scenario is not relevant for our applications as in free flow conditions the traffic speed is usually well 

known. 

We indicate the average velocity profile on segment s at day d by the NT1 vector vs
d, which col-

lects the NT
  aggregated velocity samples for the day (e.g., for a 24h period, NT=96 for T = 15min and 

NT=48 for T = 30min). The overall velocity map for day d, representing the velocity versus time and 

segment, is obtained by collecting the NS profiles for all the segments into a NTNS matrix Vd. Exam-

ples of speed maps are shown - averaged over the days - on the bottom of Fig. 2 and in Fig. 5 for the 

two classes of vehicles 80-90km/h and 90-100km/h. In case of poor data, 2D linear interpolation is 

used to obtain a complete map.  

The last step for the speed pattern computation is the clustering of profiles (step E in Fig. 3). This 

operation aims at aggregating the NS velocity profiles associated to the NS road segments into NC  NS 

classes or clusters, each collecting segments with similar traffic behaviour. The typical speed profile 

associated to class c, for c = 1,…,NC, is obtained as the average of all the segment profiles vs
d be-

longing to that class.  

For clustering, we adopt the Ward’s method (Weijermsrs et al., 2005) which aggregates the speed 

profiles in homogeneous classes by constructing a tree based on a "bottom up" approach. Different 

clustering methods can be found in the literature (Gelbarda et al., 2007). Here we select the Ward’s 

one as it is a hierarchical approach that does not require the knowledge of the number of clusters in 

advance as it follows directly from the clustering process.  At the beginning, a set of NS clusters is 

defined, one for each profile vs
d. Then, clusters are paired on the basis of the minimum inner square 

distance metric. Pairing of clusters is repeated, until all profiles are enclosed in one single class. The 

number of clusters is decided putting a threshold on the desired inner squared distance. Details of the 
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procedure can be found in (Pascale et al., 2013). 

Daily speed profiles obtained by the above procedure are presented and discussed in next section. 

The study is carried out considering speed data averaged over the days and also day-specific data, to 

analyse both the mean daily traffic behaviour and the possible variations over the days. We make a 

first analysis using 24-hour data, then we focus the attention on an interesting and smaller time peri-

od in the morning hours (5 – 12 am) where the speed variability is relevant.  
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Figure 5. Velocity maps [km/h] obtained by averaging over days and aggregating with T=15min the data from vehicles in the 

classes 80-90km/h and 90-100km/h. Black holes indicate lack of data.  
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3. Analysis of speed profiles  
 

Segment speed patterns are analyzed in the following using two levels of data aggregation. In the 

first one, see Section 3.1, the speed data  are averaged over the 3-month observation period (ND=63 

days excluding week-ends and holidays), yielding a two-dimensional (2D) map V2D of velocity vs. 

day time and segment. This 2D dataset is the average of the maps Vd over the ND 

days:
D

N

d dD N
D

 =
=

12 VV . For this first analysis, a relatively high temporal resolution is used for the ag-

gregation, T = 15min (leading to NT=96 samples), since an adequate sample size can be assured by 

the observation over several days. The resulting map V2D, with dimensions 96166, is shown in Fig. 

6. On the top of the figure a scheme shows the main geographical points of the related motorway 

section.  

The velocity map V2D is used as input of the clustering procedure in order to recognize the typi-

cal “macro” traffic behaviors that characterize the selected motorway and compute the related speed 

profiles. Some of these patterns can be easily recognized also by visual inspection of the speed map 

in Fig. 6, which shows that groups of road segments share similar behaviors. In particular, the seg-

ments in the first section of the road (segments 1-90 and 130-142) are all in free flow conditions 

apart from an area (segments 91-129) where a decrease in speed can be observed during morning 

peak hours due to congestion. On the other hand, the segments after the toll station (segments 148-

166) correspond to the north ring of the city of Milan and are highly congested, especially during 

morning and afternoon rush hours. Finally, a systematic decrease of the speed can be observed – at 

any hour - in a third area (segments 143-147), close to the toll station, where vehicles slow down be-

fore approaching the tollgate. These main traffic behaviors will be automatically recognized by the 

clustering procedure which aggregates segments with similar characteristics and evaluates the typical 

speed profiles as the average of the aggregated data. The procedure will also be applied to the nor-

malized 2D map obtained by normalizing the speeds to the segment free-flow speed, in order to 

catch similar time-dependent behaviors for segments with a speed offset in time series. 

 The second analysis, presented in Section 3.2, extends the study by recognizing typical traffic 

behaviors also over different days. In fact, traffic profiles may change not only from segment to 

segment, but also from day to day. As an example, for the selected A4 motorway BS→MI, the traffic 

observed during Monday morning is different from other week days due to people that commute to-

wards Milano for the week; furthermore, anomalous events (e.g., accidents) may cause different be-

haviors in specific days. A detailed analysis is thus carried out to study these patterns, by applying 

the clustering procedure directly on the three-dimensional (3D) velocity dataset that collects the daily 

speed profiles associated with the 166 segments and all the 63 days:   dN

ddD 13 =
= VV . In other words, the 

dimension “days” is added to the 2D map in Fig. 6, yielding the NT16663 speed map V3D shown in 

Fig. 7. Since for the number of available observations per day is moderate, a larger timeslot is used 

in this case for aggregation, T = 30min (leading to NT=48 time samples per day). The analysis is fo-

cused on a time window that covers the morning rush hours. 
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Figure 6. 2D velocity map [km/h] obtained by aggregating with T=15min and averaging over 63 days, using data from vehicles 

with 80km/h≤vmax≤100km/h. 
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Figure 7. 3D velocity map [km/h] obtained by aggregating on periods of T=30min. 

 

3.1 Segment clustering on 2D speed dataset 
 

The clustering procedure applied to the velocity map averaged over the days, V2D, brings to the 

identification of 7 clusters, as depicted in Fig. 8.  The speed profile associated to each cluster - clus-

ter profile or typical profile - is obtained by averaging the data within each cluster. The seven typical 

speed profiles are shown in Fig. 9, over the 24 hours, together with the standard deviation range.  

This segment classification gives a pretty clear and simple characterization of the traffic condi-

tions over the motorway, with a small number of distinctive patterns, as depicted in Fig. 9. We can 

refer to the scheme on the top of Fig. 6 to understand the geographical meaning of the classification 

output. A number of regions can be recognized. Clusters 3 and 4 characterize the two free flow areas 

in the map, in particular cluster 4 indicates area where a lower speed is observed during rush hours in 

the morning. Clusters 1, 6 and 7 describe the area close to the toll station where vehicles slow down. 

Finally the north ring of Milan is associated with clusters 2 and 5 where congestions are observed 

during rush hours. 

Now we apply the clustering procedure to the 2D velocity map obtained by normalizing over the 

free flow speed and averaging over the 3-month period. The procedure is now applied to a smaller 

time period (5-12 am) including the rush hours and four clusters are selected. Figure 10 shows the 

identified clusters and Fig. 11 the corresponding cluster speed profiles. A better description of the 

different traffic behaviors can be observed in this case, as the four main regions previously described 

can be more easily recognized. Speed profiles are clearly identified, since their overlapping is negli-

gible, and the standard deviation is smaller than the one of the disaggregated case. 
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Figure 8. Motorway segment classification by clustering of 2D velocity data. 
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Figure 9. Cluster speed profiles [km/h] associated with the 7 clusters in Fig. 8. Shaded areas represent the standard deviation 

range.  
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Figure 10. Motorway segment classification by clustering of normalized 2D velocity data on morning hours 5-12am. 

 

 

 
Figure 11. Cluster speed profiles (normalized speed) associated with the 4 clusters in Fig. 10. Shaded areas represent the 

standard deviation range. 
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3.2 Segment clustering on 3D speed dataset 
 

The clustering procedure is here applied to the 3D dataset V3D in Fig. 7, limiting the analysis to 

the morning hours from 5 to 12 am. The resulting classes and the associated typical profiles are in 

Fig. 12 and Fig. 13, respectively.  

Fig. 12 shows the classification of data (segments and days) in 5 clusters. The cluster speed pro-

files and the related standard deviation ranges are in Fig. 13. The standard deviation observed in each 

cluster is larger in this case as the profiles are not averaged over days and a wider variety of traffic 

behaviors is observed. In spite of this, it is interesting to observe that clusters are roughly preserved 

over different days, i.e. the classification is almost the same along the axis of days, apart from some 

local fluctuations and anomalous events. The space description of the motorway reveals a wider 

background zone where cluster 1 can be applied, and a reduced zone classified as cluster 2, which 

has a profile with only a short speed decrease of 25 % at 7 am. The other three clusters describe 

heavy congestion phenomena which are mainly located at the final part of the motorway (around 

segment 143) where the toll station operations and suburban trips to Milan are relevant. However, in 

Fig. 13 it is possible to note that cluster 5, which has a speed reduction greater than 30% between 7 

and 9 am, is assigned also to other segments in sporadic days. These cases are likely to be related to 

anomalous events, as they fall in areas normally assigned to clusters 1-2.  

We use the CCISS** data, published on the web for describing traffic events on the A4 motorway 

MI→BS, to verify the anomalous events discussed above. Four real traffic events detected by CCISS 

can be actually associated to these anomalies, as reported in Fig. 13: 

1. Wide jam between Palazzolo (km 195.2) and Rovato (km 203.4) due to an accident, at 

6:43, on February 03rd 2011. 

2. Wide jam - 8 km long -  between Seriate (km 181.1) and Capriate (km 162.7)  due to an 

accident, at 6:20, on February 25th 2011. 

3. Accident between Seriate (km 181.1) and Bergamo (km 174.5), at 6:36, on March 10th 

2011. 

4. Accident between Rovato (km 203.4) and Palazzolo (km 195.2), at 8:43, on March 10th 

2011. 

We can conclude that by analysing single-day speed time series, the typical speed patterns of the 

motorway can be better identified and it is also possible to recognize anomalous events. 

 
** Traffic Event Data published on the web (http://www.cciss.it/) have been kindly provided for the period analyzed 

by the Direzione generale per la sicurezza stradale (Div. 5), Ministero delle Infrastrutture e dei Irasporti (I). 
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Figure 12. Segment-day classification by clustering of 3D velocity data on morning hours 5-12am.  Red circles in-

dicate anomalies manually verified using CCISS data. 
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Figure 13. Cluster speed profiles associated with the 5 clusters in Fig. 12. Shaded areas represent the standard deviation range.  
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4. Segment classification and its use for road traffic applications 
 

One of the most relevant traffic engineering applications, based on the synthetic information 

displayed in the previous section, is the easy identification of critical zones along the motorway 

where the traffic behavior needs to be better observed, e.g. by an infrastructure-based monitoring 

system with fixed detectors. Indeed, in the analyzed scenario only a part of the motorway reveals a 

variable speed over time (clusters 2 to 4 in Fig. 11) while for many segments (more than 80) the 

speed behavior of traffic is almost constant and does not need to be further observed or modeled 

(clusters 1, associated to free flow). Since fixed installations for traffic monitoring usually require 

not negligible resources (Pascale et al., 2012), a useful support for sensor location can be derived by 

this type of analysis based on floating vehicle data.  

Another possible application of segment speed profile classification in transport modeling is 

large scale network building, where reference values are usually needed to calibrate cost functions 

and vehicle speed, in order to estimate road performance on average or in most frequent cases for the 

different elements of the road network. Also in medium/short term traffic control applications, in-

formation about speed along the road may be useful for many reasons, such as travel-time estimation 

for driver information or vehicle routing operations in freight delivery, where the delivery time can 

be estimated on the base of segment speed identification and updated in case of anomaly detection.  

Two of the above mentioned applications, anomaly detection and travel-time estimation, are dis-

cussed more in detail in the following subsections. 
 

 

4.1 Anomaly detection using cluster profiles 
 

We consider here the anomaly detection step enclosed in block F of Fig. 3. The cluster speed pro-

files provided by the clustering method represent the typical behaviour of speed on the road in terms 

of mean value and variance. Thereby, the comparison between an incoming speed profile and the 

typical one for the same segment enables the automatic recognition of anomalous situations. As re-

quired in detection theory, we need to define a threshold for this process.  

We focus our attention on the sequence of segments from s=1 to s=120 where we can recognize 

essentially two clusters, indexed as 1 and 2 in Fig. 12. We begin our analysis by comparing - in terms 

of Euclidean distance - the typical normalized speed profile associated to cluster 1 shown in Fig. 13, 

with the normalized segment speed profiles of all days. Fig. 14 shows the Euclidean distance of the 

profiles on days of March, April and May. If we compare Fig. 14 with Fig. 12 we can observe that 

the four anomalies highlighted as red circles in Fig. 12 can be recognized when the distance is above 

1 for at least 10 consecutive segments. If we analyse cluster 2 we observe a similar behaviour. Au-

tomatic anomaly detection, thereby, could be performed by joint threshold detection over a set of 

consecutive segments. 

For validating the proposed detection approach, we use the second dataset collected in June (as 

described in Section 2.1). In Fig. 15 the distance between each speed profile coming from the valida-

tion dataset and the cluster-1 typical profile is shown. Grey areas represent weekends and holidays 

that are not taken into account in the analysis, while the red square marks the area in which the detec-

tion process gives positive results. The three white circles indicate the sequence of segments that in a 

specific day obey our conditions. By cross-checking these results with the CCISS data, we find that 

the three detected areas can be related to the following events registered by CCISS: 

Event 1. Jam of 3 km length due to a vehicle broken down between Grumello (km 189.7) and 

Seriate (km 181.1), at 8:08 on June 10th 2011. 

Event 2. Two causes can be related to this event: 
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a. Accident between Brescia Ovest (km 217.3) and Ospitaletto (km 208.4), at 

11:12 on June 22th 2011. 

b. Roadwork between Brescia Ovest (km 217.3) and Ospitaletto (km 208.4), at 

10:46 on June 22th 2011. 

Event 3. Two causes can be related to this event: 

a. Jam due to a vehicle broken down between Brescia Ovest (km 217.3) and Ospi-

taletto (km 208.4), at 6:20 on June 30th 2011. 

b. Vehicle burning between Ospitaletto (km 208,4) and Rovato (km 203.4) at 5:51 

on June 30th 2011. 

From the above results we can conclude that the anomalies recognised by the detection procedure 

correspond to real congestion events. This confirms that the proposed methodology can actually be 

useful for providing reference profiles for anomalous event detection. 
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Figure 14. Euclidean distance between the segment speed profiles collected on March, April and May and the cluster-1 profile  

in  Fig. 13.  
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Figure 15. Euclidean distance between the speed profiles collected on June and the cluster-1 profile in Fig.13.  

 

4.2 Speed and travel time estimation for freight delivery operations 
 

In many applications in transport systems, speed information is used to predict the travel time 

along a route, which is composed by a number of links where traffic conditions frequently change 

over time. In fleet management operations, for example, a reliable estimate of a vehicle travel time 

for delivery and pickup operations can be useful if the service is established to comply time con-

straints. To this aim, in the following sections two tests are reported on the estimation of speed and 

travel time data, for selected days in June 2011, in the A4 motorway BS→MI. Estimates are obtained 

using the typical speed profiles provided by the clustering results based on 63 working days in Feb-

ruary, March and May 2011. 

The comparison between the actual speed and the corresponding estimate obtained using the typ-

ical profiles is shown in Fig. 16, over 20 days of June, in each of the A4 segments, at 7 am (top fig-

ure) and 8 am (bottom figure). Estimates are drawn from the typical profiles resulting from the 2D 

and 3D velocity datasets as described in Sections 3.1-3.2. In the 2D case, the speed estimate is read 

directly from the cluster profile associated to the segment. In the 3D case, for any segment the speed 

pattern of the most frequent cluster observed over the 20 days has been chosen for the two selected 

time instants. It is possible to note the difference in the two time slices, where the congestion phe-

nomena observed in segments around the 100th at 7 am move mainly in the downstream part of the 

motorway (after the 140th segment) at 8 am. If we look at the diagram at 7am, the congestion is con-

firmed by the low speed values around the 100th segment (approx. 65 km/h for 3D and 80 km/h for 

2D clustered data). On the other hand, we can notice in the 8am plot that the speed at the 100th seg-

ment is increased to the free flow value, while in the downstream segments (after the 140th), the 

speed is lower than the one observed at 7 am (e.g. the 3D clustered data show that the speed of 65 

km/h observed at 7 am is never reached at 8 am). The 3D map clustering, although also the 2D map 
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clustering captures the global trend, better predicts the location of these phenomena.  
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Figure 16. Estimated speed [km/h] (clustering on 2D and 3D data) on segments [Id.] vs. observed speed for 20 days in June. 

Results are reported  for 7am (top) and 8am  (bottom).  
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Figure 17. Estimated vs. observed travel time for 20 days in June. 

 

Since the use of speed data is mainly for travel time estimation in practical applications, in the 

following we assess the accuracy of the estimate of the travel time for a journey along the A4 mo-

torway using the typical speed profiles for estimation. The peak hours are selected to perform the 

test. For the time slice 7 am, from Brescia to Milan (BS→MI), the journey duration is estimated in 

71 min, if the 2D clustered data is used, and 68 min if the speed pattern of the most frequent cluster 

is selected from the 3D clustered data, while 62 min is the time estimation assuming the speed value 

in free flow conditions. For the same time slice, the journey duration from Bergamo to Milan 

(BG→MI) is estimated as equal to 38 min, based on the 2D clustered data, and 36 min using the 

most frequent cluster of the 3D clustered data, while only 31 min is the estimation in free flow condi-

tions.  

The comparison of the travel time estimates with the actual parameters observed in the 20 days of 

June is reported in Fig. 17. The estimate is shown to be accurate for all days, apart from the day 19th 

where a relevant error is observed on both BS→MI and MI→BS journeys. This error is due to a 

number of anomalous events, as recorded by CCISS on this day. Looking at Fig. 15, we can observe 

that all these phenomena are related to segments located after the toll station as highlighted by a 

square on the bottom-right section of the figure. Also, for the days 2, 7, 12 and 17, a systematic dif-

ference occurs, but this can be explained observing that on Monday traffic flow in the morning hours 

is usually higher than on other days. 

 

 

5. Conclusions 
 

In this paper a method for the identification of typical traffic patterns has been proposed and val-

idated with a motorway test case, by using data from truck probes as well as data collected on oc-

curred accidents. A main result is that in the selected A4 motorway (Turin-Venice), within the Bre-

scia to Milan section of approximately 90 km length, a small set (4-5) of typical speed patterns is 

enough to describe the average travelling speed over the morning hours. The proposed method is 

able to efficiently characterize a variety of traffic behaviors observed over the entire road section.  

The analysis on speed data has been used as starting point to outline a procedure for anomaly de-

tection. The typical profiles computed using data collected over three months have been used as ref-

erence to recognize anomalies occurred over the selected motorway route. Results have been verified 

using information on the anomalous events registered by the national provider of road traffic infor-

mation (CCISS) over the considered road section. 



 

 22 

Speed information can be nowadays used for different aims, such as:  

- transport planning, when reference traffic values are needed to estimate the road performance 

on average or in most frequent cases, referred in the case to heavy-duty vehicles;  

- medium and short-term traffic applications, where speed data along the road are needed for 

travel-time estimation or truck routing operations;  

- traffic management, as historical speed time series can be used as baseline for travel time es-

timation, navigation, fleet management (time windows), when other data are not available;  

- traffic flow modeling, where historical speed time series can be used for validation of the 

models and critical segments need to be selected along the road for a detailed traffic data col-

lection.  

In the next future, after the compulsory introduction in Europe of black boxes on new vehicles 

since 2015, namely for e-calls, the analysis we provided might be gradually enriched even for recon-

structing overall accidents, for providing instantaneous risk analyses in flows both for primary and 

secondary accidents, for updating traffic data in real-time, for allowing optimal shift from traction to 

propulsion for electric-ICE hybrid vehicles, for collecting images associated with any event from the 

front of the vehicle, for transmitting these information through vehicle-to-infrastructure communica-

tions. 

Some critical points need to be addressed as future work. Although the assessments on real traffic 

event data showed already usable and promising results for anomaly detection, the size of the dataset 

adopted for this first study was at last moderate and might be extended for a more accurate analysis, 

including further data over time and road segments. Moreover, to enhance the reliability of the esti-

mates, further sources of traffic information, such as flow or density, could be useful to integrate the 

speed information, by merging or comparing data with those collected through devices on or close to 

the infrastructure. A further development is also the investigation of different clustering methods to 

explore if relevant effects on classification occur for the specific application examined in this paper. 

The proposed procedure is planned to be used for the creation of a database that will integrate 

historical speed information  - possibly with data from other types of probes or fixed  detection sys-

tems as those used by CCISS - for supporting applications such as travel-time estimation, fleet man-

agement, navigation and automatic incident detection. 
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