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Abstract—In this paper, we examine the asymptotic behavior
of an equation that describes two rotors installed on a common
oscillating platform. Namely, we establish analytic criteria for
self-synchronization of the rotors by means of the Popov method
of “a priori integral indices”.

Index Terms—Synchronization, stability of nonlinear systems,
vibrational mechanics

I. INTRODUCTION

In this paper, we study an equation that originally appeared
to explain the phenomenon of self-synchronization of two
vibro-exciters (eccentric rotors rotated by asynchronous elec-
tric motors) installed on a common rigid platform with one de-
gree of freedom. The rotors can synchronize without additional
mechanical couplings between them; this phenomenon was
first described in [1] and has inspired numerous engineering
applications [2]. This motivates the analysis of mathematical
models explaining phenomena of self-synchronization [3]–[5].

In this paper we adopt the mathematical model introduced
in [6], which is obtained from the mechanical equations of
motion by separating slow and fast dynamics. The problem
in question is to find conditions under which asymptotic syn-
chronization of the slow components of the rotors’ frequencies
is guaranteed. The deviation between two phases in the model
from [6] is governed by an integro-differential Volterra equa-
tion with a periodic nonlinearity, which enables the application
of Popov’s method of a “priori integral indices” [7].

Popov’s method, however, is primarily intended to inves-
tigate global stability of a unique equilibrium, whereas the
system at hand is featured by an infinite set of equilibria. To
cope with stability of equilibria set in systems with periodic
nonlinearities, Popov’s stability theory has been generalized
in our previous works [8]–[10]. In this paper, we employ
the nonlocal reduction technique [11], which exploits the
information about stability of low-order systems and a special
procedure [12] which employs periodic functions with zero
mean integral value. Our main results are new analytic criteria
for synchronization of two rotors, or, equivalently, convergence
of every trajectory to the synchronous manifold.

Fig. 1. Rotors situated on a rigid platform

II. THE STATEMENT OF THE PROBLEM

Consider a system of k = 2 vibro-exciters (rotors) installed
on a rigid platform and driven by asynchronous electric
motors. The platform with one degree of freedom [1], [2] can
move along the axis Ox and is connected to the stationary
support by a spring. The rotors’s axes are orthogonal to Ox.

The equations of motion of this system are as follows [2]:

Iiϕ̈i = Li(ϕ̇i) +miεiẍ sinϕi (i = 1, 2, . . . , n), (1)

Mẍ = −cx+

n∑
i=1

miεi(ϕ̇
2
i cosϕi + ϕ̈i sinϕi)

(M = M0 +

n∑
i=1

mi; Ii = Ji +miε
2
i ).

(2)

Here x is the displacement of the platform, ϕi (i = 1, 2) is the
angle of the i-th rotor counted from Ox-axis. The constants
Ji,mi, εi (i = 1, 2) stand for, respectively, the i-th rotor’s
moment of inertia, mass and eccentricity, M0 is the mass of
the platform, c is the elasticity coefficient of the spring. The
the rotation torque of the motor Li(ϕ̇i) is computed as

Li = L0
i − kiϕ̇i (L0

i , ki = const). (3)

To system (1)-(3) the method of “direct partition” of motion
can be applied. The method separates the “slow” and the “fast”



components of the motion. According to [6] we suppose that

ϕi(t) = Ωt+ αi(t) + Ψi(t,Ωt) (Ω = const) (4)

1

2π

2π∫
0

Ψi(t,Ωt) dΩt = 0. (5)

Here αi and Ψi are, respectively, the slow and the fast
components of ϕi.

We also assume that Ψi is small and in the equation (2) we
have

ϕ̇i ≈ Ω, ϕ̈i ≈ 0. (6)

By virtue of (3) equation (1) transforms into

Iiϕ̈i + kiϕ̇i = L0
i +miεiẍ sinϕi (i = 1, 2). (7)

Equation (2) is transformed by means of (6) and (4) where
Ψi(t,Ωt) is assumed to be negligibly small. We have

Mẍ+ cx =

2∑
i=1

fi cos(Ωt+ αi) (fi = miεiΩ
2). (8)

Following [6] we consider the solution of linear non-
homogeneous equation (8) and substitute it into (7). Then by
virtue of (5) and (4) we obtain from (7) the equations for slow
components:

Iiα̈i + kiα̇i = ki(Ωi − Ω) + Vi (i = 1, 2) (9)

with

Ωi :=
L0
i

ki
,

Vi := −Axxfi
2π

2π∫
0

2∑
s=1

fs cos(Ωt+ αs) sin(Ωt+ αi) d(Ωt),

(10)
where

Axx =
1

M(ω2 − Ω2)
, ω2 =

c

M
. (11)

Since

1

2π

2π∫
0

cos(Ωt+ αs) sin(Ωt+ αi) d(Ωt) =

=
1

2
sin(αi − αs),

(12)

one has from (9){
I1α̈1 + k1α̇1 = k1(Ω1 − Ω)− 1

2Axxf1f2 sin(α1 − α2),

I2α̈2 + k2α̇2 = k2(Ω2 − Ω)− 1
2Axxf2f1 sin(α2 − α1).

(13)
Note that the equilibrium αi = const (i = 1, 2) may exist

only if

Ω =
k1Ω1 + k2Ω2

k1 + k2
. (14)

So for slow components of ϕi we have obtained the system{
I1α̈1 + k1α̇1 +AΦ(α1 − α2) = 0,

I2α̈2 + k2α̇2 −AΦ(α1 − α2) = 0,
(15)

where
Φ(σ) = sinσ − β

A
, (16)

A =
1

2
Axxf1f2, β =

k1k2(Ω1 − Ω2)

k1 + k2
. (17)

We suppose that

| β
A
| < 1. (18)

The self-synchronization of the two vibro-exciters means
that

σ(t)
∆
= α1(t)− α2(t)→ const, σ̇(t)→ 0 as t→ +∞.

(19)
The goal of this paper is to establish conditions on the

parameters of (15) which guarantee the self-synchronization
of the rotors.

For the purpose we reduce the system (15) to Volterra
integro-differential equation with respect to σ(t):

σ̇(t) = σ0(t)−
t∫

0

Γ(t− τ)Φ(σ(τ)) dτ (20)

with
σ0(t) = α̇1(0)e−

k1
I1
t − α̇2(0)e−

k2
I2
t, (21)

Γ(t) = A

(
1

I1
e−

k1
I1
t − 1

I2
e−

k2
I2
t

)
. (22)

There exists a number of frequency-algebraic criteria which
are destined for the investigation of asymptotic behavior of
Volterra equation (20) (see [10] and references therein). The
criteria have been proved by Popov method of a priori integral
indices [7]. They are formulated in terms of the transfer
function of the equation (20):

K0(p) = A

(
1

I1p+ k1
+

1

I2p+ k2

)
(p ∈ C). (23)

The specific character of equation (20) and of the nonlinear
function Φ(σ) have brought about the employment of special
Popov functionals, which have been generated exclusively, for
systems with periodic nonlinearities (synchronization systems)

In the succeeding sections we demonstrate the conditions
for self-synchronization obtained by the employment of var-
ious types of Popov functionals destined for synchronization
systems.

III. THE BAKAEV-GUZH PROCEDURE

The main idea of Bakaev-Guzh procedure [8], [12] is to
single out within a Popov functional a periodic function with
zero mean integral value.

The advantage of the method for infinite dimensional
MIMO system is described in detail in [10]. In [13] the results
of [10] are simplified for SISO system. Consider the equation

σ̇(t) = α(t)−
t∫

0

γ(t− τ)ϕ(σ) dτ (24)



with
α, γ : [0,∞)→ R, ϕ : R→ R. (25)

Assume that α ∈ C[0,∞), γ is piece-wise continuous and

|γ(t)|, |α(t)| < Me−rt, (M, r > 0). (26)

Assume also that

ϕ ∈ C1(R), ϕ(σ) = ϕ(σ + ∆) (∆ > 0),

µ1 ≤ ϕ′(σ) ≤ µ2 (µ1 · µ2 < 0).
(27)

The transfer function of (24) is as follows

K(p) =

∞∫
0

γ(t)e−pt (p ∈ C). (28)

Theorem 1: [13] Suppose there exist numbers ε, δ, τ >
0, s1 ≤ µ1, s2 ≥ µ2 such that

1) the frequency-domain inequality is valid:

π0(ω)
∆
= Re{K(iω)− τ(K(iω) + s−1

1 iω)∗·
·(K(iω) + s−1

2 iω)− ε|K(iω)|2 − δ ≥ 0, ∀ω ≥ 0,
(29)

where symbol ∗ stands for the complex conjugation;
2)

δ >
ν2

0ν
2

4(εν2
0 + τν2)

, (30)

where

ν =

∆∫
0

ϕ(σ) dσ

∆∫
0

|ϕ(σ)| dσ
,

ν0 =

∆∫
0

ϕ(σ) dσ

∆∫
0

|ϕ(σ)|
√(

1− s−1
1 ϕ′(σ)

) (
1− s−1

2 ϕ′(σ)
)
dσ

.

(31)

Then for every solution of (24) it is true that

σ(t)→ q, ϕ(q) = 0; σ̇(t)→ 0 as t→ +∞. (32)

Note that the choice of different couples {s1, s2} may result
in essentially different conditions for self-synchronization.

In paper [14] Theorem 1 has been applied to system (15)
in case s−1

1 = −1, s−1
2 = 1. Here we consider the case of

s−1
1 = 0, s−1

2 = 1. In this case we have

ν = − πβ

2
(
β arcsin β

A +
√
A2 − β2

) ,
ν0 = − 3πβ

2
√

2(3β + 2(A− β)
3
2A−

1
2 )
,

(33)

π0(ω) = ω4(−δI2
1I

2
2 +AτI1I2(I1 + I2))+

+ω2(Ak1I
2
2 +Ak2I

2
1 +Aτ(I1k

2
2 + I2k

2
1)−

−A2(ε+ τ)(I1 + I2)2 − δ(I2
1k

2
2 + I2

2k
2
1))+

+(Ak1k
2
2 +Ak2k

2
1 −A2(ε+ τ)(k1 + k2)2 − δk2

1k
2
2).

(34)

The inequality (29) is valid for all ω ≥ 0 if the following
inequalities are true:

ε+ τ ≤ k1k2

2A(k1 + k2)
, (35)

δ ≤ A(k1I
2
2 + k2I

2
1 )

2(k2
1I

2
2 + k2

2I
2
1 )
, (36)

δ ≤ Aτ(I1 + I2)

I1I2
. (37)

Introduce the constant

P
∆
=

k1k2(k2
1I

2
2 + k2

2I
2
1 )

2(k1 + k2)(k1I2
2 + k2I2

1 )
· I1 + I2
I1I2

. (38)

Theorem 2: The limit relations (19) are true for every
solution of (20) provided that ether

A ≤ P, ν2
0ν

2

(ν2
0 + ν2)

<
k1k2(k1I

2
2 + k2I

2
1 )

2(k1 + k2)(k2
1I

2
2 + k2

2I
2
1 )
, (39)

or alternatively

A > P,
ν2

0ν
2

(ν2
0 + ν2)

<
k2

1k
2
2(I2 + I1)

4AI1I2(k1 + k2)2
. (40)

Proof: We choose

ε = τ =
k1k2

4A(k1 + k2)
. (41)

In the first case, let

δ =
A(k1I

2
2 + k2I

2
1 )

2(k2
1I

2
2 + k2

2I
2
1 )
. (42)

Then due to (39) we obtain that

δ ≤ Aτ(I1 + I2)

I1I2
. (43)

So the condition 1) of Theorem 1 is fulfilled. The condition
2) of Theorem 1 takes the form

4εδ = 4τδ >
ν2

0ν
2

(ν2
0 + ν2)

(44)

which follows from (39).
In the second case let

δ =
Aτ(I1 + I2)

I1I2
(45)

Then it follows from (40) that (29) and (36) are true. Thus
the Theorem is proved.



IV. LEONOV’S METHOD OF NONLOCAL REDUCTION

The idea of nonlocal reduction [8], [11] is to “inject” in
Popov functionals of infinite dimensional system the trajecto-
ries of stable system of low order.

Consider the equation

σ̈ + aσ̇ + ϕ(σ) = 0 (46)

with ϕ(σ) described in previous section.
This equation has been exhaustively investigated (see [8]

and references therein ). It is well known that it has a
bifurcational value acr(ϕ) such that for a > acr the limit
relations (32) are true for its every solution.

The frequency-algebraic stability criterion exploiting
for (24) the nonlocal reduction technique is as follows.

Theorem 3: [8] Suppose there exist numbers
s1 ≤ µ1, s2 ≥ µ2, ε, τ > 0, λ ∈ (0, r) such that the
conditions are valid:

1) the frequency-domain inequality

π(ω, λ)
∆
= Re{K

(
iω − λ)− τ(K(iω − λ) + s−1

1 (iω − λ)
)∗·

·
(
K(iω − λ) + s−1

2 (iω − λ)
)
} − ε|K(iω − λ)|2 ≥ 0

(47)
is true for all ω ≥ 0,

2)
2
√
ελ > acr(ϕ). (48)

Then for every solution of (24) the limit relations (32) are
true.

Next assertion describes the application of Theorem 3 to
equation (20) in case s2 = −s1 = 1.

Introduce the function

f(x) =
4x(k1 − I1x)(k2 − I2x)

A ((k1 + k2)− (I1 + I2)x)
. (49)

Let
M

∆
= sup
x∈[0,r)

f(x) (50)

where
r = min{k1

I1
,
k2

I2
} (51)

Theorem 4:
If

M > a2
cr(Φ) (52)

then for every solution of (20) the limits (19) are valid.
Proof: Note that

K(iω − λ) = A
( 1

κ1 + iI1ω
+

1

κ2 + iI2ω

)
, (53)

where
κi = ki − λIi (i = 1, 2). (54)

It is not difficult to establish by direct computation that if

ε+ τ =
κ1κ2

A(κ1 + κ2)
, (55)

the condition 1) of Theorem 3 is satisfied.

We choose the value of λ such that

f(λ) = M (56)

Then
4λ(ε+ τ) = M. (57)

It is sufficient to choose

τ <
M − a2

cr

4λ
(58)

so that condition 2) of Theorem is fulfilled. Theorem 4 is
proved.

V. CONCLUSION

In this paper the problem of synchronization between two
vibro-exciters (eccentric rotors) installed on a common oscil-
lating platform is considered. By means of stability theory
for “pendulum-like” systems we establish analytic criteria for
self-synchronization of two rotors.
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