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Abstract 6 

In heterogeneous porous media, transmissivity can be regarded as a spatial stochastic variable. 7 

Transmissivity fluctuations induce stochasticity in the groundwater velocity field and transport features. In 8 

order to model subsurface phenomena, it is important to understand the relationships that exist between 9 

the variables that characterize flow and transport. Linear relationships are easier to deal with. 10 

Nevertheless, it is well known that flow and transport variables exhibit interdependences that become 11 

more and more nonlinear as the heterogeneity increases.   12 

The aim of this work is to draw attention to the information contained in nonlinear linkages, and to show 13 

that it can be of great relevance with respect to the linear information content. Information theory tools 14 

are proposed to detect the presence of nonlinear components. By comparing the cross-covariance function 15 

and mutual information, the amount of linear linkage is compared with nonlinear linkage. In order to avoid 16 

analytical approximations, data from Monte Carlo simulations of heterogeneous transmissivity fields have 17 

been considered in the analysis. The obtained results show that the presence of nonlinear components can 18 

be relevant, even when the cross-covariance values are nil.  19 

 20 

Key-Words 21 

Nonlinearity, Mutual Information, Heterogeneous transmissivity fields, Groundwater stochastic fields   22 

1. Introduction 23 

Groundwater is the most relevant source of high quality fresh water. However, groundwater is vulnerable: 24 

overexploitation and pollution constitute an increasing threat. In order to manage this precious resource, 25 

studies are necessary to obtain a better understanding of flow and transport phenomena. Over the past 26 

few decades, the difficulty of obtaining detailed knowledge about the spatial distribution of aquifer 27 

parameters, and hydraulic conductivity in particular, has led to the development of stochastic approaches 28 

in order to resolve groundwater issues by means of numerical and analytical studies (e.g., Dagan 1989; 29 

Dagan and Neuman 1997; Rubin 2003). Hydraulic conductivity is modelled as a spatial random function 30 

with given statistical proprieties, which are inferred from field data analysis and, as a consequence, 31 

hydraulic heads, velocity components and solute trajectories also become stochastic variables.  32 
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In the past, a great deal of attention was paid to linear stochastic theory (e.g., Dagan 1984, 1989; Rubin 33 

1991, 2003). In this case, the log-conductivity field is approximated by its first-order perturbation expansion 34 

and it is inserted into the continuity equation and Darcy’s law. According to some hypotheses on the flow 35 

and the domain size, linear theory is able to provide analytical expressions for the first and second 36 

statistical moments of local variables (e.g. log-conductivity, head fluctuations, flow velocity components, 37 

whose values only depend on their location in the space) and transport variables (trajectory fluctuations, 38 

spatial moments of the plume) that depend on the entire transport process. The adoption of the first-order 39 

perturbation expression would limit the applicability of the linear theory to low levels of transmissivity 40 

heterogeneity, i.e., the log-conductivity variance should be less than one. Nevertheless, numerical and 41 

analytical studies (e.g., Bellin 1992; Hsu et al. 1996; Dagan et al. 2003) have shown that a linear theory can 42 

be applied to higher heterogeneity levels, because of the balance of higher-order terms. The increased 43 

range of applicability of the linear theory has drawn attention to the possibility of examining the properties 44 

of flow and transport, which had previously been investigated mainly through their statistical moments 45 

(e.g., Dagan 1984, 1989; Dagan and Neuman 1997; Rubin 2003).   46 

Attention has also been paid to understanding the role of the higher-order terms that were omitted in 47 

linear theory approximations, and to the consequent nonlinear relationships between flow and transport 48 

variables (e.g., Dagan 1994; Hsu et al. 1996; Salandin and Fiorotto 1998). Hsu et al. (1996) developed 49 

second-order analytical expressions for fluid velocity covariance functions and for the covariance functions 50 

of trajectory fluctuations. They observed that the impact of second-order terms becomes appreciable in 51 

transport processes when the log-conductivity variance approaches two. Analyzing the frequency 52 

distributions of the velocity components and trajectory fluctuations and their values of the statistical 53 

moment, Salandin and Fiorotto (1998) clearly evidenced the effects of nonlinear terms in both flow and 54 

transport features.  55 

As the effect of nonlinear terms increases with the heterogeneity level, several studies have been carried 56 

out on flow and transport in highly heterogeneous media (e.g., Dagan et al. 2003; Fiori et al. 2003; Jankovic 57 

et al. 2003; Gotovac et al. 2009; Meyer and Tchelepi 2010). These authors focused on the analysis of the 58 

probability density functions (pdfs) and the statistical moments of the characterizing quantities, such as the 59 

velocity components, trajectory fluctuations and travel time. 60 

In this picture, the aim of the present work has been to draw attention to the nonlinear dependence that 61 

exists among some groundwater variables. Such a dependence can be relevant, even when the linear 62 

linkages are negligible, and it offers information that can be important in a number of problems, such as in  63 

conditioning techniques and inverse problems. 64 

In order to shed light on the nonlinear linkages, cross-covariance functions have been analyzed and 65 

information theory tools (i.e., mutual information, Shannon 1948) have been applied. Mutual information 66 

tools capture nonlinear relationships, while cross-covariance functions only grasp the linear relationship 67 
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between variables. The analysis is performed by processing data obtained from Monte Carlo simulations. In 68 

this way, analytical expressions are not used for the covariance and cross-covariance functions, and the 69 

terms that are neglected in their derivation do not affect the analysis.  70 

Information theory tools have been largely used in other fields, such as economics, biology, mathematics 71 

and geophysics (e.g., Islam and Sivakumar, 2002; Pluim et al, 2003; Leydesdorff et al., 2006; Donges et al., 72 

2009; Kinney and Atwal, 2014). Information theory has already been used to deal with groundwater 73 

problems: for example, Woodbury and Ulrych (1993, 1996, 2000) successfully applied the principle of 74 

minimum relative entropy to forward probabilistic modelling and to recover the release history of a 75 

groundwater contaminant, while Kitanidis (1994) proposed the dilution index which is an adaptation of the 76 

entropy expression. Mishra et al. (2009) proposed the use of mutual information analysis as a global 77 

sensitivity analysis technique, instead of stepwise regression analysis. Gotovac et al. (2010) have recently 78 

applied the maximum entropy principle to obtain the complete characterization of the travel time pdf 79 

(probability density function). Zeng and Wu (2012) also applied mutual information to detect the most 80 

important uncertainty factors in groundwater levels for a specific case study. However, mutual information 81 

has never been adopted to detect the role of nonlinear components in groundwater transport processes. 82 

2. Methods 83 

The Bravis-Pearson index,  is known as the linear correlation coefficient or Pearson correlation 84 

coefficient. It is a measure of the linear dependence of two random variables. Given two variables x and y, 85 

and assuming that N couples of (xi, yi), data are available, the linear correlation coefficient is defined as   86 
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where Cov(x,y) is the covariance between x and y, x and y are the standard deviations of x and y, 88 

respectively, and x  and y are the mean values. 89 

Considering the Schwarz inequality Cov(x,y) xy, it follows that 1: if =1, a perfect linear 90 

relationship exists between x and y and the variables are fully correlated; instead, if =0, the variables are 91 

not correlated. It is well known that a nil value of the linear correlation coefficient does not mean that the 92 

variables are independent of each other: in fact, there can be a nonlinear relationship that has not been 93 

captured by the linear correlation coefficient.   94 

Entropy is a measure of the uncertainty of a system (Shannon, 1948). If x is a discrete random variable with 95 

pdf p(x) and N data of x are available, its entropy is 96 
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and if two random variables are considered, x and y with joint pdf p(x,y), their joint entropy is given by 98 
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Considering that x and y can be dependent on each other, mutual entropy is defined. Mutual entropy 100 

between x and y represents the reduction in uncertainty of y as a result of the information on x (and vice 101 

versa), and it is expressed as follows: 102 

            
    

   
1 1

,
, , , ln

N N
i j

i j
i j i j

p x y
I x y H x H y H x y p x y

p x p y
 , (4) 103 

where it can be verified that I(x,y)0.  104 

In mutual information analysis, two indicators are used to measure the dependence of two variables, the U 105 

uncertainty coefficient (Theil, 1972) and the R coefficient (Granger and Lin, 1994), namely 106 
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     1/2
, 1 exp 2 ( , )R x y I x y    (0R1).    (6) 108 

The U measure lies between 0 and 1: when the uncertainty coefficient is zero, it means that x and y are not 109 

dependent on each other; if its value is unitary, the knowledge of x is able to completely predict y, and the 110 

opposite is also true, i.e., a one-to one relationship exists between x and y. Similarly, if R is zero, x and y are 111 

independent, while R is equal to one when there is an exact (linear or nonlinear) dependence relationship 112 

between x and y.  113 

It can also be verified (Cover and Thomas, 1991) that when the bivariate distribution p(x,y) of x and y is 114 

Gaussian then  115 

    , ,R x y x y  . (7) 116 

Property (7) makes use of the R indicator particularly interesting to investigate the linear/nonlinear 117 

relationship between two variables when one variable has a Gaussian pdf and the other one is presumed to 118 

be linearly related to the first one. In this case, if the R and  values are identical, the relationship is purely 119 

linear, otherwise their displacement is a proxy of nonlinear terms in the relationship between the variables.  120 

Variables that deviate from Gaussianity are also considered in the present manuscript. In order to compare 121 

R and , we selected cases where either at least one variable is Gaussian or the correlation coefficient is 122 

almost nil. In the first case, as only one of the two variables is Gaussian, R- being different from zero 123 

implies that the other variable is not a pure linear function of x. In the second case, an approximately zero 124 

value of  entails that the whole dependence embedded in R can be ascribed to nonlinear dependencies, 125 

regardless of the pdf of the variables.  126 

It can also be observed that both R and   varies from 0 and 1, and typical values of R=0.6-0.7 mark a 127 

strong association between the variables (e.g., Mishra et al. 2009), while =0.6-0.7 means an important 128 

correlation (i.e., linear dependence). In the same way, R=0.2-0.3 marks a weak association between 129 
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variables, while =0.2-0.3 means a weak correlation (i.e., linear dependence). Therefore, R- seems to be 130 

significant when it is greater than 0.3-0.4, namely when R and  clearly describe a different degree of 131 

association.  132 

3. Problem statement 133 

In this work, flow and transport phenomena have been considered through heterogeneous porous media. 134 

A simple flow scheme is proposed, where the source of non-linearity is easily controlled by the log-135 

transmissivity heterogeneity level. Two-dimensional confined aquifers, without recharging, are considered: 136 

the boundary conditions are constant in time and produce a flow that develops in the x1, x2 plane (see 137 

Fig. 1): the beds of the confined aquifer are plane and parallel (the thickness, B, of the aquifer is constant), 138 

one of the principal anisotropy directions, x3, is orthogonal to the confining beds and the hydraulic head 139 

gradient in the x1, x2 plane does not depend on x3 (e.g., de Marsily 1981). Heterogeneity is due to spatial 140 

variations of transmissivity, while the effective porosity is considered to be constant.  141 

The approach to the problem is stochastic: transmissivity is a spatial random function with statistical 142 

features that are inferred from the data. The aquifer is considered a realization of an ensemble of 143 

statistically equivalent aquifers.  144 

The velocity field and the hydraulic head field are related to the transmissivity field through Darcy’s law and 145 

the continuity equation 146 

       
2

1

1
1,2i ij j

j

U T J i
nB 

 x x x , (8)  147 

   0H  T , (9) 148 

where Ui is the seepage velocity component (i=1,2), n is the effective porosity, J(x) is the hydraulic head 149 

gradient, Tij is the point value of the transmissivity tensor T and H is the hydraulic head.  150 

Because of the stochasticity of transmissivity, the velocity components and hydraulic heads are also 151 

stochastic. In each realization, the value of a variable at a given point is characterized by a fluctuation value: 152 

vi(x)=Ui(x)-<Ui(x)>, where vi(x) is the velocity component fluctuation in direction i (i=1,2), Ui(x) is the velocity 153 

value at location x and the symbol < > denotes the ensemble mean operator; similarly, h(x)=H(x)-<H(x)> is 154 

the hydraulic head fluctuation.  155 

Transport processes are affected by the stochasticity of the flow field. Considering the motion of a particle 156 

released into an aquifer at time t=0 in x0=(0,0), its location at time t — given by     
0

t
t t dt X U X — is 157 

stochastic: the ensemble mean location has coordinates <X1(t)> and <X2(t)>, along the x1 and x2 axes, 158 

respectively, and the trajectory fluctuations are given  in each realization by X’1(t)= X1(t)-<X1(t)> and X’2(t)= 159 

X2(t)-<X2(t)>.  160 
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In this work, in order to take advantage of eq.(7) and to detect nonlinearity, the log-transmissivity field, 161 

Y(x)=ln(T(x)), is assumed to be a stationary second order field with a multivariate normal (MVN) 162 

distribution, according to classic stochastic approaches (e.g., Delhomme 1979; Dagan 1984). As Y has an 163 

MVN pdf, if the flow and transport variables are linearly related to Y, they also have an MVN pdf and the 164 

bivariate distribution of these variables is normal: in this case, eq.(7) is verified and R= Instead, the non-165 

equality between R and  values points out the presence of nonlinear terms in the relationships between 166 

the considered variables. The impact of nonlinear terms increases as the difference between R and 167 

increases 168 

The numerical data processed in this work were obtained by means of Monte Carlo simulations of the 169 

transmissivity field. The numerical approach is the same as the one that was used in previous works (e.g., 170 

Butera et al. 2009; Butera and Soffia 2017). A brief description of the Monte Carlo set up is presented 171 

hereafter.  172 

Two-dimensional heterogeneous transmissivity fields in the x1, x2 plane, which model confined aquifers 173 

with horizontal flow, were generated through the Fast Fourier Transform method (Gutjahr 1989). The log-174 

transmissivity field, Y(x)=ln(T(x)), is assumed (i) to be a stationary second order field, (ii) to have an MVN 175 

pdf and (iii) to be characterized by an exponential covariance function    2, ' exp /
Y Y Y

C r x x  , where 176 

'r  x x  and lY is the correlation length of log-transmissivity.  177 

Since the impact of the nonlinear terms increases as the transmissivity field variance increases, two 178 

heterogeneity levels were considered — 2
Y=0.16 and 2

Y =2 — to reproduce weakly and mildly 179 

heterogeneous aquifers. The generated transmissivity fields had a square shape with a size equal to 42lY 180 

and were subdivided into 252x252 blocks with a side size equal to lY/6; a value of transmissivity was 181 

assigned to each block. If the ensemble mean of the velocity values is computed, the flow is uniform, it 182 

evolves along direction x1 and it is obtained by assigning an impervious boundary condition to the northern 183 

and southern sides and fixed head values to the western and eastern sides (Fig.1). 184 

Hydraulic heads, H(x), were computed at the nodes of the transmissivity blocks, and eq. (9) was solved by 185 

means of the Galerkin finite element method. In order to avoid boundary effects, the external frame (with 186 

6l width) was no longer considered in the subsequent analysis of the local and transport variables. The 187 

transport simulation considered an instantaneous release of the solute from a point source: the particle 188 

trajectory was computed in the 0- 21 interval, using the particle tracking method, where =t<U1>/ lY is 189 

the dimensionless time and <U1> is the ensemble mean velocity, which is uniform in space. In each 190 

realization, a particle was released into x0=(0,0), using the coordinate systems shown in Fig.1.  191 

A total of 1500 realizations were performed for the smaller log-transmissivity variance and 3000 for the 192 

higher . The number of simulations was chosen to ensure the convergence of the second moments of both 193 

the velocity and trajectory components. The time step used in the particle tracking procedure is the 194 
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minimum between 1 and 2, where 1=0.2*x/v1max (x is the grid side size, which is equal to lY/6, 195 

and v1max is the maximum velocity value along direction 1 in the simulation) and 2=-rec (rec  is the 196 

recording time). 197 

Standard routines that implement eq. (1) were used to compute the linear correlation coefficients. 198 

Different estimators were applied to evaluate the mutual entropy from a data series (e.g., see Papana and 199 

Kugiumtzis 2008) and tested. The tests, which are not reported here, considered both noised linear series 200 

and noised nonlinear series; the latter were obtained using Henon and Mackey-Glass models. Four different 201 

estimators were implemented: the histogram method — i.e., eq. (4) was computed from the empirical p(x) 202 

and p(x,y), and the results were affected to a great extent by the choice of the binning — and those based 203 

on the k nearestneighbours, that is, the Kozachenko and Leonenko (1987) estimator and the Kraskov et al. 204 

(2004) estimator. The tests considered time series with up to 4000 elements and with a normal bivariate 205 

distribution: therefore, R was expected to be equal to  . The histogram method and the Kozachenko and 206 

Leonenko method gave the worst performances, as they resulted to be affected to a great extent by the 207 

series’ number of the elements. The two algorithms proposed by Kraskov et al. (2004), which compute 208 

mutual entropy without using eq.(4), were found to be equivalent and produced better results when the 209 

free parameter was set equal to three. Accordingly, the second algorithm (i.e. I2) proposed by Kraskov was 210 

used in the subsequent computations. 211 

The R parameter was found to be very sensitive to I fluctuations (numerical error) close to zero. In order to 212 

smooth the spurious fluctuations of the R parameter in Figs. 2-4, a moving average was applied in some 213 

cases, paying attention not to affect the trend of the data. The size of the moving average window is 214 

specified in the figure captions.  215 

4. Results and Discussion 216 

The results obtained after processing the data of the Monte Carlo experiments are reported hereafter. The 217 

analysis considers both local variables (log-transmissivity, velocity and hydraulic head), whose fluctuations 218 

constitute spatial random functions, and non-local variables (i.e., trajectories), whose fluctuations at a 219 

given time are the result of a path through the heterogeneous field.  220 

The behaviour of the absolute value of the linear correlation coefficient and parameter R is compared in 221 

Fig.2, which refers to the following local variables: Y(x) (log-transmissivity), v1(x) (fluctuation of the 222 

longitudinal velocity component), v2(x) (fluctuation of the transversal velocity component) and h(x) 223 

(hydraulic head fluctuation). The Y values in all the frames in Fig. 2 were measured in x0=(0,0), while the 224 

other variables were sampled at xi=(xi,0) locations, along the longitudinal axis and passing through the 225 

origin of the reference system (see Fig. 1). 226 

Figs 2a and 2b refer to the relationship between log-transmissivity and hydraulic head for two 227 

heterogeneity levels. A good agreement between R and   can be noted for both of the heterogeneity 228 
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levels. This agreement denotes the absence of significant nonlinear linkages between these variables, that 229 

is, up to 2
Y=2.0.  R is below the correlation coefficient at some points; this is a numerical artefact that 230 

occurs for small R values, due to its high sensitivity to small errors in the computation of I. Figs 2c and 2d 231 

show the relationship between log-transmissivity and the longitudinal velocity component. A good 232 

agreement between R and  can be noted for the smaller heterogeneity variance (Fig. 2c), which excludes 233 

the presence of important nonlinear relationships between those variables, while the agreement is not so 234 

good in Fig. 2d when Y and v1 are at the same location, thus indicating that nonlinearity occurs.  235 

Figs 2e and 2f are more interesting. It can be seen that while the correlation function is close to zero for 236 

almost every point, the R curve has a peak at zero, that is, when Y(x) and v2(x) are measured at the same 237 

location, or at a short distance aligned along the flow direction, the dependence between the variables is 238 

fully nonlinear. This fact shows that, although the correlation function is zero, transversal velocity 239 

components depend on the Y fluctuations, which modify the flow field around it: the dependence is weak 240 

for 2
Y=0.16 (R=0.28), but is quite important for 2

Y=2.0 (R=0.59). It is worth noting that the nonlinear 241 

relationship denoted by R cannot be captured by higher-order analytical covariance functions, which could 242 

resemble the numerical covariance values.  243 

The difference between R and  shown in Figs. 2 denotes that even when the log-transmissivity field has 244 

been generated with a Gaussian pdf, the velocity components and hydraulic head appear to deviate from a 245 

Gaussian distribution. This fact is in agreement with the results of numerical analyses (e.g., Bellin et al. 246 

1992, Salandin and Fiorotto 1998). The behaviour of the R parameter and the behaviour of the linear 247 

correlation coefficient are shown in Figs 3 and 4, considering the trajectory fluctuations (the non-local 248 

variable) and a local variable. Fig. 3 shows the relationship between the log-transmissivity fluctuations at 249 

x0=(0,0) (i.e. the solute injection point) and the trajectory fluctuations at a given time. The results for the 250 

largest heterogeneity level are shown only up to =8.4, because some particles exit from the numerical 251 

domain for larger times, and the trajectory statistics cannot be computed, as only the slower particles 252 

would be considered. The use of mutual-information-based tools for a higher heterogeneity level allows us 253 

to capture the presence and the importance of nonlinear relationships compared to linear ones. In fact, 254 

considering both X1(t) and X2(t), there is a rough agreement between R and   for the lower heterogeneity 255 

level (Figs. 3a and 3c), while the R parameter is clearly above  for the higher heterogeneity level (Figs. 3b 256 

and 3d). This is much more evident in Fig. 3d, which considers Y(0,0) and X2(): although the correlation 257 

value is almost nil, R varies from 0.46 to 0.18, thus showing a moderate association between the variables 258 

for early travel times.  259 

The presence of nonlinear terms is also evident  in Fig 4, where selected cases are shown in order to depict 260 

the role of nonlinear dependences between velocity and trajectory fluctuation. Figs. 4a and 4b illustrate the 261 

behaviour of R and  for v2(0,0) and X1(), while Figs. 4c and 4d show the behavior of R for v1(0,0) and 262 

X2(). In these cases, the correlation coefficient is almost nil, thus denoting the absence of any significant 263 
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linear relationships between the variables, while R is not nil, that is, all the relationships between the 264 

variables are nonlinear. The R value decreases with time, as expected, and it shows that there is a good 265 

association between the variables at an early time for the higher heterogeneity level, which is not captured 266 

by the correlation coefficient. The results shown in Fig. 4 suggest that nonlinearity plays a key role in the 267 

relationship between velocity and trajectory components, when different directions (v1-X2; v2-X1) are 268 

considered. These nonlinear dependences contain important information that can be useful to both 269 

understand the phenomena and to solve, for instance, conditioning and inverse problems. 270 

5. Conclusions 271 

In this work, information theory tools have been applied to draw attention to the presence of non-272 

negligible nonlinear terms in the relationships between the flow and transport variables that take place in 273 

heterogeneous porous formations. The analysis was aimed at pointing out the nonlinear interdependence 274 

that exists between variables, and its weight with respect to the linear interdependence. Multi-Gaussian 275 

transmissivity fields were considered to take advantage of the relationship that exists between the mutual 276 

information R parameter and the correlation coefficient  for normal bivariate distributions: in this case, 277 

linear and nonlinear contributions can clearly be identified. In order to protect the analysis from analytical 278 

approximation effects, numerical data from Monte Carlo experiments were used.  279 

The obtained results show that nonlinear components can be relevant for mildly heterogeneous aquifers 280 

(2
Y=2)  and that the use of covariance/cross-covariance functions can be somewhat limiting to investigate 281 

the relationships that exist between groundwater variables and to manage field data. Nonlinear 282 

relationships are less important in weakly heterogeneous aquifers (2
Y=0.16), but they show that, in some 283 

cases, variables with nil correlation coefficients are not independent.  284 

The unsuitability of the covariance/cross-covariance functions to address nonlinearity can be extended to 285 

non-Gaussian transmissivity fields (Gomez-Hernandez and Wen 1998, Riva et al. 2017); however, in this 286 

case, a direct comparison of the mutual information R parameter and the correlation coefficient  cannot 287 

be made. 288 

According to the Authors, mutual information-based tools could be applied extensively in groundwater 289 

analyses in order to shed light on the nonlinear relationships that exist among groundwater variables. Such 290 

tools could improve the understanding of the subsurface flow and of transport phenomena and their 291 

forecasting, and could thus be used to support other statistical approaches, e.g. geostatistical methods that 292 

are based on covariance functions and which can only be applied in the case of linear relationships 293 

between variables. 294 

Future developments of the research could include the  impact of small deviations from Gaussianity on the 295 

R- metric, the effect of molecular diffusion, the role of the covariance structure of nonlinear dependence, 296 
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other nonlinearity sources (e.g., more complex flow fields), and methods to incorporate the information 297 

contained in nonlinear relationships in model developments and parameterizations.   298 
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Fig.1. Sketch of the numerical domain. 
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Fig. 2. R (circle) and  (triangles) versus x1, for different couples of variables. a) Y(0,0)-H(x1),2

Y=0.16; b) Y(0,0)-H1(t), 

2
Y=2.0; c) Y(0,0)-v1(x1), 2

Y=0.16; d) Y(0,0)- v1(x1), 2
Y=2.0; c) Y(0,0)- v2(x1), 2

Y=0.16; d) Y(0,0)- v2(x1), 2
Y=2.0 . The 

moving average window in the (a-b) panels is over five points for R<0.18 and x1>0, while no moving average is applied 

to the (c-f) panels. 

Nonlinear contribution 
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Fig. 3. R (circle) and  (triangles) behaviour versus , for different couples of variables. a) Y(0,0)-X1(t), 2
Y=0.16;  

b) Y(0,0)-X1(t), 2
Y=2.0; c) Y(0,0)-X2(t), 2

Y=0.16; d) Y(0,0)-X2(t), 2
Y=2.0. The moving average window is over three 

points for R<0.25 in the (a,c) panels, while no moving average is applied to the (b,d) panels.  

 392 
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Fig. 4. R (circle) and  (triangles) behaviour versus , for different couples of variables. a) v2(0,0)-X1(t), 2
Y=0.16;  

b) v2 (0,0)-X1(t), 2
Y=2.0; c) v1 (0,0)-X2(t), 2

Y=0.16; d) v1 (0,0)-X2(t), 2
Y=2.0. The moving average window in the(a,c) 

(b,d) panels is over five (three) points for R<0.3.  
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 403 
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 409 
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Figure captions 411 

Fig.1. Sketch of the numerical domain. 412 

Fig. 2. R (circle) and  (triangles) versus x1, for different couples of variables. a) Y(0,0)-H(x1),2
Y=0.16; b) Y(0,0)-H1(t), 413 

2
Y=2.0; c) Y(0,0)-v1(x1), 2

Y=0.16; d) Y(0,0)- v1(x1), 2
Y=2.0; c) Y(0,0)- v2(x1), 2

Y=0.16; d) Y(0,0)- v2(x1), 2
Y=2.0. The 414 

moving average window is over five points for R<0.18 and x1>0 in the (a-b) panels, while no moving average is applied 415 

to the (c-f) panels. 416 

Fig. 3. R (circle) and  (triangles) behaviour versus , for different couples of variables. a) Y(0,0)-X1(t), 2
Y=0.16;  417 

b) Y(0,0)-X1(t), 2
Y=2.0; c) Y(0,0)-X2(t), 2

Y=0.16; d) Y(0,0)-X2(t), 2
Y=2.0. The moving average window is over three 418 

points for R<0.25 in the (a,c) panels, while no moving average is applied to the (b,d) panels.  419 

Fig. 4. R (circle) and  (triangles) behaviour versus , for different couples of variables. a) v2(0,0)-X1(t), 2
Y=0.16;  420 

b) v2 (0,0)-X1(t), 2
Y=2.0; c) v1 (0,0)-X2(t), 2

Y=0.16; d) v1 (0,0)-X2(t), 2
Y=2.0. The moving average window in the (a,c) 421 

(b,d) panels is over five (three) points for R<0.3.  422 
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