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ABSTRACT


The Refined Zigzag Theory (RZT) for multilayered composite and sandwich beams and plates, recently advanced by the authors, requires -continuous shape functions and thus allows for the development of efficient displacement-based finite elements.
Based on the RZT, in the present paper a class of efficient C0-continuous beam finite elements is formulated and numerically assessed.  The attention is mainly on the choice of shape functions that allow for free shear locking effects in slender beams. For this purpose,  anisoparametric (aka interdependent) interpolations are adopted to approximate the four independent kinematic variables that are necessary to model the planar beam deformations. To achieve simpler (with a reduced number of nodal dofs) elements, a  constraint condition on the axial variation of the effective transverse shear strain is adopted, which consists in reducing the polynomial degree of the shear strain measure,  (or, equivalently, the shear force), by one order.
The issues investigated for the assessment are (i) shear locking, i.e., strategies for formulating shear-locking free C0 refined Zigzag Timoshenko beam elements, (ii) computational efficiency, and (iii) predictive capability and accuracy. 
Accuracy and predictive capabilities of the proposed class of  beam elements are  numerically assessed by using several elastostatic example problems, where cantilevered beams are analyzed over a range of loading conditions, lamination sequences, heterogeneous material properties, and slenderness ratios.

It is concluded that the constraint condition on the transverse shear strain gives rise to a remarkably accurate class of  constrained  Zigzag Timoshenko beam elements, which offer the best compromise between computational efficiency and accuracy.
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1. INTRODUCTION

Composite materials have been increasingly used over the past forty years in military and civilian aircraft, aerospace vehicles, naval and civil structures. Offering extensive tailoring capabilities to suit specific load paths, high stiffness-to-weight and strength-to-weight ratios, these man-made materials have also proven to provide major economic and environmental advantages over the traditional metallic structures. When applied to primary load-bearing structures, the multilayered, sandwich, and relatively thick-section composites are required. Such structures are known to exhibit higher-order deformation effects due to the transverse shear and normal stresses and strains, thus requiring advanced design and analysis methods that adequately take into account these higher-order effects.
It is now well established that Bernoulli-Euler and Timoshenko bending beam theories are generally not suitable for the elastodynamic analysis of relatively short laminated composite and sandwich beams [1],[2]. This is because neither theory has the sufficient kinematic freedom to accommodate complex cross-sectional distortions that are present during bending and axial-to-bending coupling deformations.  Even though Timoshenko theory includes an additional kinematic mode associated with transverse shear deformation, at the expense of an additional kinematic variable, the average bending rotation, a shear correction factor is required to correct the erroneous assumption of constant shear strain on the cross-section [3]. The adoption of a suitable shear correction factor ensures relatively accurate predictions of deflection and lowest natural frequencies; however, Timoshenko theory fails to predict adequately the important design variables such as the peak values of axial stresses and strains [4].
Improvements of the classical theories have been obtained by using: (1) Higher-order Equivalent Single Layer (ESL) theories, in which the a priori assumed behavior of the unknowns (displacements and/or stresses) refers to the whole laminate thickness and (2) Layer-Wise (LW) theories, in which the distribution of the unknowns is assumed layer by layer. ESL theories are generally computationally efficient; however, they often produce inaccurate through-the-depth distributions of strains and stresses, particularly the transverse shear stresses and strains. The LW approaches are usually sufficiently accurate; however, the number of unknowns is proportional to the number of material layers, and for multilayered composite laminates the computational effort is generally prohibitive, especially for large-scale analyses. For a review on these topics, the reader is addressed, among the others, to the book of Reddy [5] and quoted references for additional reading.
An attractive compromise between the accuracy of LW theories and the computational efficiency of ESL theories, is represented by the so-called zigzag models. In this class of theories, the axial displacement field is a superposition of a zigzag-like distribution through-the-depth and linear or cubic ESL-like “smeared” distributions. The resulting theories are commonly referred to as linear [6] and cubic [7] zigzag theories, respectively. These theories ensure a fixed number of kinematic variables regardless of the number of material layers. The zigzag kinematics is constructed in such a way to ensure through-the-depth continuous transverse-shear stresses, that are constant for linear theories and piecewise parabolic for cubic theories. Zigzag theories thus provide accurate response predictions for relatively thick laminated-composite and sandwich structures and yield response predictions comparable to those of computationally expensive LW higher-order theories.
Averill contributed to the development of linear [8] and cubic [9] zigzag beam models while trying to resolve two main drawbacks of the original zigzag theories: (i) transverse shear stresses calculated from constitutive equations vanish erroneously along the clamped boundaries, and (ii) C1-continuous shape functions are required to approximate the deflection within the finite element framework, this approximation being especially undesirable for plate and shell finite elements. Averill was able to resolve issue (ii), satisfactorily, by adopting the kinematics of Timoshenko theory [8]; whereas the solution for drawback (i) was not effective.
In an attempt to eliminate both drawbacks of the original zigzag models, in a series of recent papers [10]-[16], Tessler, Di Sciuva and Gherlone developed, using an improved zigzag kinematics, what they called the Refined Zigzag Theory (RZT) for multilayered composite and sandwich beams and plates. Both drawbacks of the original zigzag models are solved since (i) a new in-plane zigzag kinematics is used, accounting for the shear deformation of every lamina, not requiring full shear stress continuity at layer interfaces and thus allowing all boundary conditions, including the fully clamped condition, to be modeled adequately and (ii) the First-order Shear Deformation Theory kinematics is adopted as a baseline thus leading to C0-continuous shape functions required for finite element development.
It is well-known that from a computation point of view (i.e., finite element method), although highly desirable in terms of computational efficiency and ease of implementation, C0-continuous bending elements often suffer from excessive stiffening or shear locking when very thin structural elements are analyzed. Shear locking occurs in Timoshenko elements when linear shape functions are adopted for both the deflection and bending rotation kinematic variables [17]. The use of higher order polynomials generally alleviates the shear-locking; however, the rate of convergence is commonly diminished. Different solutions have been proposed to approach shear locking problems in the open literature [18]: reduced integration (as proposed by Hughes et al. [19] for Timoshenko beam finite element and Oñate et al. [20] for a C0 two-noded linear Refined Zigzag beam element), discrete penalty constraints, penalty-parameter modifications, and anisoparametric or interdependent interpolation. The latter strategy, proposed by Tessler and Dong [17] for beam finite elements and Tessler [21] for plate elements, is based on the idea that the deflection variable is interpolated with a complete polynomial one degree higher than the bending rotation variables (virgin element); to achieve simple nodal patterns, the higher-order shear strain terms are set to zero (constraint equation), thus eliminating the extra deflection degrees-of-freedom (constrained element). The resulting elements are variationally consistent, simple and efficient. Recently, virgin and constrained anisoparametric (with linear shape function for the bending rotation and parabolic approximation for the deflection) C0-continuous RZT-based beam elements have been formulated by Gherlone et al. [22]. In the case of the constrained beam finite element, it may be shown [22] that its stiffness matrix is the same as that obtained with reduced integration; the advantages of the interdependent interpolation are that [17] all integrations are performed using "full" Gaussian quadrature and that the same procedure may be adopted for the derivation of the consistent mass matrices and load vectors as well. 
In this paper, based on the interdependent interpolation strategy and on the Refined Zigzag Timoshenko Theory, a class of simple and computationally efficient, shear-locking free C0 beam elements for the analysis of multilayered composite and sandwich beams is developed. 
The performance of the developed finite elements is numerically assessed with reference to elastostatic problems. The presented numerical results allow us to draw the following conclusions. (i) the accuracy of the Refined Zigzag Timoshenko beam theory is clearly established; (ii) all the finite elements based on the interdependent interpolation are not affected by shear locking and converge to the analytical results, (iii)  the accuracy of the proposed class of constrained elements is comparable with that of the corresponding virgin elements.
The paper is structured as follows. Firstly, the Refined Zigzag Timoshenko beam theory is briefly reviewed to establish the framework for the finite element implementation. The choice of suitable shape functions is then addressed with a specific focus on shear-locking issues and their consistent resolution within the variational and full quadrature requirements. A set of numerical results concerning the bending problem of multilayered composite and sandwich cantilever beams under various transverse loading conditions is then presented, and the accuracy and computational efficiency of the proposed class of finite elements are discussed.


2. THEORETICAL FOUNDATIONS OF THE REFINED ZIGZAG TIMOSHENKO BEAM THEORY

In this Section, the fundamentals of the Refined Zigzag Timoshenko beam theory for composite and sandwich beams are reviewed and the equations necessary for the subsequent finite element formulation are derived. For a complete and detailed discussion on the theory, refer to [10]-[11].

2.1 Displacements




















Consider a N-layered beam of length L, having uniform thickness and cross-sectional area  (Figure 1). Each layer is made by orthotropic material and the N layers are assumed to be perfectly bonded to each other. The beam is referred to the Cartesian coordinate system (x,z), where  denotes the beam longitudinal axis, and  the thickness coordinate. The beam in Figure 1 is subjected to distributed axial, and , and transverse, and , loads (units of force/length) applied at the bottom (b) () and top (t) () beam surfaces, respectively. In addition, the end cross-sections are subject to the prescribed axial (,) and shear (,) tractions (Figure 1). Under static loading conditions, only planar deformations in the (x,z) plane are considered. The following notation represents designated quantities associated with the k-th layer. The thickness of the k-th layer is , with , in which the volume fractions  satisfy the relation  (Figure 2(a)). 
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	Figure 1. Beam geometry, applied loads and notation.
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	(a) Layer notation
	(b) Zigzag function

	Figure 2. Layer notation and zigzag function of the refined zigzag theory for a three-layer laminate.



Within each layer, the axial displacement distribution is assumed to be continuous along with its first derivative in the thickness-wise direction, consistent with the usual representation of the fibers and matrix material as a homogeneous layer. If the beam stacking sequence is modeled as a collections of layers with layer thicknesses that are thin compared to the characteristic beam depth, it is reasonable to assume that the thickness-wise distribution of the axial displacement can be adequately modeled as a piecewise continuous function that is a collection of linear functions defined for each layer. A function of this type is herein referred to as a zigzag linear function and, as a result, the corresponding beam theory is referred to as a Zigzag Beam Theory. 
For material points within the k-th layer of a multilayered beam, an expression for the beam displacements, that is general enough to describe the kinematics of the present refined zigzag theory, is given by (see, Refs. [10], [11] and [13])


                                                                                                                               (1)

where


                                                 (2) 












In Eq. (2),  and  are the displacements along the x- and z-axis, respectively;  is the uniform axial displacement, and  is the  transverse deflection, here assumed to be constant along the thickness, as usual in the classical Timoshenko Beam Theory (TBT);  is the average bending rotation, and the additional kinematic variable, , is the amplitude of the zigzag contribution to the axial displacement.  The symbol  denotes the zigzag contribution to the axial displacement, here assumed to be a piecewise linear function of the thickness coordinate, , vanishing on top and bottom beam surfaces, i.e.,  (Figure 2(b)), yet to be established. If either = 0 or = 0, the kinematic assumptions of Eq. (1) correspond to the TBT. Then, the refined zigzag theory is a natural refinement of the TBT for multilayered beams; the zigzag term , added to the expression of the axial displacement, takes into account the cross section distortion according to a piecewise C0 pattern typical of multilayered laminates. 

2.2 Stresses




Within the assumptions that (i) each material layer is made by linearly elastic and orthotropic material with major material axis coincident with beam x-axis, (ii) the beam exhibits a plane stress behavior in the (x, z) plane, and (iii) the transverse normal stress  is negligibly small compared to the axial, , and transverse shear, , stresses, Hooke’s stress-strain relation for the k-th orthotropic layer takes on the standard form


	                                                                                                                          (3)

where


	                                       (4)







In Eq.(4), and  denote the axial and transverse shear stresses, respectively;  and denote the axial elongation and the transverse shear strain , and  and  denote the axial Young’s modulus and the transverse shear modulus of the k-th layer, respectively. 

2.3 Strains

       The linear strain-displacement relations of the theory of Elasticity and the kinematics defined by Eqs. (1) and (2) give rise to the non-zero strains


                                                                                                                 (5)

where


                                       (6)

In Eq.(6) and in the remaining of the paper,




Following Tessler et al. [10], [11] and [13],  the zigzag function is prescribed to vanish on the outer beam surfaces, that is  A typical through-the-thickness pattern of a zigzag function for a three-layer beam is depicted in Figure 2(b).


Note that, since  is piecewise linear, is a piecewise constant function, i.e., it is constant across each material layer. Following Ref. [10], it can be shown that
 

                                                                                                                       (7)


whereis the elastic shear compliance coefficient of the k-th layer, and 



 with                                                                                             (8)

is the shear compliance of the k-th layer and of the whole beam section.





By taking into account Eq. (8) and that the volume fractions  satisfy the relation  , it follows that . Moreover, Eq. (8) allows us to introduce a weighted average shear compliance  in terms of the layer shear compliance coefficients and volume fraction, 


                                                                                                           (9)

2.4 Virtual work principle



Let  be the virtual variation of the strain energy and  the virtual variation of the work done by the applied loads. The Virtual Work Principle states that


                                                                                                                           (10)

where denotes the variational operator.  For the beam depicted in Figure 1,  

		                                                                                                 (11)

                                                              (12) 
In Eqs.(11) and (12), 


                                             (13)

and superscripts (b) and (t) stand for bottom and top beam surfaces, respectively. 
In addition,


and the superscript T  attached to a matrix stands for transpose.


2.5 Equilibrium equations and boundary conditions

After integration by parts, Eqs. (11) and (12) read, 

                                                                                (14)


                                                           (15)

In Eqs. (14) and (15), 

                                                                       (16)


                                                                          (17)

are stress resultants and moments and


                                                                                                                (18)

By taking into account that 


                                                                                  (19)


                                                                               (20)

and introducing the following matrices


                                                                           (21)


                                                                              (22)


                                                                                                    (23)

                                                                           (24)

it can be readily shown that the following results hold


                                                                                                                 (25)

                                                                                                                   (26)






In Eqs. (16) and (17), , , and  are the conventional axial force, bending moment, and shear force, respectively;  and  are the bending moment and shear force associated with the zigzag function. 
In Eqs. (21), (22) and (24), the stiffness coefficients are defined as follows


                                                                                                     (27)

                                                                                       (28) 

                                                                                                      (29)

Eqs. (25) and (26) are the constitutive equations of the Refined Zigzag Timoshenko beam theory, relating the stress resultants to the strain measures. It could be of some interest to note that , Eq. (8). 
In terms of displacement variables the virtual variation of the strain energy, Eq. (14),  reads


                                (30)

Substituting Eqs. (14) and (15) into the virtual work principle, Eq. (10), and taking into account that the virtual variations are arbitrary, the equations of equilibrium


                                                                                 (31)

and a consistent set of boundary conditions


                                                                            (32)

follow, where =a,b and the bar-superscripted symbols denote the prescribed displacements and stress resultants.
Substituting Eq.(30) and (15) into Eq.(10) yields the equations of equilibrium in terms of the primary kinematic variables of the theory. This eighth-order system of ordinary differential equations, with constant coefficients, is given by


                                                        (33)

Solution of the corresponding boundary-value problem involves integration of the four  equations of equilibrium (33), subject to the boundary conditions given by Eqs. (32). 


      In closing this Section, we remark that the present theory does not make use of any  Timoshenko-type shear correction factor when modeling a heterogeneous cross-section. For homogeneous beams or laminated beams in which the transverse shear moduli are the same, the present theory reduces back to the Timoshenko theory. In this case, it is appropriate to use the standard shear correction factor  (for a rectangular cross-section) in the definition of the shear stress [3].


3. FINITE ELEMENTS FORMULATION


3.1 General equations



Let  be the vector of nodal degrees of freedom surrounding the beam element of length .  Within the generic finite element e, the kinematic variables approximation reads as 


                                                                                                                          (34)

where  is the shape functions matrix of the beam finite element.
For reasons that will be made clear later, let us separate in Eq. (34) the in-plane kinematics from the transverse kinematics, that is, let us write


                                                                         (35)
where


;   .                                                                                                (36)

In Eqs.(35) and (36),


                                                            (37)

are the matrix columns whose elements are the nodal dof’s for the corresponding kinematic variables. From Eq.(5), by taking into account Eq. (35), it follows


                                                                                           (38)
Substitution of Eqs. (34) and (38) into Eqs. (30) and (15) gives 

                                                                                                              (39)

                                                                                                                     (40)
where

                      (41)
is the beam element stiffness matrix and 

                                                   (42)  
is the nodal load vector of external forces.
The result is the standard element-level equilibrium equation 


                                                                                                                         (43)

Use of well-established assembly procedure gives the equilibrium equation of the whole beam.
A discussion on the choice of shape functions and corresponding degrees of freedom follows.


3.2 Shape functions and degrees of freedom



As well as for the Timoshenko’s beam theory, the refined zigzag expressions for the strains contain only first derivatives of the kinematic unknowns , thus only -continuous shape functions are required. This allows to use Lagrange’s polynomials as shape functions.

a) Interdependent/anisotropic virgin elements
It is well known (see, for example Ref. [17]) that the use of linear shape functions for both the deflection and bending rotation kinematic variables and the full Gaussian quadrature to exactly evaluate the integrals of the element matrices in Timoshenko’s beam elements always results in an element that tends to produce overly stiff solutions (with a near-zero curvature) for slender beams. This type of pathological behavior is commonly referred to as shear locking. The use of polynomials of higher order generally alleviates shear locking; even if not completely eliminate it.

Tessler and Dong [17] identified the main modeling deficiency of this formulation recognizing that in the thin beam limit (), the shear strain measure, relative to the curvature, goes to zero, i.e.,


                                                             (44)







The implication is that deflection  needs to be approximated by a polynomial that is one degree higher than that used for, such that the above constraint condition can be achieved without any deleterious effects on the bending curvature. This interpolation strategy was named by Tessler and Dong [17] interdependent to emphasize the interdependent nature of  and  approximations, and later the term anisoparametric interpolations was introduced to emphasize the different polynomial degrees used in interpolating the  and  variables, to contrast a commonly used term isoparametric interpolations. The elements are named virgin interdependent/anisotropic Timoshenko’s beam elements in Ref.[17].

The interdependent/anisotropic interpolation strategy results in elements that have the following drawbacks  (i) an extra w-dof specified at an interior node that has no other dof’s (Figure 3a), and (ii) transverse shear strain and force that are described by a polynomial one degree higher than the polynomial which interpolates the bending strain and moment. In order to eliminate the extra w-dof thus reducing the element to the standard isoparametric element (Figure 3(b)) , in Ref.[17]  it is suggested to reduce the polynomial degree of the shear strain measure,  , (or, equivalently, the shear force ) by one order, resulting in a coupled deflection interpolation in which the rotational dof’s contribute to the deflection only in the interior  part of the element. These elements have been named constrained elements in Ref.[17].

In this Section, this approach is generalized to the Refined Zigzag Timoshenko  beam elements. Based on the RZT, a class of C0 virgin and constrained composite and sandwich refined Zigzag Timoshenko beam finite elements is formulated.  The attention is mainly on the choice of shape functions that allow for free shear locking effects in slender beams. For this purpose, interdependent/anisoparametric  interpolations are adopted to approximate the four independent kinematic variables that are necessary to model the planar beam deformations. To achieve elements with a reduced number of nodal dof’s (constrained  elements), the same  constraint condition as in Ref.[17] on the axial variation of the transverse shear strain is adopted.

In order to generalize the approach of Tessler and Dong [17] to the RZT, it is of interest to note that for monolayer or equivalent single layer Timoshenko’s beam theory we can equivalently refer either to the transverse shear strain or to the transverse shear stress resultant, because the following relation holds 

                                                               (45)

which follows from Eq. (17) by taking into account Eq. (26) with . When considering RZT, following the previous path, we introduce the effective transverse shear strain defined as (see, Eqs. (17), (22)-(24), (26)) 

                                                                                      (46)
where (see, Eq. (29))

                                                                                                        (47)




is a dimensionless transverse-shear material parameter. It has been shown (see  Gherlone et al., [22]) that , with  for homogeneous cross-sections (when ), and (b)  for highly heterogeneous cross-sections, such as in soft-core sandwich laminates. 






In Eq. (46) the transverse shear force, , has the proper order of interpolation since ,  and  have the same order of interpolation. It immediately suggests that w must be a polynomial one order higher than those approximating  and 
Therefore, in general, for a virgin interdependent/anisotropic element, we can write (see, Eqs. (35)-(37))


                                   (48)

with

                                                               (49)
where


                     (50)

and


                                                             (51)

In Eqs. (51), 


                                                          (52)

are the Lagrange’s polynomials of order p=NN-1, and  a non-dimensional axial coordinate

.









In Eq.(48), NN is the number of nodal points (here named master nodes) of the element associated to the kinematic variables , , and ;  is the value of at node n, and so on. Note that we need nodes for the variable ,  nodes coinciding with the previous ones and the other (the node labeled ) named slave node s in the following (see, figure 3a). 
b) Interdependent/anisotropic constrained elements

Following Tessler and Dong [17], we can generate a constrained element from a virgin element by reducing by of one-order the polynomial order in the shear angle variation along the element. This can be accomplished enforcing the constraint 


                                                                                                                          (53)

p being the order of the virgin element (see, table 1).

To implement this constraint with displacement field (35), let us write Eq. (46) in matrix form


                                                                                                                         (54)

with


                                                                                           (55)

By taking into account Eq. (54) and the displacement field (50), the constraint (53) takes the form


                                                          (56)




To eliminate a particular nodal dof, rearrange  in Eq. (56) so that the retained dof’s  reside in the upper rows and let the omitted (deleted) dof’s  be in the lower position (in our case, the dof associated to the slave node s). The partitioned form of the rearranged Eq. (56) appears as


                                                                                            (57)


Solving Eq. (57) for , yields


                                                                                                             (58)



With Eq. (58), the original vector of nodal dof’s  can be related to the vector of retained nodal dof’s  by the linear transformation


                                                                            (59)

Using Eq. (59), displacement field (49) under the shear constraint with the highest order polynomial shear angle variation removed takes the form


                                                                                                           (60)

Substituting Eq. (60) into Eq. (49), yields


                                                (61)


The nodal configurations and the numbering for this class of  interdependent/anisotropic elements are depicted in figure 3 for the case and  in Table 1 for the cases NN=2,3 and 4. In table 1, following Ref.[17], we have introduced the four index labeling RZTpbcn, where RZT denotes Refined Zigzag Timoshenko beam element and: 


p - order of the interdependent variable interpolation ();                                                    b - type of element; b = V (virgin) or b = C (constrained);                                                                   c - order of variation; c = C (constant), c = L (linear), c = Q (quadratic), etc.;                                       n - number of nodal dof in the element.



Examples of this labeling system are RZT1VL9 (Virgin element with p = 1, linear variation of  and 9 nodal dof’s); RZT1CC8 (Constrained element with p = 1, constant  and 8 nodal dof’s); RZT2CL12 (Constrained element with p = 2, linear  and 12 nodal dof’s).



Nodal configurations for  can be inferred by induction. For NN odd, the additional  dof  located at  appears logical, attractive and symmetric (RZT1VL9 and RZT3VC17 elements of Table 1). For NN even, it may be placed anywhere, however, there is an advantage for locating it at a Gaussian point. With reference to the case NN=3, the following two situations can rise, depending on  the location of node “s” (Table 2).
[image: ]
Figure 3. Virgin and constrained anisotropic refined zigzag beam elements (NN=2).

	Element Order, p
	Virgin RZT Elements



	Constrained RZT Elements





	
	Nodal configuration
	dof
	Nodal configuration
	dof
	Constraint Order, q

	1
	RZT1VL9




	9
	RZT1CC8



	8
	1

	2
	RZT2VQ13



1

	13
	RZT2CL12

2


	12
	2

	3
	RZT3VC17






	17
	RZT3CQ16





	16
	3

	

Legend of nodal degrees of freedom    ; 



Table 1. Nodal configuration for virgin and constrained elements with NN=2,3 and 4.  Note that node s is always an interior node, that is,  
	Node
	
Coordinate, 
	Nodal dof
	Lagrange polynomials

	1
	

	

	


	2
	

	

	


	3
	

	

	


	s
	

	

	

	
If 

	
	
	
	

	
If 


Table 2. Nodal configuration for virgin element RZT2VQ13: Four-node, thirteen-dof’s anisotropic element (NN=3).

As stated in Ref.[17] for the classical Timoshenko beam elements, this method provides compatible shape functions for all constrained elements. For the stiffness matrix, the shear constraint is equivalent to static condensation of the same internal nodal dof. However, it should be noted that the present method allows for the deletion of the additional degree of freedom at the slave node before the construction of the element stiffness matrix and load vector. Static condensation, by contrast, involves a post-formulation deletion of the nodal dof. Moreover, static condensation is applicable only to the stiffness matrix and cannot be used for the mass matrix. 
 
An alternative procedure that determines the same shape functions for the constrained elements is given in Appendix A.


4. NUMERICAL RESULTS


The developed family of  anisotropic (both virgin and constrained) RZT beam elements has been used to perform static analyses of sandwich beams in order to examine its performance and convergence characteristics, also with respect to the shear locking effect. 


	Point load 
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               (a)
	Uniform load
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(b)
	Triangular load 
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                  (c)




Figure 4 – Cantilever beam under (a) transverse tip load ; (b) uniform load, 


;  (c) triangular load, .

The numerical results refer to symmetric and unsymmetric cantilever sandwich beams, under various static loading conditions (point load, uniform load, triangular load, as depicted in figure 4) and different values of slenderness ratio (L/h=8, 10, 15, 50, 200). Table 3 collects the mechanical properties of materials, and Table 4 gives the laminate stacking sequences. 


	Material
	a
	b
	c
	d
	e
	f

	Young Modulus, E (GPa)
	73
	21.9
	3.65
	0.73
	0.073
	0.0073



         Table 3. Layer mechanical material properties (isotropic material, E/G=2.5; ν=0.25)


	Laminate
	Thickness
	Material sequence

	A
	(0.33 – 0.33 – 0.33) htot
	(a – f – a)

	B
	(0.33 – 0.33 – 0.33) htot
	(d – a – c)

	C
	(0.10 – 0.80 – 0.1)htot
	(a – e – b)



          Table 4. Stacking sequence for the laminates: htot represents the total  beam thickness.

As can be argued from tables 3 and 4, all the laminates display geometrical symmetry; laminate A presents also material symmetry, while laminates B and C have no material symmetry. Laminates A and C represent classical sandwich configurations with thin faces (Laminate C) and thick faces (laminate A). Laminate B is a non-classical sandwich construction in that the core is stronger than the faces. 
By combining laminate configurations and loading conditions, a large variety of structural configurations on which assess the numerical performances and reliability of the developed RZT beam elements can be obtained.

In order the results to be comparable between them, the number of beam elements has been chosen so as to have the number of dof’s as equal as possible for the various models. As an example, table 5 gives the number of elements used to have about 148 dof’s. 

The results are compared with the analytical ones (whenever available). 


a) Shear locking. 


As stated above, one of the main objectives of the present study has been to develop a class of C0 RZT beam elements free from shear-locking. In order to show this interesting feature of the developed beam elements, table 6 gives the estimated tip deflection ratio, , for a slender cantilever sandwich beam, L/h=200, under tip load, uniform transverse load, triangular transverse load. Results refer to laminate C (the most representative of a classical sandwich beam) and two different meshes: a coarse mesh and a fine mesh. It is concluded that all the beam elements are free from shear-locking, also the linear virgin, RZT1VL9, and the linear constrained, RZT1CC8,  ones.


	
	
	VIRGIN
	CONSTRAINED

	
	
	
	

	
	
	RZT1VL9
MOD 3.4
(MOD 1)
	RZT2VQ13
MOD 3.5
(MOD 2)
	RZT3VC17
MOD 3.6
(MOD 3)
	RZT1CC8 MOD 3.1
(MOD 4)
	RZT2CL12 MOD 3.2
(MOD 5)
	RZT3CQ16MOD 3.3 (MOD 6)

	
	
	
	
	
	
	
	

	Dof’s
	149
	148
	147
	148
	148
	148

	
	
	
	
	
	
	

	Nr of elements
	29
	16
	11
	36
	18
	12

	
	
	
	
	
	
	



Table 5. Correspondence between number of elements and number of dof’s for the various models. 








	Load
	RZT1VL9 
	RZT1CC8  
	RZT2VL13
	RZT2CL12 
	RZT3VC17  
	RZT3 CQ16 

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	29 dof’s
	28 dof’s
	31 dof’s
	28 dof’s
	28 dof’s
	30 dof’s

	Point load
	0,98
	0,98
	0,98
	0,98
	0,98
	0,98

	Uniform
	0,99
	0,99
	1,00
	1,00
	1,00
	1,00

	Triangular
	0,98
	0,98
	1,00
	1,00
	1,00
	1,00

	
	149 dof’s
	148 dof’s
	148 dof’s
	148 dof’s
	148 dof’s
	147 dof’s

	Point load
	0,98
	0,98
	0,98
	0,98
	0,98
	0,98

	Uniform
	1,00
	1,00
	1,00
	1,00
	1,00
	1,00

	Triangular
	1,00
	1,00
	1,00
	1,00
	1,00
	1,00




Table 6 – Shear-locking test for RZT beam elements. Prediction of the ratio  for a slender sandwich beam, laminate C; L/h=200.

b) Convergence analysis

The numerical test performed has the purpose to compare the numerical accuracy and convergence characteristics of the developed virgin and constrained RZT beam elements.  

Figure 5 gives plots of the tip deflection normalized with respect to the exact Timoshenko value, designated by, as a function of number of elements.

To this end, figures 5-13 give plots of the tip deflection normalized with respect to the exact value, designated by, as a function of number of elements for the cantilever sandwich beam under tip, uniform and triangular transverse load, with a slenderness ratio, L/h=15. Specifically, results plotted in figures 5-7 refer to laminate A, those plotted in figures 8-10 to laminate B, and those in figures 11-13 to laminate C. 


[image: ]
Figure 5 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under unit tip load. Laminate A, L/h=15.
	

[image: ]
Figure 6 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under transverse uniform load. Laminate An, L/h=15.
[image: ]
Figure 7 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under transverse triangular load. Laminate A, L/h=15.

 
[image: ]
Figure 8 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under unit tip load. Laminate B, L/h=15.

[image: ]
Figure 9 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under transverse uniform load. Laminate B, L/h=15.


[image: ]
Figure 10 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under transverse triangular load. Laminate Bn, L/h=15.





[image: ]
Figure 11 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under unit tip load. Laminate C, L/h=15.

[image: ]

Figure 12 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under transverse uniform load. Laminate C, L/h=15; .


[image: ]

Figure 13 – Convergence of the constrained and virgin RZT elements. Prediction of the tip displacement for the cantilever sandwich beam under transverse triangular load. Laminate C, L/h=15; .


In order to better highlight the convergence characteristics of the RZT beam elements for different loading conditions, Figures 14 and 15 give, as an example, convergence plots of the tip displacement ratio, ,  of the cantilever sandwich beam under tip, uniform and triangular transverse load, as  predicted by the constrained linear RZT element, RZT1CC8, and of the virgin  quadratic RZT element, RZT2VQ13. Plots in Figures 16 and 17 show the same comparison for laminates B, and those in Figures for 18 and 19 for laminates C.  

[image: ]

Figure 14 – Convergence of the constrained RZT element RZT2VL13. Prediction of the tip displacement for the cantilever sandwich beam under tip, uniform and triangular transverse load. Laminate A, L/h=15.
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Figure 15 – Convergence of the constrained RZT element RZT1CC8. Prediction of the tip displacement for the cantilever sandwich beam under tip, uniform and triangular transverse load. Laminate A, L/h=15.

[image: ]
Figure 16 – Convergence of the virgin RZT element RZT2VQ13. Prediction of the tip displacement for the cantilever sandwich beam under tip, uniform and triangular load. Laminate B, L/h=15.

[image: ]
Figure 17 – Convergence of the constrained RZT element RZT1CC8. Prediction of the tip displacement for the cantilever sandwich beam under tip, uniform and triangular transverse load. Laminate B, L/h=15.


[image: ]
Figure 18 – Convergence of the virgin RZT element RZT2VQ13. Prediction of the tip displacement for the cantilever sandwich beam under tip, uniform and triangular load. Laminate C, L/h=15.

[image: ]
Figure 19 – Convergence of the constrained RZT element RZT1CC8. Prediction of the tip displacement for the cantilever sandwich beam under tip, uniform and triangular transverse load. Laminate C, L/h=15.

From the above numerical results and other not given in the papers, it is concluded that all the developed beam elements (linear, quadratic and cubic, virgin and constrained) show very good monotonic convergence to the exact tip deflection for all the investigated laminate configurations.  As expected, the convergence ratio increases with increasing the order of element. The numerical accuracy of the single element decreases slightly from concentrated load to the uniform distributed load and, subsequently, to the triangular load (see, Figures 18  and 19).  

It can be argued from the results plotted in the figures above, that having to study a problem in which there is a cubic variation of the variable  w and parabolic for the other variables (u, ), we get the exact solution already with only one element RZT1CC8 and RZT2CL12, and consequently also for the respective virgin elements, because in their structure already possess a sufficient number of nodes to ensure the approximation of Lagrange polynomials equal to the exact solution. As regards the element RZT1CC8 with the respective virgin element, RZT1VL9, the exact solution is only obtained increasing the number of the elements, because the degree of the approximating polynomials turns out to be lower than that of exact solution; by increasing the number of elements, the trend appears to be asymptotic to the exact solution .

c) Thickness-wise distribution of axial normal and transverse shear stresses

By taking into account that (see, Eqs.(3)-(6)) 









it is easily argued that for an accurate evaluation of the thickness-wise distribution of normal and transverse shear stresses using the constitutive equations we need an accurate estimate not only of the axial distributions of the  and , but also of the first derivatives 
Moreover, as well known, generally the estimation of the transverse shear stress using the constitutive equations is not accurate, so the approach generally used is to integrate the 3D local equilibrium equations, that for a beam reduce to the following one


                                                                                                                         (62)

from which,


                                           (63)


This requires not only the existence of the second derivatives   but also their accurate estimation from the FEM model. To do this, higher-order beam elements are required. For the class of C0 RZT beam elements developed in this study, linear virgin RZT1VL9 and constrained RZT1CC8  elements cannot be used, while parabolic virgin RZT2VL13 and constrained RZT2CL12 elements and cubic virgin RZT3VC17 and constrained RZT3CQ16 elements do work, with better performance of the cubic ones.












So, in order to show the accuracy of the developed beam elements to estimate not only global quantity, such as the transverse deflection, but also thickness-wise distributions of axial normal stress, ,  and transverse shear stress, , from the constitutive equations, as well as to allow for the estimation of the transverse shear stress from the local equilibrium equations, figures 20 and 21 give the distribution along the beam axis of the average bending rotation,  , and of the amplitude of the zigzag function, ; figures 22-25 give the distribution along the beam axis of the first derivative of the axial displacement, , of the average bending rotation,  , of the amplitude of the zigzag function,  and of the transverse deflection, ; figures 26-28 give the distribution along the beam axis of the second derivative of the axial displacement, , of the average bending rotation,  , and of the amplitude of the zigzag function, .

The numerical results refer to a cantilever sandwich beam (laminate C), under tip load, slenderness ratio, L/h=8. The beam has been meshed with 20 elements RZT3VC17 (265 dofs). The FEM values have been evaluated at the middle point of the elements. 

It is concluded that at least the higher-order elements (quadratic and cubic) perform very well, with better performance of the cubic ones. 





[image: ]

Figure 20 – Prediction of the average bending rotation,  , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.

[image: ]

Figure 21 – Prediction of the amplitude of the zigzag function, . Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.

[image: ]

Figure 22 – First derivative of the axial displacement, , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.


[image: ]


Figure 23 – First derivative of the average bending rotation,  , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.

[image: ]


Figure 24 – First derivative of the amplitude of the zigzag function, , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.


[image: ]


Figure 25 – First derivative of the transverse deflection, , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.





[image: ]



Figure 26 – Second derivative of the axial displacement, , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.


[image: ]

Figure 27  – Second derivative of the average bending rotation,  , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.


[image: ]

Figure 28 – Second derivative of the amplitude of the zigzag function, , with respect to the x-coordinate. Comparison of the FEM solution with the analytical solution. Cantilever sandwich beam under tip load. Laminate C, L/h=8.


5. CONCLUSIONS

In this paper the Refined Zigzag Timoshenko Beam Theory for multilayered composite and sandwich beams has been briefly summarized in order to set up the framework for the development of a class of  shear-locking free C0 composite and sandwich  beam elements. 

Both virgin  (4 dofs at each master node and 1 deflection dof at the slave node) and constrained RZT beam elements (4 dofs at each master node, with the  deflection dof at the slave node condensed at the element level, using a  constraint condition on the axial variation of the transverse shear strain, which consists in reducing the polynomial degree of the shear strain measure,  , (or, equivalently, the shear force ) by one order) have been considered.
Six C0 RZT beam elements (linear, quadratic and cubic virgin and constrained beam elements) have been numerically implemented and their accuracy and computational efficiency assessed on elastostatic problems of cantilever beam under tip and linearly (uniform and triangular) distributed transverse loads. Three laminate configurations and five slenderness ratios have been considered.
It has been shown that:
(i) all the tested beam elements (linear, quadratic and cubic, virgin and constrained) show very good monotonic convergence for all the investigated laminate configurations.  As expected, the convergence ratio increases with increasing the order of element.
(ii) the numerical accuracy of the single element decreases slightly from concentrated load to the uniform distributed load and, subsequently, to the triangular load.  
(iii) both virgin and constrained interdependent/anisotropic C0 beam elements fully overcome the shear locking  effect, also C0 linear element, i.e., element where the deflection is  interpolated with parabolic polynomials while the other kinematic unknowns have kept their linear approximation. 
(iv) both the higher-order elements (quadratic and cubic) perform very well, with better performance of the cubic ones, in evaluating not only the axial distribution of the global quantities (such as, the deflection), but also the first and second derivatives of the uniform axial displacement, transverse deflection, average bending rotation, and amplitude of the zigzag function.   
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 Appendix A

In order to show the alternative procedure for the derivation of the shape functions of the transverse displacement for the constrained beam elements, let us consider a 3 master node elements (NN=3) and write  


                                                                                            (A.1)
where

                                                                                       (A.2)

is the cubic Lagrange’s polynomial relative to the slave node s. Note that this contribution could be considered as a hierarchical contribution,  being the hierarchical parameter.
Substituting Eq. (A.1) into Eq. (46), yields


                                                     (A.3)

Because the maximum order of the polynomial in the expression (A.3) of  is 2, we impose the constraint


                                                                                                                                 (A.4)
By taking into account that 

                                                                                                                (A.5)
constraint (A.4), yields

                         (A.6)
where


Substituting Eq. (A.6) into Eq. (A.1), yields

                                                 (A.7)
By taking into account that




yields




Finally, we obtain

             (A.8)
It can be shown that this interpolation is the same as that given by following the procedure of Ref.[22].  



The approach by hierarchical polynomials appears to be more general in some respect since, fixed the number NN of the master nodes, we can build-up a family of finite elements with different number of slave nodes[footnoteRef:1]: for example, starting from a finite element with 3 master nodes for , and , it is possible to build-up higher-order hierarchical finite elements without re-computing  the Lagrange’s polynomials. In other word, we can apply the p-version of the finite element method to develop constrained beam elements. [1:  Obviously, in this case, the parameters associated to the slave nodes are no more transverse displacements in those nodes.] 
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(a) Virgin refined zigzag beam element, RZT1VL9. (b) Constrained refined zigzag beam element, RZT1CC8.
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