
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Estimation of P-S-N curves in very-high-cycle fatigue: Statistical procedure based on a general crack growth rate model /
Paolino, Davide Salvatore; Tridello, Andrea; Chiandussi, Giorgio; Rossetto, Massimo. - In: FATIGUE & FRACTURE OF
ENGINEERING MATERIALS & STRUCTURES. - ISSN 8756-758X. - STAMPA. - 41:4(2018), pp. 718-726.
[10.1111/ffe.12715]

Original

Estimation of P-S-N curves in very-high-cycle fatigue: Statistical procedure based on a general crack
growth rate model

Wiley preprint/submitted version

Publisher:

Published
DOI:10.1111/ffe.12715

Terms of use:

Publisher copyright

This is the pre-peer reviewed version of the [above quoted article], which has been published in final form at
http://dx.doi.org/10.1111/ffe.12715.This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions..

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2689590 since: 2022-06-18T07:07:27Z

Blackwell Publishing Ltd



1 
 

Estimation of P-S-N curves in Very-High-Cycle Fatigue: statistical 
procedure based on a general crack growth rate model 

 

 

 

 

 

Authors: 
D.S. Paolinoa, A. Tridellob, G. Chiandussic, M. Rossettod 
 
a Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy, 
davide.paolino@polito.it 
b Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy, 
andrea.tridello@polito.it  
c Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy, 
giorgio.chiandussi@polito.it 
d Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy, 
massimo.rossetto@polito.it 
 
 
Corresponding Author: 
D.S. Paolino 
E-mail address: davide.paolino@polito.it 
Full postal address: 
C.so Duca degli Abruzzi 24, 
Department of Mechanical and Aerospace Engineering – Politecnico di Torino, 
10129 – Turin, 
ITALY 
Phone number: +39.011.090.5746 
Fax number: +39.011.090.6999 
 
 
 
  

mailto:davide.paolino@polito.it


2 
 

Abstract: 

Extensive experimental investigations show that internal defects play a key role in the Very-High-Cycle 
Fatigue (VHCF) response of metallic materials and that crack growth from internal defects can take place 
even if the Stress Intensity Factor (SIF) associated to the initial defect is below the threshold for crack growth. 
By introducing a reduction term in the typical formulation of the threshold for crack growth, the Authors 
recently proposed a general phenomenological model, which can effectively describe crack growth from 
internal defects in VHCF. The model is able to consider the different crack growth scenarios that may arise in 
VHCF and is general enough to embrace the various weakening mechanisms proposed in the literature for 
explaining why crack can grow below the threshold. 

In the present paper, the model is generalized in a statistical framework. The statistical distributions of the 
crack growth threshold and of the initial defect size are introduced in the model. The procedure for the 
estimation of the Probabilistic-S-N curves and of the fatigue limit distribution is illustrated and numerically 
applied to an experimental dataset. 

 

Keywords: Gigacycle fatigue, Ultra-High-Cycle Fatigue, Paris’ law, Random fatigue limit, P-S-N curves 
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Acronyms and nomenclature 

FGA: Fine Granular Area 

𝐻𝐻𝐻𝐻: Vickers Hardness 

LEV: Largest Extreme Value 

SIF: Stress Intensity Factor 

√𝑎𝑎, �𝑎𝑎0, �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹: characteristic defect sizes, deterministic values 

�𝑎𝑎0∗ , �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗ , �𝑎𝑎0,∞
∗ , 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔

∗ , 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙
∗ , 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟

∗ ,𝑛𝑛𝑓𝑓∗, 𝑧𝑧∗: random simulations 

�𝐴𝐴0: initial defect size, random variable 

𝑐𝑐𝑠𝑠𝑙𝑙, 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔, 𝑐𝑐𝑡𝑡ℎ,𝑟𝑟, 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔, 𝛼𝛼𝑡𝑡ℎ,𝑟𝑟: constant coefficients in threshold SIFs and fatigue limit 

𝑐𝑐𝐼𝐼, 𝑚𝑚𝐼𝐼, 𝑐𝑐𝐼𝐼𝐼𝐼, 𝑚𝑚𝐼𝐼𝐼𝐼, 𝑐𝑐𝐼𝐼𝐼𝐼, 𝑚𝑚𝐼𝐼𝐼𝐼: Paris’ constants 

𝑓𝑓�𝐹𝐹0: probability density function of �𝐴𝐴0 

𝐹𝐹�𝐹𝐹0, 𝐹𝐹𝑁𝑁𝑓𝑓,�𝑎𝑎0: cumulative distribution functions 

𝑘𝑘𝑑𝑑, 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔, 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙, 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟: characteristic SIFs, deterministic values 

𝑛𝑛𝐼𝐼, 𝑛𝑛𝐼𝐼𝐼𝐼, 𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼, 𝑛𝑛𝑓𝑓: number of cycles, deterministic values 

𝑠𝑠: applied stress amplitude, deterministic value 

𝑠𝑠𝑙𝑙: fatigue limit, deterministic value 

𝜇𝜇√𝐹𝐹, 𝜎𝜎√𝐹𝐹, 𝜎𝜎𝑡𝑡ℎ,𝑔𝑔: parameters of statistical distributions 

�𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹,𝛼𝛼, 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔,𝛼𝛼, 𝑛𝑛𝑓𝑓,�𝑎𝑎0,𝛼𝛼, 𝑠𝑠𝑙𝑙,�𝑎𝑎0,𝛼𝛼, 𝑧𝑧𝛼𝛼: 𝛼𝛼-th quantiles 

∙:̃ parameter estimate 
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1. Introduction 

Very-High-Cycle Fatigue (VHCF) is a quite recent and attractive research field related to the fatigue response 
of materials for number of cycles larger than 108. Extensive experimental investigations performed on several 
metallic materials show that VHCF failures mainly originate from internal or subsurface defects and typically 
exhibit fracture surfaces with the fish-eye morphology. Within the fish-eye, fracture surfaces also exhibit the 
so-called Fine Granular Area (FGA)1 around the initial defect. 

It is well-known2-6 that the FGA plays a major role in the VHCF response, since more than the 95% of the total 
life is consumed in its formation. The average crack growth rate within the FGA is extremely small and, 
unexpectedly, crack can grow even if the Stress Intensity Factor (SIF) is smaller than the threshold value for 
crack growth. To explain such peculiarity, several micromechanical models are proposed in the VHCF 
literature: local grain refinement2, 4-8, hydrogen embrittlement3, 9, 10, carbide decohesion11, matrix 
fragmentation12 or formation of persistent slip bands13. The common aspect of each micromechanical model 
is that a weakening mechanism occurs around the initial defect, thus permitting crack growth below the SIF 
threshold. 

In14, the Authors proposed and experimentally validated a model for crack growth from an internal defect in 
the VHCF regime. In a subsequent paper15, the Authors also showed that the model can be effectively used 
for a quantitative description of the different crack growth scenarios that may arise in VHCF and is general 
enough to embrace the various weakening mechanisms proposed in the literature. 

In the present paper, the model is generalized in a statistical framework. The statistical distributions of the 
crack growth threshold and of the initial defect size are introduced in the model. The procedure for the 
estimation of the Probabilistic-S-N curves and of the fatigue limit distribution is illustrated and numerically 
applied to an experimental dataset. 

2. Methods 

In Section 2.1, a general expression for modeling the crack growth rate from the initial internal defect up to 
the VHCF failure is presented. In Section 2.2, the statistical distribution of the fatigue limit is analytically 
defined. Finally, Section 2.3 defines a procedure for the estimation of the Probabilistic-S-N (P-S-N) curves. 

In the following, according to15, 𝑘𝑘𝑑𝑑 denotes the SIF at the internal defect, 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔 denotes the global SIF 
threshold, 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟 denotes the reduction SIF threshold, 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙 denotes the local SIF threshold (i.e., 
𝑘𝑘𝑡𝑡ℎ,𝑙𝑙  =  𝑘𝑘𝑡𝑡ℎ,𝑔𝑔 −  𝑘𝑘𝑡𝑡ℎ,𝑟𝑟), 𝑎𝑎0 is the projected area of the initial defect and 𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹 is the projected area of the 
FGA. 

2.1. Crack growth rate within the FGA 

In the VHCF literature6, 16-18, the crack growth rate within the FGA is commonly modeled with the Paris’ law 
and the related crack growth rate diagram (Fig. 1) generally consists of three stages: 

• Stage I: the below-threshold region within the FGA, from 𝑘𝑘𝑎𝑎0 (SIF associated to the initial defect) up 
to 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔; 

• Stage II: the steady stage, from the border of the FGA (SIF equal to 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔) up to the border of the fish-
eye (with SIF equal to 𝑘𝑘𝐹𝐹𝐹𝐹𝐸𝐸); 

• Stage III: the unsteady stage, beyond the fish-eye border (with SIF larger than 𝑘𝑘𝐹𝐹𝐹𝐹𝐸𝐸, up to the failure). 
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Figure 1: The three stages of crack propagation in a crack growth rate diagram for VHCF failures from 
internal defects. 

The modified Paris’ law proposed in19 was considered for modeling the crack growth within the FGA: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝑐𝑐𝐼𝐼�𝑘𝑘𝑑𝑑 − 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙�
𝑚𝑚𝐼𝐼, (1) 

where 𝑐𝑐𝐼𝐼 and 𝑚𝑚𝐼𝐼 are the Paris’ constants related to Stage I, from the initial defect size �𝑎𝑎0 up to �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹. 

In Stage II, from the border of the FGA up to the border of the fish-eye, the crack growth rate was modeled 
with the conventional Paris’ law16-18: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝑐𝑐𝐼𝐼𝐼𝐼𝑘𝑘𝑑𝑑
𝑚𝑚𝐼𝐼𝐼𝐼, (2) 

where 𝑐𝑐𝐼𝐼𝐼𝐼 and 𝑚𝑚𝐼𝐼𝐼𝐼 are the two Paris’ constants related to Stage II, from �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹 up to �𝑎𝑎𝐹𝐹𝐹𝐹𝐸𝐸. 

If crack propagation takes also place beyond the fish-eye border, a third stage is visible on fracture surfaces 
and it was modeled, again, with the conventional Paris’ law18: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑑𝑑
𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼, (3) 

where 𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼 are the two Paris’ constants related to Stage III, from �𝑎𝑎𝐹𝐹𝐹𝐹𝐸𝐸 up to �𝑎𝑎𝑐𝑐 at the border of 
the final fracture. It is worth to note that, it often occurs that the final fracture takes place when the crack 
size reaches the border of the fish-eye. In these cases, Stage III is not present. 

The number of cycles to failure, 𝑛𝑛𝑓𝑓, is the sum of the number of cycles consumed within the three stages of 
propagation: 

𝑛𝑛𝑓𝑓 = 𝑛𝑛𝐼𝐼 + 𝑛𝑛𝐼𝐼𝐼𝐼 + 𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼. (4) 

Following the VHCF literature6, 18, 20, 𝑛𝑛𝐼𝐼 was estimated by subtracting, from the experimental 𝑛𝑛𝑓𝑓, the numbers 
of cycles consumed in Stages II and III, which, in turn, were obtained through integration of Eqs. (2) and (3), 
respectively. 

 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

 

𝑘𝑘𝑑𝑑  

Stage I Stage II Stage III 

𝑘𝑘𝑡𝑡ℎ ,𝑔𝑔  𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹  𝑘𝑘𝑡𝑡ℎ ,𝑙𝑙  𝑘𝑘𝑑𝑑 ,0 
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According to15, the experimental 𝑛𝑛𝐼𝐼 values (𝑛𝑛𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒) were used for the estimation of the Paris’ constants 𝑐𝑐𝐼𝐼, 
𝑚𝑚𝐼𝐼 and of the parameters 𝑐𝑐𝑡𝑡ℎ,𝑟𝑟 and 𝛼𝛼𝑡𝑡ℎ,𝑟𝑟 involved in the expression of 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙. Parameter estimates were 
obtained through the nonlinear Least Squares Method by minimizing the sum of squared percent errors 
between the experimental log10�𝑛𝑛𝐼𝐼,𝑒𝑒𝑒𝑒𝑒𝑒� values and the estimated log10�𝑛𝑛𝐼𝐼,𝑒𝑒𝑠𝑠𝑡𝑡� values computed through 
integration of Eq. (1). 

2.2. Fatigue limit expression and related statistical distribution 

As reported in14, 15, the fatigue limit, referred to as 𝑠𝑠𝑙𝑙, is given by: 

𝑠𝑠𝑙𝑙 = 𝑐𝑐𝑠𝑠𝑙𝑙
𝑐𝑐𝑡𝑡ℎ,𝑔𝑔(𝐻𝐻𝐻𝐻+120)

�𝑎𝑎0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑔𝑔

, (5) 

where 𝑐𝑐𝑠𝑠𝑙𝑙 = ��1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑔𝑔�0.5√𝜋𝜋
�𝛼𝛼𝑡𝑡ℎ,𝑔𝑔−𝛼𝛼𝑡𝑡ℎ,𝑟𝑟�𝑐𝑐𝑡𝑡ℎ,𝑟𝑟

�

1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑔𝑔
1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑟𝑟 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔−𝛼𝛼𝑡𝑡ℎ,𝑟𝑟

0.5√𝜋𝜋�1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑟𝑟�
 depends on the four coefficients, 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔, 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔, 𝑐𝑐𝑡𝑡ℎ,𝑟𝑟 and 

𝛼𝛼𝑡𝑡ℎ,𝑟𝑟, involved in the expressions of the global SIF threshold 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔: 

𝑘𝑘𝑡𝑡ℎ,𝑔𝑔 = 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔(𝐻𝐻𝐻𝐻 + 120)√𝑎𝑎
𝛼𝛼𝑡𝑡ℎ,𝑔𝑔, (6) 

and of the reduction SIF threshold 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟: 

𝑘𝑘𝑡𝑡ℎ,𝑟𝑟 = 𝑐𝑐𝑡𝑡ℎ,𝑟𝑟𝑠𝑠�𝑎𝑎0
1 2⁄

�√𝑎𝑎 �𝑎𝑎0� �
𝛼𝛼𝑡𝑡ℎ,𝑟𝑟, (7) 

being 𝑎𝑎 is the projected area of the defect, 𝑎𝑎0 the projected area of the initial defect, 𝑠𝑠 the local stress 
amplitude at the defect location and 𝐻𝐻𝐻𝐻 the Vickers hardness of the material. 

Eq. (5) recalls the well-known expression proposed by Murakami9 and it is obtained by considering the 
condition of transition between finite and infinite fatigue life, for a given initial defect size (Fig. 2). 

 

Figure 2: Variation of relevant SIFs with defect size in fatigue limit condition. 

The statistical distribution of the fatigue limit for a given initial defect size (conditional distribution of the 
fatigue limit) is defined according to14: 

𝑠𝑠𝑙𝑙,�𝑎𝑎0,𝛼𝛼 = 𝑐𝑐𝑠𝑠𝑙𝑙
𝑐𝑐𝑡𝑡ℎ,𝑔𝑔(𝐻𝐻𝐻𝐻+120)

�𝑎𝑎0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑔𝑔

10𝑧𝑧𝛼𝛼𝜎𝜎𝑡𝑡ℎ,𝑔𝑔, (8) 
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where 𝑠𝑠𝑙𝑙,�𝑎𝑎0,𝛼𝛼 is the 𝛼𝛼-th quantile of the conditional distribution, 𝑧𝑧𝛼𝛼 denotes the 𝛼𝛼-quantile of a standardized 

Normal distribution and 𝜎𝜎𝑡𝑡ℎ,𝑔𝑔 is the standard deviation of the global SIF threshold14, 15. 

Eq. (8) is obtained by assuming, according to the literature14, 21, 22, a Lognormal distribution for the global SIF 
threshold: 

𝑘𝑘𝑡𝑡ℎ,𝑔𝑔,𝛼𝛼 = 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔(𝐻𝐻𝐻𝐻 + 120)√𝑎𝑎
𝛼𝛼𝑡𝑡ℎ,𝑔𝑔10𝑧𝑧𝛼𝛼𝜎𝜎𝑡𝑡ℎ,𝑔𝑔, (9) 

where 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔,𝛼𝛼  denotes the 𝛼𝛼-th quantile of the global SIF threshold. 

2.3. Conditional and marginal P-S-N curves 

The Probabilistic-S-N (P-S-N) curves model the random variation of the fatigue life for different stress 
amplitudes. Their identification was based on the integration of Eq. (1) and on the assumption that the 
number of cycles consumed in Stages II and III was negligible with respect to that spent within Stage I (i.e., 
𝑛𝑛𝑓𝑓 ≅ 𝑛𝑛𝐼𝐼). It is worth to note that the assumption yielded quasi-correct 𝑛𝑛𝑓𝑓 values since, according to the 
literature5, 6, 15, 20, more than the 95% of the total VHCF life is generally spent in Stage I. In particular, in15, it is 
shown that 𝑛𝑛𝐼𝐼 𝑛𝑛𝑓𝑓⁄  is always larger than the 99.5%. 

The integration of Eq. (1) permitted to estimate the 𝛼𝛼-th quantile of the fatigue life for a given initial defect 
size (conditional P-S-N curve): 

𝑛𝑛𝑓𝑓,�𝑎𝑎0,𝛼𝛼 ≅ 𝑛𝑛𝐼𝐼,�𝑎𝑎0,𝛼𝛼 = ∫ 𝑑𝑑𝑎𝑎
𝑐𝑐𝐼𝐼�𝑘𝑘𝑑𝑑−𝑘𝑘𝑡𝑡ℎ,𝑙𝑙,𝛼𝛼�

𝑚𝑚𝐼𝐼
�𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹,𝛼𝛼

�𝑎𝑎0
, (10) 

where 𝑘𝑘𝑑𝑑 = 0.5𝑠𝑠√𝜋𝜋√𝑎𝑎
1 2⁄

 is the SIF for an internal defect, 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙,𝛼𝛼 = 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔,𝛼𝛼 − 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟  denotes the 𝛼𝛼-th quantile 
of the local SIF threshold and �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹,𝛼𝛼 is the 𝛼𝛼-th quantile of the FGA size: 

�𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹,𝛼𝛼 = �𝑐𝑐𝑡𝑡ℎ,𝑔𝑔(𝐻𝐻𝐻𝐻+120)10𝑧𝑧𝛼𝛼𝜎𝜎𝑡𝑡ℎ,𝑔𝑔

0.5𝑠𝑠√𝜋𝜋
�

1
1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑔𝑔. (11) 

The expression in Eq. (11) was obtained by considering that, when the defect size reaches �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹,𝛼𝛼, 𝑘𝑘𝑑𝑑 is 
necessarily equal to 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔,𝛼𝛼. 

The marginal distribution of the fatigue life, no more conditioned to the value assumed by �𝑎𝑎0, (marginal P-
S-N curve) was identified by introducing the distribution of the initial defect size. Since the initial defect size 
is the size of the largest defect present in the specimen9, the initial defect size random variable, referred to 
as �𝐴𝐴0, was modelled through a Type I Largest Extreme Value (LEV) distribution9 with probability density 
function: 

𝑓𝑓�𝐹𝐹0��𝑎𝑎0� = 𝑒𝑒
−
�𝑎𝑎0−𝜇𝜇√𝐹𝐹

𝜎𝜎√𝐹𝐹
−𝑒𝑒

−
�𝑎𝑎0−𝜇𝜇√𝐹𝐹

𝜎𝜎√𝐹𝐹

𝜎𝜎√𝐹𝐹
, (12) 

where 𝜇𝜇√𝐹𝐹 and 𝜎𝜎√𝐹𝐹 are the two parameters of the LEV distribution and are easily estimated through a 
Gumbel plot of the initial defect sizes, according to the procedure suggested in9. 

The 𝛼𝛼-th quantile of the marginal distribution of the fatigue limit was obtained by taking into account the 
defect size distribution: 

𝛼𝛼 = ∫ 𝐹𝐹𝑁𝑁𝑓𝑓,�𝑎𝑎0�𝑛𝑛𝑓𝑓,𝛼𝛼; 𝑠𝑠,�𝑎𝑎0� ∙ 𝑓𝑓�𝐹𝐹0��𝑎𝑎0� ∙ 𝑑𝑑�𝑎𝑎0
∞
0 , (13) 
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where 𝐹𝐹𝑁𝑁𝑓𝑓,�𝑎𝑎0 denotes the conditional distribution of the fatigue life. Given 𝐹𝐹𝑁𝑁𝑓𝑓,�𝑎𝑎0, the 𝛼𝛼-th quantile of the 

fatigue life could be obtained by solving Eq. (13) with respect to 𝑛𝑛𝑓𝑓,𝛼𝛼  for different values of 𝑠𝑠. 

𝐹𝐹𝑁𝑁𝑓𝑓,�𝑎𝑎0 was implicitly defined in Eq. (10). However, the complexity of the expression of 𝑛𝑛𝑓𝑓,�𝑎𝑎0,𝛼𝛼 in Eq. (10) 

did not permit to define an explicit function for 𝐹𝐹𝑁𝑁𝑓𝑓,�𝑎𝑎0, which was necessary for computing 𝑛𝑛𝑓𝑓,𝛼𝛼  from Eq. 

(13). Therefore, 𝑛𝑛𝑓𝑓,𝛼𝛼 was not obtained from Eq. (13) and an alternative numerical procedure was adopted in 
substitution. The procedure was based on Montecarlo simulations of the number of cycles to failure for a 
given stress amplitude 𝑠𝑠. The following steps were followed for each Montecarlo simulation: 

1) Definition of a stress amplitude value, 𝑠𝑠; 
2) Random extraction of an initial defect size, �𝑎𝑎0∗ , from the estimated 𝑓𝑓�𝐹𝐹0��𝑎𝑎0�; 
3) Random extraction of a value, 𝑧𝑧∗, from the standard Normal distribution; 
4) Computation of a random global SIF threshold, 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔

∗ , from Eq. (9) with 𝑧𝑧𝛼𝛼 replaced by 𝑧𝑧∗; 
5) Computation of a random reduction SIF threshold, 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟

∗ , from Eq. (7) with �𝑎𝑎0 replaced by �𝑎𝑎0∗ ; 
6) Computation of a random local SIF threshold, 𝑘𝑘𝑡𝑡ℎ,𝑙𝑙

∗ = 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔
∗ − 𝑘𝑘𝑡𝑡ℎ,𝑟𝑟

∗ ; 

7) Computation of a random FGA size, �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗ , from Eq. (11) with 𝑧𝑧𝛼𝛼 replaced by 𝑧𝑧∗; 
8) Computation of �𝑎𝑎0,∞

∗ , the initial defect size yielding a fatigue limit equal to 𝑠𝑠: 

�𝑎𝑎0,∞
∗ = �𝑐𝑐𝑠𝑠𝑙𝑙

𝑐𝑐𝑡𝑡ℎ,𝑔𝑔(𝐻𝐻𝐻𝐻+120)
𝑠𝑠

10𝑧𝑧∗𝜎𝜎𝑡𝑡ℎ,𝑔𝑔�
1

1 2⁄ −𝛼𝛼𝑡𝑡ℎ,𝑔𝑔; (14) 
9) Computation of a random number of cycles, 𝑛𝑛𝑓𝑓∗, at 𝑠𝑠: 

𝑛𝑛𝑓𝑓∗ =

⎩
⎪
⎨

⎪
⎧ ∞, �𝑎𝑎0∗ ≤ �𝑎𝑎0,∞

∗

∫ 𝑑𝑑𝑎𝑎
𝑐𝑐𝐼𝐼�𝑘𝑘𝑑𝑑−𝑘𝑘𝑡𝑡ℎ,𝑙𝑙

∗ �
𝑚𝑚𝐼𝐼

�𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹
∗

�𝑎𝑎0∗
, �𝑎𝑎0,∞

∗ < �𝑎𝑎0∗ < �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗

0, �𝑎𝑎0∗ ≥ �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗

; (15) 

Steps 1) to 9) were repeated 10000 times to permit an accurate estimation of the marginal distribution of 
the number of cycles to failure. It is worth to note that the case �𝑎𝑎0∗ ≥ �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗  in step 9) is a very rare 
condition in the VHCF regime. Indeed, the random FGA size �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗  reduces for larger stress amplitudes and 
it may reach values smaller than �𝑎𝑎0∗  only for stress amplitudes in the High-Cycle Fatigue (HCF) regime. Since 
the analysis was performed for studying the VHCF regime, the condition �𝑎𝑎0∗ ≥ �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹∗  did not occur in 
almost all Montecarlo simulations. 

The distribution of the number of cycles to failure at 𝑠𝑠 was then estimated with the Kaplan-Meier estimator23 
from the simulated 10000 fatigue lives. Finally, the 𝛼𝛼-th quantile of the fatigue life, 𝑛𝑛𝑓𝑓,𝛼𝛼, was easily computed 
from the estimated distribution. The procedure was repeated for several stress amplitudes in the VHCF 
region, in order to estimate the marginal P-S-N curves. 

3. Numerical application to an experimental dataset 

In order to show the applicability of the proposed approach, model parameters were fitted to an 
experimental dataset. 

VHCF tests were carried out on Gaussian specimens24 made of an AISI H13 steel with Vickers hardness 
560 kgf/mm2. Details on the testing setup and on the tested material are reported in25, 26 and will not be 
recalled here for the sake of brevity. Twelve specimens were loaded at a constant stress amplitude up to 
failure. The number of cycles to failure ranged from 4.2×107 to 3.85×109. Fracture surfaces were seen through 
a Scanning-Electron-Microscope (SEM) in order to measure the initial defect size (i.e., �𝑎𝑎0) in each specimen; 
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whereas, the FGA sizes (i.e., �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹) were measured from pictures taken at the optical microscope. From the 
SEM analysis, all the fatigue fractures nucleated from non-metallic inclusions (oxide-type inclusions). 

The local stress amplitude in the vicinity of the initial defect was considered as the stress amplitude applied 
during the test. As shown in the S-N plot of the experimental dataset (Fig. 3), the local stress amplitudes were 
in the range 500–635 MPa. 

 

Figure 3: S-N plot of the experimental dataset. 

The parameters 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔, 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔 and 𝜎𝜎𝑡𝑡ℎ,𝑔𝑔 involved in the expressions of the 𝛼𝛼-th quantile of the fatigue limit (Eq. 
8) and of the global SIF threshold (Eq. 9) were estimated following the procedure described in15. Fig. 4 shows 
the 𝑘𝑘𝑡𝑡ℎ,𝑔𝑔 values with respect to �𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹, together with the estimated model. The 0.1-th and the 0.9-th 
quantiles are also depicted. 

 

Figure 4: Global SIF threshold variation as a function of the FGA size. 

In particular, the following estimates of 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔, 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔 and 𝜎𝜎𝑡𝑡ℎ,𝑔𝑔 were obtained: 
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�
𝑐𝑐𝑡𝑡ℎ,𝑔𝑔� = 1.979 ∙ 10−3

𝛼𝛼𝑡𝑡ℎ,𝑔𝑔� = 0.2916
𝜎𝜎𝑡𝑡ℎ,𝑔𝑔� = 0.0194

, (16) 

where ∙ ̃ denotes the parameter estimate. It is worth noting that the estimates 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔� and 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔�  are in 
agreement with the values proposed in the literature for 𝑐𝑐𝑡𝑡ℎ,𝑔𝑔

27, 28 and for 𝛼𝛼𝑡𝑡ℎ,𝑔𝑔
3, 9, 27, 28. As shown in Fig. 4, 

the assumed linear model is in good agreement with the experimental data (11 failures out of 12 are inside 
the 80% confidence interval). 

The parameters 𝑐𝑐𝐼𝐼, 𝑚𝑚𝐼𝐼, 𝑐𝑐𝑡𝑡ℎ,𝑟𝑟 and 𝛼𝛼𝑡𝑡ℎ,𝑟𝑟 were estimated through the nonlinear Least Squares Method15, which 
yielded the following estimates: 

⎩
⎨

⎧𝑐𝑐𝐼𝐼� = 2.2832×10−15
𝑚𝑚𝐼𝐼� = 4.0522
𝑐𝑐𝑡𝑡ℎ,𝑟𝑟� = 0.9150
𝛼𝛼𝑡𝑡ℎ,𝑟𝑟� = −0.0926

. (17) 

The fatigue limit for a given defect size was then estimated according to Eq. (8). Fig. 5 shows the median, the 
0.1-th and the 0.9-th quantiles of fatigue limit as a function of the initial defect size. 

 

Figure 5: Variation of the fatigue limit with the initial defect size. 

Fig. 5 shows, in agreement with the literature9, 29, that the fatigue limit decreases with the initial defect size. 
The estimated fatigue limit curves are below the experimental failures, as expected from the definition of 
fatigue limit. The proposed model was therefore effective in the estimation of the fatigue limit variation with 
respect to the initial defect size and ensured a reliable safety margin with respect to the experimental 
failures. 

Conditional P-S-N curves were estimated for all the initial defect sizes in the experimental dataset, according 
to Eq. (10). Fig. 6 depicts the estimated curves, which confirm the appropriateness of the proposed model: 
except for one case (�𝑎𝑎0 = 46.2 µm), experimental data are within the plotted curves that, according to the 
literature9, move downward (to smaller VHCF strength values) and leftward (to smaller VHCF life) if the initial 
defect size increases. Moreover, the trend followed by the curves in the finite VHCF region (from 108 to 1010 
cycles) is in good agreement with the Basquin’s model (linear trend in a bi-logarithmic S-N plot), which is 
commonly assumed for fitting VHCF data27, 30, 31. 
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Figure 6: Conditional P-S-N curves estimated for the initial defect sizes of the experimental dataset. The three curves in each graph correspond to the 0.025-th, 
0.5-th and 0.975-th quantiles of the VHCF life. 
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The distribution of initial defect size was estimated according to9. Fig. 7 shows the Gumbel plot of the initial 
defect size together with the estimated LEV distribution (𝜇𝜇√𝐹𝐹�  =  34.35 µm and 𝜎𝜎√𝐹𝐹�  =  10.73 µm). 

 

Figure 7: Gumbel plot of the initial defect size for the investigated steel. 

Marginal P-S-N curves were finally estimated through Montecarlo simulations, according to the procedure 
described in Section 2.3. Fig. 8 shows the estimated curves together with the experimental data in a bi-
logarithmic S-N plot. 

 

Figure 8: Marginal P-S-N curves for the experimental dataset. 

As shown in Fig. 8, the estimated P-S-N curves exhibit a sigmoidal trend and well fit the experimental data: 
the 83% of data (ten out of twelve failures) is within the 10% and the 90% P-S-N curves and the 50% of data 
(six out of twelve failures) is below the median P-S-N curve. In the finite VHCF region (from 108 to 1010 cycles), 
the curves follow a trend in good agreement with the Basquin’s model27, 30, 31. For number of cycles smaller 
than 107 and larger than 1012, the curves approach two horizontal plateaux, which correspond to the 
transition stress between HCF and VHCF and to the VHCF limit.  
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4. Conclusions 

In the present paper, the procedure for the estimation of the P-S-N curves was discussed and successfully 
applied to an experimental dataset. 

The procedure introduced, in a general crack growth rate model recently proposed by the Authors, the 
statistical distributions of the crack growth threshold and of the initial defect size. 

Two kinds of P-S-N curves were estimated: conditional P-S-N curves, if curves are for a given initial defect 
size, and marginal P-S-N curves, if curves are regardless of the initial defect size. The estimation of the 
conditional P-S-N curves was based on the direct integration of the modified Paris’ law adopted to model the 
first stage of crack growth, from the initial defect to the FGA border. Due to the complexity of the analytical 
expression, the marginal P-S-N curves were estimated following a numerical approach based on Montecarlo 
simulations. 

The procedure proved effective when applied to an experimental dataset. Conditional and marginal P-S-N 
curves were in good agreement with the experimental data and showed a sigmoidal trend consisting of three 
distinct regions in a bi-logarithmic S-N plot: 

• An upper horizontal plateau corresponding to the transition from HCF to VHCF, for number of cycles 
smaller than 107; 

• A central linear trend corresponding to the finite VHCF, for number of cycles from 108 to 1010 cycles; 
• A lower horizontal plateau corresponding to the VHCF limit, for number of cycles larger than 1012. 

The numerical application showed the potentialities of the proposed approach in terms of estimated 
statistical results (conditional and marginal P-S-N curves) and it also highlighted the ease of application of the 
method. 
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Figure 1: The three stages of crack propagation in a crack growth rate diagram for VHCF failures from 
internal defects. 

 

 

 

Figure 2: Variation of relevant SIFs with defect size in fatigue limit condition. 
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Figure 3: S-N plot of the experimental dataset. 

 

 

 

Figure 4: Global SIF threshold variation as a function of the FGA size. 
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Figure 5: Variation of the fatigue limit with the initial defect size. 
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Figure 6: Conditional P-S-N curves estimated for the initial defect sizes of the experimental dataset. The three curves in each graph correspond to the 0.025-th, 
0.5-th and 0.975-th quantiles of the VHCF life.  
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Figure 7: Gumbel plot of the initial defect size for the investigated H13 steel. 

 

 

 

Figure 8: Marginal P-S-N curves for the experimental dataset. 

 


