
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Layout-oriented Radiation Effects Mitigation in RISC-V Soft Processor / Vacca, Eleonora; De Sio, Corrado; Azimi, Sarah.
- ELETTRONICO. - (2022), pp. 215-220. (Intervento presentato al convegno 19th ACM International Conference on
Computing Frontiers 2022 tenutosi a Torino nel May 2022) [10.1145/3528416.3530984].

Original

Layout-oriented Radiation Effects Mitigation in RISC-V Soft Processor

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3528416.3530984

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2966363 since: 2022-06-09T12:21:14Z

ACM

Layout-oriented Radiation Effects Mitigation in

RISC-V Soft Processor

Invited Paper

Eleonora Vacca
 Department of Control and

Computer Engineering

 Politecnico di Torino

 Turin, Italy

 eleonora.vacca@polito.it

Corrado De Sio
 Department of Control and

Computer Engineering

 Politecnico di Torino

 Turin, Italy

 corrado.desio@polito.it

Sarah Azimi
Department of Control and

Computer Engineering

 Politecnico di Torino

 Turin, Italy

 sarah.azimi@polito.it

ABSTRACT

Last decade, the RISC-V soft processor has become popular due

to the benefits such as transparency and availability of hardware

implementations on reconfigurable devices such as SRAM-based

FPGAs. However, these devices are highly sensitive to high-energy

particles. In this work, we propose an implementation methodology

that ranges from the hardening method applied at the Register

Transfer Level (RTL) to the optimization of layout techniques

acting on the place & route of the design. As a case study, the TMR-

hardened Arithmetic Logic Unit (ALU) of the RISC-V soft

processor implementation was taken and its reliability under

different design layouts has been analyzed using fault injection

campaigns. Experimental results show that the design reliability

can be improved by applying ad hoc layout customization..

CCS CONCEPTS

Hardware~Robustness~Safety critical systems

KEYWORDS

Floorplanning, RISC-V, Reliability, SRAM-based FPGA, Fault

Injection, Routing, Reconfigurable devices.

ACM Reference format:

Eleonora Vacca, Corrado De Sio and Sarah Azimi. 2022. Layout-oriented

Radiation Effects Mitigation in RISC-V Soft Processor: Invited Paper. In

Proceedings of ACM Computing Frontiers (CF’22). ACM, May 17-19,

Turin, Italy, 6 pages. https://doi.org/10.1145/3528416.3530984

1 Introduction

Last decade, the RISC-V soft processor has become interesting.

Its open-source nature, accompanied by a modular and highly

intuitive design, made it attractive for various fields, including

aerospace. Considering space applications, the reliability of

electronic components is jeopardized by the high presence of

radiation. Thus, consideration must be given to the effect of high-

energy particles on functional failures of the system and suitable

mitigate techniques [1]. Reliability becomes even more critical

when designs are implemented on SRAM-based programmable

logic devices [2][3][4] since configuration memory is an extremely

radiation-sensitive element [5][6] as it stores the binary information

to configure the logic to implement the circuit. Hence, a radiation-

induced alteration of such memory can cause a structural change to

the implemented design [7][8][9].

One of the most common approaches to ensuring a working

programmable logic device even in case of a failure is the

hardening-by-design method, typically consisting of the adoption

of redundancy [10][11][12] that can be applied at different levels.

Nonetheless, hardening techniques are often not sufficient to

achieve the required level of reliability which in turn can be

increased or decreased by the layout solution adopted. The P&R

algorithms typically supported by commercial FPGA design tools

aim to realize feasible, performant but not necessarily reliable

solutions. The level of reliability is certainly dependent on the

application context of the design, which is known a priori by the

designer and not the tool. Hence, the designer may decide to adopt

a certain implementation strategy to increase the reliability of the

design, but this is not reflected in the layout solution arranged by

the commercial tool. In this context, it is certainly helpful to have

an intuitive way to make any changes the designer deems necessary

on the placement and/or routing of the design. Thus, having the

ability to generate a custom layout that reflects the design

specifications imposed by the user.

In this paper, we present two layout-oriented approaches, one

for placement and the other one for routing with the goal to increase

the reliability of the design. The developed tools receive

customization directives from the user and generate design

constraints to be integrated into the commercial design flow. They

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

republish, post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CF'22, May 17–19, 2022, Torino, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9338-6/22/05…$15.00

https://doi.org/10.1145/3528416.3530984

mailto:corrado.desio@

CF’22, May 17-19, 2022, Turin, Italy E. Vacca et al.

have been applied to the hardened design of the RISC-V Arithmetic

Logic Unit (ALU) extracted from the RI5CY core part of the

PULPissimo [15] project. Firstly, the ALU has been hardened by

applying the Triple Modular Redundancy (TMR) technique.

Secondly, its reliability has been evaluated under different layout

conditions, realized with the developed tools, by performing fault

injection on the various configurations of design.

The experimental results have shown that layout is affecting the

reliability of a design, especially by compromising the applied error

mitigation technique. Considering TMR, this must be accompanied

by customization of both placement and routing, applying isolation

based on TMR domains.

2 Related Works

The P&R algorithms are one of the most computational

challenges in the field of Computer-Aided Design (CAD) tools

[14]. The placement customization approach is today implemented

in several commercial tools, and it relies on manual placement

techniques supported by the graphic interface, as used in [16].

Other proposed techniques provide full floorplanning algorithm

solutions as in [19][20] that are complex or rely on partial

reconfiguration [17][18][19].

As much as these approaches are valid, they are tough to

implement for those who want to change the layout in a few steps

and have little knowledge of what is behind it. On contrary, the

support of a graphical interface in which the user can choose the

physical position of modules could be the preferred approach.

Therefore, commercial tools offer an instrument for floorplanning

[16], that consists in defining the so-called placement block.

The routing process is another critical step in the FPGA design

flow. Interconnect resources occupy predetermined locations in the

FPGA area, thus, drastically reducing flexibility. In addition, the

associated delay contributions are much greater than those of the

logic, making routing one of the main performance-dependent

issues in FPGAs. Some of the most renowned routing algorithms

include the Maze routing algorithm [22] which aims to find the

shortest path between two points while avoiding already used

routing resources. However, it performs routing by looking for the

local optimum, not considering that the path found may block the

routing of the following nets. Therefore, the efficiency of the

algorithm depends on the order in which the nets are processed. The

algorithm proposed at [23] is based on the Maze one but with the

possibility of also using resources already used.

Moreover, Vivado Design provides a tool for manual routing

that allows you to customize one net routing path at a time,

choosing each time the next segment of the path [21].

In this paper, we present methodologies to automate the routing

and placement customization process compared to the commercial

tool approaches, limiting user intervention to entering

customization directives

3 Background

FPGAs are typically organized in a bi-dimensional array of

Configurable Logic Blocks (CLBs) that are connected using

programmable interconnects grouped within Switch Boxes [13].

3.1 Logic Resources Organization

Although in most FPGAs the basic hardware resource is the CLB,

in Xilinx devices the SLICE plays a key role in the placement

algorithm. The physical resources are uniquely identified through

the SLICEs they belong to; the SLICEs are organized in a matrix

system of dimension M x N, where each of them is labeled through

a pair of coordinates (i, j). Each SLICE contains four Look-Up

Tables (LUT), some logic gates, eight flip-flops, and one carry

logic block. The content of each SLICE defines a set of primitive

types. A primitive type is a resource that is directly recognized by

the Xilinx implementation software and that corresponds to a

physical resource in the target FPGA.

This means that, given a design, any logic cell in the netlist will

be mapped to one of these primitive types, depending on the

functionality it implements. Once the primitive type has been

defined for each netlist element, the Xilinx Vivado Design tool

proceeds with the Implementation phase which is the process of

assigning physical resources to the logical ones.

3.2 Interconnection Resources Organization

In Xilinx FPGAs, the CLBs are organized in a two-dimensional

array structure, and between the rows and columns of this array,

there are horizontal and vertical routing channels that allow

exchanging data among CLBs, Input blocks, and Output blocks.

Switch Boxes (SB) enclose programmable interconnections that

allow switching between vertical and horizontal wires, enabling

access to CLBs.

Figure 1: Switch Box view: node selection with all its reachable

nodes.

In the nomenclature adopted by Xilinx, each Switch Box is

associated with a pair of (x, y) coordinates, that follow the same

trend as the coordinates related to CLBs. These coordinates

uniquely associate each SB with a precise point in the space of

interconnections, so the latter can be modeled as a matrix where

each cell is a programmable interconnection resource.

The SB can be modeled as a black box with a set of nodes that

are placed along its perimeter, as shown in Fig. 1. Each node has

associated with some Programmable Interconnect Point (PIPs). A

PIP is a switch that connects two wires, controlled by SRAM

configuration cells. Given a node, its PIPs correspond to a set of

reachable nodes belonging either to the same matrix (internal

connection) and/or to other nearby matrices. In addition, each node

is characterized by a direction and a displacement. Unlike PIPs,

easily extractable from the device features, the other information

Reachable
Node

Node
Switch Box_Xi-1Yj+1

Switch Box_XiYj

Layout-oriented Radiation Effects Mitigation in RISC-V Soft Processor CF’22, May 17-19, 2022, Turin, Italy

that outlines the characteristics of each node is not provided by the

manufacturers. However, this is essential information to build a

router. Thus, in this work, node characteristics were extracted by

taking a generic net as an example and routing it using the manual

routing wizard provided by the FPGA commercial design tool. For

each segment of the example net, most of the possible nodes and

connections have been tried and the information about the

destination node, direction, and displacement have been collected.

4 The Proposed Place & Route Approach

The proposed approach aims to automatize both the relocation

of modules and the customization of routing, compared to the

methods proposed by commercial tools, keeping a user-friendly

orientation. In the case of placement customization, the platform

allows applying any type of constraint with a granularity of the

single logic cell, while the routing tool allows the identification of

a feasible routing path that reflects a user-defined constraint on

multiple nets during the same run, drastically reducing the time

effort of the manual routing approach.

4.1 The Placement Flow

The workflow of the developed placement platform is shown in

Fig. 2. The starting point is the post-implementation design

produced by the commercial tool. The physical description of the

design and its properties, along with the user's directive on the

hierarchy level of interest are used as input to the platform. The

platform will proceed with extracting the modules consisting of the

design and providing the modules list to the user. The user will

indicate the placement customization guidelines and the modules

to which they should be applied. The platform will continue with

the relocation of the modules and, at the end of the process, will

return a physical design constraints file containing the

customizations defined by the user.

Figure 2: The scheme of developed placement platform

workflow.

Going into further detail, the fundamental key to the

functionality of the platform is the creation of an environment that

emulates the architectural organization of the FPGA family under

evaluation through a two-dimensional array of objects that

reproduce the functionality of the SLICEs. Taking into account that

any design can be seen as a list of primitive types, each

implementing a cell of the netlist, the resource netlist is extracted

in terms of a list of properties that characterize each resource used

by the current design. Among all, those of interest is the physical

location of the resource in the SLICE space, its primitive type

(LUT, FF, CARRY, etc.), the logic cell it implements, and the

module to which belongs.

The parent module name, which also appears in the cell name,

is provided as a hierarchical path. Starting from the design name,

going through the nested sequence of top entities and macro

modules, up to the final module that has logic cells associated. This

gives the possibility to choose the hierarchy level at which to

perform the module extraction. By truncating the hierarchical path

at a certain level, all cells that have the same sequence of entities in

their name path up to the given level, regardless of what comes

next, will be grouped under the same module. Therefore, the

number of modules depends on the chosen hierarchical level. In

particular, the higher the level, the more modules of the design will

be interpreted as independent and separate, and it will be possible

to apply different design constraints to each of them.

Once the extraction has been completed, this information is used

to remap the design in the platform, without applying any change.

The tool will provide visual feedback of the mapping, where the

module visualization is performed according to the hierarchical

level inserted. As an example, Fig. 3 shows the same design

mapped in the platform with different hierarchical level selections.

Figure 3: Design view on the placement platform with different

hierarchical level selection: (a) hierarchy level equal to 4, (b)

hierarchy level equal to 5.

In addition, for each extracted module, the tool indicates the

number of resources (LUTs) used. After the mapping is performed,

the user can impose placement constraints to customize the layout,

indicating the module name and the perimeter coordinates in which

their placements have to be confined. The placement will proceed

to take all the primitive resources of the current design that match

the module name in the associated cell name; the number of

resources, previously counted, will be used to define how many

SLICEs the module requires to be mapped, considering that each

logic cell is mapped in a LUT and that a SLICE contains four LUTs.

Once the placement customization is performed for all the

modules selected, the new placement is translated into a Tcl file

which indicates a new position for each customized cell. To

perform effective customization of the original unconstrained

design, this file must be integrated into the commercial tool design

flow. This is done by using it as a source file in the commercial tool

Design Netlist
(HDL)

Synthesis

Place & Route

Physical Design
Description

Xilinx Design Flow

• Cell name
• Primitive Type
• Parent Module
• Position

Resources Properties

User-defined
Hierarchical Level

User-defined
Placement

Customization

Modules
Extraction

• Design Plot
• Modules List
• Number of

resources per
module

Modules
Relocation

Physical Design
Constraint

Placement Algorithm

The Developed Placement Workflow

(a) (b)

CF’22, May 17-19, 2022, Turin, Italy E. Vacca et al.

command line after the Synthesis phase, to force a fixed location

for each cell, which then will be translated into a constrained

location property used during the next implementation phase.

4.2 The Router

The matrix model of the interconnections space allows

simplifying the routing problem by reducing it to a point-to-point

connection in Euclidean space. The routing path is built by

selecting one segment at a time, where the destination Switch Box,

with the current chosen node, becomes the source for the next

segment. Based on this model, the router interfaces with a matrix

environment where each cell of the matrix is an object reflecting

the properties of the Switch Box. Using the developed router to

customize the commercial tools approach, the constraints should be

set at the beginning, by linking them with the list of nets to which

they should be applied. The constraints must be specified as

coordinates (xmin, xmax, ymin, ymax) within which the path should be

contained. In the range [xmin, xmax] the user must indicate a

direction for the path which can be either vertical or horizontal.

Figure 4: The pseudocode of the developed Router algorithm in

case of constrained movement.

The source node, destination node, starting and ending path

coordinates, and the net name are extracted from the original

routing of the post-implementation design. The router will move in

the matrix space either at east, west, north, or south. Each

movement has a set of nodes associated with it, common to all the

Switch Boxes.

 The working principle of the developed router consists in

identifying a set of nodes compatible with the current source node

that can satisfy the user-defined constraint and reduce the distance

to the destination node. Since many nodes can satisfy these

prerequisites, the choice of the specific node among the suitable

ones is, at the moment, random. Once a node is selected, the router

checks its availability in the corresponding Switch Box. If the

check is positive, the router continues from the selected node. In

case the node is not available, the router will choose another one

from the list of proposed nodes. If the search for an available node

ends with a negative result (either because all nodes in the list are

used by other nets, or because the list is empty) then the router

violates the direction constraint for that single stretch of the path.

However, it may happen that even in the non-preferred

direction, the router is unable to find an available node. This

indicates that the current node is a dead end, so the router proceeds

to remove it from the path and restores the conditions before

picking another possible node. Fig. 4 shows the steps that the router

carries out when the user has defined a constrained direction for the

range of values between xmin and xmax.

Since not all nodes have been classified in their behavior, it

happens that the router is not able to find the path such that the

distance between source and destination is zero yet keeping close.

However, the routing can be left incomplete as Vivado’s routing

process will complete the routing path starting from the last

constrained segment.

Once the router has completed the route assignment for all the

nets, these are translated into a Tcl file. The file indicates the new

assigned path for each customized net. To apply the customization,

the file needs to be integrated into the commercial tool design flow

at the implementation phase.

5 Application of the Place and Route Approach

The proposed place&route tools were used to evaluate how

layout affects the reliability of a fault-tolerant design. For this

purpose, we applied the TMR technique to the ALU of the RISCY

core. Keeping the original interface of the ALU, a new RTL entity

was created inside which three independent replicas of the original

ALU core were instantiated, all fed with the same inputs, plus a

majority voter. The voter evaluates if two of the three inputs are

equal. If so, the common value will be provided as the final output

of the macro-entity at the end of the processing.

5.1 The Test Environment

The RI5CY ALU has been hardened by replication and

provided to the FPGA design flow as a testbench. In order to

compare the implementations by fault injection campaigns, it is

necessary to include in the design, in addition to the module to be

tested, a processor core with the purpose to stimulate the DUT and

collect its results. Therefore, a processing system is added to the

design. The block design will continue unmodified through

elaboration, synthesis, and implementation steps of the design flow

as used by the Xilinx design flow.

5.2 Customized Layout Solutions

An accurate analysis of the placement proposed by Vivado

revealed resource sharing between the TMR domains, i.e. logic

cells belonging to different redundant modules were implemented

on the same SLICEs and connected through the same Switch Boxes.

1. read source_node, end_node

2. read axis, Xmin, Xmax, Ymin, Ymax

3. horiz_move = (source_node.x > end_node.x) ? westward : eastward

4. vert_move = (source_node.y > end_node.y) ? downward : upward

4. dir = (axis = horizontal) ? horiz_move : vert_move

5. blacklist = empty

6. used_nodes = empty

7. current_node = source_node

8. while (

9. (axis = horizontal) and (Xmin < current_node.x < Xmax))

10. or

11. (axis = vertical) and (Xmin < current_node.x < Xmax))

12. {

13. nodes_list = nodes compatible with current_node to move in direction dir

14. nodes_list = nodes_list - blacklist - used_nodes

15. if nodes_list is empty

16. {

17. #NO NODE AVAILABLE FOR axis MOVEMENT

18. nodes_list = nodes compatible with current_node to move on the

unconstrained axis

19. }

20. if nodes_list not empty

21. {

22. chosen_node = random node from nodes_list

23. append chosen_node to used_nodes

24. append current_node to path_list

25. current_node = chosen_node

26. }else{

27. append source_node to blacklist

28. }

29. }

30. return path_list

Layout-oriented Radiation Effects Mitigation in RISC-V Soft Processor CF’22, May 17-19, 2022, Turin, Italy

These shared resources are likely the most vulnerable points for a

TMR design on FPGA because if a single SEU occurs in the

memory cell that configures that resource, we will have a fault that

affects two modules instead of one, potentially leading to an

inefficiency in the voting system and to cross-domain failures.

As suggested in [16], benefits can be derived from applying an

isolation policy based on the TMR domain. The isolation has been

imposed through the developed placement tool that detects

redundant modules from the design hierarchy and automatically

organizes the resources assigned to each redundant core in such a

way that between neighborhood areas, there are at least four rows

of unused resources. The voter instead has been placed in front of

the central replica, according to the user’s constraint inserted

through the tool command line. Moreover, the tool offers a preview

of the customized solution, as shown in Fig. 5. a, so that users can

find the optimal solution that reflects their intent, without having to

go through Vivado's entire design flow.

Figure 5: an example of (a) the isolated placement layout

proposed by the developed placement tool (b) domain-based

isolation at net level achieved through the developed router

 In addition, for evaluation purposes only, we have created a

placement layout that emphasizes the vulnerability induced by

resource sharing, imposing that for each SLICE of the design there

is the simultaneous presence of logic cells belonging to the three.

5.3 Customized Routing Solutions

The developed router was used to extend the concept of

isolation at the net level, according to the TMR domain principle.

As the voter is a critical point, it must be treated individually. The

presence of the voter, to which the outputs produced by the three

replicas converge, pushed the routing algorithm adopted by the

commercial tool to arrange the routing path of an output produced

by a replica in the area where another replica is defined, to satisfy

the performance fitness. This means that if the replicas do not share

the same logical resources, they share the interconnection resources,

thus compromising the functionality of the TMR technique. To

overcome this problem, as a constraint, we assign a horizontal

routing path for the entire length of the rectangle of the parent

redundant core and then a straight vertical movement up to the voter

module. Fig 5.b represents as example of the outcome of the

developed routing tool.

6 Experimental Analysis

Fault injection is a widely used technique to emulate radiation

effects. In the world of programmable logic, injection is done by

forcing a flip in one or more bits of the device configuration

memory. Specifically, in this research work, the injection was done

statically, that is, by injecting a fault into the bitstream before it is

loaded into memory.

6.1 Experimental Setup

The hardware platform used to implement and test the design is

the PYNQ-Z2 development board, containing the Zynq-7000 AP-

SoC. The bitstream was corrupted by employing the PyXEL [24]

framework, which is a Python tool for the emulation of faults

effects affecting the FPGA configuration memory. This platform

allows injecting faults by changing one or more bits in the

bitstream. As the bitstream is organized into frames made of several

bits and since not all the bits are used to develop the target design,

PyXEL allows choosing in which region of the bitstream to inject

the fault, which is useful to avoid wasting time and resources by

injecting into regions of the bitstream not used by the current

design. Each injection campaign consists of generating 10k

corrupted bitstreams, each with a single bit-flip located at a random

point in a specific region of the bitstream. The region was chosen

such that the three placement solutions being compared had

resources defined there.

6.2 Experimental Results

Fig. 6 represents the results of the injection campaigns

conducted on the three layouts. The bare-metal testing routine

executed by the ZYNQ7 arise an error every time there’s a

mismatch between the output provided by the DUT and the one

produced by itself on the same input data. Thus, an error is a failure

of the whole TMR system.

The low error rate is mostly due to the fact that the design uses

a small number of device resources and therefore while limiting the

injection bitstream area, a single bitflip in configuration memory

does not have a substantial impact. Nevertheless, it is possible to

appreciate differences in failure trends between the layout

solutions. The isolated design shows an improvement in

vulnerability to SEUs, compared to the original design. On the

other hand, the results show that a design with a high sharing of

resources and net congestion is much more sensitive, up to the point

of having about three times as many occurrences of wrong output

in at least one replica and twice as many TMR failures than the

isolated one.

ALU1

ALU2

ALU3

Voter

(a) (b)

CF’22, May 17-19, 2022, Turin, Italy E. Vacca et al.

Figure 6: Detected TMR-failures and wrong results on 10,000

fault injections on original, isolated, and high resource sharing

layout configurations.

Table I. Design Layouts Comparison
TMR Designs Performance

[MHz]
Power

Consumption
[W]

Resource
Utilization

[%]

Original 50 1.397 13.18

Domain isolated 20 1.395 15.25

High resource
sharing

15 1.394 23.10

Table 1 shows the comparison among the three layouts. Due to

the presence of unused resources among the replicas and the voter,

the critical path delay increases in the isolated layouts leading to a

degradation of performance, which becomes even worst in the case

of high resource sharing layouts where the nets are heavily

congested. The power consumption undergoes a slight variation

between designs, depending on the dynamic power contribution

that decreases as the clock frequency decreases. Finally, the

number of resources used increases progressively between the three

designs, since in both the isolation case and especially in the high

sharing case, more interconnection resources and more buffers are

needed. The use of the developed platforms on one hand

accelerated the realization of the isolated layout as 64 nets were

customized in less than five minutes, compared to the commercial

tools approach that requires almost 64 times more. On the other

hand, it allowed the realization of the high sharing layout, which is

not feasible with the traditional placement approach, unless a user

decides to manually place cell by cell, taking days/weeks.

7 Conclusions and future works

This paper presents a method to automatize the customizing

process of the layout of designs mapped on FPGAs to obtain a more

reliable solution. We presented a modulable placement and routing

approach that enforces commercial tools to automatically achieve

a robust implementation. The proposed solution has been applied

to a Xilinx development board, and it has been used to evaluate the

effect of placement on the reliability of a fault-tolerant design by

taking the TMR version of an ALU extracted from a RISCV-core

implementation as a case study. The results revealed that applying

TMR domain-level isolation involving both logical cells and nets

leads to a more robust TMR technique.

REFERENCES
[1] S. Azimi and L. Sterpone, "Digital Design Techniques for Dependable High-

Performance Computing," IEEE International Test Conference (ITC), pp. 1-10,

2020, doi: 10.1109/ITC44778.2020.9325281.

[2] C. De Sio, et al., "FireNN: Neural Networks Reliability Evaluation on Hybrid

Platforms," in IEEE Transactions on Emerging Topics in Computing, doi:

10.1109/TETC.2022.3152668.

[3] B. Du, et al., "On the Reliability of Convolutional Neural Network

Implementation on SRAM-based FPGA," IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp.

1-6, 2019, doi: 10.1109/DFT.2019.8875362.

[4] L. Sterpone et al., "A Novel Error Rate Estimation Approach forUltraScale+

SRAM-based FPGAs," NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), pp. 120-126, 2018, doi: 10.1109/AHS.2018.8541474.

[5] S. Azimi, et al., “On the analysis of radiation-induced Single Event Transients

on SRAM-based FPGAs”, Microelectronics Reliability, Vol.88–90, pp. 936-

940, 2018, doi: 10.1016/j.microrel.2018.07.135

[6] C. De Sio, et al., "Analyzing Radiation-Induced Transient Errors on SRAM-

Based FPGAs by Propagation of Broadening Effect," in IEEE Access, vol. 7,

pp. 140182-140189, 2019, doi: 10.1109/ACCESS.2019.2915136.

[7] B. Du et al., "Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex-7

SRAM-Based FPGA," in IEEE Transactions on Nuclear Science, vol. 66, no. 7,

pp. 1813-1819, 2019, doi: 10.1109/TNS.2019.2915207.

[8] L. Sterpone, et al., "A 3-D Simulation-Based Approach to Analyze Heavy Ions-

Induced SET on Digital Circuits," in IEEE Transactions on Nuclear Science,

vol. 67, no. 9, pp. 2034-2041, 2020, doi: 10.1109/TNS.2020.3006997.

[9] C. De Sio, et al., “On the analysis of radiation-induced failures in the AXI

interconnect module”, Elsevier Microelectronics Reliability, vol 114, 2020, doi:

10.1016/j.microrel.2020.113733.

[10] De Sio, et al., "SEU Evaluation of Hardened-by-Replication Software in RISC-

V Soft Processor," IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1-6, 2021, doi:

10.1109/DFT52944.2021.9568342.

[11] S. Azimi, et al., "A Radiation-Hardened CMOS Full-Adder Based on Layout

Selective Transistor Duplication," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 29, no. 8, pp. 1596-1600, 2021, doi:

10.1109/TVLSI.2021.3086897.

[12] S. Azimi, et al, "A New Single Event Transient Hardened Floating Gate

Configurable Logic Circuit," 18th IEEE International New Circuits and Systems

Conference (NEWCAS), pp. 311-314, 2020, doi:

10.1109/NEWCAS49341.2020.9159844.

[13] Xilinx, “7 Series FPGAs Data Sheet: Overview”, Xilinx Product Specification,

September 8, 2020.

[14] S. Azimi, et al., “A new CAD tool for Single Event Transient Analysis and

mitigation on Flash-based FPGAs”, Integration, the VLSI journal, vol 67, pp.

73-81, 2019, doi: 10.1016/j.vlsi.2019.02.001.

[15] P. D. Schiavone, et al., “The RI5CY: User Manual Revision 4.0”, 2019.

[16] A. Portaluri, et al., "A New Domains-based Isolation Design Flow for

Reconfigurable SoCs," IEEE 27th International Symposium on On-Line Testing

and Robust System Design (IOLTS), pp.1-7, 2021, doi:

10.1109/IOLTS52814.2021.9486687.

[17] P. Banerjee, et al., "Floorplanning for partially reconfigurable FPGAs", IEEE

Transaction Computer-Aided Design of Integrated Circuits Systems, vol. 30, pp.

8-17, 2011.

[18] M. Rabozzi, et al., "Floorplanning Automation for Partial-Reconfigurable

FPGAs via Feasible Placements Generation," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 151-164, 2017, doi:

10.1109/TVLSI.2016.2562361.

[19] L. Cheng and M. D. F. Wong, "Floorplan design for multimillion gate FPGAs",

IEEE Transaction Computer-Aided Design of Integrated Circuits Systems, vol.

25, no. 12, pp. 2795-2805, 2006, doi: 10.1109/ICCAD.2004.1382589.

[20] Y. Feng and D. P. Mehta, "Heterogeneous floorplanning for FPGAs",

International Conference on VLSI Design, pp. 257-262, 2006, doi:

10.1109/VLSID.2006.96.

[21] Xilinx, “Vivado Design Suite Tutorial: Design Analysis and Techniques”,

UG986 (v2018.2) June 6, 2018.

[22] Mo, A. Tabbara and R. Brayton, "A Force-Directed Maze Router," IEEE/ACM

International Conference on Computer-Aided Design, pp-404-407, 2001, doi:

10.1109/ICCAD.2001.968658.

[23] L. McMurchie and C. Ebeling, PathFinder,"A negotiation-based Performance-

Driven Router for FPGAs, " ACM FPGA Symposium., pp. 111-117, 1997, doi:

10.1109/FPGA.1995.242049.

[24] L. Bozzoli, et al., "PyXEL: An Integrated Environment for the Analysis of Fault

Effects in SRAM-Based FPGA Routing," International Symposium on Rapid

System Prototyping (RSP), pp. 70-75, 2018, doi: 10.1109/RSP.2018.8632000.

0.37%

0.24%

0.56%

0.15%
0.10%

0.32%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

TMR Failure Rate [%] Wrong output [%]

Vivado
Implementation

TMR-domain
Isolation

High Resource
Sharing

[%
]

