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In recent years, Very-High-Cycle Fatigue (VHCF) behavior of metallic materials has become a major point
of interest for researchers and industries. The needs of specific industrial fields (aerospace, mechanical
and energy industry) for structural components with increasingly large fatigue lives, up to 1010 cycles
(gigacycle fatigue), requested for a more detailed investigation on the experimental properties of mate-
rials in the VHCF regime.
Gigacycle fatigue tests are commonly performed using resonance fatigue testing machines with a load-

ing frequency of 20 kHz (ultrasonic tests). Experimental results showed that failure is due to cracks which
nucleate at the specimen surface if the stress amplitude is above the conventional fatigue limit (surface
nucleation) and that failure is generally due to cracks which nucleate from inclusions or internal defects
(internal nucleation) when specimens are subjected to stress amplitudes below the conventional fatigue
limit. Following the experimental evidence, the Authors recently proposed a new probabilistic model for
the complete description of S–N curves both in the High-Cycle Fatigue (HCF) and in the VHCF fatigue
regions (duplex S–N curves). The model differentiates between the two failure modes (surface and inter-
nal nucleation), according to the estimated distribution of the random transition stress (corresponding to
the conventional fatigue limit). No assumption is made about the statistical distribution of the number of
cycles at which the transition between surface and internal nucleation occurs (i.e., the Transition Fatigue
Life TFL).
In the present paper, the TFL distribution is obtained. The resulting distribution depends on the dis-

tance between the HCF and the VHCF regions and on the distribution of the random transition stress.
It is also shown that the statistical distribution of the fatigue strength at the median TFL (i.e., the
Transition Fatigue Strength TFS) has median which corresponds to the mean transition stress. Finally,
a procedure for computing Likelihood Ratio Confidence Intervals (LRCIs) for both the median TFL and
the median TFS is given in the paper.
The estimated TFL and TFS distributions can be effectively used for properly choosing the duration of

HCF tests in terms of number of cycles and the stress amplitude below which VHCF failures more prob-
ably occur. LRCIs for the median TFL and TFS can be usefully computed for assessing uncertainty in the
estimation procedure when a limited number of experimental data is available.
A numerical example based on an experimental dataset taken from the literature is provided.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, Very-High-Cycle Fatigue (VHCF) test results
showed that specimens may also fail at stress amplitudes below
the conventional fatigue limit and, therefore, drastically affected
the way of modelling fatigue data and designing machine compo-
nents under VHCF loading conditions [1].

Two distinct failure mechanisms are generally visible in VHCF
data plots and, at a stress value near the conventional fatigue limit,
plots show a plateau separating the two failure modes. For this rea-
son, the conventional fatigue limit can be considered as a transition
stress that differentiates between the two failure modes [2]. In par-
ticular, the plateau separating different failure mechanisms repre-
sents a transition stress, while the plateau separating finite lives
from infinite lives can be considered as a real fatigue limit, if it
fatigue
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Nomenclature

cdf cumulative distribution function
HCF High-Cycle Fatigue
LRCI Likelihood Ratio Confidence Interval
ML Maximum Likelihood
pdf probability density function
PL Profile Likelihood
rv random variable
TFL Transition Fatigue Life
TFS Transition Fatigue Strength
VHCF Very-High-Cycle Fatigue
aYjint; bY jint ; aY jsurf ; bY jsurf parameters involved in the Basquin’s

laws
FXjY¼y; FXl

; FXt ; FXt0
; FXtm

; FY jint ; FY jsurf ; FYjX¼x cdfs
f XjY¼y; f YjX¼x pdfs
int internal-nucleated failure
L½�� Likelihood function
PL½�� Profile Likelihood function
surf surface-nucleated failure
TFL0:5 median TFL
TFS0:5 median TFS
x logarithm of the stress amplitude (value)
xt;a a-th quantile of the transition stress
XjY ¼ y logarithm of the random fatigue strength at a given fa-

tigue life

Xl random fatigue limit
Xt random transition stress
y fatigue life (value)
yt;a a-th quantile of the TFL
Y jX ¼ x random fatigue life at a given stress amplitude
Y jint random fatigue life given that failure is internally-

nucleated
Y jsurf random fatigue life given that failure is superficially-

nucleated
zTFS0:5 ;int ; zTFS0:5 ;surf quantiles used for computing the LRCI of TFS0:5
a probability value
v2
ð1;1�aÞ 1� að Þ-th quantile of the Chi-square distribution with 1

degree of freedom
U½��;UXjint;UXjsurf ;UXl

;UXt ;UYjint;UY jsurf standardized Normal cdfs
u½��;uXjint;uXjsurf ;uXl

;uXt
;uYjint;uYjsurf standardized Normal pdfs

h ¼ ðh1; h2Þ parameter set
h1 parameter of interest for the PL function
lXl

;lXt
mean values

rXl
;rXt ;rYjint;rY jsurf standard deviations

�j� conditional event
j � j absolute value
~� parameter estimate
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exists [3,4]. Following the experimental evidence, new fatigue life
models [2,5–7] were proposed in the literature for the description
of S–N curves characterized by two failure modes.

A novel general statistical model, which can take into consider-
ation the two failure modes (duplex S–N curve) and the possible
presence of a fatigue limit is described in [8]. The model differen-
tiates between the two failure modes (surface and internal nucle-
ation), according to the estimated distribution of the random
transition stress (corresponding to the conventional fatigue limit).
No assumption is made about the statistical distribution of the
number of cycles at which the transition between surface and
internal nucleation occurs (i.e., the Transition Fatigue Life TFL).

In the present paper, the TFL distribution is obtained, according
to the statistical model proposed in [8]. The statistical distribution
of the fatigue strength at the median TFL (i.e., the Transition
Fatigue Strength TFS) is also estimated. Finally, a procedure for
computing Likelihood Ratio Confidence Intervals (LRCIs) for both
the median TFL and the median TFS is given.

A numerical example, based on an experimental dataset taken
from the literature, is provided. The paper shows results obtained
in case of a duplex S–N curve with fatigue limit.
2. Methods

In [8], a unified statistical model for various types of S–N curve
was defined. In Section 2.1, the particular case of duplex S–N
curves is recalled. The model is able to take into account the pos-
sible presence of a fatigue limit. According to the approach pro-
posed in [9] and commonly adopted in the literature (see e.g.,
[10–12]), the fatigue strength distribution for a given number of
cycles is also derived in Section 2.1.

Given the fatigue life and the fatigue strength distributions, the
procedure for the estimation of the TFL and TFS distributions is
presented in Section 2.2. Finally, Section 2.3 shows the steps for
computing the LRCIs for both the median TFL and the median TFS.
Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.201
2.1. Duplex S–N curve: statistical distributions of fatigue life and
fatigue strength

In case of duplex S–N curve with fatigue limit, the cumulative
distribution function (cdf) of the fatigue life Y (i.e., logarithm of
the number of cycles to failure) for a given logarithm of the stress
amplitude x can be expressed as [8]:

FYjX¼x ¼ FY jsurf FXt þ FY jintFXl
ð1� FXt Þ; ð1Þ

where FYjsurf is the cdf of the fatigue life if crack nucleates superfi-
cially (i.e., of the random variable (rv) Yjsurf ), FY jint is the cdf of
the fatigue life if crack nucleates internally (i.e., of the rv Y jint),
FXt is the cdf of the logarithm of the transition stress (i.e., of the
rv Xt) and FXl

is the cdf of the logarithm of the fatigue limit (i.e.,
of the rv Xl).

FYjX¼x given in Eq. (1) depends on the cdfs of the continuous rvs
Xl;Xt ;Yjint and Yjsurf . According to the literature [13–16] on the
fatigue strength, both Xl and Xt can be assumed as Normal dis-
tributed (i.e., the fatigue limit and the transition stress are Log-
Normal distributed). In particular, let Xl have mean value lXl

and
standard deviation rXl

, and Xt have mean value lXt
and standard

deviation rXt , then:

FXl
¼ U

x� lXl

rXl

� �
; ð2Þ

and

FXt ¼ U
x� lXt

rXt

� �
; ð3Þ

where U½�� is the standardized Normal cdf.
In the literature [13–15], different types of continuous distribu-

tion have been proposed for the number of cycles to failure.
Usually, either a 2-parameter Weibull distribution or a Log-
Normal distribution are used for the cycles to failure. Without loss
ransition Fatigue Strength and Transition Fatigue Life in duplex S–N fatigue
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of generality, the conditional fatigue life is supposed to be Normal
distributed (i.e., the conditional number of cycles to failure is Log-
Normal distributed). Therefore, suppose that the mean values of
Y jint and Yjsurf follow the Basquin’s law and that the standard
deviations are constant for any value of x, then:

FY jint ¼ U
y� aYjint þ x � bYjint

� �
rYjint

�;
�

ð4Þ

and

FY jsurf ¼ U
y� aY jsurf þ x � bY jsurf

� �
rY jsurf

�;
�

ð5Þ

where aY jint; bY jint; aYjsurf and bY jsurf are four constant coefficients
related to the Basquin’s law and rY jint and rY jsurf denote the standard
deviations of Yjint and Yjsurf , respectively.

Fig. 1 shows a schematic of a duplex S–N curve together with
the statistical distributions assumed in each characteristic
region: the surface-nucleation and the internal-nucleation regions
are described by a randomly variable fatigue life (Eqs. (4)
and (5)), while the transition and fatigue limit regions are
described by a randomly variable stress amplitude (Eqs. (2) and
(3)).

By taking into account Eqs. (2)–(5), FYjX¼x finally becomes:

FY jX¼x ¼ UYjsurfUXt þUY jintUXl
ð1�UXt Þ; ð6Þ

where UXt ¼ U
x�lXt
rXt

h i
, UXl

¼ U
x�lXl
rXl

h i
, UY jsurf ¼ U

y� aY jsurfþx�bYjsurfð Þ
rY jsurf

� �
and

UY jint ¼ U
y� aY jintþx�bYjintð Þ

rY jint

� �
: As a result, FY jX¼x depends on the set of

10 parameters ðaY jsurf ; bY jsurf ;rY jsurf ;lXt
;rXt ; aY jint; bY jint;rYjint;lXl

;rXl
Þ.

Derivation of FYjX¼x with respect to y yields:

f YjX¼x ¼ uYjsurfUXt þuY jintUXl
ð1�UXt Þ; ð7Þ

where f Y jX¼x represents the probability density function (pdf) of Y

given x, uYjsurf ¼
u

y� aY jsurf þx�bYjsurfð Þ
rY jsurf

h i
rYjsurf

and uY jint ¼
u

y� aYjintþx�bYjintð Þ
rY jint

h i
rYjint

; being

u½�� the standardized Normal pdf.
According to the approach proposed in [9] and commonly

adopted in the literature (see e.g., [10–12]), the fatigue strength
distribution for a given number of cycles can be directly obtained
from the cdf of Y jX ¼ x given in Eq. (6), by assuming that
FXjY¼y ¼ FY jX¼x. Therefore, by rearranging Eq. (6), the cdf of the fati-
gue strength (logarithm of the stress amplitude) for a given fatigue
life y is as follows:

FXjY¼y ¼ UXjsurfUXt þUXjintUXl
ð1�UXt Þ; ð8Þ

where UXjsurf ¼ U
x�

aY jsurf �y

jbY jsurf j
rY jsurf =jbYjsurf j

" #
and UXjint ¼ U

x�aY jint�y

jbYjint j
rY jint=jbY jint j

" #
, being bYjsurf

and bY jint negative parameters, according to the Basquin’s law.
Fig. 1. Schematic of a statistical duplex S–N curve with fatigue limit.

Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.201
Derivation of FXjY¼y with respect to x yields:

f XjY¼y ¼ uXjsurfUXt þUXjsurfuXt
þuXjintUXl

ð1�UXt Þ
þUXjint uXl

ð1�UXt Þ �UXl
uXt

� �
; ð9Þ

where f XjY¼y represents the pdf of X given y, uXt
¼

u
x�lXt
rXt

h i
rXt

,

uXl
¼

u
x�lXl
rXt

h i
rXl

, uXjsurf ¼
u

x�
aYjsurf �y

jbY jsurf j
rY jsurf =jbY jsurf j

" #
rY jsurf =jbYjsurf j and uXjint ¼

u
x�

aYjint�y

jbYjint j
rY jint =jbY jint j

" #
rY jint=jbY jint j .

2.2. Transition Fatigue Life and Transition Fatigue Strength: statistical
distributions

Statistical estimation of the 10 parameters in Eq. (6) permits to
compute the S–N curves corresponding to different probabilities of
failure (a-th quantile S–N curves): if FY ¼ a and the 10 parameters
are substituted with their estimates, Eq. (6) provides the
expression which correlates x and y when the probability of
failure equals a, which is the definition of the a-th quantile S–N
curve.

In a statistical framework, the transition stress may vary from
one specimen to another and each specimen can be considered as
representative of a particular quantile of the transition stress dis-
tribution. Similarly, a particular quantile S–N curve hides out
each specimen. Therefore, for a given specimen, both the quantile
S–N curve and the quantile of the transition stress distribution
are uniquely determined. In particular, let the specimen be repre-
sentative of the a-th quantile S–N curve (i.e., FY ¼ a) and of the
a-th quantile of the transition stress distribution (i.e., Xt ¼ xt;a).
If the stress amplitude equals the transition stress of the speci-
men (i.e., if x ¼ xt;a), then the fatigue life of the specimen can
be referred to as the Transition Fatigue Life (TFL) of the specimen
(i.e., then y ¼ yt;a). Thus, Eq. (6) becomes:

a ¼ U
yt;a � ~aYjsurf þ xt;a � ~bY jsurf

� �
~rY jsurf

24 35a
þU

yt;a � ~aYjint þ xt;a � ~bYjint
� �

~rY jint

24 35U xt;a � ~lXl

~rXl

� �
ð1� aÞ; ð10Þ

where ~� denotes a parameter estimate, yt;a is the a-th quantile of the
TFL and xt;a is the a-th quantile of the transition stress distribution
(i.e., xt;a ¼ ~lXt þU�1½a� � ~rXt ). It must be noted that the term

U
xt;a�~lXl

~rXl

h i
in Eq. (10) is almost equal to 1 since, according to the

hypotheses stated in the definition of the unified statistical model
[8], Xt must be larger than Xl (i.e., xt;a � ~lXl

). Therefore, by taking

into account that U
xt;a�~lXl

~rXl

h i
! 1, Eq. (10) can be reformulated as

follows:

a ¼
U

yt;a� ~aYjintþ ~lXt þU�1 a½ ��~rXtð Þ�~bYjintð Þ
~rY jint

� �
1þU

yt;a� ~aYjintþ ~lXt þU�1 a½ ��~rXtð Þ�~bYjintð Þ
~rY jint

� �
�U

yt;a� ~aYjsurfþ ~lXt þU�1 a½ ��~rXtð Þ�~bYjsurfð Þ
~rYjsurf

� � :
ð11Þ

Eq. (11) provides an implicit relationship between yt;a and a and,
consequently, permits the numerical computation of the TFL distri-
bution. In particular, the median TFL, which can be considered as
representative of the TFL of the material, can be computed from
Eq. (11) with a ¼ 0:5 by taking into consideration the properties
of the Normal distribution:
ransition Fatigue Strength and Transition Fatigue Life in duplex S–N fatigue
5.07.006
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gTFL0:5 ¼ yt;0:5

¼
~rY jsurf � ~aY jint þ ~lXt � ~bYjint

� �
þ ~rY jint � ~aY jsurf þ ~lXt � ~bY jsurf

� �
~rY jsurf þ ~rYjint

:

ð12Þ
The fatigue strength corresponding to the median TFL given in

Eq. (12) can be referred to as the Transition Fatigue Strength
(TFS) of the material. According to the plug-in estimation method
[17], the TFS distribution can be computed from Eqs. (8) and (9)

with y ¼ gTFL0:5 .
2.3. Median TFL and TFS: Likelihood Ratio Confidence Intervals

Likelihood Ratio Confidence Intervals (LRCIs) for the median TFL
and TFS can be obtained by exploiting the asymptotic distribution
of the Profile Likelihood (PL). Several studies (see e.g.,
[13,14,18,19]) have shown that LRCIs are more accurate than the
Normal-based confidence intervals and thus they are adopted in
the present paper.

Section 2.3.1 shows details regarding the definition and the
computation of the PL and the LRCIs. Sections 2.3.2 and 2.3.2 apply
the computational procedure for the estimation of the LRCIs of the
median TFL and median TFS, respectively.

2.3.1. Profile Likelihood and Likelihood Ratio Confidence Intervals:
definitions

The PL approach is based on the Maximum Likelihood
(ML) Principle, which is commonly adopted as an estimation
method, since it allows for censoring and truncation of
experimental data and it gives raise to estimators with good
asymptotic properties (consistency, unbiasedness, efficiency and
normality [20]).

In order for the ML Principle to be applied, the Likelihood func-
tion must be firstly defined. Let ðxi; yiÞ, with i ¼ 1; . . . ;nf , be the set
of failure data and ðxj; y�j Þ, with j ¼ 1; . . . ;nr , be the set of runout
specimens in the experimental dataset, the Likelihood function, L,
takes the form:

L½h� ¼
Ynf
i¼1

f Y jX¼x yi; xi; h½ � �
Ynr
j¼1

1� FYjX¼x y�j ; xj; h
h i� �

; ð13Þ

where h denotes the set of 10 parameters in the statistical model (i.
e., aY jsurf ; bY jsurf ;rY jsurf ;lXt

;rXt ; aYjint; bY jint;rY jint;lXl
;rXl

).

According to the ML Principle, the ML estimate ~h of h is the set of
parameter values that maximizes L½h� in Eq. (13). Maximization can
be obtained by applying an optimization algorithm (e.g., the func-
tion fminsearch of Matlab� adopts the Nelder–Mead simplex
algorithm) to the experimental data [21].

Computation of the PL takes into account the ML, L½~h�. Let
h ¼ ðh1; h2Þ be a partition of h, where h1 is a parameter of interest,
the PL for h1 is defined as:

PL h1½ � ¼ maxh2 L h1; h2½ �½ �
L ~h
� 	 : ð14Þ

Exploitation of the asymptotic behavior of the Likelihood esti-
mators permits to show that the statistics�2 ln½PL½h1�� is asymptot-
ically Chi-squared with 1 degree of freedom. As a result, an
approximate ð1� aÞ% confidence interval for h1 is given by the
set of all h1 such that:

PL½h1� P e�
v2ð1;1�aÞ

2 ; ð15Þ
where v2

ð1;1�aÞ is the ð1� aÞ-th quantile of a Chi-square distribution
with 1 degree of freedom.
Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
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LRCIs can be obtained by substituting Eq. (14) in Eq. (15):

maxh2 ½L½h1; h2��
L½~h� P e�

v2ð1;1�aÞ
2 : ð16Þ

The range of h1 values which satisfies Eq. (16) represents the LRCI of
parameter h1 [17].

2.3.2. LRCI for the median TFL: estimation procedure
In order to estimate the LRCI for TFL0:5, the PL must be a function

of TFL0:5. Taking into account Eq. (12) with parameter estimates
substituted by parameters (i.e., the ~� symbol is eliminated every-
where in Eq. (12)), the parameter rYjsurf can be expressed in terms
of TFL0:5 as follows:

rY jsurf ¼ rY jint
ðaY jsurf þ lXt

� bY jsurf Þ � TFL0:5
TFL0:5 � ðaYjint þ lXt

� bY jintÞ : ð17Þ

If Eq. (17) is plugged in Eqs. (6) and (7) (i.e., if parameter rY jsurf is
substituted with the expression given by Eq. (17) in the cdf and
pdf of YjX ¼ x), the set of parameters involved in the Likelihood
Function (Eq. (13)) becomes

h ¼ ðaY jsurf ; bY jsurf ; TFL0:5;lXt
;rXt ; aY jint; bY jint;rYjint;lXl

;rXl
Þ:

Let h1 ¼ TFL0:5 and h2 ¼ ðaY jsurf ; bY jsurf ;lXt
;rXt ; aY jint; bY jint;rYjint;

lXl
;rXl

Þ, the PL in Eq. (14) can be computed and a LRCI for TFL0:5
can be finally estimated according to Eq. (15).

2.3.3. LRCI for the median TFS: estimation procedure
In order to estimate the LRCI for the median TFS, TFS0:5, the PL

must be a function of TFS0:5. Taking into account Eq. (8) with
FXjY¼TFL0:5 ¼ 0:5 (i.e., the median fatigue strength evaluated at the
median TFL) and Eq. (12) with parameter estimates substituted
by parameters, Eq. (8) becomes:

0:5 ¼ U½zTFS0:5 ;surf �U
TFS0:5 � lXt

rXt

� �
þU½zTFS0:5 ;int�U

TFS0:5 � lXl

rXl

� �
1�U

TFS0:5 � lXt

rXt

� �
 �
; ð18Þ

where zTFS0:5 ;int ¼
TFS0:5�

aYjint�TFL0:5
jbY jint j

rY jint=jbY jint j and zTFS0:5 ;surf ¼
TFS0:5�

aY jsurf �TFL0:5
jbY jsurf j

rY jsurf =jbYjsurf j , being

TFL0:5 ¼ rY jsurf ðaYjintþlXt
bY jint ÞþrY jint ðaYjsurfþlXt

bYjsurf Þ
rY jsurfþrYjint

, according to Eq. (12). It

must be noted that the term U
TFS0:5�lXl

rXl

h i
in Eq. (18) is almost equal

to 1 since, according to the hypotheses stated in the definition of the
unified statistical model [8], TFS0:5 � ~lXl

. Therefore, by taking into

account that U
TFS0:5�lXl

rXl

h i
! 1, Eq. (18) can be further simplified as

follows:

0:5¼U½zTFS0:5 ;surf �U
TFS0:5�lXt

rXt

� �
þU½zTFS0:5 ;int� 1�U

TFS0:5�lXt

rXt

� �
 �
:

ð19Þ
It can be shown that Eq. (19) is fulfilled only if:

TFS0:5 ¼ lXt
: ð20Þ

Indeed, if TFS0:5 ¼ lXt
then U

TFS0:5�lXt
rXt

h i
¼ 0:5 and Eq. (19) yields

1 ¼ U½zTFS0:5 ;surf � þU½zTFS0:5 ;int �, which, in agreement with the initial
assumption (i.e., TFS0:5 ¼ lXt

), is fulfilled only if Eq. (20) holds.
If Eq. (20) is plugged in Eqs. (6) and (7) (i.e., if parameter lXt

is
substituted with the TFS0:5 in the cdf and pdf of YjX ¼ x), the set of
parameters involved in the Likelihood Function (Eq. (13)) becomes

h ¼ aYjsurf ; bY jsurf ;rY jsurf ; TFS0:5;rXt ; aYjint ; bYjint;rY jint ;lXl
;rXl

� �
. Let

h1 ¼ TFS0:5 and h2 ¼ ðaY jsurf ; bYjsurf ;rYjsurf ;rXt ; aYjint; bYjint ;rYjint ;l
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Xl;rXl
Þ, the PL in Eq. (14) can be computedand a LRCI for TFS0:5 canbe

finally estimated according to Eq. (15).

3. Numerical example

An experimental dataset taken from the literature [22] is ana-
lyzed in order to show the main characteristics of the statistical
distributions of TFL and TFS. The selected experimental data [22]
are obtained by testing Ti–6Al–4V titanium alloy specimens and
are shown in Fig. 2. Ref. [22] provides the crack originating failure
(surface or internal nucleation) for each specimen.

Estimates of the parameter involved in the model given in Eq.
(6) can be computed by applying the ML Principle to the experi-
mental data. Results, obtained with a code developed in Matlab�

[21], are given in the following list:

~aY jsurf ¼ 100:21 ~bY jsurf ¼ �33:26 ~rY jsurf ¼ 0:4639;

~aY jint ¼ 40:34 ~bY jint ¼ �11:67 ~rY jint ¼ 0:3280;
~lXt ¼ 2:8190 — ~rXt ¼ 0:0025;
~lXl

¼ 2:7200 — ~rXl
¼ 0:0059:

8>>>><>>>>: ð21Þ
3.1. Quantile S–N curves

Parameter estimates given in Eq. (21) can be used for comput-
ing quantile S–N curves. In particular, if the a-th quantile S–N
curve is of interest, the following equation:

a ¼ U
y� ~aY jsurf þ x � ~bY jsurf

� �
~rY jsurf

24 35U x� ~lXt

~rXt

� �

þU
y� ~aY jint þ x � ~bY jint

� �
~rYjint

24 35U x� ~lXl

~rXl

� �
1�U

x� ~lXt

~rXt

� �
 �
;

ð22Þ
must be solved with respect to y for different values of x. Fig. 3
shows the S–N plot together with the 10%, 50% and 90% quantile
S–N curves.

As shown in Fig. 3 the region between the 10% and 90% quantile
S–N curves includes about the 86% (which is close to the expected
80%) of the failure data; while the 50% quantile S–N curve is almost
median between failure data at each stress amplitude.

3.2. TFL: statistical distribution

If parameters are substituted by their estimates, Eq. (11) can be
used for numerically computing the TFL distribution. To this aim,
Fig. 2. Experimental fat

Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.201
Eq. (11) must be solved with respect to yt;a for different values of
a ranging from zero to one. Fig. 4 shows the computed TFL
distribution.

As shown in Fig. 4, the median TFL (TFL0:5) can be used to dis-
criminate between the two fatigue regions of HCF and VHCF: fail-
ures that occur at a number of cycles smaller than the median
more probabilistically belong to the HCF region; while failures that
occur at a number of cycles larger than the median more proba-
bilistically belong to the VHCF region. For the analyzed case, the
TFL0:5 estimate, computed through Eq. (12), is equal to 7.031, which
results in a median transition fatigue cycle equal to 1:075 � 107. As
visible in Fig. 5, the TFL0:5 estimate properly differentiates between
the two fatigue regions: each internally nucleated failure is above
the median value, while each superficially nucleated failure is
below the median value.

It must be pointed out that, even though the TFL0:5 estimate is
able to properly differentiate between the HCF and VHCF regions,
uncertainty in the estimation should also be considered from an
engineering point of view. If a large uncertainty (i.e., a wide LRCI
for TFL0:5) descends from the set of the experimental data, then
the statistical significance of the computed TFL0:5 estimate is
reduced and a set of TFL0:5 estimates (i.e., the LRCI for TFL0:5) should
be more properly considered for engineering purposes.
3.3. TFS: statistical distribution

If parameters are substituted by their estimates, Eq. (8) can be
used for numerically computing the TFS distribution. In particular,
the cdf of TFS can be numerically computed from Eq. (8) with

y ¼ gTFL0:5 , according to the definition of TFS.
Fig. 6 shows the computed TFS distribution, together with the

cdf of the transition stress Xt , for comparison. According to what
obtained in Eq. (6) the median TFS, TFS0:5, and the mean transition
stress, lXt

, are equal. The distance between the two distributions
increases when approaching the queues. It must be pointed out
that, even though the two distributions refer to the same fatigue
region (i.e., the transition region), they pertain to different aspects
of the transition region and, consequently, they differ in shape. In
particular, the TFS distribution describes the strength of the mate-
rial in the transition region, while the transition stress distribution
is a theoretical assumption adopted to discriminate between the
HCF and the VHCF fatigue regions in the unified statistical model
proposed in [8]. According to Eq. (8), the two distributions tend
to overlap (i.e., FTFS ! UXt ) when the distance between the HCF
and the VHCF regions increases: if aY jsurf � xtransitionjbY jsurf j � TFL
0:5 � aY jint � xtransitionjbY jint j (being xtransition the range of stress values
igue data plot [22].
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Fig. 3. Quantile S–N curves.

Fig. 4. TFL distribution together with the probable fatigue regions.

Fig. 5. Experimental data and probable fatigue regions as discriminated by the median TFL.
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in the transition region), then UXjsurf ¼ U
xtransition�

aYjsurf �TFL0:5
jbYjsurf j

rYjsurf =jbYjsurf j

" #
! 1

and UXjint ¼ U
xtransition�

aYjint�TFL0:5
jbYjint j

rYjint=jbY jint j

" #
! 0, which finally yields

FTFS ¼ FXjY¼TFL0:5 ! UXt .
Similarly to the median TFL, the median TFS (TFS0:5) can be use-

fully considered to discriminate between the two fatigue regions of
Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.201
HCF and VHCF: stress amplitudes larger than the median more
probabilistically lead to surface-nucleated failures (i.e., HCF
region); while stress amplitudes smaller than the median more
probabilistically lead to internal-nucleated failures (i.e., VHCF
region). For the analyzed case, the TFS0:5 estimate, computed
through Eq. (20), is equal to ~lXt ¼ 2:8190 ¼ log10½659�. As visible
in Fig. 7, the TFS0:5 estimate properly differentiates between the
two fatigue regions: only 2 out of 25 internal-nucleated failures
ransition Fatigue Strength and Transition Fatigue Life in duplex S–N fatigue
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Fig. 6. TFS and transition stress distributions together with the probable fatigue regions.

Fig. 7. Experimental data and probable fatigue regions as discriminated by the median TFS.

Fig. 8. Profile Likelihood of the median TFL together with 95% Lower and Upper Confidence Bounds (LCB and UCB in the graph) for the median TFL.
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are erroneously considered as surface-nucleated failures (i.e., only
two filled circles are above the TFS0:5 estimate).

Again, it must be pointed out that, even though the TFS0:5 esti-
mate is able to properly differentiate between the HCF and VHCF
regions, uncertainty in the estimation should also be considered
from an engineering point of view. If a large uncertainty (i.e., a
wide LRCI for TFS0:5) descends from the set of the experimental
data, then the statistical significance of the computed TFS0:5 esti-
mate is reduced and a set of TFL0:5 estimates (i.e., the LRCI for
TFS0:5) should be more properly considered for engineering
purposes.
Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.201
3.4. Median TFL: LRCI

The LRCI for TFL0:5 can be computed from the PL of TFL0:5,
according to the procedure given in Section 2.3.2. Fig. 8 shows
the computed PL of TFL0:5 together with the 95% Lower and
Upper Confidence Bounds for TFL0:5 (i.e., LCBTFL0:5 and UCBTFL0:5 in
Fig. 8).

As shown in Fig. 8, the LRCI for TFL0:5 is not symmetric with
respect to the TFL0:5 estimate and is quite wide if compared with
the TFL cdf shown in Fig. 4. As a result, the statistical significance
of the computed TFL0:5 estimate is reduced and the LRCI for TFL0:5
ransition Fatigue Strength and Transition Fatigue Life in duplex S–N fatigue
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Fig. 9. Experimental data and fatigue regions as discriminated by the 95% LRCI of the median TFL.

Fig. 10. Profile Likelihood of the median TFS together with 95% Lower and Upper Confidence Bounds (LCB and UCB in the graph) for the median TFS.

Fig. 11. Experimental data and probable fatigue regions as discriminated by the 95% LRCI of the median TFS.
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should be more properly considered from an engineering point of
view. In particular, the LCBTFL0:5 should be used as an upper limit
for theHCF region;while theUCBTFL0:5 should be used as a lower limit
for the VHCF region. The region enclosed by the LRCI (i.e.,
from LCBTFL0:5 to UCBTFL0:5 ) cannot be statistically determined and
can be referred to as the Uncertainty Region for fatigue failures
(Fig. 9).
Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.201
3.5. Median TFS: LRCI

The LRCI for TFS0:5 can be computed from the PL of TFS0:5,
according to the procedure given in Section 2.3.3. Fig. 10 shows
the computed PL of TFS0:5 together with the 95% Lower and
Upper Confidence Bounds for TFS0:5 (i.e., LCBTFS0:5 and UCBTFS0:5 in
Fig. 10).
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Again, as shown in Fig. 10, the LRCI for TFS0:5 is not symmetric
with respect to the TFS0:5 estimate and is quite wide if compared
with the TFS cdf shown in Fig. 6. Therefore, according to what
found with TFL0:5, the statistical significance of the computed
TFS0:5 estimate is reduced and the LRCI for TFS0:5 should be more
properly considered from an engineering point of view. In particu-
lar, the LCBTFS0:5 should be used as an upper limit for the VHCF
region; while the UCBTFS0:5 should be used as a lower limit for the
HCF region. The region enclosed by the LRCI (i.e., from LCBTFS0:5 to
UCBTFS0:5 ) cannot be statistically determined and, again, can be
referred to as the Uncertainty Region for the fatigue strength
(Fig. 11).

4. Conclusions

A procedure for the estimation of the statistical distribution of
the Transition Fatigue Life (TFL) and Transition Fatigue Strength
(TFS) in a duplex S–N curve was shown. The statistical model
allows fitting the experimental results obtained on specimens
tested within the same testing conditions (e.g., material type, spec-
imen shape and size, loading type and frequency).

The TFL distribution was estimated by numerically solving an
equation, which correlates the cumulative distribution function
(cdf) to the quantile of the distribution. The TFS distribution was
estimated from the cdf of the fatigue life for a fatigue life equal
to median TFL. The median TFL was found to be a weighted average
of the median HCF and VHCF lives computed at the transition
stress, while the median TFS corresponds to the mean transition
stress.

A procedure for computing Likelihood Ratio Confidence
Intervals (LRCIs) for both the median TFL and the median TFS
was also shown.

As shown with a numerical example taken from literature data,
the estimated TFL and TFS distributions can be effectively used for
differentiating the two fatigue regions of HCF and VHCF for design
purposes. The LRCIs for the median TFL and TFS showed that, when
a limited number of experimental data is available, uncertainty in
the estimation can be large and a wide Uncertainty Region is pre-
sent in a fatigue plot.
Please cite this article in press as: D.S. Paolino et al., Statistical distributions of T
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