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ARTICLE INFO ABSTRACT

Article history: In recent years, Very-High-Cycle Fatigue (VHCF) behavior of metallic materials has become a major point

Available online xxxx of interest for researchers and industries. The needs of specific industrial fields (aerospace, mechanical
and energy industry) for structural components with increasingly large fatigue lives, up to 10'° cycles

Keywords: (gigacycle fatigue), requested for a more detailed investigation on the experimental properties of mate-

Ultra-High-Cycle Fatigue rials in the VHCF regime.

Gigacycle fatigue

Random transition stress

Random fatigue limit

Likelihood Ratio Confidence Interval

Gigacycle fatigue tests are commonly performed using resonance fatigue testing machines with a load-
ing frequency of 20 kHz (ultrasonic tests). Experimental results showed that failure is due to cracks which
nucleate at the specimen surface if the stress amplitude is above the conventional fatigue limit (surface
nucleation) and that failure is generally due to cracks which nucleate from inclusions or internal defects
(internal nucleation) when specimens are subjected to stress amplitudes below the conventional fatigue
limit. Following the experimental evidence, the Authors recently proposed a new probabilistic model for
the complete description of S-N curves both in the High-Cycle Fatigue (HCF) and in the VHCF fatigue
regions (duplex S-N curves). The model differentiates between the two failure modes (surface and inter-
nal nucleation), according to the estimated distribution of the random transition stress (corresponding to
the conventional fatigue limit). No assumption is made about the statistical distribution of the number of
cycles at which the transition between surface and internal nucleation occurs (i.e., the Transition Fatigue
Life TFL).

In the present paper, the TFL distribution is obtained. The resulting distribution depends on the dis-
tance between the HCF and the VHCF regions and on the distribution of the random transition stress.
It is also shown that the statistical distribution of the fatigue strength at the median TFL (i.e., the
Transition Fatigue Strength TFS) has median which corresponds to the mean transition stress. Finally,
a procedure for computing Likelihood Ratio Confidence Intervals (LRCIs) for both the median TFL and
the median TFS is given in the paper.

The estimated TFL and TFS distributions can be effectively used for properly choosing the duration of
HCF tests in terms of number of cycles and the stress amplitude below which VHCF failures more prob-
ably occur. LRCIs for the median TFL and TFS can be usefully computed for assessing uncertainty in the
estimation procedure when a limited number of experimental data is available.

A numerical example based on an experimental dataset taken from the literature is provided.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction the conventional fatigue limit and, therefore, drastically affected
the way of modelling fatigue data and designing machine compo-

In recent years, Very-High-Cycle Fatigue (VHCF) test results nents under VHCF loading conditions [1].
showed that specimens may also fail at stress amplitudes below Two distinct failure mechanisms are generally visible in VHCF
data plots and, at a stress value near the conventional fatigue limit,
plots show a plateau separating the two failure modes. For this rea-
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lito.it (M. Rossetto). from infinite lives can be considered as a real fatigue limit, if it
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Nomenclature

cdf cumulative distribution function
HCF High-Cycle Fatigue
LRCI Likelihood Ratio Confidence Interval

ML Maximum Likelihood

pdf probability density function
PL Profile Likelihood

v random variable

TFL Transition Fatigue Life

TES Transition Fatigue Strength
VHCF  Very-High-Cycle Fatigue

Qyjint, byjint, Qyjsurf> bysury  Parameters involved in the Basquin’s
laws

Fxiy—y, Fx,, Fx., Fx, - Fx,, » Fyjint: Fyjsurf, Fyjx—x cdfs

fX\Y:waY\X:x pdfs

int internal-nucleated failure

L[] Likelihood function

PL[-] Profile Likelihood function

surf surface-nucleated failure

TFLy s median TFL

TFSy s median TFS

bY logarithm of the stress amplitude (value)

Xty o-th quantile of the transition stress

X|Y =y logarithm of the random fatigue strength at a given fa-
tigue life

X random fatigue limit

Xt random transition stress

y fatigue life (value)

Viu o-th quantile of the TFL

Y|X =x random fatigue life at a given stress amplitude

Y)int random fatigue life given that failure is internally-
nucleated

Y|surf  random fatigue life given that failure is superficially-
nucleated

Z1Fs, 5 ints ZTFsy 5 urf  qUantiles used for computing the LRCI of TFSy 5

o probability value

1(21:14) (1 — a)-th quantile of the Chi-square distribution with 1
degree of freedom

P[], Pxjine, Pxjsurf> Pxy» Px,» Pyjine, Pyjsurr  Standardized Normal cdfs

(pH (pX\intv qDX\surf? qDXp (' (PY\intf (pY\surf standardized Normal pde

0 = (01,0,) parameter set

04 parameter of interest for the PL function

Uy,: y, mean values

0x,, 0x,, Oyjint, Oyjsurf Standard deviations

|- conditional event

[+ absolute value

- parameter estimate

exists [3,4]. Following the experimental evidence, new fatigue life
models [2,5-7] were proposed in the literature for the description
of S-N curves characterized by two failure modes.

A novel general statistical model, which can take into consider-
ation the two failure modes (duplex S-N curve) and the possible
presence of a fatigue limit is described in [8]. The model differen-
tiates between the two failure modes (surface and internal nucle-
ation), according to the estimated distribution of the random
transition stress (corresponding to the conventional fatigue limit).
No assumption is made about the statistical distribution of the
number of cycles at which the transition between surface and
internal nucleation occurs (i.e., the Transition Fatigue Life TFL).

In the present paper, the TFL distribution is obtained, according
to the statistical model proposed in [8]. The statistical distribution
of the fatigue strength at the median TFL (i.e.,, the Transition
Fatigue Strength TFS) is also estimated. Finally, a procedure for
computing Likelihood Ratio Confidence Intervals (LRCIs) for both
the median TFL and the median TFS is given.

A numerical example, based on an experimental dataset taken
from the literature, is provided. The paper shows results obtained
in case of a duplex S-N curve with fatigue limit.

2. Methods

In [8], a unified statistical model for various types of S-N curve
was defined. In Section 2.1, the particular case of duplex S-N
curves is recalled. The model is able to take into account the pos-
sible presence of a fatigue limit. According to the approach pro-
posed in [9] and commonly adopted in the literature (see e.g.,
[10-12]), the fatigue strength distribution for a given number of
cycles is also derived in Section 2.1.

Given the fatigue life and the fatigue strength distributions, the
procedure for the estimation of the TFL and TFS distributions is
presented in Section 2.2. Finally, Section 2.3 shows the steps for
computing the LRCIs for both the median TFL and the median TFS.

2.1. Duplex S-N curve: statistical distributions of fatigue life and
fatigue strength

In case of duplex S-N curve with fatigue limit, the cumulative
distribution function (cdf) of the fatigue life Y (i.e., logarithm of
the number of cycles to failure) for a given logarithm of the stress
amplitude x can be expressed as [8]:

Fyjx—x = FyjsufFx, + FyjineFx, (1 — Fx,), (1)

where Fyss is the cdf of the fatigue life if crack nucleates superfi-
cially (i.e., of the random variable (rv) Y|surf), Fyj is the cdf of
the fatigue life if crack nucleates internally (i.e., of the rv Ylint),
Fx, is the cdf of the logarithm of the transition stress (i.e., of the
rv X;) and Fy, is the cdf of the logarithm of the fatigue limit (i.e.,
of the rv X)).

Fyx—x given in Eq. (1) depends on the cdfs of the continuous rvs
X), X, Y|int and Y|surf. According to the literature [13-16] on the
fatigue strength, both X; and X; can be assumed as Normal dis-
tributed (i.e., the fatigue limit and the transition stress are Log-
Normal distributed). In particular, let X; have mean value 1, and
standard deviation oy, and X; have mean value Uy, and standard
deviation oy,, then:

X— Hy,
Fy, = ¢[a—x, , 2)
and

X — Uy,
Fx,=¢® ox. 3)

where @[] is the standardized Normal cdf.

In the literature [13-15], different types of continuous distribu-
tion have been proposed for the number of cycles to failure.
Usually, either a 2-parameter Weibull distribution or a Log-
Normal distribution are used for the cycles to failure. Without loss
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of generality, the conditional fatigue life is supposed to be Normal
distributed (i.e., the conditional number of cycles to failure is Log-
Normal distributed). Therefore, suppose that the mean values of
Ylint and Y|surf follow the Basquin’s law and that the standard
deviations are constant for any value of x, then:

- in b in
metzé{y (@it +X- by, (4)
OYyjint

and

aY\surf +X- bY\surf)]

I, (5)

y—(
FY\surf (D|: O-Y\surf
where  ayjin, byjine, Qyjsurr and by are four constant coefficients
related to the Basquin’s law and 6yji,c and yjq,s denote the standard
deviations of Y|int and Y|surf, respectively.

Fig. 1 shows a schematic of a duplex S-N curve together with
the statistical distributions assumed in each characteristic
region: the surface-nucleation and the internal-nucleation regions
are described by a randomly variable fatigue life (Eqs. (4)
and (5)), while the transition and fatigue limit regions are
described by a randomly variable stress amplitude (Eqs. (2) and
(3))

By taking into account Egs. (2)-(5), Fyjx_x finally becomes:

Fyjx—x = Pyjsurf Px, + Pyjine Px,(1 — Px,), (6)

where &y, = q}[x”‘xr]_ Oy, = ¢pr7l£xl}, Dyjsuf = QS{M} and

X, X, Tysurf

Dyjine = ¢{M} As a result, Fyx_, depends on the set of

Oylint

10 parameters (Qyisuy, byjsurfs Ovisurfs My, » Ox; > yjint, Dyjine, Oyiine, Hy,» Ox,)-
Derivation of Fyx_x with respect to y yields:

Fyxex = @yisur Pxc + PyjinePx, (1 — Px,), (7)

where fy_, represents the probability density function (pdf) of Y

. I e ORI
given x, @Y\surf - Oy|surf an (pY\int -
@[] the standardized Normal pdf.

According to the approach proposed in [9] and commonly
adopted in the literature (see e.g., [10-12]), the fatigue strength
distribution for a given number of cycles can be directly obtained
from the cdf of Y|X=x given in Eq. (6), by assuming that
Fxyy—y = Fyx—x. Therefore, by rearranging Eq. (6), the cdf of the fati-
gue strength (logarithm of the stress amplitude) for a given fatigue
life y is as follows:

y- (“Y\in[‘)“b\(\inr)

e ] , being

Oy|int

Fxyy—y = Pxjsurf Px, + PxiinePx, (1 — Px, ), (8)

Y jsurf Y

b
b surf :| and (DX\int )

_ jint Y
1By jin¢|

Uvmt/bvmt|:|' being bysuy

X

where d)X\surf =9 Oyjsurf / IDy|surf|

and by, negative parameters, according to the Basquin’s law.
=

N\ 4./N[aY|surf + % * by|surfs ﬂ'YIsurf]
= ==,

N[a,: o]

Transition stress
M[amm + X * By|int; Oylint)

=\ =

Surface
nucleation

Logarithm of stress amplitude

Internal nucleation Fatigue Limit

Npxs 0]

Fatigue life y

Fig. 1. Schematic of a statistical duplex S-N curve with fatigue limit.

Derivation of Fxy_, with respect to x yields:

Fxivey = Pxisur Pxc + Pxjsurr P, + Pxjine Px, (1 — Px,)
+ d)X\int((Px,(] = Px,) — Px, @x[>~, 9)

—
¢\
where fy,_, represents the pdf of X given y, (pxt:M,

ox,
Ay |surf ¥ Ayjint Y
b, oy
By sury | 1By int
x-Hx, —
_

¢ Sy surf /Dy surf ¢ Sy int /Py in|
Ox, = ox Pxjsurf =

Oysurf /IDy|surf| and Pxjine = 0Yjint/IDyjine] *
2.2. Transition Fatigue Life and Transition Fatigue Strength: statistical

distributions

Statistical estimation of the 10 parameters in Eq. (6) permits to
compute the S-N curves corresponding to different probabilities of
failure (o-th quantile S-N curves): if Fy = o and the 10 parameters
are substituted with their estimates, Eq. (6) provides the
expression which correlates x and y when the probability of
failure equals o, which is the definition of the «-th quantile S-N
curve.

In a statistical framework, the transition stress may vary from
one specimen to another and each specimen can be considered as
representative of a particular quantile of the transition stress dis-
tribution. Similarly, a particular quantile S-N curve hides out
each specimen. Therefore, for a given specimen, both the quantile
S-N curve and the quantile of the transition stress distribution
are uniquely determined. In particular, let the specimen be repre-
sentative of the o-th quantile S-N curve (i.e., Fy = ) and of the
a-th quantile of the transition stress distribution (i.e., X; = X;,).
If the stress amplitude equals the transition stress of the speci-
men (ie., if x =Xx.,), then the fatigue life of the specimen can
be referred to as the Transition Fatigue Life (TFL) of the specimen
(i.e., then y =y, ,). Thus, Eq. (6) becomes:

Yt.oc - <‘~1Y\surf + Xto - bY\surf)

o= =
UY\surf

o

Lo Yeu — (aY\inr + Xt - bY\int) o [XM ~, laxl
Ox,

= 1-o), 10
- Ja-=. a0
where ~denotes a parameter estimate, y, , is the o-th quantile of the
TFL and x;, is the «-th quantile of the transition stress distribution
(i.e., X, =flx, + P '[o]-Gx,). It must be noted that the term

cb[xt'“fxﬂ Xl] in Eq. (10) is almost equal to 1 since, according to the
1

0,
hypotheses stated in the definition of the unified statistical model
[8], X; must be larger than X; (i.e., X, > [ix,). Therefore, by taking

into account that (D[%} — 1, Eq. (10) can be reformulated as
1
follows:
& Vea—(ayjine+(itx, +@~"[2)-0x, ) byjine )
OYjint
o=

1. (p[ym(aw(uxwl[«J-f:xt)vby,m)] _ (p{ym(am,ﬁ(ax,ww-&xt )bya)|

OY|int O |surf

(11)

Eq. (11) provides an implicit relationship between y,, and « and,
consequently, permits the numerical computation of the TFL distri-
bution. In particular, the median TFL, which can be considered as
representative of the TFL of the material, can be computed from
Eq. (11) with o = 0.5 by taking into consideration the properties
of the Normal distribution:

Please cite this article in press as: D.S. Paolino et al., Statistical distributions of Transition Fatigue Strength and Transition Fatigue Life in duplex S-N fatigue
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Tmﬁ =Yto0s

Oyjsurf - (ayum + fx, - bvum) + Oyjint - <awsurf + [y, - bY\surf)

6Y\surf + 6-Y\int

(12)

The fatigue strength corresponding to the median TFL given in
Eq. (12) can be referred to as the Transition Fatigue Strength
(TFS) of the material. According to the plug-in estimation method
[17], the TFS distribution can be computed from Egs. (8) and (9)

withy = TI?LVO_S.

2.3. Median TFL and TFS: Likelihood Ratio Confidence Intervals

Likelihood Ratio Confidence Intervals (LRCIs) for the median TFL
and TFS can be obtained by exploiting the asymptotic distribution
of the Profile Likelihood (PL). Several studies (see e.g.,
[13,14,18,19]) have shown that LRCIs are more accurate than the
Normal-based confidence intervals and thus they are adopted in
the present paper.

Section 2.3.1 shows details regarding the definition and the
computation of the PL and the LRCIs. Sections 2.3.2 and 2.3.2 apply
the computational procedure for the estimation of the LRCIs of the
median TFL and median TFS, respectively.

2.3.1. Profile Likelihood and Likelihood Ratio Confidence Intervals:
definitions

The PL approach is based on the Maximum Likelihood
(ML) Principle, which is commonly adopted as an estimation
method, since it allows for censoring and truncation of
experimental data and it gives raise to estimators with good
asymptotic properties (consistency, unbiasedness, efficiency and
normality [20]).

In order for the ML Principle to be applied, the Likelihood func-
tion must be firstly defined. Let (x;,y;), withi=1,...,ny, be the set
of failure data and *;.¥7), with j =1,...,n,, be the set of runout
specimens in the experimental dataset, the Likelihood function, L,
takes the form:

nf L
110) = T [Fuwerdyic .0 T (1 = Fries [17:33:.0] ) (13)
i=1 j=1

where 0 denotes the set of 10 parameters in the statistical model (i.
e, aY\surf7 bY\surf7 O-Y\surfa ,uxly O-Xm aY\inh bY\inu O-Y\inu ,ux,a O-X, )

According to the ML Principle, the ML estimate 0 of @ is the set of
parameter values that maximizes L[6] in Eq. (13). Maximization can
be obtained by applying an optimization algorithm (e.g., the func-
tion fminsearch of Matlab® adopts the Nelder-Mead simplex
algorithm) to the experimental data [21].

Computation of the PL takes into account the ML, L[f]. Let
0 = (01,0,) be a partition of 0, where 0, is a parameter of interest,
the PL for 6, is defined as:

PL{o,] = Ma%e, [101, 62]] (14)
L1o]

Exploitation of the asymptotic behavior of the Likelihood esti-
mators permits to show that the statistics —2 In[PL[6,]] is asymptot-
ically Chi-squared with 1 degree of freedom. As a result, an
approximate (1 — «)% confidence interval for 0, is given by the
set of all 0; such that:

2
L11-a)

PLiOy] = e~ 2, (15)

where y%., , is the (1 — a)-th quantile of a Chi-square distribution
with 1 degree of freedom.

LRCIs can be obtained by substituting Eq. (14) in Eq. (15):

42
maxy (L0, 6]  , T (16)
Lio]
The range of 0, values which satisfies Eq. (16) represents the LRCI of
parameter 0, [17].

2.3.2. LRCI for the median TFL: estimation procedure

In order to estimate the LRCI for TFL, 5, the PL must be a function
of TFLys. Taking into account Eq. (12) with parameter estimates
substituted by parameters (i.e., the ~ symbol is eliminated every-
where in Eq. (12)), the parameter yjq,s can be expressed in terms
of TFLy 5 as follows:

(aY\surf + Uy, - bY\surf) —TFLys

OY|surf = OYlint TFLos — (Qyjine + My, - byjine) .

If Eq. (17) is plugged in Egs. (6) and (7) (i.e., if parameter Oyjsyy is
substituted with the expression given by Eq. (17) in the cdf and
pdf of Y|X =x), the set of parameters involved in the Likelihood
Function (Eq. (13)) becomes

0 = (Ayjsurfs byisurr, TFLos, Uy, » Ox,., Ayjine: Dyjine, Oviine, Ly, Ox,)-

Let 0, =TFLos and 02 = (Qyjsuy, Dyjsuy; L, Ox.> Qyjine, Dyjine, Oyjine,
Hx,-,axl)’ the PL in Eq. (14) can be computed and a LRCI for TFLys
can be finally estimated according to Eq. (15).

2.3.3. LRCI for the median TFS: estimation procedure

In order to estimate the LRCI for the median TFS, TFSy s, the PL
must be a function of TFSys. Taking into account Eq. (8) with
Fxyy_tr,; = 0.5 (i.e., the median fatigue strength evaluated at the
median TFL) and Eq. (12) with parameter estimates substituted
by parameters, Eq. (8) becomes:

TFSOS - U
- X,
05= ¢[ZTFSU5.surf]q) —_— =t
Ox,
TFSos — Hx TFSo s — U
. . X
+ D(z1gs, 5 int) D {—'} <1 - @ {—t} >7 (18)
Ox, Ox,
9yjinc—TFlos Ay surf~TFlo.5
h | TFSps - ‘,fmm‘ d TSy S‘EL‘M‘ bei
WRETE  Zrrsys int = GYjint/1byjint| and: Zrsys suf = OYsurf/Dyjsurf| €ing
in byjin int (Qyjsu byjsur .
TFLy s = 2ot @in i ;w”;fg“”,‘fuy“”“'xf vsuf) according to Eq. (12). It
surf +OYin

TFSo5 -1y,

must be noted that the term <15[ ] in Eq. (18) is almost equal

ox,
to 1 since, according to the hypotheses stated in the definition of the
unified statistical model [8], TFSys > fix,. Therefore, by taking into
TFSo5— iy,

X ]

account that <I>[ — 1, Eq. (18) can be further simplified as

follows:
TFSo5 — TESy = —
0.5 = (zrrs, s surf| P M} + Pz1rs, 5.int] <] - { - MXt} > '
OXx; Ox,
(19)
It can be shown that Eq. (19) is fulfilled only if:
TFSos = Hy,- (20)

Indeed, if TFSos = pt, then ®[™*2-%] —0.5 and Eq. (19) yields
1 = P[zgs, 5 surf) + PlZrrs,s.ine), Which, in agreement with the initial
assumption (i.e., TFSos = piy,), is fulfilled only if Eq. (20) holds.

If Eq. (20) is plugged in Eqs. (6) and (7) (i.e., if parameter py, is
substituted with the TFSys in the cdf and pdf of Y|X = x), the set of
parameters involved in the Likelihood Function (Eq. (13)) becomes
0= (aY\surfa byjsus, Ovisurrs TFS0.5, O, Ayjine, Byjine, Ovjine, fhy, O'x,)- Let

0 =TFSos and 02 = (Ayisurf, Dyjsurf Ovisurf» OX,» Ayjines Dyjint> Oyjine, 1
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Xi,0x,), the PLin Eq. (14) can be computed and a LRCI for TFS 5 can be
finally estimated according to Eq. (15).

3. Numerical example

An experimental dataset taken from the literature [22] is ana-
lyzed in order to show the main characteristics of the statistical
distributions of TFL and TFS. The selected experimental data [22]
are obtained by testing Ti-6Al-4V titanium alloy specimens and
are shown in Fig. 2. Ref. [22] provides the crack originating failure
(surface or internal nucleation) for each specimen.

Estimates of the parameter involved in the model given in Eq.
(6) can be computed by applying the ML Principle to the experi-
mental data. Results, obtained with a code developed in Matlab®
[21], are given in the following list:

aV\Surf =100.21 BY\surf =-33.26
ayjinc = 40.34 BY\int =-11.67
lx, =2.8190 —
fix, =2.7200  —

6'Y\surf = 046397
Gy = 0.3280,
&x, = 0.0025,
G, = 0.0059.

3.1. Quantile S-N curves
Parameter estimates given in Eq. (21) can be used for comput-

ing quantile S-N curves. In particular, if the «-th quantile S-N
curve is of interest, the following equation:

¥ = (Gvisur + - by —
= ( su~r sur) (D|:X - 'ux[:|
Oy|surf O,

L y- (aY\irit +X- by\int) @{x - Iaxl} (1 - @{X - ﬂ&})ﬁ
Oyint ax, Ox,

(22)

must be solved with respect to y for different values of x. Fig. 3
shows the S-N plot together with the 10%, 50% and 90% quantile
S-N curves.

As shown in Fig. 3 the region between the 10% and 90% quantile
S-N curves includes about the 86% (which is close to the expected
80%) of the failure data; while the 50% quantile S-N curve is almost
median between failure data at each stress amplitude.

3.2. TEL: statistical distribution

If parameters are substituted by their estimates, Eq. (11) can be
used for numerically computing the TFL distribution. To this aim,

Eq. (11) must be solved with respect to y, , for different values of
o ranging from zero to one. Fig. 4 shows the computed TFL
distribution.

As shown in Fig. 4, the median TFL (TFLy5) can be used to dis-
criminate between the two fatigue regions of HCF and VHCF: fail-
ures that occur at a number of cycles smaller than the median
more probabilistically belong to the HCF region; while failures that
occur at a number of cycles larger than the median more proba-
bilistically belong to the VHCF region. For the analyzed case, the
TFLy 5 estimate, computed through Eq. (12), is equal to 7.031, which

results in a median transition fatigue cycle equal to 1.075 - 107. As
visible in Fig. 5, the TFLy 5 estimate properly differentiates between
the two fatigue regions: each internally nucleated failure is above
the median value, while each superficially nucleated failure is
below the median value.

It must be pointed out that, even though the TFL, 5 estimate is
able to properly differentiate between the HCF and VHCF regions,
uncertainty in the estimation should also be considered from an
engineering point of view. If a large uncertainty (i.e., a wide LRCI
for TFLy5) descends from the set of the experimental data, then
the statistical significance of the computed TFLys estimate is
reduced and a set of TFLy 5 estimates (i.e., the LRCI for TFLy 5 ) should
be more properly considered for engineering purposes.

3.3. TFS: statistical distribution

If parameters are substituted by their estimates, Eq. (8) can be
used for numerically computing the TFS distribution. In particular,
the cdf of TFS can be numerically computed from Eq. (8) with

y= TFLy s, according to the definition of TFS.

Fig. 6 shows the computed TFS distribution, together with the
cdf of the transition stress X;, for comparison. According to what
obtained in Eq. (6) the median TFS, TFSys, and the mean transition
stress, [y, are equal. The distance between the two distributions
increases when approaching the queues. It must be pointed out
that, even though the two distributions refer to the same fatigue
region (i.e., the transition region), they pertain to different aspects
of the transition region and, consequently, they differ in shape. In
particular, the TFS distribution describes the strength of the mate-
rial in the transition region, while the transition stress distribution
is a theoretical assumption adopted to discriminate between the
HCF and the VHCF fatigue regions in the unified statistical model
proposed in [8]. According to Eq. (8), the two distributions tend
to overlap (i.e., Frrs — @x,) when the distance between the HCF
and the VHCF regions increases: if Qyjsuy — Xeransition |Dyjsurf| << TFL
0.5 < @yjint — Xeransition| Dyjine| (DEING Xransivion the range of stress values
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Fig. 2. Experimental fatigue data plot [22].
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Ay |surf ~TFlos
transition ™ [p, | 1
_
Oysurf /1Dy sur|

X
in the transition region), then @Xsu,f_cp[ Py sy

ayjint—THo 5
Xtransition ™ [po——

and @Xinf_tb{ P jin }—>0, which finally yields

Yjint/|Dyjinc|

Fres = Fxiy=tr1o5 — Px,-
Similarly to the median TFL, the median TFS (TFSys) can be use-
fully considered to discriminate between the two fatigue regions of

HCF and VHCF: stress amplitudes larger than the median more
probabilistically lead to surface-nucleated failures (i.e., HCF
region); while stress amplitudes smaller than the median more
probabilistically lead to internal-nucleated failures (i.e., VHCF
region). For the analyzed case, the TFSys estimate, computed
through Eq. (20), is equal to fix, = 2.8190 = log,,[659]. As visible
in Fig. 7, the TFSys estimate properly differentiates between the
two fatigue regions: only 2 out of 25 internal-nucleated failures

Please cite this article in press as: D.S. Paolino et al., Statistical distributions of Transition Fatigue Strength and Transition Fatigue Life in duplex S-N fatigue
curves, Theor. Appl. Fract. Mech. (2015), http://dx.doi.org/10.1016/j.tafmec.2015.07.006



http://dx.doi.org/10.1016/j.tafmec.2015.07.006

D.S. Paolino et al. / Theoretical and Applied Fracture Mechanics xxx (2015) XxX—Xxx

0.9

0.8

0.7

0.6

HCF Region

Cumulative distribution function

0.5
0.4 B
0.3 N
0.2 B
—TFS'
0.1 --X |
.... ¢
0 amamt= = I l I I
645 650 655 660 665 670 675
10 [MPa]
Fig. 6. TFS and transition stress distributions together with the probable fatigue regions.
0o 0 AN L2 P——— .
e Internal-nucleation
oo oo .
710 | o Surface-nucleation |_|
° 9 o L HCF Region * Runout
E o o o 0o
E 660 frssssiseinissnisususiarsnisnissisnissasnenssis0 20
? @ee o +—>1x
§ e o x>y
e o & >3y
= 610
% . .
3 VHCF Region . o
g
§ 560 . . .
&
. . .o
" . . >1x
. —>2X
510 j ; ‘ ‘ L »3x
10" 10° 10° 107 10° 10° 10°
Number of cycles to failure
Fig. 7. Experimental data and probable fatigue regions as discriminated by the median TFS.
3
3
= i
=~
Q)
=
g i
< |
Pz 05/ |
PLX( 09572 |
1 | |
2E7 3E7 4E7 5E7
105
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are erroneously considered as surface-nucleated failures (i.e., only
two filled circles are above the TFSys estimate).

Again, it must be pointed out that, even though the TFSys esti-
mate is able to properly differentiate between the HCF and VHCF
regions, uncertainty in the estimation should also be considered
from an engineering point of view. If a large uncertainty (i.e., a
wide LRCI for TFSys) descends from the set of the experimental
data, then the statistical significance of the computed TFSy5 esti-
mate is reduced and a set of TFLy5 estimates (i.e., the LRCI for
TFSos) should be more properly considered for engineering
purposes.

3.4. Median TFL: LRCI

The LRCI for TFLys can be computed from the PL of TFLys,
according to the procedure given in Section 2.3.2. Fig. 8 shows
the computed PL of TFLys together with the 95% Lower and
Upper Confidence Bounds for TFLys (i.e., LCBrr,, and UCBrg,, in
Fig. 8).

As shown in Fig. 8, the LRCI for TFLys is not symmetric with
respect to the TFLys estimate and is quite wide if compared with
the TFL cdf shown in Fig. 4. As a result, the statistical significance
of the computed TFLqs estimate is reduced and the LRCI for TFLgs
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should be more properly considered from an engineering point of
view. In particular, the LCBrg,, should be used as an upper limit
for the HCF region; while the UCBrz,, should be used as a lower limit
for the VHCF region. The region enclosed by the LRCI (i.e.,
from LCBrs,, to UCBrr,,) cannot be statistically determined and
can be referred to as the Uncertainty Region for fatigue failures
(Fig. 9).

3.5. Median TFS: LRCI

The LRCI for TFSps can be computed from the PL of TFSys,
according to the procedure given in Section 2.3.3. Fig. 10 shows
the computed PL of TFSys together with the 95% Lower and
Upper Confidence Bounds for TFSys (i.e., LCBrrs,, and UCBrgs,, in
Fig. 10).
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Again, as shown in Fig. 10, the LRCI for TFSys is not symmetric
with respect to the TFSys estimate and is quite wide if compared
with the TFS cdf shown in Fig. 6. Therefore, according to what
found with TFLys, the statistical significance of the computed
TFSy s estimate is reduced and the LRCI for TFSys should be more
properly considered from an engineering point of view. In particu-
lar, the LCBrs,, should be used as an upper limit for the VHCF
region; while the UCBrs,, should be used as a lower limit for the
HCF region. The region enclosed by the LRCI (i.e., from LCBys,, to
UCByss,;) cannot be statistically determined and, again, can be
referred to as the Uncertainty Region for the fatigue strength
(Fig. 11).

4. Conclusions

A procedure for the estimation of the statistical distribution of
the Transition Fatigue Life (TFL) and Transition Fatigue Strength
(TES) in a duplex S-N curve was shown. The statistical model
allows fitting the experimental results obtained on specimens
tested within the same testing conditions (e.g., material type, spec-
imen shape and size, loading type and frequency).

The TFL distribution was estimated by numerically solving an
equation, which correlates the cumulative distribution function
(cdf) to the quantile of the distribution. The TFS distribution was
estimated from the cdf of the fatigue life for a fatigue life equal
to median TFL. The median TFL was found to be a weighted average
of the median HCF and VHCF lives computed at the transition
stress, while the median TFS corresponds to the mean transition
stress.

A procedure for computing Likelihood Ratio Confidence
Intervals (LRCIs) for both the median TFL and the median TFS
was also shown.

As shown with a numerical example taken from literature data,
the estimated TFL and TFS distributions can be effectively used for
differentiating the two fatigue regions of HCF and VHCF for design
purposes. The LRCIs for the median TFL and TFS showed that, when
a limited number of experimental data is available, uncertainty in
the estimation can be large and a wide Uncertainty Region is pre-
sent in a fatigue plot.
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