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Abstract. Quantum Hall effect (QHE) is the basis of modern resistance metrology.

In Quantum Hall Array Resistance Standards (QHARS), several individual QHE

elements, each one having the same QHE resistance (typically half of the von Klitzing

constant), are arranged in networks that realize resistance values close to decadic

values (such as 1 kΩ or 100kΩ), of direct interest for dissemination. The same

decadic value can be approximated with different grades of precision, and even for

the same approximation several networks of QHE elements can be conceived. The

paper investigates the design of QHARS networks by giving methods to find a proper

approximation of the resistance of interest, and to design the corresponding network

with a small number of elements; results for several decadic case examples are given.

The realization of these networks with multiterminal QHE elements requires a new

multiple bridge connection, here described.
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1. Introduction

Quantum Hall Array Resistance Standards (QHARS) [1–11] are integrated circuits

in which several quantum Hall elements are interconnected to compose a resistive

network. QHARS are of great interest for electrical metrology because they allow the

representation of the ohm in the International System of Units. In particular, reliable

QHARS having resistance values close to decadic values (e.g., 100Ω, 1 kΩ, 10 kΩ) would

allow the calibration of artifact resistance standards of practical interest by 1:1 ratio

bridges, which do not require ratio calibration, or even by substitution.

QHARS require dedicated foundries and the development of novel realization

methods, in particular for what concerns wiring and insulation. Although the present

integration level allows the realization of QHARS with hundreds of elements, a basic

goal of QHARS design is to maximize simplicity, keeping the number of the elements to

a minimum.

Recent papers have shown that the same approximation of a decade resistance

value R can be realized with networks having a greatly different number of elements;

for example, in the realization of a 10 kΩ QHARS, the National Metrology Institute of

Japan (NMIJ) evolved from a 266-element network [6] to a 16-element one [11].

The aim of the present paper is to give advice on the synthesis of QHARS networks

which approximate a given resistance value within the accuracy required in resistance

metrology and employing a minimal number of elements; several cases of practical

interest are analyzed and corresponding networks are synthesized. These networks are

designed to minimize the effect from contact and wiring resistances and, in addition to

the so-called multiple-series and multiple-parallel connections (see [12] and references

therein), they employ a new type of connection, here called the multiple-bridge, whose

properties are analyzed in section 5.3.

2. The problem

A QHARS is a circuit composed of interconnected elements having the same resistance

RH = RK/i, where RK is the von Klitzing constant and i is the plateau index (typically,

i = 2). The total resistance R of a QHARS is a fraction of the element resistance,

R = (p/q)RH, where p and q are positive integers which depend only on the network

topology.

The main goal in the design of a QHARS is to obtain a device having a resistance

value close to a target value R0. In the following, for ease of notation, we consider

the normalized dimensionless quantities ρ0 = R0/RH (a generic real number) and

ρ = R/RH = p/q (a rational number).

The problem of QHARS network synthesis can be divided into the following steps:

(i) Find a rational approximation ρ = p/q of ρ0 such that the magnitude of the relative

error δ = (ρ− ρ0)/ρ0 is less than a specified limit δmax, that is, |δ| < δmax.
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Figure 1. Top levels of the Stern-Brocot tree (for fractions different from 1/0 the

horizontal position is to scale).

(ii) Synthesize an optimal network with normalized resistance ρ with a minimal number

n of elements.

3. Rational approximations

In this section we consider the problem of obtaining a rational approximation for a given

positive real number. Historically, this problem was of particular interest to clockmakers,

who had to design accurate gear trains, and led the French clockmaker Achille Brocot to

conceive the useful construction which is discussed below‡. The so-called Stern-Brocot

tree [14–16] is a binary tree whose nodes are in one-to-one correspondence with the set

of positive rational numbers. In particular (figure 1), each node is the mediant fraction

(a + c)/(b + d) of the left and right nearest ancestors a/b and c/d (the fractions that

can be reached by following the branches upward); the root node is the fraction 1/1,

generated from the fictitious ancestors 0/1 and 1/0.

The importance of Stern-Brocot tree in the approximation theory rises up by

considering the sequences of rationals, namely the Stern-Brocot sequences, obtained by

walking down the nodes of the tree. Given a real number ρ0, the corresponding Stern-

Brocot sequence ρ1, ρ2, ρ3, . . . can be generated by walking down the tree according to

the following rules (see figure 2): start from the tree root ρ1 = 1/1; then, for each

k = 1, 2, 3, . . ., if ρ0 < ρk, set ρk+1 equal to the left child of ρk; otherwise, if ρ0 > ρk, set

ρk+1 equal to the right child; if, for some k, ρk = ρ0, stop (if ρ0 is rational, the sequence

is finite). The Stern-Brocot sequence ρ1, ρ2, ρ3, . . . obtained in this way converges to ρ0;

moreover, the terms of the sequence are rational approximation of ρ0 that are optimal

in the following sense: if a certain rational approximation of ρ0 does not belong to the

‡ Before the advent of direct digital frequency synthesizers, time and frequency metrologists —the

modern clockmakers— confronted with this problem too (see e.g. [13]).
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Figure 2. Walking down the Stern-Brocot tree to approximate a real number ρ0 (here

the Stern-Brocot sequence is 1

1
, 2

1
, 3

2
, 5

3
, 8

5
, . . .).

sequence, than there is a term of the sequence having smaller numerator or denominator

which is a better approximation [16].

A known method to approximate real numbers is that of continued fraction

expansion. A continued fraction is a representation of a real number ρ0 through a

sequence of integers as follows:

ρ0 = α0 +
1

α1 +
1

α2 +
1

α3 + · · ·

, (1)

where the integers α0, α1, . . . are given by the recurrence relations [17]

ξ0 = ρ0 , (2)

αk = [ξk] , (3)

ξk+1 =
1

ξk − αk

, if ξk is not an integer, (4)

where k = 0, 1, 2, . . ., and [ξk] denotes the integer part of ξk. A continued fraction can

be expressed in a compact way using the notation [α0;α1, α2, α3, . . .].

The finite continued fractions [α0; . . . , αm], for m = 0, 1, 2, . . ., are rational

approximations of ρ0. Given a real number ρ0, all the rational approximations obtained

by continued fraction expansion are included in the Stern-Brocot sequence associated

to the same ρ0. Therefore, approximations obtained by continued fraction expansion

need not to be considered separately; moreover, the Stern-Brocot sequence might

contain sufficiently accurate approximations to which correspond networks with fewer

elements (or other favourable properties) than those of the networks obtained from a
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continued fraction expansion (an example is given by the fraction 235/3033 in table 1

of section 4.3).

4. Network synthesis

This section considers the problem of synthesizing a planar resistive network from a

given rational approximation ρ = p/q of the target resistance ρ0. In the following, we

consider p and q to be coprimes. Furthermore, since we are dealing with normalized

quantities, all elements are of unit value. The systematic generation of such networks

was investigated in [18–20].

4.1. Planar networks and square tilings

For a certain ρ, several different equivalent networks having a different number n of

elements can be synthesized. A simple example is shown in figure 3, where ρ = 6/5 is

obtained with two different networks.

Figure 3. Two different networks with ρ = 6/5. The network on the left has n = 6

elements, while that on the right has n = 5 elements.

A basic network which realizes ρ = p/q in a trivial way is the rectangular network

of figure 4, which is composed of n = pq elements arranged in a rectangular grid of

height p and width q. For each element, the normalized voltage drop is 1/p and the

corresponding normalized current is 1/q.

As shown in figure 4, the rectangular network can be transformed into an equivalent

one with fewer elements, by substituting a “square” of k × k elements with a single

element. This new element will sustain a normalized current k/q and a voltage drop

k/p will develop on it [21]. Indeed, the normalized power k2/pq dissipated by this single

element is proportional to the area k2 of the square. The substitution process can be

iterated, and any remaining square of elements having side k > 1 can be substituted

with a single element.

The reader can appreciate that the problem of finding equivalent networks has been

related to a geometrical problem: given a rectangle having integer sides p and q,

find a tiling of the rectangle with squares of integer sides [21–23].

For example, figure 5 shows the two tilings of a 6 × 5 rectangle corresponding to

the two different networks of figure 3; each square of side k = 1, . . . , 5 corresponds a

single element, which sustains a voltage k/5 and a current k/6. Another example is

given in figure 6 where two networks which realize the normalized resistance ρ = 13/11

are shown with the corresponding tiling superimposed.
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(a) (b)

Figure 4. (a) The rectangular p× q network. (b) A 3× 3 square of elements has been

substituted with a single element.

Figure 5. Tilings of the same 6×5 rectangle corresponding to the networks of figure 3.

Figure 6. Two different networks with ρ = 13/11. The network on the left employs

n = 8 elements, while the network on the right employs just n = 6 elements.
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4.2. Minimal tiling

The problem of finding a network with value ρ = p/q having a minimal number of

elements is therefore related to the problem of finding a tiling of the rectangle with

integer sides p, q having the minimum number n∗(p, q) of integer-sided squares. This

problem has been widely studied (see e.g. [21–25]) and the following properties of n∗(p, q)

are known [24, 25]:

(i) n∗(p, q) ≥ max{p/q, q/p, log2 p, log2 q};

(ii) n∗(p, q) ≤ α0+α1+ . . .+αm ≤ max(p, q), where α0, . . . , αm are the elements of the

continued fraction expansion of p/q;

(iii) n∗(p+ q, q) = n∗(p, q) + 1, if 3p ≥ q2; or, symmetrically, n∗(p, p+ q) = n∗(p, q) + 1,

if 3q ≥ p2. This property means that for long and thin rectangles for which one of

the given conditions is met, the tiling problem can be reduced to that of a smaller

rectangle because the tiling includes at least a square with side equal to the shortest

side of the original rectangle.

Even though a general solution to the minimal tiling problem is not yet known,

there exists an algorithm that performs an exhaustive search§ [25, 27]. To date, all

the solutions for p, q ≤ 300 are known. For larger rectangles, even by taking into

account property (iii) to reduce the problem, exhaustive search becomes unfeasible

because extremely time-consuming. To overcome this issue, a possibility is that of

weakening the condition required in property (iii), so that the original rectangle can be

reduced as much as possible before applying exhaustive search, at the cost of accepting

possibly non minimal solutions. In this work, where needed, on the basis of [24], the

following weakened form of property (iii) is considered‖

(iii′) n∗(p+ q, q) = n∗(p, q) + 1, if p ≥ q; or, symmetrically, n∗(p, p+ q) = n∗(p, q) + 1, if

q ≥ p.

Finally, it is worth noting that, for a network with normalized resistance ρ = p/q

and a certain associated tiling, the ratio F between the maximum and the minimum

currents in the network is given by the ratio of the side of the largest square of the

tiling to that of the smallest square. This follows from the fact noted above that the

normalized current which flows through an element corresponding to a square of side k

is k/q. The ratio F is an additional figure-of-merit associated to a network [11].

4.3. Cases

In QHARS realized with GaAs technology, the plateau index of interest is i = 2,

so RH = RK/2. The recommended value of the the von Klitzing constant is RK =

§ The algorithm recursively fills the target rectangle with squares, in such a way that at each step the

filled portion resembles a Young tableau [26]. In this way, the algorithm ensures that each one of the

possible tilings is checked only once.
‖ The fact that property (iii′) can lead to non minimal solutions can be demonstrated by considering

a 112× 53 rectangle for which n∗(112, 53) = 11 < n∗(59, 53) + 1 = 12 [25].
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Figure 7. Minimal tiling of the 262-by-203 rectangle.

25 812.807 443 4(84)Ω [3.2× 10−10], giving RH = RK/2 = 12 906.403 721 7(42)Ω [28].

The conventional value adopted internationally for realizing representations of the ohm

is RK-90 = 25 812.807Ω90, giving RH−90 = RK-90/2 = 12 906.4035Ω90. The relative

difference between RH and RH-90 is 1.718(32)× 10−8. In the following, the normalization

resistance employed to compute ρ0 and δ is RH-90; however, since approximations ρ to

ρ0 are considered of interest if |δ| < 10−6, the results maintain their validity when RH

is instead considered.

We investigate here approximations of decadic resistance values, in particular the

values 100Ω, 1 kΩ, 10 kΩ, 100 kΩ and 1MΩ. These values are often those for which a set

of artifact resistance standards is maintained, are typically calibrated for dissemination,

and are the goal of previous works on QHARS design [4, 6–8, 11]. With available

QHARS of these values, the dissemination process could proceed mainly by substitution

or 1 : 1 comparison calibrations, which do not require the availability of resistance ratio

standards that can affect the calibration uncertainty.

Table 1 gives a summary of the results of this investigation. For each decadic

value R0, the normalized ratio ρ0 = R0/RK-90 is evaluated. A sequence of rational

approximations of ρ0 is generated from the Stern-Brocot tree. Some cases, selected

among those with a maximum error of 10−6 or better, are developed¶; one case

(ρ = 203/262) is taken as example to outline the complete analysis.

The rectangle corresponding to each approximation ρ is tiled by squares, using the

method described in section 4. Figure 7 shows the tiling found for the example case

203/262, which corresponds to a minimal tiling (for the other cases, it might occur that

further simpler tilings exist). For each case, the number n of QHE network elements

involved, the F ratio value and the network topology can be directly deduced from the

tiling. Figure 8 shows the network topologies found for several cases of interest.

¶ Some of the approximations were previously investigated in [8,11], also. Table 1 reports the number

of elements in the networks there considered, and the corresponding F ratio.
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Table 1. Summary of the cases analyzed in this work: ρ0 = R0/RH is the normalized

target value, ρ = p/q is a rational approximation for ρ0 and δ = (ρ − ρ0)/ρ0 is the

relative error of the approximation. For each approximation, the last four columns

report the properties of the corresponding solution obtained with the algorithm

described in section 4: n is the number of elements composing the network and F

is the ratio between the maximum and the minimum currents. For some solutions, the

last column gives a reference to the corresponding network topology in figure 8. Where

applicable, for comparison, the results from [11] are also reported.

Results from [11] This work

ρ δ n F n F Minimal Figure

R0 = 100Ω

47/6066 +1.6× 10−6 137 47/4 No 8(a)

78/10067 −5.2× 10−7 151 78 138 78 No 8(b)

125/16133 +2.7× 10−7 139 125/7 No

203/26200 −3.4× 10−8 140 203/10 No

R0 = 1 kΩ

203/2620 −3.4× 10−8 24 203/12 No 8(c)

235/3033 +1.6× 10−6 30 47 24 235/17 No 8(d)

R0 = 10 kΩ

203/262 −3.4× 10−8 16 67/11 12 119/10 Yes 8(e)

R0 = 100kΩ

1015/131 +3.4× 10−8 23 131/2 18 131/4 No 8(f)

R0 = 1MΩ

4029/52 +1.9× 10−6 88 52/2 No

6121/79 −1.2× 10−6 87 79/2 No 8(g)

10150/131 +3.4× 10−8 98 131 88 131/2 No 8(h)

5. Device connections

This section analyzes the problem of realizing the networks synthesized in section 4

with QHE elements. All the networks shown in figure 8 are represented as two-terminal

networks composed of two-terminal elements. Concrete circuits, instead, are provided

with four terminals (two current terminals and two voltage ones) and, in order to reject

the effect of the inevitable contact and wiring resistances, the interconnections among

the elements are realized as multiterminal connections.

5.1. Notation

In what follows, QHE elements are labelled with lower-case letters. The magnetic flux

density B is assumed to be pointing out of the page. All QHE elements are supposed

to be in the same fully quantized state. The notation given below is partly taken

from [12,29]:
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• r = RH/2 is the resistance associated with the Ricketts-Kemeny model [30] of a

QHE element;

• ǫkx r is the resistance of contact k (including the wiring resistance) of element x;

• ǫ = max{ǫkx};

• O(•) is the big O notation, which represents the order of magnitude of the

dependence on •.

5.2. Multiple-series and parallel connections

QHARS reported in the literature are based on the repeated application of the so-called

multiple-series or multiple-parallel connections. The denomination of these connections

is taken from the usual series or parallel connection of two-terminal resistors. These

connections are characterized by an order m [29]. The double-series and double-parallel

connections (m = 2) are shown in figure 9.

It was shown in [12, 29, 31] that

R
(m)
S

= 2RH (1 +O(ǫm)) , R
(m)
P

=
1

2
RH (1 +O(ǫm)) , (5)

where R
(m)
S

and R
(m)
P

are the four-terminal resistances of the m-series and m-parallel

connection of the two QHE elements, respectively.

5.3. Multiple-bridge connection

The two-terminal networks of section 4 not only include series or parallel connections,

but also bridge connections. Therefore, to realize these networks with QHE elements the

multiple-series and -parallel connections are no longer sufficient, and a multiple-bridge

connection has to be introduced.

For example, figure 10 shows the realization of the network of figure 6 (right)

with six QHE elements in double-series, double-parallel and double-bridge connections.

The four-terminal resistance R
(2)
B

of this network, computed with the method described

in [12], is

R
(2)
B

=
13

11
RH

(

1 +
49ǫ1aǫ2a
1144

−
7ǫ1aǫ2b
286

−
7ǫ1bǫ2a
286

+
2ǫ1bǫ2b
143

+
2ǫ1cǫ2c
143

+
2ǫ1cǫ4b
143

+
ǫ1dǫ2d
858

−
ǫ1dǫ2e
286

+
7ǫ1dǫ4a
1716

−
ǫ1eǫ2d
286

+
6ǫ1eǫ2e
143

+
7ǫ1eǫ4a
286

+
25ǫ1fǫ2f
858

+
5ǫ1fǫ4c
429

+
5ǫ1fǫ4d
1716

+
2ǫ2cǫ3b
143

+
7ǫ2dǫ3a
1716

+
7ǫ2eǫ3a
286

+
5ǫ2fǫ3c
429

+
5ǫ2fǫ3d
1716

+
49ǫ3aǫ4a
858

+
2ǫ3bǫ4b
143

+
8ǫ3cǫ4c
429

−
ǫ3cǫ4d
429

−
ǫ3dǫ4c
429

+
ǫ3dǫ4d
858

+
9ǫ3eǫ4e
286

−
15ǫ3eǫ4f
572
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−
15ǫ3fǫ4e
572

+
25ǫ3fǫ4f
1144

)

,

=
13

11
RH

(

1 +O(ǫ2)
)

. (6)

Equation (6) shows that the double-bridge connection allows the rejection of the

parasitic resistances to the order O(ǫ2), characteristic of the double-series and double-

parallel connections.

Multiple-bridge connections having order m > 2 can also be realized. Figure 11

shows a triple-bridge connection of six-terminal QHE elements, having the same

topology of figures 6 (right) and 10. The resulting four-terminal resistance has a

convoluted expression, which however can be summarized as R
(3)
B

= 13
11
RH (1 +O(ǫ3)),

as expected from triple series or parallel connections.

Actually, multiple-series, parallel and bridge connections share the same

construction rule: Connect, according to the required topology, all the QHE elements

as though they are two-terminal elements. This gives the circuit for the order m = 1.

Then, to extend the circuit to the order m = 2, connect, for each node, the terminals

which are the nearest right neighbours of the ones already connected at order 1. This

step can be iterated to obtain the circuit for m = 3 and beyond.

5.4. Cases

The networks synthesized in section 4 can be all realized with multiterminal QHE

elements by employing the connections described in sections 5.2 and 5.3.

The case 203/262 has been fully developed at the order m = 2. The corresponding

circuit is given in figure 12; the analysis with the method of [12] yields a normalized

four-terminal resistance ρ = 203/262 + O(ǫ2), as expected; the function O(ǫ2) includes

102 terms, the largest of which is (2023/37990)ǫ3cǫ4c. It is worth noting that contact

resistances ǫ3c and ǫ4c belong to element c, which is the one corresponding to the largest

square of figure 7, that is, to the element dissipating the largest power; this fact can

probably be related to a theorem by Cohn [32].

6. Conclusions

We have shown that the synthesis of a QHARS with a given value can be traced

back to two mathematical problems, well known and widely developed in literature:

i) find a rational approximation of the ratio between the QHARS desired value and

the quantized resistance; ii) find an efficient tiling of the rectangle representing the

approximation fraction with a small number of squares; the tiling will give the number of

QHE elements needed and the way to connect them. The networks can then be realized

with multiterminal QHE elements by employing multiple connections. A number of

cases, corresponding to decadic QHARS resistance values, are explicitly considered, and

the 10 kΩ case is fully developed. The resulting networks have a number of elements

significantly less than those given in literature.
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The authors welcome collaborations with QHARS manufacturers to analyze

further cases of practical interest. To those interested, the authors can provide the

Mathematica R© notebooks of the full calculations developed in this work.
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(a) 47/6066 (b) 78/10067

(c) 203/2620 (d) 235/3033

(e) 203/262 (f)

1015/131

(g) 6121/79 (h) 10150/131

Figure 8. Network topologies corresponding to the cases considered in table 1. Boxed

resistor symbols labelled as N (or 1/N) represent a series (or a parallel) of N elements.
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(a) (b)

Figure 9. (a) Double series and (b) double parallel connection of two quantum Hall

elements. Each element is provided with two current contacts (1,3) and two voltage

contacts (2,4). The resulting networks have two current terminals (IH, IL) and two

voltage terminals (VH, VL) each.

Figure 10. A network of six QHE elements, with a topology corresponding to that of

figure 6 (right) and including a double-bridge connection. The elements are provided

with two current contacts (1,3) and two voltage contacts (2,4). The network has two

current terminals (IH, IL) and two voltage terminals (VH, VL).
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Figure 11. The same network of figure 10, here realized at order m = 3. Each element

is now provided with two current contacts (1,4) and four voltage contacts (2,3,5,6).
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Figure 12. Circuit diagram corresponding to the tiling of figure 7 employing

4-terminal QHE elements in multiple-series, multiple-parallel and multiple-bridge

connections.


