
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Tolerance of Siamese Networks (SNs) to Memory Errors: Analysis and Design / Wang, Ziheng; Niknia, Farzad; Liu,
Shanshan; Reviriego, Pedro; Montuschi, Paolo; Lombardi, Fabrizio. - In: IEEE TRANSACTIONS ON COMPUTERS. -
ISSN 0018-9340. - ELETTRONICO. - 72:4(2023), pp. 1136-1149. [10.1109/TC.2022.3186628]

Original

Tolerance of Siamese Networks (SNs) to Memory Errors: Analysis and Design

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2022.3186628

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2969310 since: 2022-07-03T18:48:16Z

IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract—This paper considers memory errors in a Siamese
Network (SN) through an extensive analysis and proposes two
schemes (using a weight filter and a code) to provide efficient
hardware solutions for error tolerance. Initially the impact of
memory errors on the weights of the SN (stored as floating-point
(FP) numbers) is analyzed; this shows that the degradation is
mostly caused by outliers in weights. Two schemes are
subsequently proposed. An analysis is pursued to establish the
filter’s bounds selection by the maximum/minimum values of the
weight distributions, by which outliers can be removed from the
operation of the SN. A code scheme for protecting the sign and
exponent bits of each weight in an FP number, is also proposed;
this code incurs in no memory overhead by utilizing the 4 least
significant bits (LSB) to store parity bits. Simulation shows that
the filter has a better performance for multi-bit errors correction
(a reduction of 95.288% in changed predictions), while the code
achieves superior results in single-bit errors correction (a
reduction of 99.775% in changed predictions). The combined
method that uses the two proposed schemes, retains their
advantages, so adaptive to all scenarios; The ASIC-based FP
designs of the SN using serial and hybrid implementations are also
presented; these pipelined designs utilize a novel multi-layer
perceptron (MLP) (as branch networks of the SN) that operates at
a frequency of 681.2 MHz (at a 32nm technology node), so
significantly higher than existing designs found in the technical
literature. The proposed error-tolerant approaches also show
advantages in overheads comparing with for example traditional
error correction code (ECC). These error-tolerant MLP-based
designs are well suited to hardware/power-constrained platforms.

Index Terms—Siamese Network, Memory Error, Error
Tolerance, VLSI Design, Floating point.

I. INTRODUCTION
iamese Networks (SNs) are a type of artificial neural
networks (ANNs) consisting of two branches of weight-

sharing feedforward networks (also referred to as subnetworks).
SNs have excellent performance when utilized in tasks that
measure the similarity between two data inputs [1]. From its
initial application to handwritten signature verification [2], SNs
have been used in several Machine Learning (ML) fields, such
as face recognition [3], semantic similarity analysis [4], and
object tracking [5]. One of the most popular ML applications of
SNs is image discrimination, i.e., to determine whether two
images belong to the same category. Different from a traditional
NN, an SN for classification purposes only needs to know
whether the two inputs belong to the same category, so it does
not require explicit labels. Therefore, SN can be treated as semi-
supervised learning and may not achieve a classification
accuracy as high as a traditional NN; however, SNs usually
achieve superior performance in tasks with a large number of
classes and one-shot learning [6].

The hardware implementation of an ANN can be affected by
several types of errors. Transient faults (often induced by
radiation phenomena, for example) cause soft errors that appear
as random bit flips, especially in memory chips; a soft error may
lead to data corruption and eventually system failure [8]. If
errors occur in the inference process of an ANN, they can
change the trained model, or the stored weight values; therefore,
errors may have an impact on the final result (e.g., the predicted
category in the classification tasks). To ensure the resilience of
an ANN in the presence of errors, an error-tolerant design is
therefore needed. The error tolerance of ANNs for reliable
operations has been extensively studied, especially when they
are used in safety-critical applications [7]. For example,
schemes based on error correction codes (ECCs) have been
proposed [9]-[11] that can be applied for reliable storage of
ANN parameters; however, they incur in a 10% to 20%
redundant memory overhead, while introducing additional
delay and power consumption [12]. Redundancy on neurons or
computational units has also been proposed [13], [14], but an
increase in hardware and a modification to the model are
usually required. As a large memory is needed to store the ANN
parameters, its protection has stringent requirements in terms of
memory overhead; especially for applications on constrained
platforms, such as portable systems.

An SN presents a unique challenge for error tolerance,
because weight matrices are shared between the subnetworks,
so memories (storing the weights) are very important for the
reliable operation of this type of ANNs. Especially in the case
when weights are stored in the memory as floating-point (FP)
numbers, even a single bit flip on the exponent part of the FP
number can result in a substantial change in weight value,
thereby propagating through the SN with catastrophic effects.

Ziheng Wang, Student Member, IEEE, Farzad Niknia, Student Member, IEEE, Shanshan Liu,
Member, IEEE, Pedro Reviriego, Senior Member, IEEE, Paolo Montuschi, Fellow, IEEE and Fabrizio

Lombardi, Life Fellow, IEEE

Tolerance of Siamese Networks (SNs) to
Memory Errors: Analysis and Design

S
Manuscript received November 4, 2021, revised April 24, 2022. The

research was supported by the Spanish Agencia Estatal de Investigación under
Grant PID2019-104207RB-I00 and Grant RED2018-102585-T, by the
Department of Research and Innovation of Madrid Regional Authority under
Grant Y2018/TCS-5046, and by NSF under Grant CCF-1953961 and Grant
1812467. (Corresponding author: Shanshan Liu).

Ziheng Wang, Farzad Niknia and Fabrizio Lombardi are with Department
of Electrical and Computer Engineering, Northeastern University, MA 02115,
USA.

Shanshan Liu is with Klipsch School of Electrical and Computer
Engineering, New Mexico State University, NM 88001, USA (email:
ssliu@nmsu.edu).

Pedro Reviriego is with Departamento de Ingeniería Telemática,
Universidad Carlos III de Madrid, Madrid 28911, Spain.

Paolo Montuschi is with Dipartimento di Automatica e Informatica,
Politecnico di Torino, Torina 10129, Italy.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Therefore, the objective of this paper is to design an error-
tolerant SN (so with resilience to soft errors) at low hardware
overhead and reduced power dissipation; two schemes are
proposed: the weight filter and code. The proposed schemes
offer significant advantages under different error scenarios and
can also be combined for many general applications. This paper
presents a detailed theoretical analysis and verifies the proposed
methods on various image datasets by simulations. The
hardware design of SN with the above schemes is proposed; it
offers low hardware overhead for low power applications, so
suitable for hardware-constrained platforms like the Internet of
Things (IoT) or mobile systems.

The contributions of this paper are as follows:
1) Bit-flips due to soft errors are considered in an SN using

both MLPs and CNNs as subnetworks; using error
injection, the importance of protecting exponent bits and
eliminating outliers in weights has been confirmed.

2) A weight filter is proposed; the bound selection for such
a filter has been theoretically analyzed. The maximum
and minimum values of the weight distribution have
been proved as the optimal choice for the so-called
simple case. A theoretical evaluation is established for
such a filter; the generalization to more general cases is
also discussed. The average difference between the
simulation results and the theoretical estimate is 3.44%
in the simple case; the proposed filter also offers very
good performance in general cases, especially when
multi-bit errors are located into a single weight.

3) A scheme based on a code is proposed too; this scheme
replaces the 4 least significant bits (LSB) with parity bits
to protect the sign and exponent bits of each weight as
an FP number. Therefore, this scheme does not incur in
memory overhead. The simulation has also shown that
the code scheme can achieve even better performance
than the proposed weight filter for single-bit error
correction; however, it fails to protect the SN in the
presence of multi-bit errors in a single weight.

4) The combined method retains the advantages of the two
previously proposed schemes; simulation has shown that
it achieves a comprehensive performance under all error
scenarios.

5) The ASIC design of the SN with MLPs using floating-
point circuits for all implementations is presented; its
performance is significantly better than existing designs
found in the technical literature in terms of operating
frequency and power dissipation.

II. PRELIMINARIES AND BASIC PRINCIPLES
A. Siamese Networks (SNs)

 Siamese networks (SNs) are neural networks containing two
branches of subnetworks [2]; as shown in Figure 1, the two
subnetworks have identical structures and share the same
weights. The SN feeds two inputs into the two branches and
calculates the distance (e.g., the most widely used is the
Euclidian distance 𝑑𝑖𝑠(𝑝, 𝑞) = *∑ (𝑞! − 𝑝!)"#

!$% in the n-space)
of the two outputs p and q at the last layer. Predictions are made
based on the distances that evaluate the similarity of the inputs;
for example, if the calculated distance is smaller than a given
threshold, the two inputs are considered as belonging to the

same class, and not otherwise.
Several flexible structures can be utilized in the subnetworks,

such as the commonly used feedforward networks: the multi-
layer perceptron (MLP) [15] or a convolutional neural network
(CNN) [16]. Note that these networks usually have a limited
number of layers, i.e., they are shallow NNs; to the best of the
authors’ knowledge, the use of deep NNs as subnetworks of an
SN has not been investigated in the technical literature.

B. SN Error Model and Protection
For inference of an ANN, the trained model is usually stored

in a memory as weight (and bias) matrices. As introduced
previously, memories are prone to suffer different types of
errors/faults; one of the most common types is soft errors
mainly caused by radiation particles [23]. Such errors can flip
the stored bits and then cause data corruption; they have been
considered as a significant reliability issue for memories. Since
the corrupted data can result in incorrect predictions and
possibly, system failure, error protection must be provided for
ANNs in many safety-critical applications [17]. This is
especially critical for an SN, because the memory storing the
weight matrices is shared by its subnetworks and a single error
may affect both subnetworks.

Therefore, as the error model, this paper considers bit-flips
in the weight matrices; moreover, it is assumed that the
parameters of the SNs are represented in the IEEE 754 standard
single-precision floating-point format [24] (Figure 2) and stored
in a memory with 32-bit words (i.e., each weight is stored in a
single memory word). The decimal value of the FP number is
calculated as

𝑑𝑒𝑐 = 	 (−1)& × 2'(%") × (1 +𝑀 × 2("*) (1)
where 𝑆, 𝐸, and 𝑀 are the decimal number represented by the
corresponding sign, exponent, and mantissa bits. It is clear that
a bit-flip on the sign or exponent bits leads to very significant
changes in value.

In this paper, simulation is pursued under several scenarios.
The simple case is analyzed under only a one-bit-flip
occurrence, while for general cases, more errors (up to 10) are
considered. When more than one errors occur (which is mostly
caused by radiation particle(s)), they always affect memory
cells that are physically close, so tending to either affect

Fig.1. Block Diagram of a conventional Siamese Network (SN).

Fig. 2. Data represented in IEEE standard 754 floating-point format.

Input 1

Shared
Weights

Sub
network 1

Distance
Calculation

Output

Input 2

Sub
network 2

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

multiple data bits in a single memory word, or single data bits in
multiple adjacent words [25]. Therefore, two scenarios are
defined as general cases. 1) Single-bit errors: multiple errors
occur, but each incorrect weight/memory word has only one bit
flipped. 2) Multi-bit errors: multiple errors occur but they affect
the same weight/memory word. The different error scenarios
considered in this paper are summarized in Table I.

To achieve error tolerance of ANNs for inference,
redundancy on neuron computation has also been proposed [13],
[14]; however, the model must be changed and such a scheme
may incur in a significant hardware overhead. An alternative
solution is to utilize ECCs, as widely used for memory
protection. By storing a few parity bits (that are calculated using
the data being protected in each memory word), errors in the
word can be detected or corrected. For example, the widely used
Single Error Correction (SEC) code requires r parity bits by
satisfying 2+ ≥ 𝑑 + 𝑟 + 1 to protect a d-bit data [31]. Even
though ECC has a high flexibility and does not need to modify
the NN, the introduced memory redundancy may not be
acceptable in some hardware-constrained platforms; moreover,
ECCs can only deal with a limited number of errors. Therefore,
more powerful yet efficient error-tolerant techniques need to be
investigated for a memory of an ANN used in inference,
especially for SNs that present a unique challenge for memory
errors.

C. Error Injection Experiments
Prior to introducing the proposed error-tolerant approaches,

a series of experiments have been pursued to assess the impact
of soft errors on the inference performance of an SN for five
widely used image datasets given in Table II; both MLP and
CNN are considered as subnetworks (their configurations are
described in the next sections). Error injection is performed
using the error models described in Section II.B for the simple
and general cases; bit-flip errors are randomly injected on the
weight matrices in each case. The experiments are repeated by
10, trials to obtain the average values, from which several
important conclusions can be drawn:

1) Due to the overprovision of neurons and the inference
threshold, an SN has some inherent error tolerance [18]
because soft errors lead to close to zero predicted
changes in most cases (97.66% in 10, trials). However,
in the remaining cases, errors have a very high impact;
an average of 37.14% of the predictions are changed.

2) All these changed predictions are caused by significant
changes (usually larger than ±10𝑒*-) in the weight
value. By Eq. (1), bit flips on the sign or exponent bits
are more likely to lead to significant changes. This has
been confirmed by error injection; the results show that
99.42% of them are caused by errors on the exponent
bits, and 0.58% on the sign bit.

From the above observations, the primary objective of error
tolerance in SNs is to protect the sign and exponent bits, i.e.
changes on the mantissa bits have a negligible impact on the
final prediction. Therefore, this paper proposes error-tolerant
approaches from two perspectives: reducing the impact of
significant changes by applying a weight filter and correcting
the erroneous bits by a code scheme.

TABLE II
DETAILED INFORMATION OF DATASETS AND INFERENCE ACCURACY WITH SN IN ERROR-FREE CASE

Description of Datasets Accuracy
(MLP)

Accuracy
(CNN) Name Category #Classes Size of the

training set
Size of the

test set
Size of
image

#Channels
of image

MNIST [26] Handwritten Digits 10 60,000 10,000 28×28 1 97.174% 99.613%
Fashion-MNIST [27] Clothing and Accessories 10 60,000 10,000 28×28 1 91.563% 93.639%

CIFAR-10 [28] Animals and Vehicles 10 50,000 10,000 32×32 3 75.704% 79.524%
SVHN [29] Street View House Numbers 10 73,257 26,032 32×32 3 81.867% 92.883%
STL-10 [30] Animals and Vehicles 10 5,000 8,000 96×96 3 68.421% 74.690%

Fig. 3. Inference process of the error-tolerant SN with weight filter and code.

TABLE I
DIFFERENT ERROR INJECTION SCENARIOS

 Scenario # flipped bits # affected weights
Simple case 1 1

General
case

Single-bit errors 1 Up to10
Multi-bit errors Up to10 1

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

D. Proposed SN
The proposed error-tolerant SN is based on utilizing two

schemes: a weight filter and a code, either by themselves or
combined. It will be shown in subsequent sections that the SN
can be protected by those two techniques with a very low
accuracy loss even in extreme error cases. Error tolerance in
this paper focuses on the memory storing the model (i.e., the
weights) of the SN, so as applicable to all NNs, training and
inference must be considered: 1) The training process of the
proposed scheme is the same as in a traditional SN; 2) The
significant difference occurs for inference: a weight filter and a
code are utilized to check the stored weight matrices before the
inference process starts. In the combined scheme, the weight is
first checked and corrected by the code, and then further
modified by the weight filter. The inference process then starts
with such corrected weights. The inference process of the
proposed error-tolerant SN is illustrated in Figure 3.

Both these schemes aim at reducing the redundancy overhead
for attaining error tolerance in the SN; different from a
traditional approach with ECCs, the proposed design of an
error-tolerant SN requires zero memory overhead. A detailed
comparison is provided in Section VIII.

III. PROPOSED WEIGHT FILTER
As observed in the error injection experiments, the filter is

applied to reduce the significant changes in the weight value.
Similar schemes for restricting the large values in the weights
have been studied [19]-[22]. All these works rely on the same
observation that outliers with large absolute values in weights
(caused by faults/errors) are the primary causes of performance
degradation of NNs. However, the error models considered in
these works are totally different from the one analyzed in this
paper, i.e. they target stuck-at faults during the training process,
while this paper considers soft error(s) during the inference
process. Moreover, these existing works did not provide a
theoretical analysis or justify the bound selection of the filters,
so their applicability in the scenario considered in this paper
cannot be further investigated/evaluated.

The design of the proposed weight filter relies on the
distribution of the weight values. The statistical maximum and
minimum values of the weights in the error-free SNs for
different datasets are provided in Table III. The weight values
are concentrated in a small range (bounded by the maximum
and minimum values). Therefore, when errors due to bit-flips
affect the exponent bits, there is a high probability to generate
outliers that exceed the range in the error-free case. Such
outliers have been shown in the error injection experiments to
cause changes in the prediction; hence, the proposed filter can
effectively reduce the effect of soft errors in an SN. Note that
even though the specific range of weight values may vary for
different SNs and datasets (as shown in Table III), it only affects
the bound selection of the filter that is described in subsequent
subsections, but not the feasibility of the filter.

A. Implementation
 Consider the characteristics of the weight distribution; the

filter can be mathematically represented as a multiplication
with a rectangular function that constrains the weight values
within a reasonable range. Such function is defined as:

𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝑤𝑒𝑖𝑔ℎ𝑡 × rect(𝑤𝑒𝑖𝑔ℎ𝑡) (2)

rect(𝑡) = G1,			if	𝑡 ≥ 𝜏.!#	or	𝑡	 ≤ 𝜏./0
0,			otherwise																										 (3)

where 𝜏.!# and 𝜏./0 determine the lower and upper bounds of
the filter, and 𝜏.!# < 𝜏./0. As this filter is applied to all weight
matrices, the bound of the filter must satisfy the constraints:

 G
𝜏./0 ≥ 𝑤./0	
𝜏.!# ≤ 𝑤.!#

 (4)

 This is required because only the weights that certainly
contain errors, need to be filtered; otherwise, the weights
without errors may also be changed, so hindering the objective
of retaining high accuracy while reducing the impact of
memory errors.

The bounds of the filter are recorded when the model is saved
in memory. Prior to the inference process, the weight matrices
are checked by comparing them with the upper and lower
bounds. After the outliers are limited by the filter, the inference
process continues with the modified weights (as illustrated in
Figure 3). Next, the specific choices and related analyses of the
upper and lower bounds of the filter are discussed. Due to the
complexity of NN propagation, a simple model is first
introduced for the theoretical analysis, and then the general
cases are discussed.

B. Upper and Lower Bounds in the Simple Case
A simplified error injection model is considered to analyze

the weight filter in the proposed SN. The following assumptions
are applicable to the so-called “simple case” of an SN.

1) Only one erroneous bit is present in the weight matrices.
2) The output layer of each branch network has only one

neuron.
3) The error appears only in the weight of the last layer (i.e.,

the output layer in the MLP version, or the last fully-
connected layer in the CNN version).

 As an example, consider one of the branch networks,
because these networks share the same weights and errors are
the same for their weight matrices. Define the inputs of the last
layer of subnetwork 1 as 𝑥% = L𝑥%,%, ⋯ , 𝑥%,#N′, and the weight
matrix as 𝑤% = L𝑤%,%, ⋯ ,𝑤%,#N′ , where 𝑛 is the number of
neurons prior to the output layer. The weight with a memory
error 𝑤! + 𝑒 has a range from ±1.18 × 10(*3 to ±3.4 × 10*3
as per a single bit-flipping error in a single-precision floating-
point number.

Assume the error 𝑒 affects 𝑤%,! , 	1 ≤ 𝑖 ≤ 𝑛. The output of
the last layer can be represented by Eq. (5); only the weight is
considered, because the bias can be treated as part of the weight
if the input is extended by an additional dimension (i.e., 𝑤% =
L𝑤%,%, ⋯ ,𝑤%,#, 𝑏N′ and 𝑥% = L𝑥%,%, ⋯ , 𝑥%,#, 1N′).

TABLE III
STATISTICAL MAXIMUM AND MINIMUM VALUES OF WEIGHT DISTRIBUTIONS

Dataset MLP CNN
Maximum Minimum Maximum Minimum

MNIST 0.3209 -0.2725 0.7454 -0.6915
Fashion-MNIST 0.3764 -0.2566 0.9197 -0.6118

CIFAR-10 0.1392 -0.1839 0.2268 -0.2648
SVHN 0.2788 -0.2489 0.5327 -0.5830
STL-10 0.1932 -0.2245 0.6192 -0.5882

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

	𝑦% =	∑ 𝑥%,4#
4$% 𝑤%,4 + 𝑥%,!𝑒 (5)

The output of the other subnetwork, 𝑦" can be similarly
represented. When the output layer has only one neuron, the
calculation of the Euclidean distance is rather simple; the
distance 𝐷- with no error and the distance 𝐷 with one bit of
error satisfy the following relationship.

										𝐷 = *(𝑦% − 𝑦")"
								= ∑ 𝑥%,4#

4$% 𝑤%,4 + 𝑥%,!𝑒 − ∑ 𝑥",4#
4$% 𝑤",4 − 𝑥",!𝑒 (6)

					= 𝐷- + L𝑥%,! − 𝑥",!N𝑒
Assume the value of 𝐷- is in the range [0, 𝐷./0], and the

threshold is 𝑇, 0 < 𝑇 < 𝐷./0. As per the classification results
of the network with no error, the following two cases are
possible:

 Case 1: If 𝐷- ∈ [0, 𝑇], the original prediction is positive (i.e.,
the two inputs are judged by the SN to be of the same category).
To reduce the effect of errors, i.e., to keep the prediction
unchanged, 𝐷- + L𝑥%,! − 𝑥",!N𝑒 ∈ [0, 𝑇]. If L𝑥%,! − 𝑥",!N𝑒 ≤ 0,
the prediction does not change; if L𝑥%,! − 𝑥",!N𝑒 > 0, the filter
reduces L𝑥%,! − 𝑥",!N𝑒 to reach a higher probability for the
prediction not to change.

Case 2: If 𝐷- ∈ [𝑇, 𝐷./0], the original prediction is negative
(i.e., the two inputs are judged by the SN to be of different
categories). Similarly, 𝐷- + L𝑥%,! − 𝑥",!N𝑒 ∈ [𝑇, 𝐷./0] . If
L𝑥%,! − 𝑥",!N𝑒 ≥ 0, clearly the prediction does not change. if
L𝑥%,! − 𝑥",!N𝑒 < 0, the filter increases L𝑥%,! − 𝑥",!N𝑒 to reach a
higher probability for the prediction not to change.

By combining the above two cases, the selection of the upper
and lower bounds of the filter is equivalent to minimize
]L𝑥%,! − 𝑥",!N𝑒]. Moreover, as the filter is applied to the weight
matrices and does not change the inputs, the above problem is
equivalent to minimize |𝑒| . The filter accomplishes this
indirectly by limiting the value of |𝑤! + 𝑒| as:

																		𝑤! + 𝑒 = _
𝜏./0 ,									𝑖𝑓	𝑤! + 𝑒 > 𝜏./0
𝜏.!#,										𝑖𝑓	𝑤! + 𝑒 < 𝜏.!#	
𝑤! + 𝑒,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

When considering (4), the selection of the bounds is
equivalent to solving the problem:

										G

minimize	𝜏./0 ,								𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝜏./0 ≥ 𝑤./0			
maximize	𝜏.!#,								𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝜏.!# ≤ 𝑤.!#				

 (8)

The optimal feasible solution for the filter’s upper and lower
bounds is given by:

																																									h
	𝜏./0 = 𝑤./0
𝜏.!# = 𝑤.!# 														 (9)

This shows that the filter with bounds given by the statistical
maximum and minimum of the weight values (as presented in
Table III) has the largest probability to maintain the original
predictions in the simple case.

C. Theoretical Performance Analysis
By observing the distributions of the weights and the

distances in the error-free case, the following relationships are
satisfied for all five datasets (described in Table II) considered
in this paper:

																										i
]L𝑥%,! − 𝑥",!N𝑤.!#] < 𝐷./0 − 𝑇
]L𝑥%,! − 𝑥",!N𝑤./0] < 𝑇													

 (10)

Therefore, by applying the filter, a “safe range” is generated
to guarantee that most of the predictions remain unchanged. For
example, if there is a constant	𝜖 such that L𝑥%,! − 𝑥",!N𝑒 < 𝜖%,
for the samples with an original output distance 𝐷- ∈ [0, 𝑇 − 𝜖],
their output distance in the presence of errors always satisfies
𝐷 = 𝐷- + L𝑥%,! − 𝑥",!N𝑒 < 𝑇. The derivation is similar if the
sample’s prediction is negative with L𝑥%,! − 𝑥",!N𝑒 > 𝜖". This
means that the positive predictions with an original distance
𝐷- ∈ [0, 𝑇 − 𝜖%], or the negative predictions with an original
distance 𝐷- ∈ [𝑇 + 𝜖", 𝐷./0] do not change.

Assume that an error does change the sign of the weight; note
that the probability of a random bit flipping on the sign bit of a
single-precision floating-point number is very small (1/32), so
this is an extreme scenario. Then the following inequalities are
satisfied by applying a filter according to Eq. (9).

																	G𝑒 ≤ 𝑤! + 𝑒 ≤ 𝑤./0 , if	𝑤! ≥ 0
𝑒 > 𝑤! + 𝑒 ≥ 𝑤.!#, if	𝑤! < 0 (11)

Define 𝜖 = L𝑥%,! − 𝑥",!N𝑤./0 , such a “safe range” is
generated; therefore, by the distribution of L𝑥%,! − 𝑥",!N𝑤./0
and L𝑥%,! − 𝑥",!N𝑤.!# of each dataset, the estimated percentage
of samples protected by the filter can be calculated and for
different datasets, it is shown in Table IV. As per Eq. (11), this
analysis results in an underestimate of the performance of the
filter; so, it can be theoretically proven that the filter is capable
to reduce the changed predictions caused by memory errors.

D. General cases
The optimality of the bound selection has been established in

the simple case; in the general case, memory errors in an SN
may not satisfy the assumptions outlined previously in Section
III.B, and a more detailed analysis is required. The proposed
weight filter works also in the general case, because its
feasibility only relies on the condition that outliers (so with
large absolute values in the weights) lead to degradation.
However, it has not been possible to prove that the specific
bound selection is optimal as in the simple case (also, the
theoretical performance analysis is intractable). Therefore, this
paper provides a discussion of a heuristic bound selection for
the general cases.

If assumptions 1) or 2) are not satisfied, Eq. (6) can be
changed by substituting the error terms with the sum given by

𝐷 = 𝐷- + ∑ L𝑥%,! − 𝑥",!N𝑒!5
!$% (12)

where 𝑘 is the number of soft errors, or the number of output
dimensions. In this case, the problem is equivalent to minimize
|∑ 𝑒!|. The optimal solution of Eq. (9) only holds when all
errors have the same sign, which is not necessarily valid in

TABLE IV
ESTIMATED PERCENTAGE OF PROTECTED SAMPLES IN DIFFERENT DATASETS

Dataset Protected samples (%)
MNIST 82.98%

Fashion MNIST 73.88%
CIFAR-10 78.32%

SVHN 78.59%
STL-10 80.35%

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

practice; hence, the bounds are not always optimal (depending
on the signs of the errors), but it is a feasible solution for all
cases.

When assumption 3) is not satisfied, the analysis becomes
rather complicated. Even if the filter minimizes the changes in
the erroneous layer, the final output cannot be predicted; this
also happens to the convolution layers of the CNN version. It
occurs because errors cannot be represented as an independent
term (as in Eq. (6)) after layer propagation. In this case, the
optimality of the bounds is highly dependent on the network
and the datasets, so it is difficult to establish a deterministic
mathematical model.

Even though optimality does not always hold, the bound
selection in Eq. (9) can be still used. Considering the diverse
datasets, the bounds set by the range of the weights provide
good flexibility; also, it is generally applicable for all scenarios
(optimal in the simple case; feasible and sometimes optimal in
the more general cases). As per the observation that outliers are
usually extremely large, a small deviation to the optimal bounds
brings trivial effects; the performance of the filter with the
suggested bounds is evaluated by simulations in subsequent
sections.

IV. PROPOSED CODE
A code scheme is proposed to deal with single-bit errors in

this section. Since outliers due to errors on the sign and
exponent bits of weights cause the most crucial changes
affecting predictions, the protection of only these bits can
greatly reduce the redundancy overhead, while still retaining
satisfactory performance. Therefore, in the proposed code
scheme, an SEC is employed to cover only the sign and
exponent bits (i.e., 9 bits in total) of each weight; this reduces
the required number of parity bits from 6 to 4 compared to a
traditional SEC that covers all 32 floating-point bits [31].
Moreover, the proposed scheme stores the parity bits on the 4
least significant bits (LSBs) of the mantissa of each weight
(Figure 4), hence no memory redundancy/overhead is finally
encountered. Even though a very small deviation is introduced
by replacing the original 4 LSBs with the parity bits, it leads to
negligible changes in values and operations of ANNs [32]; this
is also applicable to an SN as established in the error injection
experiments.

Overall, this scheme is expected to have a significant
performance improvement either by itself, or when combined
with the filter (when there is more than one erroneous bit on the
significant bits, the provided code is not suitable, hence the
need for the weight filter).

V. SIMULATED ERROR TOLERANCE OF SN WITH MLPS
In this section, the performance of the proposed schemes

(filter, code, and the combined method) in an SN with different

datasets is assessed for both the simple and the general cases.
Multi-layer perceptrons (MLPs) are used as branch networks
and each is designed with 5 linear layers (with size 784-512-
512-512-2); ReLU is selected as the activation function
between layers. The number of layers, the number of neurons
in each layer, and the hyperparameters (such as the learning
rate) are experimentally determined for best performance over
all datasets. Moreover, contrastive loss [33] is used in the
training of the SN. As an SN requires a pair of images as inputs
for the two branch networks, datasets are preprocessed to
balanced positive and negative pairs, so indicating that the two
inputs belong to the same or different categories.

The SN is trained with the preprocessed datasets and the
classification accuracy of each dataset in the error-free case is
recorded and shown in Table II; in the simulations, the SNs for
all datasets are equally trained for 50 epochs. Although the
models may not reach the top accuracy of each dataset, this has
a negligible effect on testing the weight filter in the presence of
error(s).

Errors for different cases (as detailed in Table I) are injected
into the SN during the inference process. The location of each
error (layer, weight index, and bit position) is randomly selected.
Two metrics are used to evaluate the effects of the injected
errors and the proposed schemes: the loss classification
accuracy and the number of changed predictions (all results are
averaged over 10000 runs). Since the models cannot achieve
100% accuracy in the error-free case, there will be differences
between these two metrics. The accuracy loss evaluates the
classification performance of the network, while the number of
changed predictions evaluates the sensitivity of the model to
errors at a higher system level.

A. Performance in the Simple Case
In the simple case, only a single bit error is injected into the

weight matrices for the output layer. The results prior to and
after using the proposed filter and code, are shown in Table V;
note that there is no need to employ the combined method in
this case.

Filter scheme: Table V shows that the filter achieves
improvement in both accuracy loss and the number of changed
predictions. Moreover, in Section III, it has been theoretically
proved that the filter can protect part of the samples and reduce
the impact of memory errors on their predictions in the simple
case. Although this theoretical calculation is only an estimate
result (given in Table IV), its difference compared with the
simulated number of changed predictions (given in Table V) is
only 3.44% on average for all datasets, so verifying the analysis
of the filter in the simple case.

Fig. 4. Data represented in IEEE standard 754 floating-point format protected
by the proposed code scheme.

TABLE V
PERFORMANCE OF THE PROPOSED METHODS IN THE SIMPLE CASE

Dataset
Accuracy loss # of changed predictions

Un-
protected Filter Code Un-

protected Filter Code

MNIST 0.030% 0.007% <0.001% 2.582 0.505 0.028
Fashion
MNIST 0.013% 0.002% <0.001% 3.287 1.187 0.035

CIFAR-10 0.003% <0.001% <0.001% 1.334 0.336 0.044
SVHN 0.002% <0.001% <0.001% 1.950 0.409 0.018
STL-10 0.017% 0.002% <0.001% 5.744 1.081 0.013

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Code scheme: In this scheme, the single-bit error occurred in
the memory can be fully corrected; therefore, the performance
of the code is superior to the filter. Since the original 4 LSBs of
each weight have been replaced by the parity bits, an accuracy
loss and/or the number of changed predictions are still incurred
for some datasets (as expected); however, such degradations are
extremely low compared to the unprotected scheme and filter
scheme (shown in Table V).

Overall, in the simple case, the code scheme is more
attractive due to its higher error-tolerant performance with no
memory overhead.

B. Performance in the General Case – Single-bit Errors
In this subsection, the performance of the proposed filter,

code, and the combined method is assessed in the presence of

up to 10 single-bit errors. The accuracy loss and the number of
changed predictions are provided in Figures 5 and 6. The results
show that as expected, the values under both metrics increase
with the number of errors (as flipped bits in the unprotected
scheme), and a significant reduction is achieved using the
proposed methods.

Filter scheme: When comparing the results without and with
the filter, the accuracy loss and the number of changed
predictions are in general reduced by more than 90%; this
confirms that the filter significantly reduces the effect of single-
bit errors. In practical applications, the accuracy of the network
usually decreases sharply with an increasing number of errors,
so the presence of a filter enables to significantly reduce the
impact of errors.

(a) (b) (c) (d)

Fig. 5. Accuracy loss of each scheme under single-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method.

(a) (b) (c) (d)

Fig. 6. Number of changed predictions of each scheme under single-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method.

(a) (b) (c) (d)

Fig. 7. Accuracy loss of each scheme under multi-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method.

(a) (b) (c) (d)

Fig. 8. Number of changed predictions of each scheme under multi-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Code scheme: The code achieves even better performance
for single-bit error correction; it shows very low accuracy losses
(< 0.001%) and the average number of changed results is
generally less than 0.3. Different from the filter, the code
scheme ensures that the significant bits are error-free, so it is
nearly insensitive to the number of errors. This feature enables
a substantial improvement in performance under a large number
of single-bit errors.

Combined scheme: The performance of the combined
method is very similar to employing only the code (i.e., Figure
5 (c) and 6 (c)), thus proving that the combined method fully
retains the excellent single error correction capability of the
code. This result is expected, because the weights corrected by
the code fall into the allowed range of the filter; hence the filter
is not activated for most of the single error cases and the
significant bits of the weights are still fully protected by the
code.

C. Performance in the General Case – Multi-bit Errors
In this subsection, the proposed filter, coding and the

combined method are assessed in the presence of up to 10 multi-
bit errors; the accuracy loss and the number of changed
predictions are provided in Figures 7 and 8.

Filter scheme: The results show that the filter maintains its
good performance also under multiple error bits. It performs
slightly better than the case of single-bit errors (Figures 5 (b)
and 6 (b)). This is reasonable, because multi-bit errors are more
likely to generate outliers with a large absolute value, that can
be effectively eliminated. Moreover, with the protection of the
filter, the accuracy of the network does not further decrease
when more flipped bits occur in a single weight. This confirms
that the proposed filter is suitable for protecting an SN with
multiple erroneous bits in the same weight.

Code scheme: The code scheme cannot protect against multi-
bit errors due to its nature (i.e., the SEC code); this is confirmed
by the results showing no improvements (except when only one
error occurs).

 Combined scheme: The combined method has satisfactory
performance in the case of multi-bits errors. The result is very

close to using the filter, and the small difference is due to the
changed LSBs (replaced by parity bits in the code scheme).

Overall, the experiments for the general cases have shown
that the combined method retains the advantages of both the
filter and the code, so protecting the SN in both cases of single-
bit and multi-bit errors.

VI. SIMULATED ERROR TOLERANCE OF SN WITH CNNS
 In previous sections, the performance of the proposed error-

tolerant schemes has been evaluated for an SN with MLPs as
subnetworks. This section provides additional simulation
results by considering an SN with CNNs. Each of these
subnetworks consists of three convolution layers (with channels
and kernel size of 64×7×7-128×5×5-256×5×5) and two fully-
connected layers (with size 2304-2); ReLU is used as the
activation function. The number of layers, the number of
neurons in each layer, and hyperparameters (such as the
learning rate) are experimentally determined for best
performance over all datasets. Moreover, contrastive loss [33]
is used in the training of the SN; dataset preprocessing and other
configurations in the SN are the same as for the MLP-based
version.

The performance of the proposed weight filter, coding
scheme, and the combined method is presented in Tables VI and
VII. Due to space limitations in the manuscript, only the results
of 10-bit flips for each error type in the general cases (i.e.,
single-bit and multiple-bits errors) are provided. The results
have been averaged over 10000 repeated trials.

The results show that the filter protects against both single-
bit and multiple-bits errors; it performs better in the case of
multiple-bit errors. The code provides a nearly complete
protection for the SN in the case of single-bit errors, but it does
not work well under multi-bit errors. Also in the CNN-based
version, the combined method has the advantage of the two
proposed schemes. Performance of the CNN-based version is
very similar to the MLP-based version, so showing the
proposed schemes can also work effectively with CNNs as
subnetworks.

TABLE VI
PERFORMANCE OF THE PROPOSED ERROR-TOLERANT SCHEMES WITH CNN IMPLEMENTATION EVALUATED BY ACCURACY LOSS (%)

Dataset
Unprotected Filter Code Combined method

Single-bit
errors

Multi-bits
errors

Single-bit
errors

Multi-bits
errors

Single-bit
errors

Multi-bits
errors

Single-bit
errors

Multi-bits
errors

MNIST 1.118% 2.767% 0.109% 0.070% 0.004% 2.754% 0.005% 0.072%
Fashion MNIST 0.776% 1.533% 0.199% 0.082% 0.007% 1.467% 0.006% 0.079%

CIFAR-10 1.047% 1.958% 0.071% 0.066% 0.004% 1.937% 0.004% 0.062%
SVHN 0.681% 1.886% 0.062% 0.042% 0.006% 1.786% 0.007% 0.044%
STL-10 0.657% 2.255% 0.112% 0.072% 0.009% 2.252% 0.010% 0.065%

TABLE VII
PERFORMANCE OF THE PROPOSED ERROR-TOLERANT SCHEMES WITH CNN IMPLEMENTATION EVALUATED BY CHANGED PREDICTIONS

Dataset
Unprotected Filter Code Combined method

Single-bit
errors

Multi-bits
errors

Single-bit
errors

Multi-bits
errors

Single-bit
errors

Multi-bits
errors

Single-bit
errors

Multi-bits
errors

MNIST 137.46 365.53 16.65 13.25 1.02 356.98 1.13 13.10
Fashion MNIST 109.17 291.24 33.59 23.73 0.63 292.35 0.75 22.81

CIFAR-10 127.91 519.41 25.18 21.16 2.27 501.29 2.16 21.75
SVHN 183.51 703.77 28.78 22.90 1.28 687.78 1.31 20.49
STL-10 263.51 543.81 37.95 19.87 0.98 541.96 0.96 19.55

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

VII. HARDWARE IMPLEMENTATION OF SN WITH MLP
In this section, a high-performance ASIC design of an SN is

pursued for use in hardware-constrained platforms (e.g., low-
power/high-frequency IoT or mobile systems). Since a CNN is
computationally intensive, implementations often use FPGAs
[34], GPUs [35], or supercomputers [36]; moreover, the
operational frequency for FPGA-based implementations is in
the order of few hundreds megahertz, and considerable power
dissipation (like tens of watts) is encountered for CPU/GPU-
based implementations [37], so making CNNs unsuitable as
branch networks in an SN (so doubling the size of a CNN) for
hardware-constrained platforms. Therefore, only an SN with
MLPs as subnetworks is considered next for ASIC design; an
efficient CNN-based SN implementation using emerging
computing paradigms (so not with FP numbers) will be pursued
as future work.

As depicted in Figure 9 (a), an MLP has an input layer, at
least one hidden layer and an output layer. Generally, the
number of neurons in the input layer is equal to the valid
feature’s dimension in the target dataset; a weight is applied
when mapping a neuron’s value to the next layer. Therefore,
each neuron must be multiplied by its relevant weight to be
transferred to the next layer.

Consider Figure 9 (b); when calculating the value of neuron
ni+1 in the i+1th layer, all m neuron values in layer i are initially
multiplied by the corresponding weights w of neuron ni+1. Then
these values are accumulated and finally, the activation function
Φ is applied. This calculation is given in Eq. (13).

 𝑛!"# = 𝛷#∑ 𝑤$,!"#! ∙ 𝑛$&
$'# + 𝑏!) (13)

Therefore, when using the FP numbers (as numerically
defined in Eq. (14), where h is the hidden bit), a Multiply-
Accumulate (MAC) unit consists of an FP adder and an FP
multiplier as required to implement a neuron of an MLP.
 (−1)6!7# × 2(90:;#9#<(%")) × (ℎ.𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎) (14)

Next, the FP units that are used for computation are presented.
The 2-input FP adder and multiplier have been implemented
using a 4 states finite state machine in which each state is
processed in a clock cycle; the output is updated every 4 clock
cycles. Algorithms 1 and 2 (given in the supplemental material)
illustrate in more detail the process of addition and
multiplication using these designs; both the FP adder and
multiplier are designed behaviorally using Verilog-HDL. For
the distance computation at the final stage of the SN, a square
root circuit design is required; the low-cost design (and related
method) proposed in [38] is utilized in this paper. This circuit
is also described in the supplemental material.

Different schemes can be investigated for the MLP and thus
SN implementation: 1) Serial 2) Parallel 3) Hybrid. The parallel
implementation is presented in the supplemental material,
because due to its very large complexity, this design is not
pursued because the hardware is unfeasible. In the next
subsections, the remaining two implementations are discussed
in more detail.

A. Serial Implementation of MLP
In a serial implementation of an MLP, all calculations are

performed by utilizing a single MAC [39] (as part of the
structure shown in Figure 11); this design receives two inputs
and multiplies them in 4 clock cycles in a pipelined mode. Then,
it adds the product with the results from the previous step using
the feedback input in the FP adder. Also, in this implementation
when the start signal is low, all internal registers of the FP units
are reset, otherwise the multiplier starts the calculation.

Assume that the ith layer has m neurons; for each neuron in
the i+1th layer, m+1 entries (so the number of neurons in the ith
layer plus a bias value) are present, and thus m+1 pairs of inputs.
After calculating the value of each neuron, the MAC is reset
and the calculation for the next neuron can be started. Therefore,
a serial implementation computes each neuron value for the
hidden and output layers serially; this feature significantly
decreases the area, but it increases the latency. Figure 10 shows
a schematic diagram of this implementation; an SRAM is
required to save the result of each neuron, because this value is
needed for the calculations of the neurons in the deeper layers.
Also, a portion of the SRAM is used to save the weights related
to each neuron; the control unit is responsible for
reading/writing from the SRAM and set/reset of the neuron [40].

B. Hybrid Implementation of MLP
This implementation is based on a combination of parallel

and serial implementations; it uses the serial neuron hardware
(i.e., a MAC). Consider the fully parallel design in Figure 11
(more details about this design can be found in the supplemental
material file); the hybrid design consists of increasing the level
of parallelization by adding more MAC units to the design. So,
instead of calculating each neuron separately, several neurons
are calculated at the same time, but still in a serial mode, i.e., as
each neuron processes only a pair of inputs in each step, the
control unit allocates all possible pairs to the neuron during the
computational phase.

Therefore, the final values of neurons are saved in the SRAM

 (a) (b)
Fig. 9. An MLP: (a) its structure; (b) computation of a hidden/output neuron.

Fig. 10. Serial MLP implementation (Address sizes are for MNIST &
FMNIST).

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

and used for the next layers (because they cannot be processed
at the same time due to the limited number of MACs). In this
paper, 16 MAC units are used for the different datasets
considered; however, the SRAMs must be implemented such
that several banks are provided to either generate 16 outputs at
the same time, or save 16 inputs at the same time. In this case
the performance of the SRAM memory plays an important role
in the proposed design.

 Figure 12 shows the proposed design for the hybrid
implementation; in this design, only a single array of MACs is
utilized. Therefore, for each layer, the control unit sets the
proper inputs for the MACs (weights and input data) and when
the computation of that layer is completed, the results are saved
in the related SRAM, because they are needed as inputs of the
next layer (so different from a fully parallel implementation).
For computation of the next layers, the current array of MACs
can be used again. As memories, SRAM_W stores the weights
and bias values, while SRAM_N saves the neurons values.

C. Proposed SN Implementation
To implement the SN, the MLP design is utilized; To be more

specific, a single MLP unit (Serial or Hybrid) is instantiated,
and all calculations of the SN are calculated in 2 iterations (1
iteration for each pair of networks). Also, as the used weights
for both subnetworks are the same, then the SRAM_W and
SRAM_N units in the MLP design are sufficient. The control
unit controls the iterations. Additionally, the input image must
be multiplied with its related weights several times (the

hardware design has 1 or 16 MAC units and there are 512
neurons in the first hidden layer, the image must be accessed
512 or 32 times for serial and hybrid designs respectively), then
a small SRAM unit is used to save a pair of images for next time
(SRAM_I). Figure 13 shows the proposed SN design. Based on
Table VIII, the power consumption approximately doubles
(there are 2 iterations) and the area increases due to the control
unit is marginal. This allows for ease in training and testing
because both subnetworks use the same weights and bias values;
latency however may increase. These aspects will be assessed
in the next section.

VIII. EVALUATION RESULTS
All hardware implementations have been designed/simulated

using Cadence Genus Synthesis Solution; the optimization
effort for area, power and delay has been set to high for the tool
to automatically consider the tradeoffs between them and the
pre-set constraints to reach the best result. Moreover, we have
used a 32nm technology file at 25°C and TT corner. Table VIII
shows the synthesis results for the different datasets for the
MLP and SN using serial and hybrid implementations based on
a 32nm library (with and without error-tolerant schemes). In
Table VIII, the serial design incurs in the least area and power
dissipation, but at a higher number of clock cycles. So, the serial
implementation is the best design candidate for low power
applications; however, training can be rather time-consuming.
The proposed ASIC implementations operate in a pipeline
mode at 681.2 MHz frequency, while the total delay during
classification is several milliseconds.

Memory is needed for the serial and hybrid designs to save
the values of the deeper neurons because these designs do not
use all of them at the same time. Although the memory size for
these two designs are the same (Table VIII), their control units
are rather different. In the serial design, the data is read/written
serially during each cycle, while for the hybrid design the data
is written in the hybrid mode at different memory banks (16
data banks); during the read cycle, the data is read in the
sequence that they have saved, so serially as multiplication is
executed between the value of each neuron in the previous layer
and its related weight for a neuron in the current layer. Note that
errors in these memories (that store the intermediate calculation
results in both the serial and hybrid designs) are not considered
in this paper, because their size is comparatively small and
traditional error-tolerant schemes can be utilized to protect
them against errors (if needed). Also, the reason for the
difference between memory size in MLP design and SN design
is that in a SN design, another memory has been added to save
the input pair of images.

Fig. 11. Parallel MLP implementation.

Fig. 12. Hybrid MLP implementation (Address sizes are for MNIST &
FMNIST).

Fig. 13. SN Design (Based on serial MLP design for MNIST & FMNIST).

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The SNs protected using the traditional SEC code of [31] are
also implemented and compared in Table VIII. Compared to the
proposed schemes, the SNs with SEC show comparable power
and area overhead for the ASIC, but the delay is increased by
5.36% to 8.57%; moreover, the memory size (and thus its area
and power) is increased by approximately 18.8% due to the
additional cells for storing the parity bits (while only correcting
single-bit errors). Since memory accounts for the largest part of
the overhead required for the entire implementation, the
proposed schemes (that can deal also with multi-bit errors are
shown to be superior to the traditional SEC scheme under all
evaluation metrics, so making it also more attractive for

hardware-constrained platforms.
Finally, the MLP implementation is compared with existing

works (based on FPGA and ASIC [41]-[45]) found in the
technical literature in terms of hardware performance; the
MNIST dataset is taken as an example, but the trend of the other
datasets are similar, because the benefit of the proposed design
comes from a hardware configuration that is mostly
independent of the network configuration/datasets. The
synthesis results given in Table IX show that the proposed
design achieves the highest frequency, with the least power
dissipation even though the existing works use more advanced
process technology and have an extremely smaller network.

TABLE VIII
 SYNTHESIS RESULTS OF DIFFERENT DESIGNS

Dataset Design

Serial Implementation Hybrid Implementation
ASIC Memory ASIC Memory

Power
(mW)

Area
(mm2)

Delay
(ps)

Cycles

size
(Mb)

Area
 (mm2)

Power
(mW)

Area
(mm2)

Delay
(ps)

Cycles

size
(Mb)

Area
 (mm2)

MNIST

MLP 1.91 0.0120 1452 3725348 3.547 96.13 21.69 0.1597 1468 239262 3.547 96.42
SN 4.42 0.0134 1458

7450697
3.553 96.30

43.98 0.1605 1473
478525

3.553 96.59
SN+fliter 4.88 0.0137 1624 50.54 0.1652 1644
SN+code 4.50 0.0135 1586 46.32 0.1621 1628

SN+combined 5.26 0.0142 1623 9313357 56.38 0.1706 1644 591777
SN+SEC [31] 4.76 0.0138 1731 7450697 4.220 114.36 53.97 0.1666 1773 478525 4.220 114.70

Fashion
MNIST

MLP 1.91 0.0120 1452 3725348 3.547 96.13 21.69 0.1597 1468 239262 3.547 96.42
SN 4.42 0.0134 1458

7450697
3.553 96.30

43.98 0.1605 1473
478525

3.553 96.59
SN+fliter 4.62 0.0135 1641 46.22 0.1639 1641
SN+code 4.50 0.0135 1586 46.32 0.1621 1628

SN+combined 4.90 0.0141 1640 9313357 54.84 0.1705 1641 591777
SN+SEC [31] 4.76 0.0138 1731 7450697 4.220 114.36 53.97 0.1666 1773 478525 4.220 114.70

CIFAR
-10

MLP 2.17 0.0120 1452 4216868 4.015 104.17 24.64 0.1597 1468 271542 4.015 104.47
SN 5.02 0.0134 1458

8433737
4.023 104.38

49.96 0.1605 1473
543085

4.023 104.67
SN+fliter 5.34 0.0135 1644 53.48 0.1653 1644
SN+code 5.12 0.0135 1586 52.58 0.1621 1628

SN+combined 5.6 0.0142 1643 10542157 63.26 0.1715 1644 668577
SN+SEC [31] 5.39 0.0138 1731 8433737 4.780 123.95 61.29 0.1666 1773 543085 4.770 124.29

SVHN

MLP 2.17 0.0120 1452 4216868 4.015 104.17 24.64 0.1597 1468 271542 4.015 104.47
SN 5.02 0.0134 1458

8433737
4.023 104.38

49.96 0.1605 1473
543085

4.023 104.67
SN+fliter 5.42 0.0137 1622 56.2 0.1639 1641
SN+code 5.12 0.0135 1586 52.58 0.1621 1628

SN+combined 5.72 0.0141 1620 10542157 65.86 0.1705 1641 668577
SN+SEC [31] 5.39 0.0138 1731 8433737 4.780 123.95 61.29 0.1666 1773 543085 4.770 124.29

STL-10

MLP 10.93 0.0120 1452 20989988 20.078 519.24 122.87 0.1598 1468 1352886 20.078 519.54
SN 25.12 0.0135 1458

41979977
20.086 521.07

249.14 0.1606 1473
2705773

20.086 521.36
SN+fliter 26.04 0.0137 1638 274.92 0.1651 1633
SN+code 25.58 0.0136 1586 262.26 0.1622 1628

SN+combined 28.52 0.0142 1638 52485197 302.1 0.1709 1633 3290017
SN+SEC [31] 26.81 0.0138 1731 41979977 23.850 618.77 305.68 0.1666 1773 2705773 23.840 619.12

TABLE IX
COMPARISON OF THE PROPOSED MLP IMPLEMENTATION WITH OTHER MLP DESIGNS FOR MNIST

MLP Implemetation Technology Network Topology Frequency (MHz) Power (mW) Arithmetic Units
[41] FPGA-28 nm 7-6-5 100 120 Fixed-Point
[42] FPGA-28 nm 784-32-10 100 654 Fixed-Point
[43] FPGA-28 nm 784-600-600-10 490.8 - Fixed-Point
[44] FPGA-16 nm 784-12-10 100 568 Floating-Point
[45] ASIC-28 nm 784-200-100-10 114.7 54 Floating-Point

Proposed Design ASIC-32 nm 784-512-512-512-2* 681.2 21.69 Floating-Point

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

IX. CONCLUSION AND FUTURE WORK
This paper has proposed an error-tolerant Siamese Network

(SN); two schemes utilizing a weight filter and a code reduce
the effect of memory errors (bit flips in the weight matrices) in
the inference process. The proposed schemes introduce no
memory redundancy compared with the unprotected case,
because the filter does not incur in redundancy and the coding
scheme replaces a few original LSBs with the required parity
bits. Moreover, they can be combined to further improve the
error tolerance of the SN. Overall, the performance of the
proposed three schemes is summarized in Table X, which is
evaluated by the decreased percentage of accuracy loss and
number of changed predictions (averaged over all datasets and
all error scenarios).

The weight filter has been introduced to prevent outliers and
protect the SN in extreme cases in which multi-bit errors occur
in a single weight. The theoretical analysis proves that the
selection of the filter bounds according to the maximum and
minimum values of the weight distribution of the trained model
is optimal in the simple case, and feasible in the more general
cases. Moreover, the percentage of weights protected by the
filter can be calculated in a simple case, so providing an
estimate of the filter performance. The code scheme stores the
parity bits on the LSBs of the original data, so requires zero
memory overhead at the cost of incurring in negligible errors.

Simulation results have shown that the filter performs better
in the case of multi-bit errors, while the coding scheme shows
better performance under single-bit errors (but it cannot operate
correctly for multi-bit errors). When combining both the weight
filter and the code, the SN has been shown to have outstanding
performance for all error scenarios, so achieving a high memory
error tolerance.

The ASIC design of a Multi-Layer Perceptron (MLP) and
then an SN (using MLPs as branch networks) with different
configurations have been accomplished by using single-
precision FP arithmetic units. Synthesis results show that the
proposed hardware MLP design provides a higher operating
frequency (681.2 MHz) while lower power dissipation
compared with other works found in the technical literature,
even though these works use more advanced process
technologies and have smaller networks.

The proposed methods are also applicable to other types of
ANNs when the same behavior of the weight outliers is
observed. Future work will investigate i) the efficient hardware
design for CNN-based SNs using emerging computing
paradigms, and ii) the use of deep NNs as subnetworks of an
SN as well as the classification performance and error tolerance
of such configuration, because this type of network can also be
used in other application scenarios in place of shallow
MLPs/CNNs.

REFERENCES
[1] D. Chicco, "Siamese neural networks: An overview," Artificial Neural

Networks, pp. 73-94, 2021.
[2] J. Bromley, J. W. Bentz, L. Bottou, et al., "Signature verification using a

“siamese” time delay neural network," International Journal of Pattern
Recognition and Artificial Intelligence, vol. 7, pp. 669-688, 1993.

[3] L. Song, D. Gong, Z. Li, et al., "Occlusion robust face recognition based
on mask learning with pairwise differential siamese network," in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

[4] Z. Liang and J. Shen, "Local semantic siamese networks for fast
tracking," IEEE Transactions on Image Processing, vol. 29, pp. 3351-
3364, 2019.

[5] L. Bertinetto, J. Valmadre, J. F. Henriques, et al., "Fully-convolutional
siamese networks for object tracking," in European conference on
computer vision, 2016.

[6] G. Koch, R. Zemel, R. Salakhutdinov, et al., "Siamese neural networks
for one-shot image recognition," in ICML deep learning workshop, Lille,
2015.

[7] P. Koopman and M. Wagner, "Autonomous vehicle safety: An
interdisciplinary challenge," IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 1, pp. 90-96, 2017.

[8] N. Kanekawa, E. H. Ibe, T. Suga, et al., "Dependability in electronic
systems: mitigation of hardware failures, soft errors, and electro-
magnetic disturbances," in Springer Science & Business Media, 2010.

[9] J. W. Schwartz and J. K. Wolf, "A systematic (12,8) code for correcting
single errors and detecting adjacent errors," in IEEE Transactions on
Computers, vol. 39, no. 11, pp. 1403-1404, 1990.

[10] S. Pontarelli, P. Reviriego, M. Ottavi and J. A. Maestro, "Low delay
single symbol error correction codes based on Reed Solomon codes,"
in IEEE Transactions on Computers, vol. 64, no. 5, pp. 1497-1501, 2015.

[11] S. Liu, P. Reviriego, F. Lombardi, "Detection of limited magnitude errors
in emerging multilevel cell memories by one-bit parity (OBP) or two-bit
parity (TBP)," in IEEE Transactions on Emerging Topics in Computing
2019 (early access).

[12] M. Qin, C. Sun and D. Vucinic, "Robustness of neural networks against
storage media errors," in arXiv preprint arXiv:1709.06173, 2017.

[13] D. S. Phatak and I. Koren, "Complete and partial fault tolerance of
feedforward neural nets", IEEE Trans. Neural Netw., vol. 6, no. 2, pp.
446-456, Mar. 1995.

[14] T. Haruhiko, M. Masahiko, K. Hidehiko and H. Terumine, "Enhancing
both generalization and fault tolerance of multilayer neural
networks," 2007 International Joint Conference on Neural Networks, pp.
1429-1433, Aug. 2007.

[15] L. Zheng, S. Duffner, K. Idrissi, C. Garcia and A. Baskurt, "Siamese
multi-layer perceptrons for dimensionality reduction and face
identification," Multimedia Tools and Applications, vol. 75, no. 9,
pp.5055-5073, 2016.

[16] D. Yi, Z. Lei, S. Liao and S. Z. Li, "Deep Metric Learning for Person Re-
identification," 2014 22nd International Conference on Pattern
Recognition, pp. 34-39, Aug. 2014.

[17] S. Liu, P. Reviriego, X. Tang, et al., “Result-based re-computation for
error-tolerant classification by a support vector machine”, IEEE
Transactions on Artificial Intelligence, vol. 1, no. 1, pp. 62-73, 2020.

[18] E. M. El Mhamdi and R. Guerraoui, "When neurons fail_Technical
report,'' EPFL, Lausanne, Tech. Rep. EPFL-WORKING-217561, 2016.

[19] C.-T. Chin, K. Mehrotra, C. K. Mohan and S. Rankat, "Training
techniques to obtain fault-tolerant neural networks", Proc. 24th Int. Symp.
Fault-Tolerant Comput. (FTCS) Dig. Papers, pp. 360-369, Jun. 1994.

[20] N. Wei, S. Yang and S. Tong, "A modified learning algorithm for
improving the fault tolerance of bp networks", Proc. IEEE Int. Conf.
Neural Netw., vol. 1, pp. 247-252, Jun. 1996.

[21] N. Kamiura, Y. Taniguchi, T. Isokawa and N. Matsui, "An improvement
in weight-fault tolerance of feedforward neural networks," Proceedings
10th Asian Test Symposium, pp. 359-364, Aug. 2001.

[22] T. Haruhiko, K. Hidehiko and H. Terumine, "Partially weight
minimization approach for fault tolerant multilayer neural
networks," Proceedings of the 2002 International Joint Conference on
Neural Networks. IJCNN'02 (Cat. No.02CH37290), vol. 2, pp. 1092-
1096, 2002.

[23] L. Matanaluza et al., "Emulating the effects of radiation-induced soft-
errors for the reliability assessment of neural networks," in IEEE
Transactions on Emerging Topics in Computing, 2021 (early access).

TABLE X
OVERALL PERFORMANCE OF THE PROPOSED ERROR-TOLERANT SCHEMES

Scheme

Decrease in
accuracy loss

Decrease in
changed predictions

Single-bit
errors

Multi-bit
errors

Single-bit
errors

Multi-bit
errors

Weight filter 93.542% 97.662% 91.661% 95.288%
Code 99.775% 3.385% 99.545% 2.089%

Combined method 99.782% 97.634% 99.547% 95.315%

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[24] IS Committee. (2008). 754–2008 IEEE standard for floating-point
arithmetic. IEEE Computer Society Std, 2008.

[25] M. Maniatakos, M.L. Michael, Y. Makris, "Vulnerability-based
interleaving for multi-bit upset (MBU) protection in modern
microprocessors," in IEEE International Test Conference, pp.1-8, 2012.

[26] Y. LeCun, L. Bottou, Y. Bengio et al., "Gradient-based learning applied
to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp.
2278-2324, 1998.

[27] H. Xiao, K. Rasul and R. Vollgraf, "Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms," in arXiv preprint
arXiv:1708.07747, 2017.

[28] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from
tiny images," Citeseer, 2009.

[29] Y. Netzer, T. Wang, A. Coates, et al., "Reading digits in natural images
with unsupervised feature learning," 2011.

[30] A. Coates, A. Ng and H. Lee, "An analysis of single-layer networks in
unsupervised feature learning," in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011.

[31] S. Lin and D. J. Costello, Error control coding, Scarborough: Pretice hall,
2001.

[32] G. Li, S. K. S. Hari, M. Sullivan, et al., "Understanding error propagation
in deep learning neural network (DNN) accelerators and applications",
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-12, 2017.

[33] R. Hadsell, S. Chopra and Y. and LeCun, "Dimensionality reduction by
learning an invariant mapping," in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR'06), 2006.

[34] S.K. Venkataramanaiah, Y. Ma, S. Yin, et al, "Automatic compiler based
fpga accelerator for cnn training," in 29th International Conference on
Field Programmable Logic and Applications (FPL), pp.166-172, 2019.

[35] X. Zhang, D. Zhuang, C. Xie, et al, "Enabling highly efficient capsule
networks processing through software-hardware co-design," IEEE
Transactions on Computers, vol.70, no.4, pp.495-510, 2021.

[36] T. Luo, S. Liu, L. Li, et al, "DaDianNao: A Neural Network
Supercomputer," IEEE Transactions on Computers, vol.66. no.1, pp.73-
88, 2016.

[37] E Cai, D.C. Juan, D. Stamoulis, et al, "Neuralpower: predict and deploy
energy-efficient convolutional neural networks," in Asian Conference on
Machine Learning, pp.622-637, 2017.

[38] Y. Li and W. Chu, "Implementation of single precision floating point
square root on FPGAs," in Proceedings. The 5th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines Cat.
No. 97TB100186, Napa Valley, CA, USA, 1997.

[39] N. Nedjah, R. M. da Silva, L. M. Mourelle, et al., "Dynamic MAC-based
architecture of artificial neural networks suitable for hardware
implementation on FPGAs," Neurocomputing, vol. 72, no. 10-12, pp.
2171-2179, 2009.

[40] S. Liu, X. Tang, F. Niknia, et al., “Stochastic dividers for low latency
neural networks”, IEEE Transactions on Circuits and Systems I: Regular
Papers, 2021 (Early access).

[41] N. B. Gaikwad, T. Varun, K. Avinash, et al., "Efficient FPGA
implementation of multilayer perceptron for real-time human activity
classification." IEEE Access 7 (2019): 26696-26706.

[42] R. Sreehari., D. Vijayasenan and M. R. Arulalan. "A Hardware
Accelerator Based on Quantized Weights for Deep Neural Networks."
In Emerging Research in Electronics, Computer Science and Technology,
pp. 1079-1091. Springer, Singapore, 2019.

[43] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, et al., "A novel
systolic parallel hardware architecture for the FPGA acceleration of
feedforward neural networks." IEEE Access vol.7, pp.76084-76103,
2019.

[44] W. Isaac, X. Yang, T. Liu, et al., "FPGA acceleration on a multi-layer
perceptron neural network for digit recognition." The Journal of
Supercomputing , pp.1-18, 2021.

[45] Y. Liu, S. Liu, Y. Wang, F. Lombardi, et al., "A stochastic computational
multi-layer perceptron with backward propagation." IEEE Transactions
on Computers 67, no. 9, pp. 1273-1286, 2018.

Ziheng Wang (S'21) received the BEng
degree in electronic and information
engineering from Harbin Institute of
Technology, Harbin, China, in 2018, and the
MS degree in electrical engineering from
University of Pennsylvania in 2020. He is
studying for the PhD degree in the Department

of Electrical and Computer Engineering, Northeastern
University. His current research direction is neural networks
and stochastic computing.

Farzad Niknia (S'21) received the B.Sc. and
M.Sc. degrees in Electrical and Electronics
Engineering from the University of Tabriz,
Iran in 2014 and 2018. He worked as a
research assistant at IC Design Lab through
his M.Sc. degree. He is currently working
towards the Ph.D. degree in Computer

Engineering at Northeastern University, Boston as a research
assistant with a concentration on ASIC Design. His research
interests include ASIC and FPGA design, VLSI, EDA tools,
design for test and hardware security.

Shanshan Liu (M'19) received the Ph.D.
degree in Microelectronics and Solid-State
Electronics from Harbin Institute of
Technology, Harbin, China, in 2018. She
was a post-doctoral researcher with the
Department of Electrical and Computer
Engineering (ECE), Northeastern University,
Boston, USA, from 2018 to 2021, and is

currently an Assistant Professor with the Klipsch School of
ECE, New Mexico State University, Las Cruces, USA. She
serves as an Associate Editor for the IEEE Transactions on
Emerging Topics in Computing and the IEEE Transactions on
Nanotechnology, a Guest Editor for the IEEE Transactions on
Circuits and Systems-I, and a technical program committee
member for the IEEE International Symposiums on DFT,
NANO and IOLTS. Her research interests include fault
tolerance design in high performance computing systems,
emerging computing, VLSI design, dependable machine
learning, error correction codes.

Pedro Reviriego (M'04-SM'15) received
the M.Sc. and Ph.D. degrees in
telecommunications engineering from the
Technical University of Madrid, Madrid,
Spain, in 1994 and 1997, respectively. From
1997 to 2000, he was an Engineer with
Teldat, Madrid, working on router
implementation. In 2000, he joined

Massana to work on the development of 1000BASE-T
transceivers. From 2004 to 2007, he was a Distinguished
Member of Technical Staff with the LSI Corporation, working
on the development of Ethernet transceivers. From 2007 to
2018 he was with Nebrija University. He is currently with
Universidad Carlos III de Madrid working on high speed packet
processing and fault tolerant electronics.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Paolo Montuschi (M’90-SM’07-F’14) is a
professor with the Department of Computer
Engineering at Politecnico di Torino, Italy,
and Rector's Delegate for Information
Systems. His research interests include
computer arithmetic, graphics, and intelligent
systems. He is a life member of the

International Academy of Sciences in Turin, and of HKN, the
Honor Society of IEEE. He serves as the Editor-in-Chief of the
IEEE Transactions on Emerging Topics in Computing, the
2020-23, Chair of the IEEE TAB/ARC, and the co-Chair of the
2021 TAB/PSPB Ad Hoc Committee on Publications Strategy.
Previously, he served in a number of positions, including the
Editor-in-Chief of the IEEE Transactions on Computers (2015-
18), the 2017-20 IEEE Computer Society Awards Committee
Chair, a Member-at-Large of IEEE PSPB (2018-20), and as the
Chair of its Strategic Planning Committee (2019-20). More
information at http://staff.polito.it/paolo.montuschi.

Fabrizio Lombardi (M'81-SM'02-F'09)
received the B.Sc. degree (Hons.) in
electronic engineering from the University
of Essex, U.K., in 1977, the master’s degree
in microwaves and modern optics and the
Diploma degree in microwave engineering
from the Microwave Research Unit,
University College London, in 1978, and the

Ph.D. degree from the University of London in 1982. He is
currently the International Test Conference (ITC) Endowed
Chair Professorship with Northeastern University, Boston,
USA. His research interests are bio-inspired and nano
manufacturing/computing, VLSI design, testing, and
fault/defect tolerance of digital systems. He was the Editor-in-
Chief of the IEEE TRANSACTIONS ON COMPUTERS from
2007 to 2010 and the inaugural Editor-in-Chief of the IEEE
TRANSACTIONS ON EMERGING TOPICS IN
COMPUTING from 2013 to 2017, IEEE TRANSACTIONS
ON NANOTECHNOLOGY from 2014 to 2019. He is currently
the Vice President for Publications of the IEEE Computer
Society, the 2021 President-elect of the IEEE Nanotechnology
Council.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3186628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

