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Abstract—This paper considers memory errors in a Siamese 
Network (SN) through an extensive analysis and proposes two 
schemes (using a weight filter and a code) to provide efficient 
hardware solutions for error tolerance. Initially the impact of 
memory errors on the weights of the SN (stored as floating-point 
(FP) numbers) is analyzed; this shows that the degradation is 
mostly caused by outliers in weights. Two schemes are 
subsequently proposed. An analysis is pursued to establish the 
filter’s bounds selection by the maximum/minimum values of the 
weight distributions, by which outliers can be removed from the 
operation of the SN. A code scheme for protecting the sign and 
exponent bits of each weight in an FP number, is also proposed; 
this code incurs in no memory overhead by utilizing the 4 least 
significant bits (LSB) to store parity bits. Simulation shows that 
the filter has a better performance for multi-bit errors correction 
(a reduction of 95.288% in changed predictions), while the code 
achieves superior results in single-bit errors correction (a 
reduction of 99.775% in changed predictions). The combined 
method that uses the two proposed schemes, retains their 
advantages, so adaptive to all scenarios; The ASIC-based FP 
designs of the SN using serial and hybrid implementations are also 
presented; these pipelined designs utilize a novel multi-layer 
perceptron (MLP) (as branch networks of the SN) that operates at 
a frequency of 681.2 MHz (at a 32nm technology node), so 
significantly higher than existing designs found in the technical 
literature. The proposed error-tolerant approaches also show 
advantages in overheads comparing with for example traditional 
error correction code (ECC). These error-tolerant MLP-based 
designs are well suited to hardware/power-constrained platforms.  
 

Index Terms—Siamese Network, Memory Error, Error 
Tolerance, VLSI Design, Floating point. 
 
 

I. INTRODUCTION 
iamese Networks (SNs) are a type of artificial neural 
networks (ANNs) consisting of two branches of weight-

sharing feedforward networks (also referred to as subnetworks). 
SNs have excellent performance when utilized in tasks that 
measure the similarity between two data inputs [1]. From its 
initial application to handwritten signature verification [2], SNs 
have been used in several Machine Learning (ML) fields, such 
as face recognition [3], semantic similarity analysis [4], and 
object tracking [5]. One of the most popular ML applications of 
SNs is image discrimination, i.e., to determine whether two 
images belong to the same category. Different from a traditional 
NN, an SN for classification purposes only needs to know 
whether the two inputs belong to the same category, so it does 
not require explicit labels. Therefore, SN can be treated as semi-
supervised learning and may not achieve a classification 
accuracy as high as a traditional NN; however, SNs usually 
achieve superior performance in tasks with a large number of 
classes and one-shot learning [6].  

The hardware implementation of an ANN can be affected by 
several types of errors. Transient faults (often induced by 
radiation phenomena, for example) cause soft errors that appear 
as random bit flips, especially in memory chips; a soft error may 
lead to data corruption and eventually system failure [8]. If 
errors occur in the inference process of an ANN, they can 
change the trained model, or the stored weight values; therefore, 
errors may have an impact on the final result (e.g., the predicted 
category in the classification tasks). To ensure the resilience of 
an ANN in the presence of errors, an error-tolerant design is 
therefore needed. The error tolerance of ANNs for reliable 
operations has been extensively studied, especially when they 
are used in safety-critical applications [7]. For example, 
schemes based on error correction codes (ECCs) have been 
proposed [9]-[11] that can be applied for reliable storage of 
ANN parameters; however, they incur in a 10% to 20% 
redundant memory overhead, while introducing additional 
delay and power consumption [12]. Redundancy on neurons or 
computational units has also been proposed [13], [14], but an 
increase in hardware and a modification to the model are 
usually required. As a large memory is needed to store the ANN 
parameters, its protection has stringent requirements in terms of 
memory overhead; especially for applications on constrained 
platforms, such as portable systems. 

An SN presents a unique challenge for error tolerance, 
because weight matrices are shared between the subnetworks, 
so memories (storing the weights) are very important for the 
reliable operation of this type of ANNs. Especially in the case 
when weights are stored in the memory as floating-point (FP) 
numbers, even a single bit flip on the exponent part of the FP 
number can result in a substantial change in weight value, 
thereby propagating through the SN with catastrophic effects. 
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Therefore, the objective of this paper is to design an error-
tolerant SN (so with resilience to soft errors) at low hardware 
overhead and reduced power dissipation; two schemes are 
proposed: the weight filter and code. The proposed schemes 
offer significant advantages under different error scenarios and 
can also be combined for many general applications. This paper 
presents a detailed theoretical analysis and verifies the proposed 
methods on various image datasets by simulations. The 
hardware design of SN with the above schemes is proposed; it 
offers low hardware overhead for low power applications, so 
suitable for hardware-constrained platforms like the Internet of 
Things (IoT) or mobile systems.  

The contributions of this paper are as follows: 
1) Bit-flips due to soft errors are considered in an SN using 

both MLPs and CNNs as subnetworks; using error 
injection, the importance of protecting exponent bits and 
eliminating outliers in weights has been confirmed.  

2) A weight filter is proposed; the bound selection for such 
a filter has been theoretically analyzed. The maximum 
and minimum values of the weight distribution have 
been proved as the optimal choice for the so-called 
simple case. A theoretical evaluation is established for 
such a filter; the generalization to more general cases is 
also discussed. The average difference between the 
simulation results and the theoretical estimate is 3.44% 
in the simple case; the proposed filter also offers very 
good performance in general cases, especially when 
multi-bit errors are located into a single weight. 

3) A scheme based on a code is proposed too; this scheme 
replaces the 4 least significant bits (LSB) with parity bits 
to protect the sign and exponent bits of each weight as 
an FP number. Therefore, this scheme does not incur in 
memory overhead. The simulation has also shown that 
the code scheme can achieve even better performance 
than the proposed weight filter for single-bit error 
correction; however, it fails to protect the SN in the 
presence of multi-bit errors in a single weight. 

4) The combined method retains the advantages of the two 
previously proposed schemes; simulation has shown that 
it achieves a comprehensive performance under all error 
scenarios. 

5) The ASIC design of the SN with MLPs using floating-
point circuits for all implementations is presented; its 
performance is significantly better than existing designs 
found in the technical literature in terms of operating 
frequency and power dissipation.    
 

II. PRELIMINARIES AND BASIC PRINCIPLES 
A. Siamese Networks (SNs) 

 Siamese networks (SNs) are neural networks containing two 
branches of subnetworks [2]; as shown in Figure 1, the two 
subnetworks have identical structures and share the same 
weights. The SN feeds two inputs into the two branches and 
calculates the distance (e.g., the most widely used is the 
Euclidian distance 𝑑𝑖𝑠(𝑝, 𝑞) = *∑ (𝑞! − 𝑝!)"#

!$%  in the n-space) 
of the two outputs p and q at the last layer. Predictions are made 
based on the distances that evaluate the similarity of the inputs; 
for example, if the calculated distance is smaller than a given 
threshold, the two inputs are considered as belonging to the 

same class, and not otherwise. 
Several flexible structures can be utilized in the subnetworks, 

such as the commonly used feedforward networks: the multi-
layer perceptron (MLP) [15] or a convolutional neural network 
(CNN) [16]. Note that these networks usually have a limited 
number of layers, i.e., they are shallow NNs; to the best of the 
authors’ knowledge, the use of deep NNs as subnetworks of an 
SN has not been investigated in the technical literature. 

B. SN Error Model and Protection 
For inference of an ANN, the trained model is usually stored 

in a memory as weight (and bias) matrices. As introduced 
previously, memories are prone to suffer different types of 
errors/faults; one of the most common types is soft errors 
mainly caused by radiation particles [23]. Such errors can flip 
the stored bits and then cause data corruption; they have been 
considered as a significant reliability issue for memories. Since 
the corrupted data can result in incorrect predictions and 
possibly, system failure, error protection must be provided for 
ANNs in many safety-critical applications [17]. This is 
especially critical for an SN, because the memory storing the 
weight matrices is shared by its subnetworks and a single error 
may affect both subnetworks. 

Therefore, as the error model, this paper considers bit-flips 
in the weight matrices; moreover, it is assumed that the 
parameters of the SNs are represented in the IEEE 754 standard 
single-precision floating-point format [24] (Figure 2) and stored 
in a memory with 32-bit words (i.e., each weight is stored in a 
single memory word). The decimal value of the FP number is 
calculated as 

𝑑𝑒𝑐 = 	 (−1)& × 2'(%") × (1 +𝑀 × 2("*)         (1) 
where 𝑆, 𝐸, and 𝑀 are the decimal number represented by the 
corresponding sign, exponent, and mantissa bits. It is clear that 
a bit-flip on the sign or exponent bits leads to very significant 
changes in value. 

In this paper, simulation is pursued under several scenarios. 
The simple case is analyzed under only a one-bit-flip 
occurrence, while for general cases, more errors (up to 10) are 
considered. When more than one errors occur (which is mostly 
caused by radiation particle(s)), they always affect memory 
cells that are physically close, so tending to either affect 

 
Fig.1. Block Diagram of a conventional Siamese Network (SN). 
 

  

 
Fig. 2. Data represented in IEEE standard 754 floating-point format. 
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multiple data bits in a single memory word, or single data bits in 
multiple adjacent words [25]. Therefore, two scenarios are 
defined as general cases. 1) Single-bit errors: multiple errors 
occur, but each incorrect weight/memory word has only one bit 
flipped. 2) Multi-bit errors: multiple errors occur but they affect 
the same weight/memory word. The different error scenarios 
considered in this paper are summarized in Table I. 

To achieve error tolerance of ANNs for inference, 
redundancy on neuron computation has also been proposed [13], 
[14]; however, the model must be changed and such a scheme 
may incur in a significant hardware overhead. An alternative 
solution is to utilize ECCs, as widely used for memory 
protection. By storing a few parity bits (that are calculated using 
the data being protected in each memory word), errors in the 
word can be detected or corrected. For example, the widely used 
Single Error Correction (SEC) code requires r parity bits by 
satisfying 2+ ≥ 𝑑 + 𝑟 + 1  to protect a d-bit data [31]. Even 
though ECC has a high flexibility and does not need to modify 
the NN, the introduced memory redundancy may not be 
acceptable in some hardware-constrained platforms; moreover, 
ECCs can only deal with a limited number of errors. Therefore, 
more powerful yet efficient error-tolerant techniques need to be 
investigated for a memory of an ANN used in inference, 
especially for SNs that present a unique challenge for memory 
errors. 

C. Error Injection Experiments 
Prior to introducing the proposed error-tolerant approaches, 

a series of experiments have been pursued to assess the impact 
of soft errors on the inference performance of an SN for five 
widely used image datasets given in Table II; both MLP and 
CNN are considered as subnetworks (their configurations are 
described in the next sections). Error injection is performed 
using the error models described in Section II.B for the simple 
and general cases; bit-flip errors are randomly injected on the 
weight matrices in each case. The experiments are repeated by  
10,  trials to obtain the average values, from which several 
important conclusions can be drawn: 

1) Due to the overprovision of neurons and the inference 
threshold, an SN has some inherent error tolerance [18] 
because soft errors lead to close to zero predicted 
changes in most cases (97.66% in 10, trials). However, 
in the remaining cases, errors have a very high impact; 
an average of 37.14% of the predictions are changed. 

2) All these changed predictions are caused by significant 
changes (usually larger than ±10𝑒*- ) in the weight 
value. By Eq. (1), bit flips on the sign or exponent bits 
are more likely to lead to significant changes. This has 
been confirmed by error injection; the results show that 
99.42% of them are caused by errors on the exponent 
bits, and 0.58% on the sign bit. 

From the above observations, the primary objective of error 
tolerance in SNs is to protect the sign and exponent bits, i.e. 
changes on the mantissa bits have a negligible impact on the 
final prediction. Therefore, this paper proposes error-tolerant 
approaches from two perspectives: reducing the impact of 
significant changes by applying a weight filter and correcting 
the erroneous bits by a code scheme. 

TABLE II 
DETAILED INFORMATION OF DATASETS AND INFERENCE ACCURACY WITH SN IN ERROR-FREE CASE 

Description of Datasets Accuracy 
(MLP) 

Accuracy 
(CNN) Name Category #Classes Size of the 

training set 
Size of the 

test set 
Size of 
image 

#Channels 
of image 

MNIST [26] Handwritten Digits 10 60,000 10,000 28×28 1 97.174% 99.613% 
Fashion-MNIST [27] Clothing and Accessories 10 60,000 10,000 28×28 1 91.563% 93.639% 

CIFAR-10 [28] Animals and Vehicles 10 50,000 10,000 32×32 3 75.704% 79.524% 
SVHN [29] Street View House Numbers 10 73,257 26,032 32×32 3 81.867% 92.883% 
STL-10 [30] Animals and Vehicles 10 5,000 8,000 96×96 3 68.421% 74.690% 

 
 
  

 
Fig. 3. Inference process of the error-tolerant SN with weight filter and code.  
  

TABLE I 
DIFFERENT ERROR INJECTION SCENARIOS 

 Scenario # flipped bits # affected weights 
Simple case 1 1  

General 
case 

Single-bit errors 1  Up to10  
Multi-bit errors Up to10 1  
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D. Proposed SN 
The proposed error-tolerant SN is based on utilizing two 

schemes: a weight filter and a code, either by themselves or 
combined. It will be shown in subsequent sections that the SN 
can be protected by those two techniques with a very low 
accuracy loss even in extreme error cases. Error tolerance in 
this paper focuses on the memory storing the model (i.e., the 
weights) of the SN, so as applicable to all NNs, training and 
inference must be considered: 1) The training process of the 
proposed scheme is the same as in a traditional SN; 2) The 
significant difference occurs for inference: a weight filter and a 
code are utilized to check the stored weight matrices before the 
inference process starts. In the combined scheme, the weight is 
first checked and corrected by the code, and then further 
modified by the weight filter. The inference process then starts 
with such corrected weights. The inference process of the 
proposed error-tolerant SN is illustrated in Figure 3.  

Both these schemes aim at reducing the redundancy overhead 
for attaining error tolerance in the SN; different from a 
traditional approach with ECCs, the proposed design of an 
error-tolerant SN requires zero memory overhead. A detailed 
comparison is provided in Section VIII. 

III. PROPOSED WEIGHT FILTER 
As observed in the error injection experiments, the filter is 

applied to reduce the significant changes in the weight value. 
Similar schemes for restricting the large values in the weights 
have been studied [19]-[22]. All these works rely on the same 
observation that outliers with large absolute values in weights 
(caused by faults/errors) are the primary causes of performance 
degradation of NNs. However, the error models considered in 
these works are totally different from the one analyzed in this 
paper, i.e. they target stuck-at faults during the training process, 
while this paper considers soft error(s) during the inference 
process. Moreover, these existing works did not provide a 
theoretical analysis or justify the bound selection of the filters, 
so their applicability in the scenario considered in this paper 
cannot be further investigated/evaluated.  

The design of the proposed weight filter relies on the 
distribution of the weight values. The statistical maximum and 
minimum values of the weights in the error-free SNs for 
different datasets are provided in Table III. The weight values 
are concentrated in a small range (bounded by the maximum 
and minimum values). Therefore, when errors due to bit-flips 
affect the exponent bits, there is a high probability to generate 
outliers that exceed the range in the error-free case. Such 
outliers have been shown in the error injection experiments to 
cause changes in the prediction; hence, the proposed filter can 
effectively reduce the effect of soft errors in an SN. Note that 
even though the specific range of weight values may vary for 
different SNs and datasets (as shown in Table III), it only affects 
the bound selection of the filter that is described in subsequent 
subsections, but not the feasibility of the filter. 

A. Implementation 
 Consider the characteristics of the weight distribution; the 

filter can be mathematically represented as a multiplication 
with a rectangular function that constrains the weight values 
within a reasonable range. Such function is defined as: 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝑤𝑒𝑖𝑔ℎ𝑡 × rect(𝑤𝑒𝑖𝑔ℎ𝑡)       (2) 

rect(𝑡) = G1,			if	𝑡 ≥ 𝜏.!#	or	𝑡	 ≤ 𝜏./0
0,			otherwise																										                (3) 

where  𝜏.!# and 𝜏./0 determine the lower and upper bounds of 
the filter, and 𝜏.!# < 𝜏./0. As this filter is applied to all weight 
matrices, the bound of the filter must satisfy the constraints: 

                               G
𝜏./0 ≥ 𝑤./0	
𝜏.!# ≤ 𝑤.!#

                                   (4) 

 This is required because only the weights that certainly 
contain errors, need to be filtered; otherwise, the weights 
without errors may also be changed, so hindering the objective 
of retaining high accuracy while reducing the impact of 
memory errors.  

The bounds of the filter are recorded when the model is saved 
in memory. Prior to the inference process, the weight matrices 
are checked by comparing them with the upper and lower 
bounds. After the outliers are limited by the filter, the inference 
process continues with the modified weights (as illustrated in 
Figure 3). Next, the specific choices and related analyses of the 
upper and lower bounds of the filter are discussed. Due to the 
complexity of NN propagation, a simple model is first 
introduced for the theoretical analysis, and then the general 
cases are discussed. 

B. Upper and Lower Bounds in the Simple Case 
A simplified error injection model is considered to analyze 

the weight filter in the proposed SN. The following assumptions 
are applicable to the so-called “simple case” of an SN. 

1) Only one erroneous bit is present in the weight matrices. 
2) The output layer of each branch network has only one 

neuron. 
3) The error appears only in the weight of the last layer (i.e., 

the output layer in the MLP version, or the last fully-
connected layer in the CNN version). 

 As an example, consider one of the branch networks, 
because these networks share the same weights and errors are 
the same for their weight matrices. Define the inputs of the last 
layer of subnetwork 1 as 𝑥% = L𝑥%,%, ⋯ , 𝑥%,#N′, and the weight 
matrix as  𝑤% = L𝑤%,%, ⋯ ,𝑤%,#N′ , where 𝑛  is the number of 
neurons prior to the output layer. The weight with a memory 
error 𝑤! + 𝑒 has a range from ±1.18 × 10(*3 to ±3.4 × 10*3 
as per a single bit-flipping error in a single-precision floating-
point number. 

Assume the error 𝑒 affects 𝑤%,! , 	1 ≤ 𝑖 ≤ 𝑛. The output of 
the last layer can be represented by Eq. (5); only the weight is 
considered, because the bias can be treated as part of the weight 
if the input is extended by an additional dimension (i.e., 𝑤% =
L𝑤%,%, ⋯ ,𝑤%,#, 𝑏N′ and 𝑥% = L𝑥%,%, ⋯ , 𝑥%,#, 1N′). 

TABLE III 
STATISTICAL MAXIMUM AND MINIMUM VALUES OF WEIGHT DISTRIBUTIONS  

Dataset MLP CNN 
Maximum Minimum Maximum Minimum 

MNIST 0.3209 -0.2725 0.7454 -0.6915 
Fashion-MNIST 0.3764  -0.2566  0.9197 -0.6118  

CIFAR-10 0.1392 -0.1839 0.2268 -0.2648  
SVHN 0.2788 -0.2489 0.5327 -0.5830 
STL-10 0.1932 -0.2245 0.6192 -0.5882 
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	𝑦% =	∑ 𝑥%,4#
4$% 𝑤%,4 + 𝑥%,!𝑒                       (5) 

The output of the other subnetwork, 𝑦"  can be similarly 
represented. When the output layer has only one neuron, the 
calculation of the Euclidean distance is rather simple; the 
distance 𝐷-  with no error and the distance 𝐷 with one bit of 
error satisfy the following relationship.  

										𝐷 = *(𝑦% − 𝑦")" 
								= ∑ 𝑥%,4#

4$% 𝑤%,4 + 𝑥%,!𝑒 − ∑ 𝑥",4#
4$% 𝑤",4 − 𝑥",!𝑒      (6) 

					= 𝐷- + L𝑥%,! − 𝑥",!N𝑒     
Assume the value of 𝐷- is in the range [0, 𝐷./0], and the 

threshold is 𝑇, 0 < 𝑇 < 𝐷./0. As per the classification results 
of the network with no error, the following two cases are 
possible: 

 Case 1: If 𝐷- ∈ [0, 𝑇], the original prediction is positive (i.e., 
the two inputs are judged by the SN to be of the same category). 
To reduce the effect of errors, i.e., to keep the prediction 
unchanged, 𝐷- + L𝑥%,! − 𝑥",!N𝑒 ∈ [0, 𝑇]. If L𝑥%,! − 𝑥",!N𝑒 ≤ 0, 
the prediction does not change; if L𝑥%,! − 𝑥",!N𝑒 > 0, the filter 
reduces L𝑥%,! − 𝑥",!N𝑒  to reach a higher probability for the 
prediction not to change. 

Case 2: If 𝐷- ∈ [𝑇, 𝐷./0], the original prediction is negative 
(i.e., the two inputs are judged by the SN to be of different 
categories). Similarly, 𝐷- + L𝑥%,! − 𝑥",!N𝑒 ∈ [𝑇, 𝐷./0] . If 
L𝑥%,! − 𝑥",!N𝑒 ≥ 0, clearly the prediction does not change. if 
L𝑥%,! − 𝑥",!N𝑒 < 0, the filter increases L𝑥%,! − 𝑥",!N𝑒 to reach a 
higher probability for the prediction not to change. 

By combining the above two cases, the selection of the upper 
and lower bounds of the filter is equivalent to minimize 
]L𝑥%,! − 𝑥",!N𝑒]. Moreover, as the filter is applied to the weight 
matrices and does not change the inputs, the above problem is 
equivalent to minimize |𝑒| . The filter accomplishes this 
indirectly by limiting the value of |𝑤! + 𝑒| as: 

																		𝑤! + 𝑒 = _
𝜏./0 ,									𝑖𝑓	𝑤! + 𝑒 > 𝜏./0
𝜏.!#,										𝑖𝑓	𝑤! + 𝑒 < 𝜏.!#	
𝑤! + 𝑒,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (7) 

When considering (4), the selection of the bounds is 
equivalent to solving the problem:  

 
										G

minimize	𝜏./0 ,								𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝜏./0 ≥ 𝑤./0			
maximize	𝜏.!#,								𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝜏.!# ≤ 𝑤.!#				

   (8) 
 

The optimal feasible solution for the filter’s upper and lower 
bounds is given by:  

																																									h
	𝜏./0 = 𝑤./0
𝜏.!# = 𝑤.!# 														                      (9) 

This shows that the filter with bounds given by the statistical 
maximum and minimum of the weight values (as presented in 
Table III) has the largest probability to maintain the original 
predictions in the simple case. 

C. Theoretical Performance Analysis 
By observing the distributions of the weights and the 

distances in the error-free case, the following relationships are 
satisfied for all five datasets (described in Table II) considered 
in this paper: 

																										i
	]L𝑥%,! − 𝑥",!N𝑤.!#] < 𝐷./0 − 𝑇
]L𝑥%,! − 𝑥",!N𝑤./0	] < 𝑇													

                 (10) 

Therefore, by applying the filter, a “safe range” is generated 
to guarantee that most of the predictions remain unchanged. For 
example, if there is a constant	𝜖 such that L𝑥%,! − 𝑥",!N𝑒 < 𝜖%, 
for the samples with an original output distance 𝐷- ∈ [0, 𝑇 − 𝜖], 
their output distance in the presence of errors always satisfies 
𝐷 = 𝐷- + L𝑥%,! − 𝑥",!N𝑒 < 𝑇. The derivation is similar if the 
sample’s prediction is negative with L𝑥%,! − 𝑥",!N𝑒 > 𝜖". This 
means that the positive predictions with an original distance 
𝐷- ∈ [0, 𝑇 − 𝜖%], or the negative predictions with an original 
distance 𝐷- ∈ [𝑇 + 𝜖", 𝐷./0] do not change. 

Assume that an error does change the sign of the weight; note 
that the probability of a random bit flipping on the sign bit of a 
single-precision floating-point number is very small (1/32), so 
this is an extreme scenario. Then the following inequalities are 
satisfied by applying a filter according to Eq. (9).  

																	G𝑒 ≤ 𝑤! + 𝑒 ≤ 𝑤./0 , if	𝑤! ≥ 0
𝑒 > 𝑤! + 𝑒 ≥ 𝑤.!#, if	𝑤! < 0                   (11) 

Define  𝜖 = L𝑥%,! − 𝑥",!N𝑤./0 , such a “safe range” is 
generated; therefore, by the distribution of L𝑥%,! − 𝑥",!N𝑤./0 
and L𝑥%,! − 𝑥",!N𝑤.!# of each dataset, the estimated percentage 
of samples protected by the filter can be calculated and for 
different datasets, it is shown in Table IV. As per Eq. (11), this 
analysis results in an underestimate of the performance of the 
filter; so, it can be theoretically proven that the filter is capable 
to reduce the changed predictions caused by memory errors. 

D. General cases 
The optimality of the bound selection has been established in 

the simple case; in the general case, memory errors in an SN 
may not satisfy the assumptions outlined previously in Section 
III.B, and a more detailed analysis is required. The proposed 
weight filter works also in the general case, because its 
feasibility only relies on the condition that outliers (so with 
large absolute values in the weights) lead to degradation. 
However, it has not been possible to prove that the specific 
bound selection is optimal as in the simple case (also, the 
theoretical performance analysis is intractable). Therefore, this 
paper provides a discussion of a heuristic bound selection for 
the general cases. 

If assumptions 1) or 2) are not satisfied, Eq. (6) can be 
changed by substituting the error terms with the sum given by  

𝐷 = 𝐷- + ∑ L𝑥%,! − 𝑥",!N𝑒!5
!$%                     (12) 

where 𝑘 is the number of soft errors, or the number of output 
dimensions. In this case, the problem is equivalent to minimize 
|∑ 𝑒!|. The optimal solution of Eq. (9) only holds when all 
errors have the same sign, which is not necessarily valid in 

TABLE IV 
ESTIMATED PERCENTAGE OF PROTECTED SAMPLES IN DIFFERENT DATASETS 

Dataset Protected samples (%) 
MNIST 82.98% 

Fashion MNIST 73.88% 
CIFAR-10 78.32% 

SVHN 78.59% 
STL-10 80.35% 
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practice; hence, the bounds are not always optimal (depending 
on the signs of the errors), but it is a feasible solution for all 
cases. 

When assumption 3) is not satisfied, the analysis becomes 
rather complicated. Even if the filter minimizes the changes in 
the erroneous layer, the final output cannot be predicted; this 
also happens to the convolution layers of the CNN version. It 
occurs because errors cannot be represented as an independent 
term (as in Eq. (6)) after layer propagation. In this case, the 
optimality of the bounds is highly dependent on the network 
and the datasets, so it is difficult to establish a deterministic 
mathematical model. 

Even though optimality does not always hold, the bound 
selection in Eq. (9) can be still used. Considering the diverse 
datasets, the bounds set by the range of the weights provide 
good flexibility; also, it is generally applicable for all scenarios 
(optimal in the simple case; feasible and sometimes optimal in 
the more general cases). As per the observation that outliers are 
usually extremely large, a small deviation to the optimal bounds 
brings trivial effects; the performance of the filter with the 
suggested bounds is evaluated by simulations in subsequent 
sections.  

IV. PROPOSED CODE 
A code scheme is proposed to deal with single-bit errors in 

this section. Since outliers due to errors on the sign and 
exponent bits of weights cause the most crucial changes 
affecting predictions, the protection of only these bits can 
greatly reduce the redundancy overhead, while still retaining 
satisfactory performance. Therefore, in the proposed code 
scheme, an SEC is employed to cover only the sign and 
exponent bits (i.e., 9 bits in total) of each weight; this reduces 
the required number of parity bits from 6 to 4 compared to a 
traditional SEC that covers all 32 floating-point bits [31]. 
Moreover, the proposed scheme stores the parity bits on the 4 
least significant bits (LSBs) of the mantissa of each weight 
(Figure 4), hence no memory redundancy/overhead is finally 
encountered. Even though a very small deviation is introduced 
by replacing the original 4 LSBs with the parity bits, it leads to 
negligible changes in values and operations of ANNs [32]; this 
is also applicable to an SN as established in the error injection 
experiments.  

Overall, this scheme is expected to have a significant 
performance improvement either by itself, or when combined 
with the filter (when there is more than one erroneous bit on the 
significant bits, the provided code is not suitable, hence the 
need for the weight filter). 

V. SIMULATED ERROR TOLERANCE OF SN WITH MLPS 
In this section, the performance of the proposed schemes 

(filter, code, and the combined method) in an SN with different 

datasets is assessed for both the simple and the general cases. 
Multi-layer perceptrons (MLPs) are used as branch networks 
and each is designed with 5 linear layers (with size 784-512-
512-512-2); ReLU is selected as the activation function 
between layers. The number of layers, the number of neurons 
in each layer, and the hyperparameters (such as the learning 
rate) are experimentally determined for best performance over 
all datasets. Moreover, contrastive loss [33] is used in the 
training of the SN. As an SN requires a pair of images as inputs 
for the two branch networks, datasets are preprocessed to 
balanced positive and negative pairs, so indicating that the two 
inputs belong to the same or different categories. 

The SN is trained with the preprocessed datasets and the 
classification accuracy of each dataset in the error-free case is 
recorded and shown in Table II; in the simulations, the SNs for 
all datasets are equally trained for 50 epochs. Although the 
models may not reach the top accuracy of each dataset, this has 
a negligible effect on testing the weight filter in the presence of 
error(s).  

Errors for different cases (as detailed in Table I) are injected 
into the SN during the inference process. The location of each 
error (layer, weight index, and bit position) is randomly selected. 
Two metrics are used to evaluate the effects of the injected 
errors and the proposed schemes: the loss classification 
accuracy and the number of changed predictions (all results are 
averaged over 10000 runs).  Since the models cannot achieve 
100% accuracy in the error-free case, there will be differences 
between these two metrics. The accuracy loss evaluates the 
classification performance of the network, while the number of 
changed predictions evaluates the sensitivity of the model to 
errors at a higher system level. 

A. Performance in the Simple Case 
In the simple case, only a single bit error is injected into the 

weight matrices for the output layer. The results prior to and 
after using the proposed filter and code, are shown in Table V; 
note that there is no need to employ the combined method in 
this case.  

Filter scheme: Table V shows that the filter achieves 
improvement in both accuracy loss and the number of changed 
predictions. Moreover, in Section III, it has been theoretically 
proved that the filter can protect part of the samples and reduce 
the impact of memory errors on their predictions in the simple 
case. Although this theoretical calculation is only an estimate 
result (given in Table IV), its difference compared with the 
simulated number of changed predictions (given in Table V) is 
only 3.44% on average for all datasets, so verifying the analysis 
of the filter in the simple case. 

 

Fig. 4. Data represented in IEEE standard 754 floating-point format protected 
by the proposed code scheme.  

 

TABLE V 
PERFORMANCE OF THE PROPOSED METHODS IN THE SIMPLE CASE 

Dataset 
Accuracy loss # of changed predictions 

Un- 
protected Filter Code Un- 

protected Filter Code 

MNIST 0.030% 0.007% <0.001% 2.582 0.505 0.028 
Fashion 
MNIST 0.013% 0.002% <0.001% 3.287 1.187 0.035 

CIFAR-10 0.003% <0.001% <0.001% 1.334 0.336 0.044 
SVHN 0.002% <0.001% <0.001% 1.950 0.409 0.018 
STL-10 0.017% 0.002% <0.001% 5.744 1.081 0.013 
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Code scheme: In this scheme, the single-bit error occurred in 
the memory can be fully corrected; therefore, the performance 
of the code is superior to the filter. Since the original 4 LSBs of 
each weight have been replaced by the parity bits, an accuracy 
loss and/or the number of changed predictions are still incurred 
for some datasets (as expected); however, such degradations are 
extremely low compared to the unprotected scheme and filter 
scheme (shown in Table V).  

Overall, in the simple case, the code scheme is more 
attractive due to its higher error-tolerant performance with no 
memory overhead. 

B. Performance in the General Case – Single-bit Errors 
In this subsection, the performance of the proposed filter, 

code, and the combined method is assessed in the presence of 

up to 10 single-bit errors. The accuracy loss and the number of 
changed predictions are provided in Figures 5 and 6. The results 
show that as expected, the values under both metrics increase 
with the number of errors (as flipped bits in the unprotected 
scheme), and a significant reduction is achieved using the 
proposed methods. 

Filter scheme: When comparing the results without and with 
the filter, the accuracy loss and the number of changed 
predictions are in general reduced by more than 90%; this 
confirms that the filter significantly reduces the effect of single-
bit errors. In practical applications, the accuracy of the network 
usually decreases sharply with an increasing number of errors, 
so the presence of a filter enables to significantly reduce the 
impact of errors. 

 
(a)                                                            (b)                                                             (c)                                                          (d)     

Fig. 5.  Accuracy loss of each scheme under single-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method. 

    
(a)                                                            (b)                                                             (c)                                                          (d)     

Fig. 6.  Number of changed predictions of each scheme under single-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method. 

 

  
(a)                                                            (b)                                                             (c)                                                          (d)     

Fig. 7.  Accuracy loss of each scheme under multi-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method. 

 
(a)                                                            (b)                                                             (c)                                                          (d)     

Fig. 8.  Number of changed predictions of each scheme under multi-bit errors: (a) unprotected; (b) with filter; (c) with code; (d) with combined method. 
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Code scheme: The code achieves even better performance 
for single-bit error correction; it shows very low accuracy losses 
(< 0.001%) and the average number of changed results is 
generally less than 0.3. Different from the filter, the code 
scheme ensures that the significant bits are error-free, so it is 
nearly insensitive to the number of errors. This feature enables 
a substantial improvement in performance under a large number 
of single-bit errors.  

Combined scheme: The performance of the combined 
method is very similar to employing only the code (i.e., Figure 
5 (c) and 6 (c)), thus proving that the combined method fully 
retains the excellent single error correction capability of the 
code. This result is expected, because the weights corrected by 
the code fall into the allowed range of the filter; hence the filter 
is not activated for most of the single error cases and the 
significant bits of the weights are still fully protected by the 
code. 

C. Performance in the General Case – Multi-bit Errors 
In this subsection, the proposed filter, coding and the 

combined method are assessed in the presence of up to 10 multi-
bit errors; the accuracy loss and the number of changed 
predictions are provided in Figures 7 and 8.   

Filter scheme: The results show that the filter maintains its 
good performance also under multiple error bits. It performs 
slightly better than the case of single-bit errors (Figures 5 (b) 
and 6 (b)). This is reasonable, because multi-bit errors are more 
likely to generate outliers with a large absolute value, that can 
be effectively eliminated. Moreover, with the protection of the 
filter, the accuracy of the network does not further decrease 
when more flipped bits occur in a single weight. This confirms 
that the proposed filter is suitable for protecting an SN with 
multiple erroneous bits in the same weight.  

Code scheme: The code scheme cannot protect against multi-
bit errors due to its nature (i.e., the SEC code); this is confirmed 
by the results showing no improvements (except when only one 
error occurs). 

 Combined scheme: The combined method has satisfactory 
performance in the case of multi-bits errors. The result is very 

close to using the filter, and the small difference is due to the 
changed LSBs (replaced by parity bits in the code scheme).  

Overall, the experiments for the general cases have shown 
that the combined method retains the advantages of both the 
filter and the code, so protecting the SN in both cases of single-
bit and multi-bit errors. 

VI. SIMULATED ERROR TOLERANCE OF SN WITH CNNS  
 In previous sections, the performance of the proposed error-

tolerant schemes has been evaluated for an SN with MLPs as 
subnetworks. This section provides additional simulation 
results by considering an SN with CNNs. Each of these 
subnetworks consists of three convolution layers (with channels 
and kernel size of 64×7×7-128×5×5-256×5×5) and two fully-
connected layers (with size 2304-2); ReLU is used as the 
activation function. The number of layers, the number of 
neurons in each layer, and hyperparameters (such as the 
learning rate) are experimentally determined for best 
performance over all datasets. Moreover, contrastive loss [33] 
is used in the training of the SN; dataset preprocessing and other 
configurations in the SN are the same as for the MLP-based 
version. 

The performance of the proposed weight filter, coding 
scheme, and the combined method is presented in Tables VI and 
VII. Due to space limitations in the manuscript, only the results 
of 10-bit flips for each error type in the general cases (i.e., 
single-bit and multiple-bits errors) are provided. The results 
have been averaged over 10000 repeated trials. 

The results show that the filter protects against both single-
bit and multiple-bits errors; it performs better in the case of 
multiple-bit errors. The code provides a nearly complete 
protection for the SN in the case of single-bit errors, but it does 
not work well under multi-bit errors. Also in the CNN-based 
version, the combined method has the advantage of the two 
proposed schemes. Performance of the CNN-based version is 
very similar to the MLP-based version, so showing the 
proposed schemes can also work effectively with CNNs as 
subnetworks. 

TABLE VI 
PERFORMANCE OF THE PROPOSED ERROR-TOLERANT SCHEMES WITH CNN IMPLEMENTATION EVALUATED BY ACCURACY LOSS (%)  

Dataset 
Unprotected Filter Code Combined method 

Single-bit 
errors  

Multi-bits 
errors  

Single-bit 
errors  

Multi-bits 
errors 

Single-bit 
errors  

Multi-bits 
errors 

Single-bit 
errors  

Multi-bits 
errors 

MNIST 1.118% 2.767% 0.109% 0.070% 0.004% 2.754% 0.005% 0.072% 
Fashion MNIST 0.776% 1.533% 0.199% 0.082% 0.007% 1.467% 0.006% 0.079% 

CIFAR-10 1.047% 1.958% 0.071% 0.066% 0.004% 1.937% 0.004% 0.062% 
SVHN 0.681% 1.886% 0.062% 0.042% 0.006% 1.786% 0.007% 0.044% 
STL-10 0.657% 2.255% 0.112% 0.072% 0.009% 2.252% 0.010% 0.065% 

TABLE VII 
PERFORMANCE OF THE PROPOSED ERROR-TOLERANT SCHEMES WITH CNN IMPLEMENTATION EVALUATED BY CHANGED PREDICTIONS 

Dataset 
Unprotected Filter Code Combined method 

Single-bit 
errors  

Multi-bits 
errors  

Single-bit 
errors  

Multi-bits 
errors 

Single-bit 
errors  

Multi-bits 
errors 

Single-bit 
errors  

Multi-bits 
errors 

MNIST 137.46 365.53 16.65 13.25 1.02 356.98 1.13 13.10 
Fashion MNIST 109.17 291.24 33.59 23.73 0.63 292.35 0.75 22.81 

CIFAR-10 127.91 519.41 25.18 21.16 2.27 501.29 2.16 21.75 
SVHN 183.51 703.77 28.78 22.90 1.28 687.78 1.31 20.49 
STL-10 263.51 543.81 37.95 19.87 0.98 541.96 0.96 19.55 
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VII. HARDWARE IMPLEMENTATION OF SN WITH MLP 
In this section, a high-performance ASIC design of an SN is 

pursued for use in hardware-constrained platforms (e.g., low-
power/high-frequency IoT or mobile systems). Since a CNN is 
computationally intensive, implementations often use FPGAs 
[34], GPUs [35], or supercomputers [36]; moreover, the 
operational frequency for FPGA-based implementations is in 
the order of few hundreds megahertz, and considerable power 
dissipation (like tens of watts) is encountered for CPU/GPU-
based implementations [37], so making CNNs unsuitable as 
branch networks in an SN (so doubling the size of a CNN) for 
hardware-constrained platforms. Therefore, only an SN with 
MLPs as subnetworks is considered next for ASIC design; an 
efficient CNN-based SN implementation using emerging 
computing paradigms (so not with FP numbers) will be pursued 
as future work. 

As depicted in Figure 9 (a), an MLP has an input layer, at 
least one hidden layer and an output layer. Generally, the 
number of neurons in the input layer is equal to the valid 
feature’s dimension in the target dataset; a weight is applied 
when mapping a neuron’s value to the next layer. Therefore, 
each neuron must be multiplied by its relevant weight to be 
transferred to the next layer.  

Consider Figure 9 (b); when calculating the value of neuron 
ni+1 in the i+1th layer, all m neuron values in layer i are initially 
multiplied by the corresponding weights w of neuron ni+1. Then 
these values are accumulated and finally, the activation function 
Φ is applied. This calculation is given in Eq. (13). 

 𝑛!"# = 𝛷#∑ 𝑤$,!"#! ∙ 𝑛$&
$'# + 𝑏!)                   (13) 

Therefore, when using the FP numbers (as numerically 
defined in Eq. (14), where h is the hidden bit), a Multiply-
Accumulate (MAC) unit consists of an FP adder and an FP 
multiplier as required to implement a neuron of an MLP. 
  (−1)6!7# × 2(90:;#9#<(%")) × (ℎ.𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎)  (14) 

Next, the FP units that are used for computation are presented. 
The 2-input FP adder and multiplier have been implemented 
using a 4 states finite state machine in which each state is 
processed in a clock cycle; the output is updated every 4 clock 
cycles. Algorithms 1 and 2 (given in the supplemental material) 
illustrate in more detail the process of addition and 
multiplication using these designs; both the FP adder and 
multiplier are designed behaviorally using Verilog-HDL. For 
the distance computation at the final stage of the SN, a square 
root circuit design is required; the low-cost design (and related 
method) proposed in [38] is utilized in this paper. This circuit 
is also described in the supplemental material. 

Different schemes can be investigated for the MLP and thus 
SN implementation: 1) Serial 2) Parallel 3) Hybrid. The parallel 
implementation is presented in the supplemental material, 
because due to its very large complexity, this design is not 
pursued because the hardware is unfeasible. In the next 
subsections, the remaining two implementations are discussed 
in more detail.     

A. Serial Implementation of MLP 
In a serial implementation of an MLP, all calculations are 

performed by utilizing a single MAC [39] (as part of the 
structure shown in Figure 11); this design receives two inputs 
and multiplies them in 4 clock cycles in a pipelined mode. Then, 
it adds the product with the results from the previous step using 
the feedback input in the FP adder. Also, in this implementation 
when the start signal is low, all internal registers of the FP units 
are reset, otherwise the multiplier starts the calculation. 

Assume that the ith layer has m neurons; for each neuron in 
the i+1th layer, m+1 entries (so the number of neurons in the ith 
layer plus a bias value) are present, and thus m+1 pairs of inputs. 
After calculating the value of each neuron, the MAC is reset 
and the calculation for the next neuron can be started. Therefore, 
a serial implementation computes each neuron value for the 
hidden and output layers serially; this feature significantly 
decreases the area, but it increases the latency. Figure 10 shows 
a schematic diagram of this implementation; an SRAM is 
required to save the result of each neuron, because this value is 
needed for the calculations of the neurons in the deeper layers. 
Also, a portion of the SRAM is used to save the weights related 
to each neuron; the control unit is responsible for 
reading/writing from the SRAM and set/reset of the neuron [40]. 

B. Hybrid Implementation of MLP 
This implementation is based on a combination of parallel 

and serial implementations; it uses the serial neuron hardware 
(i.e., a MAC). Consider the fully parallel design in Figure 11 
(more details about this design can be found in the supplemental 
material file); the hybrid design consists of increasing the level 
of parallelization by adding more MAC units to the design. So, 
instead of calculating each neuron separately, several neurons 
are calculated at the same time, but still in a serial mode, i.e., as 
each neuron processes only a pair of inputs in each step, the 
control unit allocates all possible pairs to the neuron during the 
computational phase.  

Therefore, the final values of neurons are saved in the SRAM 

 
                                    (a)                                                         (b)    
Fig. 9. An MLP: (a) its structure; (b) computation of a hidden/output neuron. 

 
 

Fig. 10. Serial MLP implementation (Address sizes are for MNIST & 
FMNIST). 
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and used for the next layers (because they cannot be processed 
at the same time due to the limited number of MACs). In this 
paper, 16 MAC units are used for the different datasets 
considered; however, the SRAMs must be implemented such 
that several banks are provided to either generate 16 outputs at 
the same time, or save 16 inputs at the same time. In this case 
the performance of the SRAM memory plays an important role 
in the proposed design.  

 Figure 12 shows the proposed design for the hybrid 
implementation; in this design, only a single array of MACs is 
utilized. Therefore, for each layer, the control unit sets the 
proper inputs for the MACs (weights and input data) and when 
the computation of that layer is completed, the results are saved 
in the related SRAM, because they are needed as inputs of the 
next layer (so different from a fully parallel implementation). 
For computation of the next layers, the current array of MACs 
can be used again. As memories, SRAM_W stores the weights 
and bias values, while SRAM_N saves the neurons values. 

C. Proposed SN Implementation 
To implement the SN, the MLP design is utilized; To be more 

specific, a single MLP unit (Serial or Hybrid) is instantiated, 
and all calculations of the SN are calculated in 2 iterations (1 
iteration for each pair of networks). Also, as the used weights 
for both subnetworks are the same, then the SRAM_W and 
SRAM_N units in the MLP design are sufficient. The control 
unit controls the iterations. Additionally, the input image must 
be multiplied with its related weights several times (the 

hardware design has 1 or 16 MAC units and there are 512 
neurons in the first hidden layer, the image must be accessed 
512 or 32 times for serial and hybrid designs respectively), then 
a small SRAM unit is used to save a pair of images for next time 
(SRAM_I). Figure 13 shows the proposed SN design. Based on 
Table VIII, the power consumption approximately doubles 
(there are 2 iterations) and the area increases due to the control 
unit is marginal. This allows for ease in training and testing 
because both subnetworks use the same weights and bias values; 
latency however may increase. These aspects will be assessed 
in the next section. 

VIII. EVALUATION RESULTS 
All hardware implementations have been designed/simulated 

using Cadence Genus Synthesis Solution; the optimization 
effort for area, power and delay has been set to high for the tool 
to automatically consider the tradeoffs between them and the 
pre-set constraints to reach the best result. Moreover, we have 
used a 32nm technology file at 25°C and TT corner. Table VIII 
shows the synthesis results for the different datasets for the 
MLP and SN using serial and hybrid implementations based on 
a 32nm library (with and without error-tolerant schemes). In 
Table VIII, the serial design incurs in the least area and power 
dissipation, but at a higher number of clock cycles. So, the serial 
implementation is the best design candidate for low power 
applications; however, training can be rather time-consuming. 
The proposed ASIC implementations operate in a pipeline 
mode at 681.2 MHz frequency, while the total delay during 
classification is several milliseconds.  

Memory is needed for the serial and hybrid designs to save 
the values of the deeper neurons because these designs do not 
use all of them at the same time. Although the memory size for 
these two designs are the same (Table VIII), their control units 
are rather different. In the serial design, the data is read/written 
serially during each cycle, while for the hybrid design the data 
is written in the hybrid mode at different memory banks (16 
data banks); during the read cycle, the data is read in the 
sequence that they have saved, so serially as multiplication is 
executed between the value of each neuron in the previous layer 
and its related weight for a neuron in the current layer. Note that 
errors in these memories (that store the intermediate calculation 
results in both the serial and hybrid designs) are not considered 
in this paper, because their size is comparatively small and 
traditional error-tolerant schemes can be utilized to protect 
them against errors (if needed). Also, the reason for the 
difference between memory size in MLP design and SN design 
is that in a SN design, another memory has been added to save 
the input pair of images. 

 

Fig. 11. Parallel MLP implementation. 

 

Fig. 12. Hybrid MLP implementation (Address sizes are for MNIST & 
FMNIST). 

 
 

Fig. 13. SN Design (Based on serial MLP design for MNIST & FMNIST).  
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The SNs protected using the traditional SEC code of [31] are 
also implemented and compared in Table VIII. Compared to the 
proposed schemes, the SNs with SEC show comparable power 
and area overhead for the ASIC, but the delay is increased by 
5.36% to 8.57%; moreover, the memory size (and thus its area 
and power) is increased by approximately 18.8% due to the 
additional cells for storing the parity bits (while only correcting 
single-bit errors). Since memory accounts for the largest part of 
the overhead required for the entire implementation, the 
proposed schemes (that can deal also with multi-bit errors are 
shown to be superior to the traditional SEC scheme under all 
evaluation metrics, so making it also more attractive for 

hardware-constrained platforms. 
Finally, the MLP implementation is compared with existing 

works (based on FPGA and ASIC [41]-[45]) found in the 
technical literature in terms of hardware performance; the 
MNIST dataset is taken as an example, but the trend of the other 
datasets are similar, because the benefit of the proposed design 
comes from a hardware configuration that is mostly 
independent of the network configuration/datasets. The 
synthesis results given in Table IX show that the proposed 
design achieves the highest frequency, with the least power 
dissipation even though the existing works use more advanced 
process technology and have an extremely smaller network.  

TABLE VIII 
 SYNTHESIS RESULTS OF DIFFERENT DESIGNS 

Dataset Design 

Serial Implementation Hybrid Implementation 
ASIC Memory ASIC Memory 

Power 
(mW) 

Area 
(mm2) 

Delay 
(ps) 

# 
Cycles 

size 
(Mb) 

Area 
 (mm2) 

Power 
(mW) 

Area 
(mm2) 

Delay 
(ps) 

# 
Cycles 

size 
(Mb) 

Area 
 (mm2) 

MNIST 

MLP 1.91 0.0120 1452 3725348 3.547 96.13 21.69 0.1597 1468 239262 3.547 96.42 
SN 4.42 0.0134 1458 

7450697 
3.553 96.30 

43.98 0.1605 1473 
478525 

3.553 96.59 
SN+fliter 4.88 0.0137 1624 50.54 0.1652 1644 
SN+code 4.50 0.0135 1586 46.32 0.1621 1628 

SN+combined 5.26 0.0142 1623 9313357 56.38 0.1706 1644 591777 
SN+SEC [31] 4.76 0.0138 1731 7450697 4.220 114.36 53.97 0.1666 1773 478525 4.220 114.70 

Fashion 
MNIST 

MLP 1.91 0.0120 1452 3725348 3.547 96.13 21.69 0.1597 1468 239262 3.547 96.42 
SN 4.42 0.0134 1458 

7450697 
3.553 96.30 

43.98 0.1605 1473 
478525 

3.553 96.59 
SN+fliter 4.62 0.0135 1641 46.22 0.1639 1641 
SN+code 4.50 0.0135 1586 46.32 0.1621 1628 

SN+combined 4.90 0.0141 1640 9313357 54.84 0.1705 1641 591777 
SN+SEC [31] 4.76 0.0138 1731 7450697 4.220 114.36 53.97 0.1666 1773 478525 4.220 114.70 

CIFAR
-10 

MLP 2.17 0.0120 1452 4216868 4.015 104.17 24.64 0.1597 1468 271542 4.015 104.47 
SN 5.02 0.0134 1458 

8433737 
4.023 104.38 

49.96 0.1605 1473 
543085 

4.023 104.67 
SN+fliter 5.34 0.0135 1644 53.48 0.1653 1644 
SN+code 5.12 0.0135 1586 52.58 0.1621 1628 

SN+combined 5.6 0.0142 1643 10542157 63.26 0.1715 1644 668577 
SN+SEC [31] 5.39 0.0138 1731 8433737 4.780 123.95 61.29 0.1666 1773 543085 4.770 124.29 

SVHN 

MLP 2.17 0.0120 1452 4216868 4.015 104.17 24.64 0.1597 1468 271542 4.015 104.47 
SN 5.02 0.0134 1458 

8433737 
4.023 104.38 

49.96 0.1605 1473 
543085 

4.023 104.67 
SN+fliter 5.42 0.0137 1622 56.2 0.1639 1641 
SN+code 5.12 0.0135 1586 52.58 0.1621 1628 

SN+combined 5.72 0.0141 1620 10542157 65.86 0.1705 1641 668577 
SN+SEC [31] 5.39 0.0138 1731 8433737 4.780 123.95 61.29 0.1666 1773 543085 4.770 124.29 

STL-10 

MLP 10.93 0.0120 1452 20989988 20.078 519.24 122.87 0.1598 1468 1352886 20.078 519.54 
SN 25.12 0.0135 1458 

41979977 
20.086 521.07 

249.14 0.1606 1473 
2705773 

20.086 521.36 
SN+fliter 26.04 0.0137 1638 274.92 0.1651 1633 
SN+code 25.58 0.0136 1586 262.26 0.1622 1628 

SN+combined 28.52 0.0142 1638 52485197 302.1 0.1709 1633 3290017 
SN+SEC [31] 26.81 0.0138 1731 41979977 23.850 618.77 305.68 0.1666 1773 2705773 23.840 619.12 

 
 

 

TABLE IX 
COMPARISON OF THE PROPOSED MLP IMPLEMENTATION WITH OTHER MLP DESIGNS FOR MNIST 

MLP Implemetation Technology Network Topology Frequency (MHz) Power (mW) Arithmetic Units 
[41] FPGA-28 nm 7-6-5 100  120 Fixed-Point 
[42] FPGA-28 nm 784-32-10 100 654 Fixed-Point 
[43] FPGA-28 nm 784-600-600-10 490.8 - Fixed-Point 
[44]  FPGA-16 nm 784-12-10 100 568 Floating-Point 
[45] ASIC-28 nm 784-200-100-10 114.7 54 Floating-Point 

Proposed Design ASIC-32 nm 784-512-512-512-2* 681.2 21.69 Floating-Point 
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IX. CONCLUSION AND FUTURE WORK 
This paper has proposed an error-tolerant Siamese Network 

(SN); two schemes utilizing a weight filter and a code reduce 
the effect of memory errors (bit flips in the weight matrices) in 
the inference process. The proposed schemes introduce no 
memory redundancy compared with the unprotected case, 
because the filter does not incur in redundancy and the coding 
scheme replaces a few original LSBs with the required parity 
bits. Moreover, they can be combined to further improve the 
error tolerance of the SN. Overall, the performance of the 
proposed three schemes is summarized in Table X, which is 
evaluated by the decreased percentage of accuracy loss and 
number of changed predictions (averaged over all datasets and 
all error scenarios). 

The weight filter has been introduced to prevent outliers and 
protect the SN in extreme cases in which multi-bit errors occur 
in a single weight. The theoretical analysis proves that the 
selection of the filter bounds according to the maximum and 
minimum values of the weight distribution of the trained model 
is optimal in the simple case, and feasible in the more general 
cases. Moreover, the percentage of weights protected by the 
filter can be calculated in a simple case, so providing an 
estimate of the filter performance. The code scheme stores the 
parity bits on the LSBs of the original data, so requires zero 
memory overhead at the cost of incurring in negligible errors.  

Simulation results have shown that the filter performs better 
in the case of multi-bit errors, while the coding scheme shows 
better performance under single-bit errors (but it cannot operate 
correctly for multi-bit errors). When combining both the weight 
filter and the code, the SN has been shown to have outstanding 
performance for all error scenarios, so achieving a high memory 
error tolerance.  

The ASIC design of a Multi-Layer Perceptron (MLP) and 
then an SN (using MLPs as branch networks) with different 
configurations have been accomplished by using single-
precision FP arithmetic units. Synthesis results show that the 
proposed hardware MLP design provides a higher operating 
frequency (681.2 MHz) while lower power dissipation 
compared with other works found in the technical literature, 
even though these works use more advanced process 
technologies and have smaller networks.  

The proposed methods are also applicable to other types of 
ANNs when the same behavior of the weight outliers is 
observed. Future work will investigate i) the efficient hardware 
design for CNN-based SNs using emerging computing 
paradigms, and ii) the use of deep NNs as subnetworks of an 
SN as well as the classification performance and error tolerance 
of such configuration, because this type of network can also be 
used in other application scenarios in place of shallow 
MLPs/CNNs. 
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