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Data-driven inversion-based control of nonlinear systems
with guaranteed closed-loop stability

Carlo Novara, Senior Member, IEEE, and Simone Formentin, Member, IEEE

Abstract—The Data-Driven Inversion-Based Control (D2-IBC)
approach is a recently introduced control design method for
uncertain nonlinear systems, relying on a two degree-of-freedom
architecture, with a nonlinear controller and a linear controller
running in parallel. Unlike other approaches for nonlinear
control, D2-IBC does not require an accurate modeling of the
plant and is computationally efficient. In this note, we introduce
a finite-gain stability sufficient condition for the closed-loop
system and prove that such a condition theoretically holds when
a suitable constraint is enforced during the controller design.
Finally, we compare the original and the modified methods on a
benchmark simulation example, regarding control of the Duffing
oscillator.

I. INTRODUCTION

Classical approaches to nonlinear control may fail when
the model of the system used for control design is highly
uncertain. The methods proposed in the literature to deal with
uncertainty in nonlinear control are many, e.g. approximate
linearization via feedback [8], feedforward linearization [9],
robust feedback linearization [13], sliding mode control [25],
model predictive control [14], and data-based approaches like
identification for control [6] and direct data-driven control
[19]. See also the important books [5], [24] on nonlinear robust
control design.

In all applications where data can be easily collected and
deriving a physical model of the plant is costly, difficult and/or
time-consuming, data-based approaches are usually preferred.

Unfortunately, the theory behind these methods is not yet
mature and only a few contributions about data-based ap-
proaches have focused on nonlinear systems. Among these,
neural networks [27], [23], Virtual Reference Feedback Tuning
(VRFT) [2], Direct Feedback (DFK [19]) and the recently in-
troduced Data-Driven Inversion-Based Control (D2-IBC) [20].

In particular, the latter approach has showed to be effective
[3], [20] in that it relies on an architecture composed by a
nonlinear controller and a linear controller in parallel, allowing
both compensation of nonlinearities and performance boosting.
The nonlinear control block is designed according to the
Nonlinear Inversion Control (NIC) method [22], while an
adapted version of VRFT [1] is employed for the linear part.

Despite many different approaches for joint design of iden-
tification and control have been already proposed (see [10]
and the reference therein for a comprehensive overview), as
far as we are aware, D2-IBC is the first “identification for
control” method for nonlinear dynamical systems, where also
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stability guarantees are provided and enforced directly in
the identification algorithm. Note that D2-IBC is based on
a significantly different philosophy with respect to DFK: in
DFK, an inverse model of the plant to control is directly
identified from data, and then this inverse model is used as the
controller. In D2-IBC, a model of the plant is identified from
data (according to an “identification for control” approach),
and then the controller is obtained by on-line inversion of this
model. The main advantage of D2-IBC with respect to DFK
is that it allows the control of systems described by a function
non-invertible with respect to the command input. Moreover,
D2-IBC is suitable for output feedback, while DFK requires
the availability of the full state vector.

Although the D2-IBC method has proven to be effective in
many situations as compared to other nonlinear approaches
[3], [20], no theoretical analysis has been carried out so far
about closed-loop stability.

In this paper, we introduce a sufficient condition for finite-
gain stability of the closed-loop system. Moreover, we show
that such a condition can be formulated as a pure data-
based constraint for the model identification task. Given the
above result, we modify the identification part of the D2-
IBC method such that (i) the controller computed from the
identified model is guaranteed to stabilize the closed-loop
system (for a sufficiently large number of data), (ii) the
modified optimization problem remains convex. As a side
result, we numerically show on the benchmark example of [20]
that the additional stability constraint only marginally affects
the control performance, whereas it is important to stabilize the
system in critical conditions. Notice that the result we provide
here is valid for Single Input Single Output (SISO) systems
only, while a multivariable extension will be the subject of
future research.

The remainder of the paper is as follows. The D2-IBC
approach is recalled in Section II. The closed-loop stability
analysis is reported in III, while the way the D2-IBC approach
can be modified to embed the stability constraint is discussed
in Section IV. Section V illustrates the numerical performance
of the proposed approach. Some concluding remarks end the
paper.

Notation. A column vector x ∈ Rnx×1 is denoted as
x = (x1, . . . , xnx). A row vector x ∈ R1×nx is denoted as
x = [x1, . . . , xnx ] = (x1, . . . , xnx)

>, where > indicates the
transpose.
A discrete-time signal (i.e. a sequence of vectors) is denoted
with the bold style: x = (x1, x2, . . .), where xt ∈ Rnx×1

and t = 1, 2, . . . indicates the discrete time; xi,t is the ith
component of the signal x at time t.
A regressor, i.e. a vector that, at time t, contains n present
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and past values of a variable, is indicated with the bold style
and the time index: xt = (xt, . . . , xt−n+1).
The `p norms of a vector x = (x1, . . . , xnx) are defined as

‖x‖p
.
=

{
(
∑nx
i=1 |xi|

p
)

1
p , p <∞,

maxi |xi| , p =∞.

The `p norms of a signal x = (x1, x2, . . .) are defined as

‖x‖p
.
=

{
(
∑∞
t=1

∑nx
i=1 |xi,t|

p
)

1
p , p <∞,

maxi,t |xi,t| , p =∞,

where xi,t is the ith component of the signal x at time t.

II. THE D2-IBC APPROACH

Consider a nonlinear discrete-time SISO system in regres-
sion form:

yt+1 = g (yt,ut, ξt)

yt = (yt, . . . , yt−n+1)
ut = (ut, . . . , ut−n+1)
ξt = (ξt, . . . , ξt−n+1)

(1)

where ut ∈ U
.
= [u, u] ⊂ R is the saturated input, yt ∈ R

is the output, ξt ∈ Ξ
.
=
[
−ξ̄, ξ̄

]nξ ⊂ Rnξ is a disturbance
including both process and measurement noises, and n is the
system order. Both U and Ξ are compact sets.

Suppose that the system (1) is unknown, but a set of
measurements is available:

D .
= {ũt, ỹt}0t=1−L (2)

where ũt ∈ U , ỹt ∈ Y , Y = [−ȳ, ȳ] and ȳ .
= maxt |ỹt| <∞.

The tilde is used to indicate the input and output samples of
the data set (2), which is supposed to be available at time
t = 0 when the controller needs to be designed. The input
signals employed to generate (2) are also assumed to be such
that the system output does not diverge.

Let R
.
= [−r̄, r̄], with 0 ≤ r̄ ≤ ȳ, be a domain

of interest for the trajectories of the system (1). The aim
is to control the system (1) in such a way that, starting
from any initial condition y0 ∈ Y0 .

= Rn ⊂ Rn, the
system output sequence y = (y1, y2, . . .) tracks any ref-
erence sequence r = (r1, r2, . . .) ∈ R ⊆ R∞ ⊂ `∞.
The set of all possible disturbance sequences is defined as
Ξ

.
= {ξ = (ξ1, ξ2, . . .) : ξt ∈ Ξ,∀t}.
To accomplish this task, we consider the feedback control

structure depicted in Figure 1, where S is the system (1)
(including also the input saturation), Knl is a nonlinear
controller used to guide the system (1) along the trajectories
of interest, while Klin is a linear controller aimed to enhance
the tracking precision.

To design the nonlinear controller, the first step in D2-IBC
is to identify from the data (2) a model for the system (1) of
the form

ŷt+1 = f (yt,ut) ≡ f (qt, ut)
qt = (yt, . . . , yt−n+1, ut−1, . . . , ut−n+1)

(3)

where ut and yt are the system input and output, and ŷt is the
model output. No assumptions are required on the order of the
true system (1). The model order is automatically chosen by

Fig. 1. Feedback control system.

the identification algorithm presented in Section IV. Here, for
simplicity of notation, the model is chosen of the same order
as the system and a one-step prediction horizon is considered.
However, the methodology and results presented in the paper
can be easily extended to the case where the model and system
orders are different and/or a multi-step prediction horizon is
adopted (using a prediction horizon larger than 1 may enhance
the control performance/robustness).

A parametric structure is taken for the function f :

f (qt, ut) =

N∑
i=1

αiφi (qt, ut) (4)

where φi are polynomial basis functions and αi are parameters
to be identified.

Once a model of the form (3) has been identified, the
controller Knl is obtained by its inversion as explained next.
Suppose that, at a time t ≥ 0, the reference value for the time
t+1 is rt+1 and the current regressor is qt. Inversion consists
in finding a command input unlt such that the model output at
time t+ 1 is “close” to rt+1:

ŷt+1 = f
(
qt, u

nl
t

) ∼= rt+1. (5)

The latter equality may be not exact for two reasons: 1) no
unlt ∈ U may exist for which ŷt+1 is exactly equal to rt+1;
2) values of unlt with a limited `2 norm may be of interest,
in order to limit the command activity. This kind of inversion
is called (approximate) right-inversion and can be performed
also when f is not injective with respect to ut (e.g., for some
rt+1 and qt, more than one value of ut may exist such that
(5) holds).

The command input unlt yielding (5) is found solving the
following optimization problem:

unlt = arg min
u∈U

J (u) (6)

where
J (u) =

1

ρy
(rt+1 − f (qt, u))

2
+

µ

ρu
u2; (7)

ρy
.
= ‖(ỹ1−L, . . . , ỹ0)‖22 /L and ρu

.
= ‖(ũ1−L, . . . , ũ0)‖22 /L

are normalization constants computed from the data set (2),
and µ ≥ 0 is a design parameter, determining the trade-off
between tracking precision and command activity.
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Since a polynomial basis function expansion has been con-
sidered for f , the objective function J (u) is also polynomial
in u. The minima of J (u) can thus be found by simply
considering the roots of its derivative. Define the set

Us
.
=

(
Rroots

(
dJ (u)

du

)
∩ U

)
∪ {u, u}

where Rroots (·) denotes the set of all real roots of ·, and u
and u are the boundaries of U . The optimal command input
is given by

unlt = arg min
u∈Us

J (u) . (8)

Notice that the derivative dJ (u) /du can be computed ana-
lytically. Moreover, Us is composed by a “small” number of
elements. In fact card (Us) < deg (J (u)) + 2, where card is
the set cardinality and deg indicates the polynomial degree.
The evaluation of unlt through (8) - to be done online - is
thus extremely fast, since it just requires to find the real roots
of a polynomial whose analytical expression is known and to
compute the objective function for a “small” number of values.

The linear controller Klin is defined by the extended PID
(Proportional Integral Derivative) control law

ulint (θ) = ulint−1(θ) +

nθ∑
i=0

θiet−i (9)

where et = rt − yt is the tracking error, nθ is the controller
order and the θi’s denote the controller parameters. Note that,
for nθ = 1 and nθ = 2, the standard PI and PID controller are
selected, respectively. The linear controller design is based on
the Virtual Reference Feedback Tuning (VRFT) method, [1],
slightly adapted for the present setting as indicated in [20].

III. CLOSED-LOOP STABILITY ANALYSIS

The resulting closed-loop feedback system of Figure 1 turns
out to be described by

yt+1 = g (yt,ut, ξt)
ut = unlt + ulint
unlt = Knl

(
rt+1,yt,u

nl
t−1

)
ulint = Klin

(
rt − yt,ulint−1

) (10)

where Knl and Klin are defined in (8) and (9), respectively,
and ut ∈ U , ∀t. Let us choose the initial condition r0 = y0.

In this section, we study the stability properties of such a
system, according to the following stability notion.

Definition 1: A nonlinear system (possibly time-varying),
with inputs rt and ξt, and output yt, is finite-gain `∞ stable
on
(
Y0,R, Ξ

)
if finite and non-negative constants Γr, Γξ and

Λ exist such that

‖y‖∞ ≤ Γr ‖r‖∞ + Γξ ‖ξ‖∞ + Λ

for any (y0, r, ξ) ∈ Y0 ×R×Ξ . �

Note that this finite-gain stability definition is more general
than the standard one, which is obtained for R = `∞ and
Ξ = `∞, see e.g. [11].

Before studying how to guarantee finite-gain stability of
the feedback system (10), some additional assumptions are
introduced and discussed.

Assumption 1 (Lipschitzianity): The function g in (1) and
(10) is Lipschitz continuous on Y n × Un × Ξn. Without loss
of generality, it is also assumed that Y n × Un × Ξn contains
the origin. �

This assumption is mild, since most real-world dynamic sys-
tems are described by functions that are Lipschitz continuous
on a compact set.

From Assumption 1, it follows that g can be written as

g (yt,ut, ξt) = go (yt,ut) + gξt ξt

where go (yt,ut)
.
= g (yt,ut,0) and gξt ∈ R1×n is a time-

varying parameter (dependent on yt, ut and ξt) bounded on
Y n×Un×Ξn as

∥∥∥gξt ∥∥∥∞ ≤ γξ, for some γξ <∞. Assumption
1, together with (4), implies that the residue function

∆ (yt,ut)
.
= go (yt,ut)− f (yt,ut)

is Lipschitz continuous on Y n×Un. Indeed, ∆ is the sum of
two functions that are Lipschitz on the compact domain Y n×
Un; go is Lipschitz by assumption, while f is Lipschitz by
construction, since any (multivariate) polynomial is Lipschitz
on any compact set. Hence, a finite and non-negative constant
γy exists, such that

|∆ (y, u)−∆ (y′, u)| ≤ γy ‖y − y′‖∞
for all y, y′ ∈ Y n and all u ∈ Un.

Assumption 2 (Model accuracy): γy < 1. �

The meaning of this assumption is clear: it requires f to
accurately describe the variability of g with respect to yt.
Now, consider that

êt+1
.
= rt+1 − ŷt+1 = rt+1 − f (yt,ut)

≡ rt+1 − f
(
yt,ut

(
rt+1, rt,yt,u

nl
t−1,u

lin
t−1

))
.
= F (yt, rt,vt) ,

where vt
.
= (rt+1,u

nl
t−1,u

lin
t−1) ∈ V and V is a compact set.

Then, for any (yt, rt,vt) ∈ Y n ×Rn × V n,

|êt+1| ≤ Γy ‖yt‖∞ + Γs ‖rt‖∞ + Λe (11)

where Γy,Γs,Λe < ∞. This inequality directly follows from
the fact that the model function f is Lipschitz continuous on
Y n × Un. Note that (11) does not imply that y ∈ Y∞. This
inequality just ensures that, if (yt, rt,vt) ∈ Y n × Rn × V n
for all t, then the signal ê is bounded as in (11) , with given
constants Γy,Γs,Λe <∞.

Assumption 3 (Effective model inversion):
Γy ≤ 1− γy . �

This assumption is not restrictive: it is certainly satisfied
if µ = 0 and the reference r = (r1, r2, . . .) is a model
solution (i.e. rt+1 is in the range of f (yt, ·) for all t). Indeed,
in this case, ŷt+1 = rt+1, ∀t, since Knl performs an exact
inversion of the model, see again (6) (Klin gives a null input
signal in this case). This implies that Γy = 0, Γs = 0 and
Λe = 0. Hence, if a sufficiently small µ is chosen and the
reference is sufficiently close to a system solution, supposing
that inequality (11) holds with a sufficiently small Γy is
reasonable. Practical indications for choosing µ are given at
the end of Section IV.
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The meaning of Assumption 3 is that, in order to guarantee
closed-loop stability, the controller must perform an effective
right-inversion of the model and this inversion should depend
as less as possible on the current working point yt. In
particular, the bound (11) implies that, if the model (3) is exact
and the plant is characterized by a sufficient control authority,
the designed controller stabilizes the closed-loop system (a
direct consequence of Theorem 1 below). In cases where the
the control authority is not sufficient, it may not be possible
to accurately invert the model. This may result in a value
of Γy larger than 1 − γy , thus precluding the possibility of
stabilizing the closed-loop system. Note that the command
authority is reduced if large values of µ are required to satisfy
physical constraints that may be present in the plant and/or in
the actuators.
To conclude this discussion about Assumption 3, we remark
that the issues related to control authority are common to
all control methods: if the authority is severely limited for
some reason, then it may not be possible to stabilize the plant,
whatever is the control method used.

Now, to formulate our last assumption, define

ē
.
=

1

1− λy
(
λr r̄ + γξ ξ̄ + Λg

)
(12)

where λy
.
= Γy + γy < 1, λr

.
= λy + Γs and Λg

.
= Λe +

maxu∈Un |∆ (0, u)|. Note that ē is bounded, being the sum of
bounded quantities. In particular, for null disturbances (ξ̄ = 0),
exact modeling (f = g, ∆ = 0, γy = 0) and reference signals
properly chosen (Γy = 0, Γs = 0, Λe = 0), we have ē = 0. In
realistic situations, with reasonable disturbances, sufficiently
accurate modeling and reference signals properly chosen, ē
can be reasonably “small” (that is, ē� r̄).

Assumption 4 (Output domain exploration):
ȳ ≥ r̄ + ē. �

This assumption requires that the set Y explored by the
output data is somewhat larger than the set R where the
trajectory of interest are defined. Note that it can always be
met just collecting data that sufficiently enlarge the set Y .

Closed-loop stability of the system (10) is stated by the
following result, which also provides a reliable bound on the
tracking error.

Theorem 1: Consider the system (10) and let Assumptions
1-4 hold. Then:
(i) The feedback system (10), having inputs rt and ξt and
output yt, is finite-gain `∞ stable on

(
Y0,R, Ξ

)
.

(ii) The tracking error signal e .
= r − y is bounded as

‖e‖∞ ≤ ē. (13)

Proof. The proof of the theorem is structured as follows.
Firstly, the tracking error is proven to be upper bounded by
a suitable combination of the norms of the output and the
reference. Secondly, it is shown that, under the assumption of
an effective model inversion, such a bound is equivalent to
a bound on the tracking error, whatever the output is (claim
(ii)). Claim (i) is derived as a straightforward consequence of
claim (ii).

To start with, consider that

et+1
.
= rt+1 − yt+1 = êt+1 − δyt

where
êt+1 = rt+1 − ŷt+1 = F (yt, rt,vt)

δyt = ∆ (yt,ut) + gξt ξt.

The term êt+1 is bounded according to (11). Note that ‖yt‖∞
could be unbounded. In order to derive a bound on δyt, we
can use Assumption 2 and observe that, for any yt ∈ Y n,

|∆ (yt,ut)| − |∆ (0,ut)|
≤ |∆ (yt,ut)−∆ (0,ut)| ≤ γy ‖yt‖∞ .

The following inequality thus holds for any yt ∈ Y n:

|δyt| ≤ |∆ (yt,ut)|+ γξ ‖ξt‖∞
≤ γy ‖yt‖∞ + γξ ‖ξt‖∞ + ∆̄,

where ∆̄
.
= maxu∈Un |∆ (0, u)| <∞. Hence,

|et+1| ≤ λy ‖yt‖∞ + Γs ‖rt‖∞ + Λe
+γξ ‖ξt‖∞ + ∆̄,

(14)

which proves that the tracking error e is bounded by a suitable
combination of the norms of yt and rt, for any yt ∈ Y n.
Note that (14) in this form is of no use, since ‖yt‖∞ could
be unbounded and thus the condition yt ∈ Y n may not hold.
However, (14) can be rewritten as

|et+1| ≤ λy ‖et‖∞ + λy ‖rt‖∞ + Γs ‖rt‖∞
+γξ ‖ξt‖∞ + Λg,

(15)

that means,
|et+1| ≤ λy ‖et‖∞ + w, (16)

where w .
= λr r̄+γξ ξ̄+ Λg . Inequality (16), again, holds only

if yt ∈ Y n.
Consider now that, by assumption, y0 ∈ Rn ⊆ Y n. This
implies that, at time t = 0, inequality (16) holds. Being e0 =
r0 − y0 = 0 for the selected initialization of r0, we have

|e1| ≤ λy ‖e0‖∞ + w = w ≤ ē.

Since |e1| ≤ ē and |r1| ≤ r̄, it follows from Assumption 4 that
y1 ∈ Y . Consequently, the Lipschitzianity assumption holds
and (16) can be used also for t = 1, giving

|e2| ≤ λy |e1|+ w ≤ λyw + w
≤ w

∑∞
k=0 λ

k
y ≤ w

1−λy = ē

where the geometric series sum has been obtained thanks to
the fact that, by Assumption 3, λy < 1. It follows that y2 ∈ Y
and, consequently, (16) can be used also for t = 2. Iterating
the above reasoning,

|e3| ≤ λy max {|e2| , |e1|}+ w
≤ λy |e2|+ w ≤ λ2

yw + λyw + w ≤ ē
...

|et+1| ≤ w
∑t
k=0 λ

k
y

≤ w
∑∞
k=0 λ

k
y ≤ w

1−λy = ē.

Then, yt ∈ Y , ∀t ≥ 0 and (13) holds (claim (ii)). Claim (i)
is a direct consequence of claim (ii) and the relation y =
r − e. �

Theorem 1 can be interpreted as follows. Two main con-
ditions are sufficient to guarantee closed-loop stability. First,
the model must describe accurately the model rate of variation
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with respect to yt (Assumption 2). Second, the controller has
to perform an effective inversion of the model (Assumption 3).
These conditions allow for closed-loop stability and lead to the
tracking error bound given in Theorem 1. It can be noted that
this error is reduced if the model provides a “small” prediction
error (∆ measures of the prediction error). Hence, the model
should satisfy two requirements: it must be accurate (on a
sufficiently large set) in describing the dependence on yt and,
at the same time, in reproducing the system output. Note that,
in the proposed control scheme, the model does not work in
simulation but in prediction.

Besides choosing rt ∈ R, ∀t, an indication for generating
suitable references can be the following: a reference signal
should be a solution (or an approximate solution) of the system
to control, i.e. a signal r = (r1, r2, . . .) for which, at each time
t, a ut exists giving yt+1 = g (yt, ut, ut−1, . . . , ut−n+1, ξt)

∼=
rt+1. As discussed above, this indication allows one to have
a “small” ē, thus enlarging the set of feasible references and
reducing the tracking error. More in general, the reference
trajectory must be compatible with the physical properties
of the system to control. For instance, in a second order
mechanical system, the output is typically a position. Thus, the
reference can be generated as a sequence of values ranging in
the physical domain of this variable with reasonable variations
(no other particular indications are required). Note anyway
that reference design is a well-known open problem, arising
for most nonlinear control methods.

Remark 1: The constants γy , Γy and ē can be estimated
from the available data by means of the validation method in
[16], allowing us to verify in practice the stability conditions
of Theorem 1. We will see in Section IV that the most critical
of these conditions (i.e., γy < 1 and Γy ≤ 1−γy) can also be
imposed a-priori by our model identification algorithm. �

Remark 2: The present stability analysis accounts for the
fact that the command input is constrained in the set U . Indeed,
it may be guessed that, due to the command constraints,
the control action may be too small to stabilize the system.
Theorem 1 addresses this problem: it implies that, if the
initial condition is in the region where the residue function is
Lipschitz (with a proper constant) and the reference is suitably
chosen, then the situation where the control action is not large
enough never occurs. Clearly, as discussed below Assumption
3, the plant to control must be characterized by a sufficient
control authority. �

IV. CONTROL-ORIENTED MODEL IDENTIFICATION

In this section, an algorithm is proposed for identifying
the prediction model (3) needed by the control law (6). The
algorithm is an evolution of the one in [20], properly modified
to incorporate a constraint enforcing closed-loop stability.

To start with, choose a set of polynomial basis functions
{φi, i = 1, . . . , N}. Define

ỹ
.
= (ỹt1+1, . . . , ỹt2+1)

Φ
.
=

 φ1

(
ỹt1 , ũt1

)
· · · φN

(
ỹt1 , ũt1

)
...

. . .
...

φ1

(
ỹt2 , ũt2

)
· · · φN

(
ỹt2 , ũt2

)


where t1
.
= 1 − L + n, t2

.
= −1, and ũt and ỹt are the

input-output measurements of the data set (2). Consider the
set SC ⊂ RN , defined as

SC(γ, η, ρ)
.
= {β : |ỹl+1 − ỹk+1 + (Φk −Φl)β|

< γρ ‖ỹl − ỹk‖∞ + 2ηρ, k ∈ T , l ∈ Υk}

where T .
= {t1, . . . , t2}, Φk indicates the kth row of Φ, Υk

is the set of indexes given by

Υk
.
= {i : ‖ũk − ũi‖∞ ≤ ζ}

and ζ is the minimum value for which every set Υk contains
at least two elements. The set SC is defined by a set of linear
inequalities in β and is thus convex in β. This set has been
introduced in [19] and is used in order to enforce closed-loop
stability.

The parameter vector α .
= (α1, . . . , αN ) of the model de-

fined by (3) and (4) can be identified by means of the following
algorithm, completely based on convex optimization. Note that
most of the required parameters are chosen by the algorithm
itself, without requiring extensive trial and error procedures.

Algorithm

1) Initialization: choose “low” model order (e.g., n = 1)
and polynomial degree (e.g., 2); choose a precision level
η0 (e.g., η0 = 0.05 ‖ỹ‖∞).

2) Construct the vector ỹ and the matrix Φ as indicated
above.

3) Let η .
= max (η0, η1), where

η1 = min
β∈RN

‖ỹ −Φβ‖∞ .

4) Consider the optimization problem

α = arg min
β∈RN

‖β‖1
subject to
(a) β ∈ SC(γy, η, ρ)
(b) ‖ỹ −Φβ‖∞ ≤ ηρ

(17)

where γy < 1 and ρ is a real number slightly larger than
1 (e.g., ρ = 1 + δρ, δρ = 0.05).
If the optimization problem (17) is feasible, solve it,
return α and stop. Else, increase the model order n
and go to step 2. The order should be increased up to
a maximum value nmax, chosen on the basis of some
rough knowledge on the order of system to control (this
kind of knowledge is available in most practical cases).

5) If n = nmax and (17) is not feasible, repeat steps 2-4
for increasing polynomial degree d. The degree should
be increased up to a maximum value dmax. Note that
this choice is not critical thanks to `1 norm minimization
in (17), which penalizes models with a large number of
basis functions.

6) If n = nmax, d = dmax and (17) is not feasible, repeat
steps 1-5 for ρ = 1 + 2δρ, 1 + 3δρ, . . ..

The algorithm allows the achievement of three important
features:
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i. Closed-loop stability. As proven in [19], under reason-
able conditions, constraint (a) ensures that the function
∆

.
= g−f has a Lipschitz constant smaller than γy for a

sufficiently large L. On the other hand, Theorem 1 shows
that having this constant smaller than 1 is a key condition
for closed-loop stability. The theorem also requires that
Γy ≤ 1 − γy , where Γy is a constant measuring the
inversion capability of the controller (see again (11) and
the subsequent discussion). Since the value of Γy can be
reasonably estimated and in a certain way tuned (see the
discussion below), it can be concluded that Algorithm
1 can ensure closed-loop stability when the number of
data is sufficiently large.

ii. “Small” tracking error. Constraint (b) is aimed at
providing a model with a “small” prediction error (this
error, evaluated on the design data set, is given by
‖ỹ −Φα‖∞). As shown in Theorem 1, reducing this
error allows us to obtain a “small” tracking error. Note
that there is a trade-off between stability and tracking
performance: In step 6, ρ is increased until the stability
condition is met. However, increasing ρ causes an in-
crease of the prediction error and, consequently, of the
tracking error.

iii. Model sparsity. In (17), the `1 norm of the coefficient
vector β is minimized, leading to a sparse coefficient
vector α, i.e. a vector with a “small” number of non-
zero elements, [26], [17]. Sparsity is important to ensure
a low complexity model, limiting at the same time
well known issues such as over-fitting and the curse of
dimensionality. Sparsity allows also an efficient imple-
mentation of the model/controller on real-time proces-
sors, which may have limited memory and computation
capacities.

Once a model has been identified, the nonlinear controller Knl

is obtained by its inversion, as explained in Section II. Only
one design parameter needs to be chosen for this inversion: the
weight µ in (7). If no particular requirements on the activity of
the command input ut have to be satisfied, the simplest choice
is µ = 0. Otherwise, if the input activity has to be reduced,
a value 0 < µ ≤ µ̄ can be chosen, where µ̄ is the maximum
value for which the stability condition Γy ≤ 1 − γy holds.
This condition can be checked (approximately) by deriving an
estimate Γ̂y of Γy from the data (2) as follows. Let

DΓ .
= {w̃t, ŷt+1}−1

t=1−L+m (18)

where

ŷt = f
(
ỹt−1, ũt−1

)
ũt−1 = Knl

(
ỹt, q̃t−1

)
+Klin

(
ỹt, q̃t−1

)
q̃t−1 =

(
ỹt−1, . . . , ỹt−n, ũ

nl
t−2, . . . , ũ

nl
t−n
)

w̃t = (ỹt, . . . , ỹt−m+1) ,

(19)

ũt and ỹt are the input-output measurements of the data set
(2), and m � n. The estimate Γ̂y can be obtained applying
the validation method of [16] to the data set (18). Observing
that ũnlt−1 ≡ ũnlt−1 (µ) and thus Γ̂y ≡ Γ̂y (µ), µ must be chosen
in such a way that

Γ̂y (µ) ≤ 1− γy. (20)

Note that, if correctly designed, the linear controller enhances
the inversion properties. Therefore, if condition (20) is satisfied
when only the nonlinear controller appears in (19), we expect
this condition to be satisfied also adding a suitable linear
controller to (19). If this does not happen, then the linear
controller is not proper and must be re-designed.

Remark 3: The stability conditions γy < 1 and Γy ≤ 1−γy
of Theorem 1 can give indications on the choice of the control
system sampling time Ts. As discussed in [7], a too small Ts
leads to models where ŷt+1

∼= yt. These kinds of models have
a strong dependence on past outputs and a weak dependence
on the input, resulting in large values of γy and Γy . It is thus
expected that γy and Γy can be reduced by increasing Ts.
Clearly, to capture the relevant dynamics of the system and
allow a prompt control action, Ts must be not too large, in
the sense of the Nyquist-Shannon sampling theorem. �

V. EXAMPLE: CONTROL OF THE DUFFING OSCILLATOR

The simulation example presented in this section is about
control of the Duffing system, a second-order damped oscil-
lator with nonlinear spring. The goals of this example are to
test the control design method presented in this paper and to
compare it with the one in [20] (i.e., with the D2-IBC approach
without the additional constraint in the identification algorithm
to enforce closed-loop stability).

The Duffing system is a nonlinear oscillator defined by the
following equations:

ẋ1 = x2

ẋ2 = −α1x1 − α2x
3
1 − βx2 + u

y = x1 + ξ
(21)

where x = (x1, x2) is the state, u is the input, y is the output,
and ξ is a noise. The state variables x1 and x2 represent the
oscillator position and velocity, respectively. The following
values of the parameters have been assumed: α1 = −1,
α2 = 1, β = 0.2. For these parameter values and for certain
input signals, this system exhibits a chaotic behavior, and this
makes its control a particularly challenging problem.

A. D2-IBC design and test

A simulation of the Duffing system (21) having duration 200
s was performed, using the input signal u(τ) = 0.3 sin(τ) +
ξu(τ), where τ here denotes the continuous time and ξu is a
white Gaussian noise with zero mean and standard deviation
0.2. Notice that the selected input signal is persistently exciting
in the sense of [12]. This is mandatory, as the design of
the linear controller in D2-IBC has been reformulated as a
pure linear system identification problem, and therefore linear
identifiability conditions must be satisfied.

A set of L = 2000 data was collected from this simulation,
with a sampling time Ts = 0.1 s: D .

= {ũt, ỹt}0t=−L+1 where
ũt = u(Tst) are the measurements of the input and ỹt =
y(Tst) are the measurements of the output. ξ was simulated
as a zero-mean Gaussian noise with a noise-to-signal standard
deviation ratio (NSR) of 0.03.

A nonlinear controller Knl was designed from the collected
data, following the approach of Sections II-IV. The value
µ = 0.01 was chosen in the cost function (7). The basis
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functions were generated as products of univariate polynomials
with maximum degree 2, yielding a set of 28 functions with
maximum degree 4. Then, Algorithm 1 was run, choosing
η0 = 0.001, γy = 0.8, ρ = 1.05, nmax = 6 and dmax = 8.
The following parameter values were produced by the al-
gorithm: n = 2, d = 4 and η = 0.18. The constant Γy
was estimated as discussed in Section IV and the value 0.07
was obtained, showing that the stability conditions given by
Assumptions 2 and 3 are satisfied. The algorithm selected 23
of the initial 28 basis functions. We can observe that the spar-
sification properties of the algorithm can be more important in
situations where the regressor is of larger dimensions and the
polynomial degree is higher, involving hundreds or thousands
basis functions.

A PID linear controller Klin was then designed following
the VRFT approach, [1] as indicated in [20].

The control scheme of Figure 1 was implemented, where S
is the system (21), Knl and Klin are the designed controllers,
and ξt is a noise with a NSR of 0.03.

A simulation test of the control system with duration 800
s was performed, using zero initial conditions and a reference
signal rt generated as a sequence of random steps, filtered
by a second-order filter with a cutoff frequency of 2 rad/s
(this filter was inserted in order to avoid abrupt variations).
In Figure 2, the output of the D2-IBC control system is
compared to the reference. The command input signal u is
also shown in this figure. To quantify the performance level
and the command activity of the controller, the Root Mean
Square (RMS) tracking error and RMS input were considered,
defined as

RMSe
.
=
√

1
8000

∑8000
t=1 (rt − yt)2

RMSu
.
=
√

1
8000

∑8000
t=1 u2

t .
(22)

The values obtained in this first test are RMSe = 0.0161
and RMSu = 0.252. From these results, it can be observed
that the tracking accuracy is satisfactory and the command
activity is quite limited. The command signal is subject to
some chattering but this is normal since a non-negligible noise
is affecting the output used for feedback.

B. Monte Carlo simulations

A Monte Carlo (MC) simulation was carried out, where
the above data-generation-control-design-and-testing proce-
dure was repeated 100 times. For each trial, the controller
performance was evaluated by means of the RMS indexes (22).
This MC simulation was repeated three times, one for each of
the following values of NSR: 0.03, 0.06, 0.1. In each trial,
the same NSR has been adopted for both the data generation
phase and the control test phase.

For comparison, a similar MC simulation was performed
using other D2-IBC controllers, designed by means of the
algorithm in [20]. These controllers are similar to the ones
described here but obtained without imposing the stability
constraint (a) in (17). For completeness, other comparisons
can be found in [20], e.g. with DFK [19] and VRFT.

The average values of RMSe and RMSu obtained by
the designed controllers in the MC simulations are reported
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Fig. 2. Tracking performance of a D2-IBCc control system.

D2-IBCc D2-IBCuc

NSR RMSe RMSu RMSe RMSu

0.03 0.0169 0.253 0.0164 0.255
0.06 0.0312 0.273 0.0301 0.276
0.1 0.0442 0.294 0.2963 0.315

TABLE I
AVERAGE RMS FOR DIFFERENT NOISE LEVELS.

in Table I. D2-IBCc indicates the controllers obtained im-
posing the stability constraint, whereas D2-IBCuc indicates
the controllers obtained without the stability constraint. From
these results, it can be concluded that, on the one hand, all
the nonlinear controllers provide a satisfactory performance
when the noise magnitude is below 6%−7%, notwithstanding
the additional constraint represents only a sufficient (then
possibly conservative) condition. On the other hand, for large
noise levels, the D2-IBCc controllers still show a satisfactory
performance, while the D2-IBCuc controllers lead to larger
tracking errors. An unstable behavior was also sometimes
observed for the D2-IBCuc controllers. This confirms the
theoretical results of Section III, which show that imposing
the constraint (a) in (17) enforces the stability of the closed-
loop system.

C. Sensitivity analysis

To test the sensitivity of the D2-IBC design with respect
to the choice of the command activity weight µ, values µ ∈
{10−3, 10−1, 1, 5} were considered. For each value of µ, a MC
simulation was carried out, where the data-generation-control-
design-and-testing procedure of Section V-A was repeated
100 times. The values of all the parameters, except µ, were
maintained equal to those of Section V-A.

As shown in Table II, the results obtained with µ ∈
{10−3, 10−1, 1} are very similar to those obtained with µ =
0.01 in terms of RMSe. With µ = 0.001, the command signal
is a little bit more nervous, while with larger values of µ it
is smoother. However, the values of RMSu do not change
substantially in function of µ. The reason is that, for a large
µ, the linear controller is characterized by a higher activity,
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D2-IBCc

µ RMSe RMSu

10−3 0.0159 0.276
10−2 0.0169 0.253
10−1 0.0167 0.251
1 0.0171 0.246
5 0.0362 0.249

TABLE II
AVERAGE RMS FOR DIFFERENT

VALUES OF µ.

D2-IBCc

Ts RMSe RMSu

0.01 0.0112 0.248
0.05 0.0135 0.251
0.1 0.0169 0.253

TABLE III
AVERAGE RMS FOR DIFFERENT

VALUES OF Ts .

in order to compensate the reduced activity of the nonlinear
controller. With µ = 5, a slightly diverging behavior was
observed sometimes. This kind of behavior is consistent with
Theorem 1. It interesting to note that, with µ = 1, Assumption
3 is not satisfied but the closed-loop system showed a stable
behavior in all the simulations. This is not surprising, as the
assumption gives only a sufficient condition.

To test the sensitivity of the D2-IBC design with respect
to the sampling time choice, values Ts ∈ {0.01, 0.05} s
were considered. For each value of Ts, a MC simulation
was carried out, where the data-generation-control-design-and-
testing procedure of Section V-A was repeated 100 times. The
values of all the parameters, except Ts, were maintained equal
to those of Section V-A.

As shown in Table III, the results obtained with Ts ∈
{0.01, 0.05} s are very similar to those obtained with Ts = 0.1
s in terms of both RMSe and RMSu.

In conclusion, in all the MC simulations carried out with
different values of µ and Ts, the D2-IBC controllers showed
satisfactory robustness properties. Another feature of the D2-
IBC approach that was evidenced by this robustness analysis
is that the activities of the nonlinear and linear controllers are
coordinated, in the sense that, when one of these controllers
reduces its activity, the other is able to compensate this
reduction, in order to maintain the desired performance level.

VI. CONCLUSION

In this paper, we address the stability problem in the
D2-IBC approach. The controller returned by the original
algorithm of [20] is in fact not theoretically guaranteed to
stabilize the closed-loop system. More specifically, we provide
a sufficient finite-gain stability condition and we prove that
it can be verified if a suitable constraint is added to the
model optimization task. In the modified version of the D2-
IBC method proposed here, the model is then identified so
that the controller computed out of that model is guaranteed
to stabilize the system. Practical applications of the D2-IBC
approach include braking control [4], cancer immunotherapy
control [21], control of air and charging systems of diesel
engines [15], control of a 2-DOF robot manipulator [18],
glucose control in type 1 diabetic patients [18].
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