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Compressed Complex-Valued Least Squares Support Vector
Machine Regression for Modeling of the Frequency-Domain
Responses of Electromagnetic Structures
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nastaran.soleimani@polito.it
* Correspondence: riccardo.trinchero@polito.it

Abstract: This paper deals with the development of a Machine Learning (ML)-based regression
for the construction of complex-valued surrogate models for the analysis of the frequency-domain
responses of electromagnetic (EM) structures. The proposed approach relies on the combination
of two-techniques: (i) the principal component analysis (PCA) and (ii) an unusual complex-valued
formulation of the Least Squares Support Vector Machine (LS-SVM) regression. First, the training and
test dataset is obtained from a set of parametric electromagnetic simulations. The spectra collected in
the training set are compressed via the PCA by exploring the correlation among the available data.
In the next step, the compressed dataset is used for the training of compact set of complex-valued
surrogate models and their accuracy is evaluated on the test samples. The effectiveness and the
performance of the complex-valued LS-SVM regression with three kernel functions are investigated
on two application examples consisting of a serpentine delay structure with three parameters and
a high-speed link with four parameters. Moreover, for the last example, the performance of the
proposed approach is also compared with those provided by a real-valued multi-output feedforward
Neural Network model.

Keywords: Least Squares Support Vector Machine; serpentine delay line; high-speed interconnect
link; principal component analysis

1. Introduction

In recent decades, Machine Learning (ML) methods have been widely applied to
construct accurate and fast-to-evaluate surrogate models able to reproduce the input–
output behavior of electromagnetic (EM) structures as a function of deterministic and
uncertain parameters [1–14]. In the above scenario, advanced data-driven and ML-based
regressions, such as Polynomial Chaos Expansion [1–4], Support Vector Machine (SVM)
regression [5,6], Least-Squares Support Vector Machine (LS-SVM) regression [7], Gaussian
Process regression (GPR) [8], and feedforward [9–12], deep [12,13], convolutional [12] and
Long Short-Term Memory (LSTM) [14] neural networks (NNs), have been successful ap-
plied to uncertainty quantification (UQ) and optimization in EM applications. The common
idea is to adopt the above methods to train a regression model by using a limited number
of training samples generated via a set of expensive full-wave or circuital simulations with
the so-called computational model. Then, since the resulting surrogate model is known in
a closed form, it can be suitably embedded within UQ and an optimization scheme as an
efficient and effective “surrogate” of the expensive computational model [15].

Despite the high performance shown in realistic electronic and EM applications, most
of the ML techniques have been developed for dealing with real-valued data [16–18].
However, complex-valued data are widely used in electronic applications (e.g., for AC
simulations and frequency-domain analysis). The simplest strategy for extending the
applicability of real-valued ML techniques to the case of complex-valued data is based
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on the so-called dual-channel formulation [19–21]. The underlaying idea is to recast the
complex-valued problem into two uncorrelated real-valued ones, by stacking the real
and imaginary part of the complex input and output values. The main advantage of the
above procedure is that plain real-valued ML techniques can be directly adopted without
requiring any generalization or improvement. However, such an approach completely
ignores the possible correlation among the real and imaginary parts of the complex-valued
output, thus leading to possible issues regarding accuracy and robustness to noise [19,22].
For the above reasons, alternative pure complex-valued formulations have been proposed
for several ML techniques, such as NN [22], SVM regression [23], kernel Least Squares
regression [19–21,24,25], LS-SVM regression [7] and GPR [26].

This paper investigates the performances of a pure-complex implementation of a
kernel-based ML technique such as the LS-SVM regression. The proposed complex-value
formulation is based on the theoretical framework developed in [19,21,24] for a plain
kernel-based regression in which the regularization term is missing. Indeed, like the SVM
regression, the LS-SVM regression is a powerful and well-consolidated regression technique
combining the beneficial effect of the kernel and of the Tikhonov regularization [17,25,27].
Specifically, thanks to the kernel trick, the above regression allows the construction of a
non-parametric model in which the number of unknowns to be estimated by the regression
problem is independent from the dimensionality of the input space. Furthermore, the
regularizer terms limits the overfitting issue and increases the model generalization.

The aim of this work is twofold. First, the mathematical formulation of the complex-
value LS-SVM regression is developed, and the mathematical link between the pure com-
plex formulation and the dual channel one is highlighted, where the latter is a special
case of the more general complex-valued formulation. Second, the performance of com-
pressed surrogate models constructed via the dual-channel and the pure complex-value
LS-SVM regression with a complex and pseudo kernel are investigated by considering the
frequency-domain responses of two test-cases consisting of a serpentine delay structure and
a high-speed link, with three and four parameters, respectively. It is important to stress that,
in the above applications, a compressed representation of the frequency-domain responses
based on principal component analysis (PCA) [18,28–30] has been used to remove the
redundant information and to reduce the number of LS-SVM-based models that need to
be trained [31]. For the sake of completeness, for the second example, the results of the
proposed approaches are compared with those provided by a real-valued multi-output
feedforward NN model [11,12].

The paper is organized as follows. Section 2 describes the problem statement ad-
dressed during the paper, and its challenges. Section 3 provides an overview of the
mathematical background of the PCA. Section 4 provides a self-contained formulation of
the complex-valued LS-SVM regression with specific emphasis on the differences between
the dual-channel and the pure complex implementation. In Section 5, the accuracy and
the performance of the proposed complex-valued LS-SVM regression are investigated on
two test cases consisting of a serpentine delay line structure and a transfer function of a
high-speed interconnect link. Finally, the paper ends with the conclusions in Section 6.

2. Problem Statement and Challenges

Starting from a training set D = {(xi, yi( fk))}L,K
i,k=1 and collecting the configuration of

the input parameters xi = [xi,1, . . . , xi,d]
T ∈ X , with X ∈ Cd and the corresponding output

yi( fk) ∈ C computed by a full-computational model (i.e., yi( fk) =M( fk; xi)) for a set of
values of the independent variable fk (e.g., the frequency), our goal is to build a surrogate
model M̃ that approximates the training data and is able to generalize well on the “unseen”
data, usually known as test samples, such as:

y( fk; x) ≈ M̃( fk; x), (1)

For any x ∈ X and for k = 1, . . . , K.
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Without loss of generality, we seek a data-driven regression technique able to provide
an accurate and efficient approximation of the actual behavior of the computational model
M( fk; xi). This means that the surrogate model M̃ should be constructed by using a
small set of training samples (i.e., L should be as small as possible), since the training
samples are usually generated via a set of computational expensive simulations based on
the full-computational modelM.

The above modeling problem is rather challenging. First, the regression technique
should be able to work in the complex domain. Moreover, the resulting surrogate model
should be able to mimic the behavior of a multi-output complex-valued function provided
by the computational model (i.e., the output values yi( fk)), in which its values unavoidably
depend on both the configuration of the input parameters xi and on the variable fk.

A possible modeling scheme consists of considering the free variable fk as an extra
input parameter. This means that we are seeking a “single” advanced model able to
represent in a closed-form the impact of both the parameter x and the frequency fk on
the system output. As an example, such a model can be obtained via a plain or recurrent
NN [12,13]. However, due to the complexity of the problem at hand, the resulting neural
network structure usually requires a large number of neurons and several hidden layers.
Moreover, despite their flexibility, the training of NN-based structures requires the solution
of a non-convex optimization leading to training issues (i.e., expensive training time and/or
huge number of training samples [13,32]).

In order to partially overcome the above issues, we can think of using a single-output
regression trained via the solution of a convex optimization problem, such as the plain
kernel Least Squares regression [21], the LS-SVM regression [33], or the SVM regression [34],
and build one model for each frequency point. In this way, the model generation requires
less training samples; unfortunately, however, the overall model requires training K single-
output surrogates, thus making the training process extremely expensive and cumbersome
when a large number of frequency points are considered.

A data compression strategy can be seen as a good compromise between the two
modeling schemes depicted in the previous section. As an example, PCA [18,28–30] allows
the extraction of the inherent correlation existing among several realizations of output data
samples at different frequency points, thus leading to a compressed representation of the
frequency spectra. In such a scenario, the number of actual single-output models required
to represent the data can be heavily reduced.

3. PCA Compression

This section briefly presents the mathematical background of the PCA [18,28–30]. Let
us consider the output dataset {yi( fk)}L,K

i,k=1 that collects L spectra computed for different
configurations of the input parameters (i.e., the number of training outputs), each having
K frequency points. The above dataset can be recast as a K × L matrix Y, such that the
element Yi,k = yi( fk). For normalization purposes, a zero-mean matrix is considered:

Ỹ = Y− µ , (2)

where µ is the mean value of Y, calculated row-wise and subtracted column-wise
The new rectangular matrix Ỹ ∈ CK×L can be represented by means of the compact

singular value decompositions (SVD) [28,30]:

Ỹ = USVH, (3)

where, assuming that there are L columns of U and V associated with non-zero singular
values, U = [u1, . . . uL] ∈ CK×L and V = [v1, . . . , vL ] ∈ CL×L are orthogonal matri-
ces, such that UHU = VHV = IL×L, collecting the left and right singular vectors, and
S = diag{(σ1, . . .σL)} ∈ CL×L is a diagonal matrix collecting the singular values sorted in
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a decreasing order σ1 � σ2 � · · · � σL. Now, a compressed approximation of the actual
matrix Ỹ can be obtained as follows:

Ỹ ≈ ŨS̃Ṽ
H

, (4)

where Ũ = [u1, . . . , un] ∈ CK×ñ with ui ∈ CK×1 and Ṽ = [v1, . . . , vn] ∈ Cñ×L

with vi ∈ CL×1 are the reduced left and right-eigenvector matrices collecting only
the first ñ components (i.e., the first ñ columns of the original matrices U and V), and
S̃ = diag{(σ1, . . . , σñ)} is a reduced diagonal matrix containing the first ñ singular values.

The above relationship can be used to obtain a compressed representation Z ∈ Cñ×L

of the original matrix Y, such that:

Z = Ũ
H

Ỹ = S̃Ṽ
H

, (5)

It is important to note the resulting compressed matrix Z ∈ Cñ×L is smaller than the
original matrix Ỹ, since usually ñ � K. Moreover, the rows of the compressed matrix Z
can be considered to be the realizations of a new set of output variables {z(xl)}L

l=1, with
z(xl) ∈ Cñ×1, which can be considered as the collection of L samples of a compressed
ñ-dimensional output variable. Specifically, the element (i, j) of the matrix Z, corresponds
to the i-th output of the compressed representation evaluated at the j-th configuration of
the input parameters, i.e., Zij = zi

(
xj
)
. This means that only ñ single-output models need

to be trained to represent the whole dataset provided by the matrix Y, thus leading to a
substantial improvement in the training time. Once a surrogate model for each of the ñ
components of the compressed multi-output representation in Z is available, the overall

compress surrogate can be inexpensively used to predict the system output y
(

¯
x
)
∈ CK×1

for a generic test sample
¯
x ∈ X as follows:

y
(

¯
x
)
≈ µ+ ŨZ , (6)

where Z =

[
z1

(
¯
x
)

, . . . , zñ

(
¯
x
)]T

∈ Cñ×1.

It is important to remark that the compressed representation z(x) provided by the PCA
compression allows approximating the actual data y(x) with a tunable accuracy depending
on the number of PCA components ñ, such that [28]:(

σñ+1
σ1

)2
≤ ε2, (7)

where ε is a given error threshold tuned by the user.

4. Complex Valued Least-Square Support Vector Machine Regression

The LS-SVM regression is a kernel-based regression with an L2 regularizer, which
allows constructing a non-parametric model in which the number of unknowns and com-
plexity is independent from the number of input parameters via the solution of a simple
linear system, i.e., by solving a convex optimization problem [33].

However, the plain formulation of such a technique has been developed for real-
valued datasets only. The aim of this section is to extend the mathematical formulation
of the LS-SVM regression to the more general case of the complex-data problem. The
proposed formulation is based on the preliminary results presented in [25] and on the results
presented in [19,21] for a classical reproducing kernel Hilbert space (RKHS) regression, in
which the regularizer term is neglected. For the sake of simplicity, the following complex
valued formulation is developed for the simplified case of single-output regression, but all
the calculations can be easily extended to the case of a multi-output problem.
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Starting from a set of complex-valued samples D = {(xl , yl)}L
l=1 where xl ∈ Cd and

yl = y(xl) ∈ C, the primal space formulation of the LS-SVM regression is written:

y ≈ M̃(x) =
N

∑
i=1

wiφ
∗
i (x) + b = w, Φ(x) + b, (8)

where w = [w1, . . . , wN ]
T = wR + jwI ∈ CN are the complex regression coefficients

(i.e., wi = wi,R + jwi,I), Φ(x) = ΦR(x) + jΦI(x) = [φ1(x), . . . , φN(x)]
T is a vector-valued

complex function Φ(·) : Cd → CN collecting the complex-valued basis functions φi(x) that
provide a map between the parameter space and the feature space, b = bR + jbI is the bias
term, and w, Φ(x) = ΦH(x)w = wTΦ∗(x) is the inner product in the complex domain.

The primal space formulation of the complex-valued regression in Equation (8) can be
written in term of its real and imaginary components:

M̃(x) = M̃R(x) + jM̃I(x) =
(

wRΦT
R(x) + wIΦ

T
I (x) + bR

)
+ j
(

wIΦ
T
R(x)−wR ΦT

I (x) + bi

)
, (9)

In the above primal space formulation, the regression unknowns (i.e., the coefficients
in wR and wI , and the bias term bR and bI , respectively) are estimated by solving the
following convex optimization problem:

min
wR ,wI ,bR ,bI ,eR ,eI

1
2

wT
RwR +

1
2

wT
I wI +

γR
2

L

∑
l=1

e2
R,l +

γI
2

L

∑
l=1

e2
I,l (10)

Such that

eR,l = Re
{

yl − M̃(xl)
}
= yR,l − (wRΦR(xl) + wIΦI(xl) + bR)

eR,l = Im
{

yl − M̃(xl)
}
= yI,l − (wIΦR(xl)−wRΦI(xl) + bI

)
For l = 1, . . . , L, where wT

RwR + wT
I wI = w2

2 is the L2 regularizer and the terms e2
R,l

and e2
I,l provide the error of a squared loss function.

The Lagrangian for the above constraint optimization problem is written:

L(wR, wI , bR, bI , eR, eI , αR, αI)

= 1
2 wT

RwR + 1
2 wT

I wI +
γR
2

L
∑

l=1
e2

R,l +
γI
2

L
∑

l=1
e2

I,l

−
L
∑

l=1
αR,l

{
eR,l − yR,l +

(
wT

RΦR(xl) + wT
I ΦI(xl) + bR

)}
−

L
∑

l=1
αI,l
{

eI,l − yI,l +
(
wT

I ΦR(xl)−wT
RΦI(xl) + bI

)}
,

(11)

where αl = αR,l + jαI,l are the Lagrangian multipliers such that αR,l , αI,l ≥ 0 for l = 1, . . . , L.
By computing the partial derivatives of the Lagrangian L(wR, wI , bR, bI , eR, eI , αR, αI)

with respect to its parameters:

∂L
∂wR

= 0→ wR =
L

∑
l=1

[αR,lΦR(xl)− αI,lΦI(xl)], (12)

∂L
∂wI

= 0→ wI =
L

∑
l=1

[αR,lΦI(xl) + αI,lΦR(xl)], (13)

∂L
∂bR

= 0→
L

∑
l=1

αR,l = 0 , (14)
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∂L
∂bI

= 0→
L

∑
l=1

αI,l = 0 , (15)

∂L
∂eR,l

= 0→ γReR,l = αR,l , (16)

∂L
∂eI,l

= 0→ γIeI,l = αI,l , (17)

∂L
∂αR,l

= 0→ eR,l − yR,l +
(

wT
RΦR(xl) + wT

I ΦI(xl) + bR

)
= 0, (18)

∂L
∂αI,l

= 0→ eI,l − yI,l +
(

wT
I ΦR(xl)−wT

RΦI(xl) + bI

)
= 0, (19)

For l = 1, . . . , L.
By substituting (12)–(17) in (18) and (19):

αR,l
γR
− yR,l +

L
∑

i=1
[αR,iΦR(xi)− αI,iΦI(xi)]

TΦR(xl) +
L
∑

i=1
[αR,iΦI(xi) + αI,iΦR(xi)]

TΦI(xl) + bR = 0

αI,l
γI
− yI,l +

L
∑

i=1
[αR,iΦI(xi) + αI,iΦR(xi)]

TΦR(xl)−
L
∑

i=1
[αR,iΦR(xi)− αI,iΦI(xi)]

TΦI(xl) + bI = 0

L
∑

l=1
αR,l = 0

L
∑

l=1
αI,l = 0

(20)

For l = 1, . . . , L.
The above system of equations is the dual-form representation of the optimization

problem in Equation (10), in which the original regression coefficients collected in the
vectors wR and wI are replaced by the Lagrangian multipliers αR and αI . It is important to
remark that, although the number of unknowns in the primal space (i.e., the dimensionality
of |w| = N) is given by the number of basis functions, in the dual formulation the number
of unknowns (i.e., the Lagrangian multipliers collected in the vectors α = αR + jαI) is
always equal to the number of the training samples L. This means the resulting model is
non-parametric, i.e., a model in which its complexity is independent from the number of
both the input parameters and the basis functions.

In order to define the kernel function and the dual formulation of the complex-valued
LS-SVM, the first two equations in Equation (20) can be rewritten as follows:

αR,l

γR
− yR,l +

L

∑
i=1

αR,i

[
ΦT

R(xi)ΦR(xl) + ΦT
I (xi)ΦI(xl)

]
+

L

∑
i=1

αI,i

[
ΦT

R(xi)ΦI(xl)−ΦT
I (xi)ΦR(xl)

]
+ bR = 0, (21)

αI,l

γI
− yI,l +

L

∑
i=1

αR,i

[
ΦT

I (xi)ΦR(xl)−ΦT
R(xi)ΦI(xl)

]
+

L

∑
i=1

αI,i

[
ΦT

R(xi)ΦR(xl) + ΦT
I (xi)ΦI(xl)

]
+ bI = 0, (22)

For l = 1, . . . , L.
Now, let us define a complex-valued kernel kc

(
x, x

′
)

:

kc

(
x, x

′
)
= Φ(x), Φ

(
x
′
)
= ΦT(x) ·Φ∗

(
x
′
)
= (ΦR(x) + jΦI(x))

T ·
(

ΦR

(
x
′
)
− jΦI

(
x
′
))

=[
ΦT

R(x)ΦR

(
x
′
)
+ ΦT

I (x)ΦI

(
x
′
)]

+ j
[
ΦT

I (x)ΦR

(
x
′
)
−ΦT

R(x)ΦI

(
x
′
)]

= kR
(

x, x
′
)
+ jkI

(
x, x

′
) (23)

Similar to the real-valued formulation, the kernel function is defined as the inner
product in the complex feature space of the basis functions evaluated at x and x′, where:
kR
(

x, x
′
)
= ΦT

R(x)ΦR

(
x
′
)
+ΦT

I (x)ΦI

(
x
′
)

and kI
(

x, x
′
)
= ΦT

I (x)ΦR

(
x
′
)
−ΦT

R(x)ΦI

(
x
′
)

.
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Using the above definition, Equations (21) and (22) can be rewritten as follows:

αR,l

γR
− yR,l +

L

∑
i=1

[αR,ikR(xi, xl)− αI,ikI(xi, xl)] + bR = 0 (24)

αI,l

γI
− yI,l +

L

∑
i=1

[αI,ikR(xi, xl) + αR,ikI(xi, xl)] + bI = 0 (25)

For l = 1, . . . , L.
In the above equations, the regression unknowns can be computed by solving the

following linear system:
KRR + IL

γR
KRI 1 0

KIR KI I +
IL
γI

0 1
1T 0T 0 0
0T 1T 0 0




αR
αI
bR
bI

 =


yR
yI
0
0

 (26)

where IL is the identity matrix of size L× L, 1T = [1, . . . , 1]T ∈ R1×L, 0T = [0, . . . , 0]T ∈
R1×L, αR, αI ∈ RL×1 are vectors collecting the real and imaginary part of the regression
coefficients, b = bR + jbI is the bias term and KRR, KRI , KIR, KI I ∈ RL×L are kernel
matrices defined as:

K(i,j)
RR = K(i,j)

I I = kR
(
xi, xj

)
(27)

K(i,j)
IR = −K(i,j)

RI = kI
(
xi, xj

)
(28)

for any i, j = 1, . . . , L. The parameters γR and γI are the regularizer hyperparameters tuned
by the user and provide a trade-off between the model flatness and its accuracy [34].

It is important to remark that the above linear system is square and, therefore, if the de-
terminant of the square matrix is different from 0, it always yields a unique solution, which
leads to the following dual space formulation for complex-valued of LS-SVM regression:

y(x) =
L

∑
l=1

αlkC(xl , x) + b (29)

By substituting Equation (23) in the above equation gives:

y(x) =
L

∑
l=1

[(αR,lkR(xl , x)− αI,lkI(xl , x) + bR) + j(αR,lkI(xl , x) + αI,lkR(xl , x) + bI)] (30)

From the above formulation, it is clear that by means of the complex kernel kC,
the complex-valued LS-SVM regression in the dual space is able to account for possible
correlation between the real and imaginary part of y(x).

4.1. Complex-Valued Kernel

There are several strategies to construct a complex kernel kC. Within this paper, we
will investigate two of them, the independent kernel, referred to as the complex valued
complex function (CVCF) [19], and the pseudo kernel, referred to as the pseudo complex-
valued function (PCF) [35,36]. A generic CVCF kernel can be constructed starting from a
real-valued kernel kR as follows:

kC

(
x, x

′
)
= kR

(
xR, x′R

)
+ kR

(
xI , x′I

)
+ j
(
kR
(
xR, x′I

)
+ kR

(
xI , x′R

))
, (31)

The above complex kernel is fully compliant with the definition provided in Equation (23).
The real kernel kR can be any real kernel function, e.g., linear kernel, radial basis function
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(RBF) kernel and polynomial kernel. Hereafter, in this paper, for the CVCF kernel we will
use kR as the RBF kernel, i.e.,

kR
(

x, x
′
)
= exp

(
− 1

2σ2 x− x′)2
)

, (32)

where σ is the kernel hyperparameter, which in this work will be tuned, along with the
regularizer hyperparameters, during the model training by combining cross validation
(CV) with a Bayesian optimizer [37,38].

As an alternative, a family of kernels based on the PCF can be suitably generated from
the isotropic complex covariance function, such that (additional mathematical details are
provided in [19,36]):

kc(x, x′) = cos
(

cx− x
′
)

kR
(

x, x
′
)
+ j sin(cx− x′)kR

(
x, x

′
)

, (33)

where kR(x, xk) can be selected as any kernel function and c is a new hyperparameter. In this
specific case, a Rational Quadratic kernel is adopted, such as kR(x, x′) = σ2

(
1 + x−x′2

2al2

)
−a,

which is a Rational Quadratic kernel in which a, l and σ are additional hyperparame-
ters. Moreover, in this case all the hyperparameters are tuned via CV and a Bayesian
optimizer [37,38].

4.2. Dual Channel Kernel (DCK) LS-SVM for Complex-Valued Data

The dual channel kernel (DCK) formulation can be seen as a special case of the general
mathematical framework presented in the previous section. The underlying idea is to recast
the complex variables in terms of their real and imaginary part and to work with a standard
real kernel, i.e., kc = kR: Rd×d → R .

Under the above assumption, the regression problem in Equation (26) can be simplified
as follows: 

KRR + IL
γR

0L 1 0
0L KRR + IL

γI
0 1

1T 0T 0 0
0T 1T 0 0




αR
αI
bR
bI

 =


yR
yI
0
0

 (34)

where 0L is the L × L null matrix, KRR ∈ RL×L such that K(i,j)
RR = kR

(
xi, xj

)
, whilst the

matrices KIR = −KRI = 0L.
It is important to remark that, in the above formulation, there is no coupling between

the real and imaginary coefficients αR and αI , and bias terms bR and bI . Indeed, the solution
of the above linear system is equivalent to solving two decoupled ones, accounting for the
real and imaginary parts of the regression unknowns independently, such as:[

KRR + IL
γR

1
1T 0

][
αR
bR

]
=

[
yR
0

]
, (35)

[
KRR + IL

γI
1

1T 0

][
αI
bI

]
=

[
yI
0

]
, (36)

In this work, a standard RBF kernel is considered as the real kernel kR
(
xi, xj

)
. In the

above scenario, the dual space formulation of the LS-SVM is written [27]:

yR(x) =
L

∑
l=1

αR,lkR(xl , x) + bR, (37)

yI(x) =
L

∑
l=1

αI,lkR(xl , x) + bI , (38)
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It is important to note that, in the above formulation, the model for the real and
imaginary parts of y are built separately, thus ignoring any possible correlation between
them. Furthermore, the above models can be trained using the LS-SVM Lab toolbox for the
LS-SVM available in MATLAB [39].

5. Application Examples

This section compares the accuracy and the robustness against noise of the three
implementations of the complex-valued LS-SVM regression provided in Section 4 by
considering two different application examples. Specifically, the proposed approaches are
applied to predict the scattering parameters of a serpentine structure with three parameters
and the transfer function of a high-speed link with four parameters.

5.1. Example I

As a first test case, the complex-valued LS-SVM regression applied to calculate the
scattering parameters of a serpentine delay line structure is presented. Serpentine lines are
widely used in printed circuit board (PCB) design to compensate time delays introduced by
the trace routing. However, the frequency-domain behavior of such a structure is heavily
affected by its geometrical and electrical parameters and should be carefully assessed
during the design phase to avoid signal and power integrity issues and to meet design
constraints [40].

The structure of the serpentine delay line considered in this example is shown in
Figure 1 (inspired by [40]). The S21 scattering parameters of the above structure are
investigated as a function of three parameters (i.e., x = [εr, LL, SW]T) in a frequency
bandwidth from 1 MHz to 1 GHz. Table 1 shows the range of variability serpentine delay
line parameters that are simulated to produce the training and test data.

Figure 1. (a) Design parameters of the serpentine line to be analyzed; (b) cross-sectional view of the
serpentine line.

Table 1. Serpentine delay line parameters for the training and test dataset.

Training Ranges Test Ranges

4.5 mm ≤ LL ≤ 5.1 mm 4.5 mm ≤ LL ≤ 5.1 mm
3.9 ≤ εr ≤ 4.5 3.9 ≤ εr ≤ 4.5

0.13 mm ≤ SW ≤ 0.17 mm 0.13 mm ≤ SW ≤ 0.17 mm
1 MHz ≤ f ≤ 3 GHz 1 MHz ≤ f ≤ 3 GHz

1000 samples for each frequency 2000 samples for each frequency

The whole dataset consists of 3000 samples (1000 training data and 2000 test sam-
ples). The samples were generated via Latin Hypercube Sampling (LHS) by assuming a
uniform variability between their maximum and minimum value. For each configuration
of the geometrical parameters, the corresponding scattering parameters were computed
for 5000 linearly spaced frequency sample points. The samples were generated via a set of
parametric simulations with the full-wave solver available in CST.

The PCA compression is then used to compress the data in the frequency domain and
to reduce the computation for the model training. Figure 2 shows the behavior normalized
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singular values of the frequency points of the training dataset. The plot shows that n = 9 is
enough to represent the whole training set with a 0.001% threshold.

Figure 2. Normalized singular value plot of the serpentine delay line for the considered dataset
with 5000 frequency points (blue line). The horizontal line shows the 0.001% threshold for the
PCA truncation.

After applying the PCA, the performances of the LS-SVM regression using the PCF
and the CVCF complex kernel function (see Section 4.1), and of the DCK LS-SVM regression
(see Section 4.2), were assessed on the test samples for the S21 parameter. To investigate
the performance of the mentioned methods, the relative Root Mean Square Error (NRMSE)
is calculated as the following equation:

NRMSE % = 100 ·
1
T

√
∑T

t=1
(
Xy − Xŷ

)2

1
T

√
∑T

t=1 X2
y

, (39)

where Xy can be either the real or imaginary part of the actual test samples, Xŷ is the
corresponding prediction estimated via the proposed metamodels, and T is the number of
test samples.

Figures 3 and 4 show the normalized error for real and imaginary parts of these
three regression approaches for an increasing number of training samples (i.e., L = 50, 250,
and 500).

Figure 3. Comparison of the relative NRMSE values computed by the proposed approaches on the
test samples by considering the real part of the S21 parameter of the serpentine delay line structure
for an increasing number of training samples (i.e., L = 50, 250, 500).
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Figure 4. Comparison of the relative NRMSE values computed by the proposed approaches on the
test samples by considering the imaginary part of the S21 parameter of the serpentine delay line
structure for an increasing number of training samples (i.e., L = 50, 250, 500).

The plots highlight the improved accuracy of the CVCF and PCF with respect to
the DCK. Indeed, with the DCK-based model, we are implicitly neglecting any kind of
correlation between the real and imaginary parts of the S parameters, and this lack of
complexity becomes even more evident when a low number of training samples is used to
train the model.

5.2. Example II

The second application example is based on the high-speed link, as depicted in Figure 5,
representing a signal distribution on a PCB. Similar to the previous example, the frequency
response of the link, and thus its performance, can be greatly influenced by possible
variations of its internal parameters [5].

Figure 5. Schematic of the high-speed interconnect link.

Specifically, the proposed modeling approaches are here adopted to build a surrogate
model for the frequency-domain behavior of the complex-valued transfer function, in
which y(x; f ) = Vout( f ;x)

E( f ) , as a function of the values of four lumped components C1(x1),
C2(x2), L1(x3), and L2(x4), is defined by four uniformly distributed random variables with
a variation of ±50% around their central value collected in x = [x1, x2, x3, x4]

T (additional
details are provided in Table 2).
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Table 2. High-speed interconnect link parameters for the training and test datasets.

Training and Test Ranges

C1 (x1) (1 ± 0.5 x1) pF
C2 (x2) (0.5 ± 0.25 x2) pF
L1 (x3) (10 ± 5 x3) nH
L2 (x4) (10 ± 5 x4) nH

i 1,2,3,4
xi Random variable in [−1, 1]

Four sets consisting of L = 20, 100, 150, and 500 training input configurations were
generated via an LHS and used as input for a computational model implemented in
MATLAB, which provides as output the corresponding transfer function evaluated at
200 frequency points. The PCA is applied to remove redundant information, leading to
a compressed representation of the original dataset with only n = 10 components using a
threshold of 0.01%.

The compressed training sets are then used to train three different surrogate models
based on the DCK, PCF, and CVCF LS-SVM regressions. For the sake of completeness,
the predictions of the above methods are compared with those provided by an additional
surrogate model built via a multi-output feedforward NN structure [34,35] considering the
real and imaginary parts of the considered transfer function (i.e., using the dual channel
implementation). The NN is trained via the Gradient Decent backpropagation method
implemented within the Neural Net Fitting Tool available in the MATLAB Deep Learn-
ing Toolbox. The network consists of three hidden layers with 50, 20, and 15 neurons,
respectively. The activation function is the hyperbolic tangent sigmoid.

Figures 6 and 7 show the performance of each method on a test set consisting of
1000 samples assessed via the relative NRMSE in Equation (39) for the real and imaginary
parts, respectively. The results clearly highlight the improved accuracy achieved via the
PCF. Moreover, as expected, due to its simplified formulation, the DCK again provides
the lowest accuracy. By comparison, NN shows the lower accuracy when a small number
of training samples is used (i.e., up to 150 training samples). This low convergence with
respect to the number of training samples is due to the inherent non-convex nature of the
optimization problem solved during the model training [32].

Moreover, in order to stress the reliability of the proposed techniques, the training
output y was corrupted with Gaussian noise, such that:

yi,noisy(xi) = yi(xi)× (1 + ζn), (40)

where ζn ∼ N
(
0, σ2

n
)

is a Gaussian random variable with standard deviation σn = [0.01, 0.03].
Figures 8 and 9 compare the relative NRMSE computed at a single frequency point

selected as the one providing the maximum error via the proposed approaches, and a
multi-output feedforward NN for different values of the noise standard deviation σn and
the number of training samples L for the real and imaginary parts, respectively. Among the
introduced methods, CVCF shows the better performance and robustness against noise,
both for real and imaginary parts.
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Figure 6. Comparison of the relative NRMSE values computed by the proposed approaches and
a feedforward multi-output neural network on the test samples by considering the real part of
the transfer function of a high-speed link for an increasing number of training samples (a) L = 20;
(b) L = 100; (c) L = 150; (d) L = 500).

Figure 7. Cont.
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Figure 7. Comparison of the relative NRMSE values computed via the proposed approaches and
a feedforward multi-output neural network on the test samples by considering the imaginary part
of the transfer function of high-speed link for an increasing number of training samples. (a) L = 20;
(b) L = 100; (c) L = 150; (d) L = 500).

Figure 8. Three-dimensional plot of the relative NRMSE computed on the real part of the test samples
at a single frequency point selected as the one providing the maximum error via the proposed
approaches (see panel (a) for the DCK, panel (b) for CVCF and panel (d) for PCF), and a multi-output
feedforward NN (see panel (c))for different values of the noise standard deviation σn and the number
of training samples L.
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Figure 9. Three-dimensional plot of the relative NRMSE computed on the real part of the test samples
at a single frequency point selected as the one providing the maximum error via the proposed
approaches (see panel (a) for the DCK, panel (b) for CVCF and panel (d) for PCF), and a multi-output
feedforward NN (see panel (c)) for different values of the noise standard deviation σn and the number
of training samples L.

6. Conclusions

In this paper, the application of different methods based on LS-SVM regression for
predicting the complex-valued frequency response was presented in a serpentine delay line
and a high-speed link. The required data for training and examination were obtained from
CST and MATLAB software, in terms of physical and geometrical parameters, including
substrate dielectric constant and height and strip width of the serpentine delay line, and
the capacitances and inductances of the high-speed link. PCA is shown to reduce the
computational cost of the frequency samples. Then, the training data are used to create the
model, and the test data are considered for the examination of the established model. The
performance of the three proposed methods and of a multi-output feedforward NN are
compared on the test dataset. It is shown that the CVCF method is suitable for the first
complex electromagnetic problem when there are few training data points. In addition,
PCF shows an acceptable performance under noise-free conditions at all frequency points
for the second example. Finally, the results show that CVCF is the best method when the
level of noise is increased.
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