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The weak ergodicity breaking induced by quantum many-body scars (QMBSs) represents an intriguing
concept that has received great attention in recent years due to its relation to unusual nonequilibrium behavior.
Here, we reveal that this phenomenon can occur in a particular regime of a lattice gauge theory, where QMBSs
emerge due to the presence of an extensive number of local constraints. In particular, by analyzing the gauged
Kitaev model, we provide an example where QMBSs appear in a regime where charges are deconfined. By
means of both numerical and analytical approaches, we find a variety of scarred states far away from the regime
where the model is integrable. The presence of these states is revealed both by tracing them directly from the
analytically reachable limit, as well as by quantum quenches showing persistent oscillations for specific initial
states.

DOI: 10.1103/PhysRevB.106.L041101

Introduction. The thermalization properties of isolated
quantum systems are currently under intensive investigation
in different areas of modern quantum physics [1–4]. In this
context, huge attention has been recently devoted towards the
study of a large variety of Hamiltonians where the ergodic-
ity is weakly broken [5–24]. In particular, in such models
quenches from carefully designed initial states reveal persis-
tent many-body revivals that apparently contradict ergodicity
[5,25]. The reason for such an absence of thermalization turns
out to be the presence of specific eigenstates called quantum
many-body scars (QMBSs) characterized, in particular, by a
subvolume entanglement law [6–14,21,24,26]. It is worth not-
ing that similar regular states have been previously identified
[27] for chaotic quantum billiards in relation to semiclassical
periodic orbit quantization [28,29]. Moreover, the concept of
scarred symmetry, closely related to QMBSs, has been intro-
duced in studies of a hydrogen atom in a strong magnetic field
[30].

With the advent of a new generation of cold-atom quantum
simulators [31–35], the weak ergodicity breaking manifested
by QMBSs has been experimentally detected in constrained
spin [5] and bosonic [36] models. Crucially, both realizations
can be viewed as lattice gauge theories (LGTs) where the
energy constraints are induced by the Gauss law fixing the
relation between gauge and charge variables. Motivated by
the recent progress achieved in the last years in implementing
LGTs in quantum simulators [37–42], an impressive theoret-
ical effort has been devoted towards a better understanding

of simple gauge-invariant theories [17,18,43–57]. In this di-
rection, the connection between Gauss law and QMBSs has
recently gained attention both in U (1) [16,58] and Z2 [13]
LGTs. Here, indeed, the weak ergodicity breaking associated
with the slow oscillatory dynamics can be interpreted as a
string inversion phenomenon. Crucially, it has to be under-
lined that all LGTs, where QMBSs have been identified, are
characterized by charge confinement. This regime implies
that only particle-antiparticle bound states exist and therefore
charges can be observed in composite structures only. These
effective pairs, together with an emergent new symmetry,
generate the slowdown of quantum dynamics and have been
shown to be intricately connected to the presence of QMBSs
[59].

Thus it seems natural to wonder whether confinement is
a prerequisite to observe QMBSs in LGTs. In this Letter,
we tackle this question by investigating the recently intro-
duced gauged one-dimensional (1D) Kitaev model [16,60,61],
whose ground state displays a confined phase as well as a
regime where charges are not bounded in pairs, thus describ-
ing a deconfined phase. We study its low-entanglement states
and show that QMBSs are present in the ergodic deconfined
phase and are absent in the ergodic confined regime of the
model. Importantly, we are able to continuously track QMBSs
down from the analytic prediction valid in the quasi-integrable
regime and therefore provide their partial classification.

Model and observables. The Hamiltonian of the p-wave su-
perconducting Kitaev chain minimally coupled to a Z2 gauge
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field introduced in Refs. [16,60,61] reads

H = −t
∑

j

(c†
j − c j )σ

z
j+1/2(c†

j+1 + c j+1)

−μ
∑

j

(
c†

j c j − 1

2

)
− h

∑
j

σ x
j+1/2. (1)

Here, c†
j (c j) denotes the fermionic creation (annihila-

tion) operator and t describes the tunneling and pair
production/annihilation processes mediated by the Z2 gauge
field σ z

j+1/2 defined on the links between the nearest-neighbor
sites. Fluctuations in the gauge field are induced by the electric
field σ x

j+1/2 of strength h and the number of fermions is fixed
by the chemical potential μ. Here, σ i

j+1/2 stands for standard
Pauli matrices.

As required in LGTs, the model (1) is invariant under the
local gauge transformation generated by the Gauss operator
Gj = σ x

j−1/2(−1)n j σ x
j+1/2, where [H, Gj] = 0 and [Gi, Gj] =

0. Therefore, the physical states are those that satisfy the
Gauss law, Gj |ψ〉 = ± |ψ〉, for all j sites [62].

The Hamiltonian (1) can be written in terms of gauge-
invariant transformed Pauli operators:

Xi+ 1
2

= σ x
i+ 1

2
, (2)

Yi+ 1
2

= (c†
i − ci )σ

y
i+ 1

2

(c†
i+1 + ci+1), (3)

Zi+ 1
2

= (c†
i − ci )σ

z
i+ 1

2
(c†

i+1 + ci+1). (4)

Upon this transformation and with periodic boundary condi-
tions, the gauged Kitaev model corresponds to the quantum
Ising model with both transverse and longitudinal fields,

H =
L∑

i=1

μ

2
ZiZi+1 − tXi − hZi. (5)

Notice that the model is now defined on a dual lattice, where
the index i corresponds to the links of the original model (1).

For μ > 0, the phase diagram of the model (5), as shown
in Fig. 1, is characterized by the presence of both an anti-
ferromagnetic (AFM) order and a paramagnetic (PM) phase
depending on parameters t and h [63]. The AFM phase turns
out to be of great interest, since it supports domain-wall ex-
citations associated with the antiferromagnetic order caused
by the spontaneous breaking of the Z2 Ising and translational
symmetries. In 1D these last two features imply domain-wall
deconfinement. Therefore, in the gauged Kitaev Hamiltonian,
(1), such an AFM order corresponds to charge deconfinement
(CD), where fermions are free to expand without any string
tension. On the other hand, the PM regime corresponds to
a phase characterized by charge confinement (CC), where
fermions appear only as bound pairs.

In the limit t � μ it is possible to perform a Schrieffer-
Wolff transformation (in agreement with Ref. [60]; for a
higher-order expansion, see Ref. [64]), with

S = −it

2μ

∑
j

{(
1 + Zj−1

2

)
Yj

(
1 + Zj+1

2

)

−
(

1 − Zj−1

2

)
Yj

(
1 − Zj+1

2

)}
, (6)

FIG. 1. Properties of the Ising model (5) in t − h parameter space
for L = 16 and μ = 1. QMBSs may exist in chaotic regions with
a mean gap ratio r > 0.5 and low-entanglement entropy S < 0.5
with respect to the GOE value. The corresponding disconnected blue
region lies entirely in the charge deconfined (CD) regime. The charge
confinement (CC) region lies mainly within the regime of chaotic,
r > 0.5, but with lowest entropy states, S > 0.5, thus with no chance
for QMBSs. The pink color marks the mixed dynamics regime,
r < 0.5, S < 0.5; in the dark blue region, r < 0.5, S > 0.5. “0” and
“I” denote paths along which QMBS states are followed using level
dynamics.

to obtain an effective Hamiltonian Heff = eSHe−S = H +
[S, H] + O(t2). Notice that S is chosen in such a way that the
new terms commute with the unperturbed part of the Hamilto-
nian

∑L
i=1

μ

2 ZiZi+1 to the leading order in the expansion, thus
preserving its block-diagonal structure while also including
all virtual processes within each sector. The derived effective
Hamiltonian,

Heff =
L∑

i=1

μ

2
ZiZi+1 − hZi − t

2
(Xi − Zi−1XiZi+1), (7)

turns out to be the well-known model discussed in detail in
Ref. [13], where two towers of QMBSs have been identified.
The latter are of the form

∣∣Sk
n

〉 = 1

n!
√
N (L, n)

[(Qk )†]n|�k〉, (8)

with k = 1, 2, |�1〉 = |0 · · · 0〉, |�2〉 = |1 · · · 1〉, and (Qk )† =∑iL
i=i1

(−1)iPk
i−1[Xi + (−1)kYi]Pk

i+1, with projection operators
Pk

i = [1 + (−1)kZi]/2. Such QBMSs describe n-magnon and
n-antimagnons excitations for k = 1 and k = 2, respectively
[13].

As already pointed out, the Schrieffer-Wolff transforma-
tion described above links the models (5) and (1) with the
effective spin model (7) only for t � μ. In this limit, the states
given by Eq. (8) become true QMBSs of Hamiltonian (7), as it
was studied in Ref. [13]. It appears natural to wonder whether,
following the states (8) in the parameter space, it is possible
to also find scarred states in the gauged Kitaev chain beyond
the t � μ limit.

Level dynamics. In order to investigate this point, we first
determine in which regime of parameters the model (5) can be
considered as ergodic, and thus where the regular states may
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FIG. 2. (a) The gap ratio r and (b) half-chain entanglement en-
tropy (S) along path 0 for the S2

4 state from the antimagnon family;
(c) S1

4 and (d) S1
6 from the magnon family, all for L = 18. States may

be followed despite narrow avoided crossings indicated by spikes
of the entanglement entropy. The antimagnon state loses its low EE
feature around t = 0.14 while magnonlike QMBSs may be followed
up to t ≈ 0.2.

be called QMBSs. Ergodicity may be revealed by the adjacent
mean gap ratio r [65] between subsequent level spacings �i,

ri = min{�i,�i+1}
max{�i,�i+1} , (9)

where r � 0.531 corresponds to the fully ergodic regime [as
described by the Gaussian orthogonal ensemble (GOE) [66]]
and r � 0.386 indicates the quasi-integrable regime [65,67].
As shown in Fig. 1, our model shows strong indications of
near-integrable behavior for h � μ or t � μ. Outside this re-
gion, the model is expected to be nonintegrable. The next step
is then to identify the region where the entanglement entropy
(EE) of some eigenstates is well below the GOE estimate, as
QMBSs should have low, subvolume entropy. The half-chain
EE is defined in a standard way as S = −Tr[ρL/2 ln ρL/2]
[68]. We compare it to the typical GOE value for a given
system size. Once the two lowest EE states have a relative
EE sufficiently low (say half of the GOE value), there is the
chance that those states are indeed scarred. Figure 1 shows by
a light blue color the domains where both r > 0.5 and states
with a sufficiently low EE exist.

With the suspected regions identified, we start the analy-
sis with |Sk

n〉 states for the Hamiltonian (5) with parameters
t, h � μ, e.g., for t0 = h0 = 0.001 (we set μ = 1 in the fol-
lowing), with the aim of tracking such initial states |Sk

n (t0, h0)〉
following their possible deformations induced by making
small changes in the parameters, t = t0 + δt and h = h0 + δh.
As examples we consider paths indicated by “0” and “I” in
Fig. 1.

Every time we update the parameters, we diagonalize the
Hamiltonian in the symmetry sector with momentum p =
0 and parity +1 (we consider n even only) and find the
new candidate |En(t, h)〉 by maximizing the overlap O =
|〈En(t, h)|Sk

n )〉|. For an isolated level, the new state is ac-
cepted, |Sk

n〉 is updated, and we repeat the procedure. Special
care is taken to diabatically cross narrow avoided crossings
[68].

FIG. 3. (a) is as Fig. 2 but for path I and L = 18. Along this path
only antimagnon excitations may be followed while magnons appear
at the edges of the energy spectrum only. (b) Time dependence of
the fidelity relative to an initial state |ψ (0)〉 and evolved with (5) at
h = 0.5 and different values of t for L = 16 (μ = 1).

Figure 2 shows tracking the QMBS states identified as
|Sk

n (t, h)〉 along path 0. Both magnon and antimagnon excita-
tions, as given by (8), may be followed. This path lies almost
fully in the chaotic regime as revealed by r statistics, so the
observed low EE states may be truly considered as QMBSs,
observed, let us stress, deep in the deconfined region.

The path indicated as I also remains in the deconfined
phase, extending to large values of h (cf. Fig. 1). Levels are
followed through a regular, weakly perturbed region, along
the straight line t = 0.2h up to h = 0.5. Then path I turns
upwards, staying in the chaotic region up to the point (t, h) =
(0.3, 0.5). Along this vertical part, the tracked low EE states,
shown in Fig. 3(a), are truly the QMBSs embedded in the
chaotic spectrum. As seen from the EE values, the scarred
character of the followed states is slowly lost due to, as veri-
fied [68], various avoided crossings.

As discussed in the Introduction, the presence of QMBSs
can be further revealed by the persistent time oscillations
of an out-of-equilibrium configuration. To reveal this aspect,
we prepare an initial state given by the equal superposi-
tion of two states of the form (8) for small t, h values,
|ψ (0)〉 = 1√

2
(|S2

0〉 + |S2
2〉). After this initialization, we let this

state evolve with Hamiltonian (5) and we calculate the fi-
delity F (τ ) = |〈ψ (0)|ψ (τ )〉|2, where τ is the time (in units
of inverse μ). At t = 0.25, we observe for other choices of
finite persistent oscillations of F (τ ) as expected for QMBS
states, and this behavior persists until the end of path I [com-
pare Fig. 3(b)]. Beyond this limit (t > 0.3), low-entanglement
states disappear and F (τ ) shows irregular oscillations around
the mean value of about 1/L2, as expected for thermal states.

Figure 4 visualizes the presence of QMBSs by showing
the value of S for all eigenstates at t = 0.2 and h = 0.5,
where the system is in the weak ergodic regime. The entropy
still reveals a fingerlike structure that indicates the existence
of hidden, unidentified symmetries. The states enclosed in
circles are those tracked up from the near-integrable limit. The

L041101-3



ADITH SAI ARAMTHOTTIL et al. PHYSICAL REVIEW B 106, L041101 (2022)

FIG. 4. The half-chain entanglement entropy (S) of all the eigen-
states at t = 0.2, h = 0.5 for L = 16. The orange dashed line gives
the SRMT value. Circles denote different QMBSs obtained via our
tracking procedure. Green circles denote the antimagnonlike family
S2

n for n = 0, 2, 4, 6, 8 while red circles the magnonlike states S1
n with

n = 0, . . . , 6 counting from the right-hand side. Inset: The half-chain
entanglement entropy divided by system size (SL ) for the S2

2 state
showing its subvolume property as expected for QMBSs.

members of the antimagnonlike family S2
k , denoted by green

circles, have very low-entanglement entropies as compared to
other states of similar energy. They are thus truly QMBSs.
The inset reveals a subvolume scaling of the entanglement
entropy of the S2

2 state. The magnon excitations, on the other
hand, dissolve among other states (in the high density of states
region).

In summary, motivated by recent predictions of finding
QMBS states in a confined regime [59,69] of LGTs, we
investigated the thermalization properties of the gauged Ki-
taev chain. We observe that deep in the confined phase even
states with the smallest entanglement entropy have relatively
large, volume-law values indicating a lack of QMBSs. On the
other hand, for relatively large values of the electric field,
some states reveal low-entanglement entropy. We can iden-
tify these states by following them from the very small t, h
values for which analytic predictions are available [13]. Such
states result to be true QMBSs and are found uniquely in the
deconfined phase, which turns out to be a weakly ergodic
regime characterized by the GOE-like mean gap ratio. The

presence of QMBSs has been further verified by studying
their time dynamics. By building an initial state given by
the superposition of two QMBSs, the fidelity of the state
shows pronounced oscillations with no sign of thermalization.
The adiabatic following of the states breaks down at the end
points of our chosen paths due to energy-level mixing, where
interestingly QMBSs also disappear. In conclusion, our results
unambiguously reveal that QMBSs occur even in deconfined
regimes of LGTs, thus paving the way toward a deeper under-
standing of the connection between the lack of thermalization
and local symmetries.
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