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Abstract

The present paper considers the linear static analysis of both composite plate and shell structures
embedding piezoelectric layers by means of a shell finite element with variable through-the-thickness
kinematic. The refined models used are grouped in the Unified Formulation by Carrera (CUF) and
they permit to accurately describe the distribution of displacements and stresses along the thickness
of the multilayered shell. The shell element has nine nodes and the Mixed Interpolation of Tensorial
Components (MITC) method is employed to contrast the membrane and shear locking phenomenon.
The governing equations are derived from the Principle of Virtual Displacement (PVD) and the
Finite Element Method (FEM) is employed to solve them. Cross-ply multilayered plates and cylin-
drical shells embedding piezoelectric layers are analysed, with simply-supported boundary conditions
and subjected to sensor and actuator configurations. Various thickness ratios are considered. The
results, obtained with different theories contained in the CUF, are compared with both the elasticity
solutions given in literature and the analytical solutions obtained using the CUF and the Navier’s
method. From the analysis, one can conclude that the shell element based on the CUF is very efficient
and its use is mandatory with respect to the classical models in the study of multilayered strcutures
embedding piezo-layers.

1 Introduction

Piezoelectric materials have the ability to convert mechanical energy into electrical energy, and vice
versa. For the last 50 years, the use of piezoelectric components as electro-mechanical transducers in
sensor as well as in actuator applications has been continuously increasing. More recently, piezoelectrics
have been considered among the most suitable materials for extending the structural capabilities beyond
the purely passive load carrying one. Vibration and noise suppression, controlled active deformation
and health monitoring are among the most important applications of these “intelligent” structural
components. Analytical solution for general smart structural problems is a very difficult task and they
exist, only, for a very few specialized and idealized cases. Meanwhile, the finite element method has
become the most widely used technique to model various physical processes, including piezoelectricity.
The introduction of piezoelectric material into a passive structure naturally leads to a multilayered
component, and it has been recognized that classical models are not suitable for an accurate design
of such structures, see for example the review article of Noor and Burton [1] and the references cited
herein. Interlaminar Continuity (IC) of the transverse stresses as well as the related discontinuity of
the slopes of the displacement distributions in thickness direction at the layers interfaces are the main
effects arising in multilayered structures which can not be captured by classical formulations based on
Love First Approximation Theories (LFAT), see e.g. [2]. Many refined theories for plates and shells
have been proposed in order to meet the modeling requirements - known as C0

z -Requirements - posed
by these characteristics; further details can be found e.g. in the monograph of Reddy [3] and in the
paper of Carrera [4]. For curved structures, Koiter [5] recognized the importance of transverse stress
effects even for homogeneous shells and recommended the inclusion of such effects whenever a consistent
higher-order model has to be proposed. The fundamentals for the modeling of piezoelectric materials
have been given in many contributions, in particular in the pioneering works of Mindlin [6], EerNisse
[7], Tiersten and Mindlin [8], and in the monograph of Tiersten [9]. The embedding of piezoelectric
layers into plates and shells sharpens the requirements of an accurate modeling of the resulting adaptive
structure due to the localized electro-mechanical coupling, see e.g. the review of Saravanos and Heyliger
[10]. Therefore, within the framework of two-dimensional approaches, layerwise descriptions have been
often proposed either for the electric field only (see e.g. the works of Kapuria [11] and of Ossadzow-
David and Touratier [12]) or for both the mechanical and electrical unknowns (e.g. Heyliger et al. [13]).
Ballhause et al. [14] showed that a fourth order assumption for the displacements leads to the correct
closed form solution. They conclude that the analysis of local responses requires at least a layer-wise
descriptions of the displacements, see also [15]. Benjeddou et al. [16] emphasized that a quadratic
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electric potential through the plate thickness satisfies the electric charge conservation law exactly. An
attempt to mathematically substantiate axiomatic two-dimensional piezoelectric shell formulations by
the means of asymptotic expansions can be found in the book of Rogacheva [17]. An exhaustive
overview of the many different modeling approaches and solution techniques for laminated piezoelectric
plates and shells is far beyond the scope of this paper; more details on this topic can be found e.g. in
the already cited review of Saravanos and Heyliger, and in the surveys of Gopinathan et al. [18] and
of Benjeddou [19]. For the last years interest has been emerging for mixed formulations involving
also stresses and dielectric displacements as primary variables, see for example the recent works of
Lammering et al. [20] and of Benjeddou et al. [21]. Some of the latest contributions to the Finite
Elements (FEs) analysis of piezoelectric plates that includes an FSDT description of displacements and
a layer-wise (LW) form of the electric potential was developed by Sheik et al. [22]. The numerical,
membrane and bending behavior of FEs that are based on FSDTs were analyzed by Auricchio et al.
[23] in the framework of a suitable variational formulation. The third-order theory of HOT type was
applied by Thornburg and Chattopadhyay [24] to derive FEs that take into consideration the electro-
mechanical coupling. Similar elements have more recently been considered by Shu [25]. The extension
of the third-order zig-zag Ambartsumian multilayered theory to finite analysis of electro-mechanical
problems has been proposed by Oh and Cho [26]. An extension to piezoelectricity of numerically
efficient plate/shell elements based on the mixed interpolation of tensorial components formulation has
recently been provided by Kogl and Bucalem [27],[28]. Some of the latest contributions to the Finite
Elements (FEs) analysis of piezoelectric shells that are based on exact geometry solid-shell element with
the first-order 7-parameter equivalente single layer theory was developed by Kulikov et al. [29], and
a piezoelectric solid shell element with a mixed variational formulation and a geometrically nonlinear
theory was developed by Klinkel et al. [30]. A new shell finite element is presented in this paper for
the analysis of composite structures with piezo-layers. It is based on the Carrera’s Unified Formulation
(CUF), which has been developed by Carrera for multi-layered structures [31]. Many works have been
devoted to the extension of the CUF. Among others, Carrera [32] extends PVD and RMVT variational
statements to piezo-laminated plates. The modeling of piezo-laminated plates using LW mixed FEs
was then proposed in [33]. Subsequently, an extension of the RMVT to piezoelectric laminates with
analytical results was published in [34]. Mixed FEs for static and dynamics analysis of piezo-electric
plates have been provided in [35], where only transverse stresses were modeled by RMVT. Mixed FEs
with direct evaluation of transverse electric displacement have been provided in [36]. Layer Wise (LW)
theories contained in the CUF have been implemented in the present shell finite element. An analytical
solution type has already been successfully employed in combination with the Unified Formulation
for piezoelectric plates [14] and piezoelectric shells [15]. The cylindrical geometry is considered and
the Mixed Interpolation of Tensorial Components (MITC) method [37]-[38] is used to contrast the
membrane and shear locking. The governing equations for the static analysis of composite structures
are derived from the Principle of Virtual Displacement (PVD), in order to apply the finite element
method. Some composite cylindrical shells are analyzed and the results, obtained with the different
models contained in the CUF, are compared with the analytical solution and the exact solution given
in literature.

2 Unified Formulation

The main feature of the Unified Formulation by Carrera [32],[39],[40] (CUF) is the unified manner
in which the displacement variables are handled. According to CUF, the displacement field and the
potential field are written by means of approximating functions in the thickness direction as follows:

uk(α, β, z) = Fτ (z)ukτ (α, β) , δuk(α, β, z) = Fs(z)δu
k
s(α, β) , τ, s = 0, 1, ..., N , (1)

3



Φk(α, β, z) = Fτ (z)Φk
τ (α, β) , δΦk(α, β, z) = Fs(z)δΦ

k
s(α, β) , τ, s = 0, 1, ..., N , (2)

where (α, β, z) is a curvilinear coordinates reference system, defined in the next section, and the
displacement u = {u, v, w} and the potential Φ are referred to such system. δ indicates the virtual
variation and k identifies the layer. Fτ and Fs are the so-called thickness functions depending only
on z. us and Φs are the unknown variables depending on the coordinates α and β. τ and s are sum
indexes and N is the order of expansion in the thickness direction assumed for the variables.

In the case of Layer-Wise (LW) models, the displacement and the potential are defined at k-layer
level:

uk = Ft u
k
t + Fb u

k
b + Fr u

k
r = Fτ u

k
τ , τ = t, b, r , r = 2, ..., N. (3)

Φk = Ft Φk
t + Fb Φk

b + Fr Φk
r = Fτ Φk

τ , τ = t, b, r , r = 2, ..., N. (4)

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2. (5)

The top (t) and bottom (b) values of the displacements and the potential are used as unknown
variables and one can impose the following compatibility conditions:

ukt = uk+1
b , Φk

t = Φk+1
b , k = 1, Nl − 1. (6)

The LW models, in respect to the Equivalent Single Layer models (ESL), allow the zig-zag form of
the variables distribution in layered structures to be modelled.

3 MITC9 shell element

In this section, the derivation of a shell finite element for the analysis of multilayered structures is
presented. The element is based LW theories contained in the Unified Formulation. A nine-nodes
shell element is considered. After an overview in scientific literature about the methods that permit to
withstand the membrane and shear locking, the MITC technique has been adopted for this element.

3.1 Shell geometry

Shells are bi-dimensional structures in which one dimension (in general the thickness in z direction) is
negligible with respect to the other two in-plane dimensions. Geometry and the reference system are
indicated in Fig. 2. By considering multilayered structures, the square of an infinitesimal linear segment
in the layer, the associated infinitesimal area and volume are given by:

ds2
k = Hk

α
2
dα2

k + Hk
β

2
dβ2

k +Hk
z

2
dz2
k ,

dΩk = Hk
αH

k
β dαk dβk ,

dV = Hk
α H

k
β H

k
z dαk dβk dzk ,

(7)

where the metric coefficients are:

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), Hk

z = 1 . (8)

k denotes the k-layer of the multilayered shell; Rkα and Rkβ are the principal radii of the midsurface of

the layer k. Ak and Bk are the coefficients of the first fundamental form of Ωk (Γk is the Ωk boundary).
In this paper, the attention has been restricted to shells with constant radii of curvature (cylindrical,
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spherical, toroidal geometries) for which Ak = Bk = 1, in particular cylindrical shells have been con-
sidered. Details for shells are reported in [17].

Geometrical relations can be expressed in matrix form as:

εp =[εαα, εββ , εαβ] = (Dp +Ap)u ,

εn =[εαz, εβz, εzz] = (Dnp +Dnz −An)u ,
(9)

Where the differential operators are defined as follows:

Dp =


∂α
Hα

0 0

0
∂β
Hβ

0
∂β
Hβ

∂α
Hα

0

 , Dnp =

0 0 ∂α
Hα

0 0
∂β
Hβ

0 0 0

 , Dnz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 (10)

Ap =

0 0 1
HαRα

0 0 1
HβRβ

0 0 0

 ,An =

 1
HαRα

0 0

0 1
HβRβ

0

0 0 0

 (11)

The geometrical relations between electric field E and potential Φ are defined as follows:

Ep = [Eα, Eβ]T = −Dep Φ ,

En = [Ez]T = −Den Φ ,
(12)

Where the differential operators are defined as follows:

Dep =

[
∂α
Hα
∂β
Hβ

]
, Den =

[
∂z
]
.

3.2 MITC method

A shell finite element is here presented for the analysis of composite structures. It is based on the
Carrera’s Unified Formulation (CUF), which was developed by Carrera for multi-layered structures
[31].

According to the finite element method, the displacement and the potential components are inter-
polated on the nodes of the element by means of the Lagrangian shape functions Ni:

δus = Niδqusi uτ = Njquτj with i, j = 1, ..., 9 (13)

δΦs = NiδqΦsi Φτ = NjqΦτj with i, j = 1, ..., 9 (14)

where q
uτj = (quτ , qvτ , qwτ ) and δq

usi = (δqus , δqvs , δqws) are the nodal displacements and their virtual
variations for the mechanical variables, and qΦτj = (qΦτ ) and δqΦsi = (δqΦs) are the nodal potential
and their virtual variation for the electric variable. Substituting in the geometrical relations (9) one
has:
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εp =Fτ (Dp +Ap)(Ni)qτi
εn =Fτ (DnΩ −An)(Ni)qτi + Fτ,3Anz(Ni)qτi

(15)

Considering the local coordinate system (ξ, η), the MITC shell elements ([41],[42]) are formulated by
using, instead of the strain components directly computed from the displacements, an interpolation of
these within each element using a specific interpolation strategy for each component. The corresponding
interpolation points, called tying points, are shown in Fig. 3 for the MITC9 shell element.
The interpolating functions are lagrangian and are calculated by imposing that the function assumes
the value 1 in the corresponding tying point and 0 in the others. These are arranged in the following
arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(16)

From this point on, the subscripts m1, m2 and m3 indicate quantities calculated in the points
(A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P,Q,R, S), respectively. Therefore, the strain
components are interpolated as follows:

εp =

εααεββ
εαβ

 =

Nm1 0 0
0 Nm2 0
0 0 Nm3

εααm1

εββm2

εαβm3


εn =

εαzεβz
εzz

 =

Nm1 0 0
0 Nm2 0
0 0 1

εαzm1

εβzm2

εzz

 (17)

where the strains εααm1 , εββm2 , εαβm3 , εαzm1 , εβzm2 are expressed by means of eq.s (15) and the
shape functions Ni are calculated in the tying points.

4 Constitutive equations

The second step towards the governing equations is the definition of the constitutive equations that
permit the stresses and the electric displacements to be expressed by means of the strains and the
electric fields. The generalized Hooke’s law is considered, by employing a linear constitutive model
for infinitesimal deformations. A linear coupling of the electric fields is employed to complete stresses
equations and to describe the electric displacements equations. In a composite material, these equations
are obtained in material coordinates (1, 2, 3) for each layer k and then rotated in the general curvilinear
reference system (α, β, z).

Therefore, the in-plane stresses σp = [σαα, σββ , σαβ], the transverse stresses σn = [σαz, σβz, σzz]
and the electric displacements D = [Dα,Dβ,Dz] after the rotation are:

σkpC = Ck
ppε

k
pG +Ck

pnε
k
nG − ek

T

pp EkpG − ek
T

npEknG (18)

σknC = Ck
npε

k
pG +Ck

nnε
k
nG − ek

T

pnEkpG − ek
T

nnEknG (19)
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Dk
pC = ekppε

k
pG + ekpnε

k
nG + εkppEkpG + εkpnEknG (20)

Dk
nC = eknpε

k
pG + eknnε

k
nG + εknpEkpG + εknnEknG (21)

where

Ck
pp =

Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =

0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =

 0 0 0
0 0 0
Ck13 Ck23 Ck36

 Ck
nn =

Ck55 Ck45 0
Ck45 Ck44 0
0 0 Ck33


(22)

epp =

[
0 0 0
0 0 0

]
, epn =

[
e15 e14 0
e25 e24 0

]
,

enp =
[
e31 e32 e36

]
, enn =

[
0 0 e33

]
.

(23)

εpp =

[
ε11 ε12

ε12 ε22

]
, εpn =

[
0
0

]
,

εnp =
[
0 0

]
, εnn =

[
ε33

]
.

(24)

The material coefficients Cij depend on the Young’s moduli E1, E2, E3, the shear moduli G12, G13,
G23 and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32 that characterize the layer material. The piezoelectric
material is characterized by the piezoelectric coefficients eij and the permittivity coefficients εij .

5 Governing equations

This section presents the derivation of the governing finite element stiffness matrix based on the Prin-
ciple of Virtual Displacement (PVD) in the case of multi-layered shell structures subjected to electro-
mechanical loads. The PVD for a multilayered piezoelectric structure reads:∫

V

(
δεpG

TσpC + δεnG
TσnC − δEpGTDpC − δEnGTDnC

)
dV = δLe (25)

where Ωk and Ak are the integration domains in the plane and in the thickness direction. The
first member of the equation represents the variation of the internal work, while the second member
is the external work. In order to refer the integration domains to the midsurface of each layer in the
curvilinear coordinate system, one has to introduce the parameters Hα , Hβ as follows:∫

Ωk

∫
Ak

{
δεkpG

T
σkpC + δεknG

T
σknC − δEkpG

TDk
pC − δEknG

TDk
nC

}
HαHβ dΩkdz = δLe (26)
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Substituting the constitutive equations 18 - 21, the geometrical relations written via the MITC
method 17 and applying the Unified Formulation 1 and the FEM approximation 13, one obtains the
following governing equations:

δuks : Kkτs
uu u

k
τ +Kkτs

uΦ Φ
k
τ = P k

us (27)

δΦks : Kkτs
Φu u

k
τ +Kkτs

ΦΦ Φ
k
τ = P k

Φs (28)

In compact form:
δqks : Kkτs qkτ = P k

s (29)

where

Kkτs =

[
Kuu KuΦ

KΦu KΦΦ

]kτs
(30)

The mechanical part Kkτsij
uu is a 3×3 matrix, the coupling matrices Kkτsij

uΦ , Kkτsij
Φu have dimension

3 × 1 and 1 × 3 respectively, and the electrical part Kkτsij
ΦΦ is a 1 × 1 matrix. The global matrix

Kkτsij is called fundamental nucleus, and its explicit expression is given in Appendix. This is the basic
element from which the stiffness matrix of the whole structure is computed. For the expansion of the
fundamental nucleus on the indexes τ and s and the assembling procedure at multi-layer level for LW
approaches, the reader can refer to [32]. qkτ = (qkuτ , q

k
vτ , q

k
wτ , q

k
Φτ

) is the vector of the nodal mechanical

displacements and the nodal electric potential. P k
s is the fundamental nucleus for the external load.

6 Numerical results and discussion

The model introduced, unlike 3-D degenerate approach, does not involve an approximation of the
geometry of the shell and it describes accurately the curvature of the shell. However, the locking
phenomenon is still present. In this work, such a model is combined with a simple displacement
formulation for the analysis of composite structures. The refined theories contained in CUF, coupled
with the MITC method, permit to increase the degree of approximation by increasing the order of
expansion of displacements in the thickness direction and the number of used elements. In electro-
mechanical problems it is necessary to impose the value of the electric potential variable at top and
bottom position. To obtain this, Layer-Wise models with Legendre polynomials are employed. The
efficiency of Layer-Wise models is tested with the finite element scheme, and the numerical results
are compared with the ones obtained with the 3D elasticity approach. In this direction, two kind
of reference problems are considered: the composite square plate embedding piezoelectric layers at
top and bottom position, analytically analyzed by Carrera [14], and single and multilayered cylinders
embedding piezoelectric layers, analytically analyzed. Both of them are evaluated in sensor and actuator
configuration. For the sensor case, a bi-sinusoidal transverse normal pressure is applied at the top
surface for the plate and at the bottom surface for the shells:

p±z = p̂±z sin(mπα/a)sin(nπβ/b) (31)

with amplitude p̂±z = 1 and wave numbers m = 1, n = 1 for the plate and n = 8 for the shell. The
potential at top and bottom position is imposed Φt = Φb = 0.

For the actuator case, a bi-sinusoidal electric potential is imposed at top surface:

Φ+ = φ̂+
z sin(mπα/a)sin(nπβ/b) (32)

with amplitude φ̂+
z = 1 and wave numbers m = 1, n = 1 for the plate and n = 8 for the shell. The

potential at bottom position is imposed Φb = 0. No mechanical load is applied.
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The two problems are briefly described in the following sections. In this paper some acronyms are
used in tables and figures. The first letter indicates the multi-layer approach, Layer Wise (L). The
second letter refers to the employed variational statement: in this work only the Principle of Virtual
Displacements D is used. Only for the multilayered shell, reference solutions are calculated with Full
Reissner Mixed Variational Theory, so the second letters are FM . The number N indicates the order
of expansion used in the thickness direction (from 1 to 4). For references solutions obtained with
analytical method a subscript a is used.

6.1 Multilayered plate

The structure analyzed by Carrera [14] (see Figure 1) is a composite square plate embedding piezoelec-
tric layers made globally of four layers, a core in Gr/Ep composite material by two orthotropic layers
with lamination (0◦/90◦), and the skins in PZT-4 by two piezoelectric layers. In respect to the total
thickness, a single piezoelectric skin is thick hp = 0.1htot, while the single core layer is thick hc = 0.4htot.
The physical properties of the shell are given in Table 1.

Due to the symmetry of both the geometry and the load, a quarter of plate is analysed and the
following symmetry and boundary conditions (simply-supported) are applied:

uτ (0, y) = 0

vτ (x, 0) = 0

wτ (x, b/2) = 0

wτ (a/2, y) = 0

uτ (x, b/2) = 0

vτ (a/2, y) = 0

(33)

with τ = 0, 1, ..., N .
The results are presented for different thickness ratios a/h = 2, 4, 10, 100.
A mesh grid of 12× 12 elements is taken to ensure the convergence of the solution.

In general the results approach to the exact solution by increasing the order of expansion N for
the various thickness ratios, see Tables 2, 4 . One can note that the element doesn’t suffer the locking
phenomenon even when the plate is very thin (a/h = 100), see Tables 3, 5. Only the LD4 model is
able to exactly reproduce the analitycal solution in the case of thick shell. The behavior of shear and
transverse stresses σαz, σzz is non-linear along the thickness of the plate. The continuity conditions
are reached only by increasing the order of expansion N , see Figures 5 - 11. Only for the actuator
case of very thin plates (a/h = 100), the LD4 model is not able to fulfill the continuity conditions of
transverse stresses σzz at the interfaces between layers, see Figures 12. To overcome this problem a
mixed variational principle could be used. For the description of the electric potential Φ it is necessary
to use the higher-order model, LD4, to describe the non-linear behavior in thick plates (a/h = 2), see
Figures 13, 17. On the other hand for thin plates (a/h = 100) a layer-wise description of lower order is
sufficient, see Figures 14, 18. The electric displacement Dz has a non-linear behavior for every thickness
ratio in the sensor case, it is necessary an higher-order model to obtain the continuity interface, see
Figures 15, 16. For the actuator case, due to its linear behavior, the electric displacement can be
descripted by lower-order layer-wise model, see Figures 19, 20.
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6.2 Multilayered piezoelectric cylinder.

The structure analyzed by Carrera [43] (see Figure 4) is a mono-layered piezoelectric cylinder, with
the material properties given in Table 1. Moreover a 3 layer configuration cylinder with the core in
Gr/Ep composite material is analysed. For multilayered cases, reference solutions are evaluated with
an analytical Layer-Wise Full Mixed approach (LWFM). With the LWFM it is possible to impose the
interface continuity of both mechanical transverse stresses and normal electric displacement variables.

The geometrical parameters of the considered cylinder are: a = 40 , b = 2πRβ , Rβ = 10.

Due to the symmetry of both the geometry and the load, an octave of the cylinder is studied (1/2
in the axial direction and 1/4 in the hoop direction). The following symmetry conditions are applied:

vτ (α, 0) = 0

uτ (0, β) = 0

vτ (α,Rβπ/2) = 0

(34)

and the following boundary conditions are prescribed:

vτ (a/2, β) = wτ (a/2, β) = 0 (35)

with τ = 0, 1, ..., N .
The results are presented for these cases for different thickness ratios R/h = 2, 4, 10, 100. A mesh

grid of 12× 12 elements is taken to ensure the convergence of the solution.

The results lead to similar conclusions made for the plate: the solution converges to the exact
solution by increasing the order of expansion N ; the LW models are able to give good results, see
Tables 6, 7. If one considers the stresses the behavior is the same: higher-order layer wise models are
necessary to match the reference solution in the thick shells, see Tables 8, 9. In this case, the use of the
LD4 model becomes mandatory. The LD4 model only is able to fulfill the continuity conditions of shear
stresses σαz at the interfaces between layers, while lower-order model gives a completely wrong result,
even if the shell is very thin (R/h = 100), see Figures 21, 22, 25, 26. The LD4 model is not able to fulfill
the continuity conditions of transverse stresses σzz at the interfaces between layers, see Figures 23, 24,
27, 28. To overcome this problem a mixed variational principle could be used. For the description of
the electric potential Φ it is necessary to use the higher-order model, LD4, to describe the non-linear
behavior of thick shell (R/h = 2), see Figures 29, 33, on the other hand for thin shell (R/h = 100)
a layer-wise description of lower order is sufficient, see Figures 30, 34. The electric displacement Dz
has a non-linear behavior for every thickness ratio in the sensor case, and higher-order models are not
sufficient to describe it correctly along the thickness for thick shell (R/h = 2), see Figures 31. For the
thin cylinder (R/h = 100) the continuity interface cannot be reached, see Figure 32. For the actuator
case, in spite of its linear behavior, it is necessary an higher-order model to obtain the continuity
interface of the electric displacement, see Figures 35, 36. To overcome this problem a mixed variational
principle could be used.

7 Conclusion

This paper has presented the static analysis of plate and cylindrical composite structures by means
of a shell finite element based on the Unified Formulation by Carrera [39],[40]. The results have been
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provided in terms of both displacement, electric potential, transverse stresses and electric displacement,
for various thickness ratios from very thick to very thin shells and the performances of the layer-wise
theories contained in the CUF have been tested. The conclusions that can be drawn are the following:

1. the shell element is locking free when the shell is very thin;

2. the results converge to the exact solution by increasing the order of expansion of the variables in
the thickness;

3. when the shell is very thick, the LW models are able to produce good results;

4. the use of LW models is mandatory for both thick and thin shells, if one needs to accurately de-
scribe the distribution of transverse shear and normal stresses and transverse electric displacement
in the thickness and to satisfy the interlaminar continuity conditions.

5. the principle of virtual displacement with layer-wise approach is not sufficient to obtain the
continuity interface condition for the transverse stresses for thin plate in sensor case and thin
shell for sensor and actuator cases, and the transverse electric displacement for thin shell in
sensor case.

Future works could be devoted to consider mixed variational principles in the analysis of shell
structures with piezo-layers by means of finite elements based on Unified Formulation.
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Explicit form of stiffness fundamental nucleus

In order to write the fundamental nucleus Kkτsij in compact form, the following integrals in the domain
Ωk are defined:

(
W k
m1n1 ; W k

m1n2 ; W k
m2n1 ; W k

m2n2

)
=

∫
Ωk

(Nm1Nn1 ; Nm1Nn2 ; Nm2Nn1 ; Nm2Nn2) dα dβ
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(
W k
m1n3 ; W k

m3n1 ; W k
m3n3 ; W k

m2n3 ; W k
m3n2

)
=

∫
Ωk

(Nm1Nn3 ; Nm3Nn1 ; Nm3Nn3 ; Nm2Nn3 ; Nm3Nn2) dα dβ

(
W k
m1 j ; W k

m2 j ; W k
m3 j

)
=

∫
Ωk

(Nm1Nj ; Nm2Nj ; Nm3Nj) dα dβ

(
W k
i n1 ; W k

i n2 ; W k
i n3 ; W k

i j

)
=

∫
Ωk

(NiNn1 ; NiNn2 ; NiNn3 ; NiNj) dα dβ

(
W k
m1 j,α ; W k

m1 j,β
; W k

m2 j,α ; W k
m2 j,β

)
=

∫
Ωk

(
Nm1

∂Nj

∂α
; Nm1

∂Nj

∂β
; Nm2

∂Nj

∂α
; Nm2

∂Nj

∂β

)
dα dβ

(
W k
i,α n1 ; W k

i,β n1 ; W k
i,α n2 ; W k

i,β n2

)
=

∫
Ωk

(
∂Ni

∂α
Nn1 ;

∂Ni

∂β
Nn1 ;

∂Ni

∂α
Nn2 ;

∂Ni

∂β
Nn2

)
dα dβ

Moreover, the integrals on the domain Ak, in the thickness direction, are written as:

(
Jkτs, Jkτsα , Jkτsβ , Jkτsα

β
, Jkτsβ

α

, Jkτsαβ

)
=

∫
Ak

FτFs

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

(
Jkτzs, Jkτzsα , Jkτzsβ , Jkτzsα

β
, Jkτzsβ

α

, Jkτzsαβ

)
=

∫
Ak

∂Fτ
∂z

Fs

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

(
Jkτsz , Jkτszα , Jkτszβ , Jkτszα

β
, Jkτszβ

α

, Jkτszαβ

)
=

∫
Ak

Fτ
∂Fs
∂z

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz
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(
Jkτzsz , Jkτzszα , Jkτzszβ , Jkτzszα

β
, Jkτzszβ

α

, Jkτzszαβ

)
=

∫
Ak

∂Fτ
∂z

∂Fs
∂z

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

The stiffness fundamental nucleus Kτsij is:

Kkτsij =


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44


kτsij

The elements of the nucleus are:

Kkτs
uu11

= Ck55N
(m1)
i N

(n1)
j W k

m1n1 J
kτzsz
αβ − Ck55

Rkα
N

(m1)
i N

(n1)
j W k

m1n1 J
kτzs
β − Ck55

Rkα
N

(m1)
i N

(n1)
j W k

m1n1 J
kτsz
β +

+ Ck66N
(m3)
i,β N

(n3)
j,β W k

m3n3 J
kτs
α
β

+ Ck16N
(m1)
i,α N

(n3)
j,β W k

m1n3 J
kτs + Ck16N

(m3)
i,β N

(n1)
j,α W k

m3n1 J
kτs+

+ Ck11N
(m1)
i,α N

(n1)
j,α W k

m1n1 J
kτs
β
α

+
Ck55

(Rkα)
2 N

(m1)
i N

(n1)
j W k

m1n1 J
kτs
β
α

Kkτs
uu12

= Ck45N
(m1)
i N

(n2)
j W k

m1n2 J
kτzsz
αβ − Ck45

Rkβ
N

(m1)
i N

(n2)
j W k

m1n2 J
kτzs
α − Ck45

Rkα
N

(m1)
i N

(n2)
j W k

m1n2 J
kτsz
β +

+ Ck26N
(m3)
i,β N

(n2)
j,β W k

m3n2 J
kτs
α
β

+ Ck12N
(m1)
i,α N

(n2)
j,β W k

m1n2 J
kτs + Ck66N

(m3)
i,β N

(n3)
j,α W k

m3n3 J
kτs+

+ Ck16N
(m1)
i,α N

(n3)
j,α W k

m1n3 J
kτs
β
α

+
Ck45

RkαR
k
β

N
(m1)
i N

(n2)
j W k

m1n2 J
kτs

Kkτs
uu13

= Ck45N
(m1)
i N

(n2)
j,β W k

m1n2 J
kτzs
α + Ck55N

(m1)
i N

(n1)
j,α W k

m1n1 J
kτzs
β + Ck36N

(m3)
i,β W k

m3 j J
kτsz
α +

+ Ck13N
(m1)
i,α W k

m1 j J
kτsz
β − Ck45

Rkα
N

(m1)
i N

(n2)
j,β W k

m1n2 J
kτs − Ck55

Rkα
N

(m1)
i N

(n1)
j,α W k

m1n1 J
kτs
β
α

+

+
Ck26

Rkβ
N

(m3)
i,β N

(n2)
j W k

m3n2 J
kτs
α
β

+
Ck16

Rkα
N

(m3)
i,β N

(n1)
j W k

m3n1 J
kτs +

Ck12

Rkβ
N

(m1)
i,α N

(n2)
j W k

m1n2 J
kτs+

+
Ck11

Rkα
N

(m1)
i,α N

(n1)
j W k

m1n1 J
kτs
β
α

(A.36)
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Kkτs
uu21

= Ck45N
(m2)
i N

(n1)
j W k

m2n1 J
kτzsz
αβ − Ck45

Rkα
N

(m2)
i N

(n1)
j W k

m2n1 J
kτzs
β − Ck45

Rkβ
N

(m2)
i N

(n1)
j W k

m2n1 J
kτsz
α +

+ Ck26N
(m2)
i,β N

(n3)
j,β W k

m2n3 J
kτs
α
β

+ Ck66N
(m3)
i,α N

(n3)
j,β W k

m3n3 J
kτs + Ck12N

(m2)
i,β N

(n1)
j,α W k

m2n1 J
kτs+

+ Ck16N
(m3)
i,α N

(n1)
j,α W k

m3n1 J
kτs
β
α

+
Ck45

RkαR
k
β

N
(m2)
i N

(n1)
j W k

m2n1 J
kτs

Kkτs
uu22

= Ck44N
(m2)
i N

(n2)
j W k

m2n2 J
kτzsz
αβ − Ck44

Rkβ
N

(m2)
i N

(n2)
j W k

m2n2 J
kτzs
α − Ck44

Rkβ
N

(m2)
i N

(n2)
j W k

m2n2 J
kτsz
α +

+ Ck22N
(m2)
i,β N

(n2)
j,β W k

m2n2 J
kτs
α
β

+ Ck26N
(m3)
i,α N

(n2)
j,β W k

m3n2 J
kτs + Ck26N

(m2)
i,β N

(n3)
j,α W k

m2n3 J
kτs+

+ Ck66N
(m3)
i,α N

(n3)
j,α W k

m3n3 J
kτs
β
α

+
Ck44(
Rkβ

)2 N
(m2)
i N

(n2)
j W k

m2n2 J
kτs
α
β

Kkτs
uu23

= Ck44N
(m2)
i N

(n2)
j,β W k

m2n2 J
kτzs
α + Ck45N

(m2)
i N

(n1)
j,α W k

m2n1 J
kτzs
β + Ck23N

(m2)
i,β W k

m2 j J
kτsz
α +

+ Ck36N
(m3)
i,α W k

m3 j J
kτsz
β − Ck44

Rkβ
N

(m2)
i N

(n2)
j,β W k

m2n2 J
kτs
α
β
− Ck45

Rkβ
N

(m2)
i N

(n1)
j,α W k

m2n1 J
kτs+

+
Ck22

Rkβ
N

(m2)
i,β N

(n2)
j W k

m2n2 J
kτs
α
β

+
Ck12

Rkα
N

(m2)
i,β N

(n1)
j W k

m2n1 J
kτs +

Ck26

Rkβ
N

(m3)
i,α N

(n2)
j W k

m3n2 J
kτs+

+
Ck16

Rkα
N

(m3)
i,α N

(n1)
j W k

m3n1 J
kτs
β
α

Kkτs
uu31

= Ck36N
(n3)
j,β W k

i n3 J
kτzs
α + Ck13N

(n1)
j,α W k

i n1 J
kτzs
β + Ck45N

(m2)
i,β N

(n1)
j W k

m2n1 J
kτsz
α +

+ Ck55N
(m1)
i,α N

(n1)
j W k

m1n1 J
kτsz
β +

Ck26

Rkβ
N

(m2)
i N

(n3)
j,β W k

m2n3 J
kτs
α
β

+
Ck16

Rkα
N

(m1)
i N

(n3)
j,β W k

m1n3 J
kτs+

+
Ck12

Rkβ
N

(m2)
i N

(n1)
j,α W k

m2n1 J
kτs +

Ck11

Rkα
N

(m1)
i N

(n1)
j,α W k

m1n1 J
kτs
β
α

− Ck45

Rkα
N

(m2)
i,β N

(n1)
j W k

m2n1 J
kτs−

− Ck55

Rkα
N

(m1)
i,α N

(n1)
j W k

m1n1 J
kτs
β
α
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Kkτs
uu32

= Ck23N
(n2)
j,β W k

i n2 J
kτzs
α + Ck36N

(n3)
j,α W k

i n3 J
kτzs
β + Ck44N

(m2)
i,β N

(n2)
j W k

m2n2 J
kτsz
α +

+ Ck45N
(m1)
i,α N

(n2)
j W k

m1n2 J
kτsz
β +

Ck22

Rkβ
N

(m2)
i N

(n2)
j,β W k

m2n2 J
kτs
α
β

+
Ck12

Rkα
N

(m1)
i N

(n2)
j,β W k

m1n2 J
kτs+

+
Ck26

Rkβ
N

(m2)
i N

(n3)
j,α W k

m2n3 J
kτs +

Ck16

Rkα
N

(m1)
i N

(n3)
j,α W k

m1n3 J
kτs
β
α

− Ck44

Rkβ
N

(m2)
i,β N

(n2)
j W k

m2n2 J
kτs
α
β
−

− Ck45

Rkβ
N

(m1)
i,α N

(n2)
j W k

m1n2 J
kτs

Kkτs
uu33

= Ck33W
k
i j J

kτzsz
αβ +

Ck23

Rkβ
N

(n2)
j W k

i n2 J
kτzs
α +

Ck13

Rkα
N

(n1)
j W k

i n1 J
kτzs
β +

+
Ck23

Rkβ
N

(m2)
i W k

m2 j J
kτsz
α +

Ck13

Rkα
N

(m1)
i W k

m1 j J
kτsz
β + Ck44N

(m2)
i,β N

(n2)
j,β W k

m2n2 J
kτs
α
β

+

+ Ck45N
(m1)
i,α N

(n2)
j,β W k

m1n2 J
kτs + Ck45N

(m2)
i,β N

(n1)
j,α W k

m2n1 J
kτs + Ck55N

(m1)
i,α N

(n1)
j,α W k

m1n1 J
kτs
β
α

+

+
Ck12

RkαR
k
β

N
(m1)
i N

(n2)
j W k

m1n2 J
kτs +

Ck12

RkαR
k
β

N
(m2)
i N

(n1)
j W k

m2n1 J
kτs+

+
Ck22(
Rkβ

)2 N
(m2)
i N

(n2)
j W k

m2n2 J
kτs
α
β

+
Ck11

(Rkα)
2 N

(m1)
i N

(n1)
j W k

m1n1 J
kτs
β
α

Kkτs
uΦ14

= ek25N
(m1)
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Properties PZT-4 Gr/EP

E11 [GPa] 81.3 132.38
E22 [GPa] 81.3 10.756
E33 [GPa] 64.5 10.756
ν12 [−] 0.329 0.24
ν13 [−] 0.432 0.24
ν23 [−] 0.432 0.49
G44 [GPa] 25.6 3.606
G55 [GPa] 25.6 5.6537
G66 [GPa] 30.6 5.6537
e15 [C/m2] 12.72 0
e24 [C/m2] 12.72 0
e31 [C/m2] -5.20 0
e32 [C/m2] -5.20 0
e33 [C/m2] 15.08 0
ε̃11/ε0 [−] 1475 3.5
ε̃22/ε0 [−] 1475 3.0
ε̃33/ε0 [−] 1300 3.0

Table 1: Physical data for multilayered plate and cylindrical shell.
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a / h 2 4 10 100

Ref.[14]

w
LD4a 4.9113 30.029 582.06 4675300
FSDTa 2.8575 18.488 423.29 3668700

Φ
LD4a 0.9103 6.1084 44.471 4580.2
FSDTa 0.78657 2.6580 15.044 1470.3

Dz

LD4a 0.0256 0.0161 0.0139 0.0136
FSDTa 0.0615 0.0401 -0.1174 -18.729

w

LD4 4.9112 30.0286 582.1298 4675118.5
LD3 4.9112 30.0285 582.1298 4675118.5
LD2 4.8954 29.9812 581.8951 4675095.5
LD1 4.8087 29.8512 579.2426 4647075.5

Φ

LD4 0.9106 6.1107 44.4934 4586.8311
LD3 0.9103 6.1102 44.4920 4586.8311
LD2 0.8948 6.0899 44.4760 4586.7891
LD1 0.8599 6.0320 44.1802 4559.1191

Dz

LD4 0.0252 0.0140 0.0051 -0.0140
LD3 0.0255 0.0142 0.0054 -0.0144
LD2 0.0271 0.0156 0.0064 -0.0205
LD1 -0.0665 -0.0890 -0.2905 -23.8867

Table 2: Transverse normal displacement w ∗ 1011 evaluated along the thickness in (z = 0). Electric
potential Φ ∗ 103 evaluated along the thickness in (z = 0). Transverse normal electric displacement
Dz ∗ 109 evaluated along the thickness at top (z = +h/2). Plate with 4 layers. Sensor case.
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a / h 2 4 10 100

Ref.[14]
σxx LD4a 3.2207 6.5642 32.771 3142.1

σxz LD4a -0.26995 -0.68720 -1.8540 -18.832

σxx

LD4 3.2240 6.5710 32.8145 3146.8381
LD3 3.2263 6.5719 32.8153 3146.8376
LD2 3.2088 6.5659 32.8137 3146.8433
LD1 3.5228 7.0093 34.3028 3271.7583

σxz

LD4 -0.2758 -0.6902 -1.8576 -18.8640
LD3 -0.2697 -0.6862 -1.8560 -18.8638
LD2 -0.3620 -0.8157 -2.1371 -21.6073
LD1 -0.3165 -0.7094 -1.8693 -18.9304

σzz

LD4 1.0001 1.0001 1.0001 0.9955
LD3 1.0052 1.0015 1.0008 0.9957
LD2 1.0334 1.0268 1.0270 1.0757
LD1 2.1237 2.3562 5.1631 342.3075

Table 3: Principal stresses σxx, σzz evaluated along the thickness at top (z = +h/2) and shear stress
σxz evaluated along the thickness in (z = 0). Plate with 4 layers. Sensor case.
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a / h 2 4 10 100

Ref.[14]

w
LD4a -1.7475 -1.4707 -1.3697 -1.3493
FSDTa -13.923 -14.107 -14.159 -14.169

Φ
LD4a 0.3330 0.4477 0.4910 0.4999
FSDTa 0.3219 0.4461 0.4908 0.4999

Dz

LD4a -9.4085 -2.4184 -0.4168 -0.0370
FSDTa -3.6667 -0.9566 -0.1816 -0.0347

w

LD4 -1.7476 -1.4708 -1.3697 -1.3494
LD3 -1.7476 -1.4707 -1.3697 -1.3494
LD2 -1.7291 -1.4663 -1.3691 -1.3493
LD1 -2.1030 -1.5963 -1.4297 -1.3971

Φ

LD4 0.3330 0.4477 0.4910 0.4999
LD3 0.3330 0.4477 0.4910 0.4999
LD2 0.3331 0.4477 0.4910 0.4999
LD1 0.3241 0.4468 0.4910 0.4999

Dz

LD4 -9.4104 -2.4185 -0.4167 -0.0370
LD3 -9.4047 -2.4182 -0.4167 -0.0370
LD2 -9.3822 -2.4167 -0.4166 -0.0370
LD1 -5.2969 -1.3815 -0.2504 -0.0353

Table 4: Transverse normal displacement w ∗ 1011 evaluated along the thickness in (z = 0). Electric
potential Φ evaluated along the thickness in (z = 0). Transverse normal electric displacement Dz ∗ 109

evaluated along the thickness at top (z = +h/2). Plate with 4 layers. Actuator case.
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a / h 2 4 10 100

Ref.[14]
σxx LD4a 3.8162 1.1180 0.1680 -0.0246

σxz LD4a 0.0864 0.0239 0.0020 0.0000

σxx

LD4 3.8404 1.1249 0.1693 -0.0246
LD3 3.8618 1.1262 0.1693 -0.0246
LD2 3.9439 1.1312 0.1695 -0.0246
LD1 12.4636 3.3532 0.5272 -0.0210

σxz

LD4 0.0929 0.0241 0.0020 0.0000
LD3 0.0651 0.0227 0.0020 0.0000
LD2 0.1824 0.0359 0.0028 0.0000
LD1 0.0215 0.0029 0.0004 0.0000

σzz

LD4 0.0006 0.0001 0.0000 0.0000
LD3 0.0271 0.0019 0.0001 0.0000
LD2 0.0547 0.0045 0.0001 0.0000
LD1 8.1925 2.1772 0.3540 0.0036

Table 5: Principal stresses σxx, σzz evaluated along the thickness at top (z = +h/2) and shear stress
σxz evaluated along the thickness in (z = 0). Plate with 4 layers. Actuator case.
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R/h 2 4 10 100

Ref.[43]

w (109) LFM4a 0.0566 0.3332 4.5483 3016.6

σzz LFM4a -1.1392 -1.0671 -1.0269 -1.0018

Φ LFM4a 0.0153 0.0355 0.0942 0.6513

Dz (109) LFM4a 0.0095 0.0028 -0.1646 -111.76

w (109) LD4 0.0566 0.3331 4.5473 3017.2876

σαα LD4
0.4332 2.3837 17.5910 2055.6587
-1.4003 -3.3497 -17.0300 -316.7597

σββ LD4
0.9068 4.9006 35.0550 2567.2803
-2.0590 -6.5066 -38.7790 -2542.8062

σαβ LD4
0.0008 0.0039 0.0291 1.3707
-0.0008 -0.0040 -0.0329 -4.0802

σαz LD4 -0.1084 -0.2644 -0.7242 -5.1421

σβz LD4 0.0046 0.0194 0.0750 0.2104

σzz LD4
-0.0798 -0.0469 0.0317 3.2476
-1.1658 -1.0914 -1.0992 -5.2059

Φ LD4 0.0153 0.0356 0.0949 0.6696

Dz (109) LD4 0.0054 -0.0179 -0.2668 -111.1786

Table 6: Transverse normal displacementw∗109, electric potential Φ, shear stresses σαz, σβz evaluated
along the thickness in (z = 0). Transverse normal electric displacement Dz ∗ 109 evaluated along
the thickness at top (z = +h/2). In-plane stresses σαα, σββ, σαβ and transverse normal stress σzz
evaluated along the thickness at (z = ±h/2). Shell mono-layered piezoelectric cylinder. Mesh (10×10).
Sensor case.
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R/h 2 4 10 100

Ref.[43]

w (1011) LFM4a -9.6220 -11.285 6.4540 11277

σzz LFM4a 0.0431 0.0114 0.0004 -0.0001

Φ LFM4a 0.3431 0.4611 0.5037 0.5254

Dz (1011) LFM4a -584.80 -783.99 -1615.6 -16266

w (1011) LD4 -9.6219 -11.2852 6.4451 11275.3779

σαα LD4
-3.2642 -4.4933 -8.9704 -18.4390
-0.9616 -3.5544 -10.3507 -106.9489

σββ LD4
0.3518 0.3624 1.3358 94.4157
0.4177 0.0395 -1.4200 -94.1954

σαβ LD4
0.0036 0.0042 0.0082 0.1075
0.0005 0.0019 0.0054 -0.0114

σαz LD4 -0.0207 -0.0207 -0.0324 -0.1905

σβz LD4 0.0023 0.0027 0.0014 0.0072

σzz LD4
0.0731 0.0311 0.0090 0.1865
0.1009 0.0371 0.0047 0.0454

Φ LD4 0.3432 0.4611 0.5037 0.5259

Dz (1011) LD4 -586.0881 -786.2541 -1621.7268 -16310.8350

Table 7: Transverse normal displacement w ∗ 1011, electric potential Φ, shear stresses σαz, σβz evalu-
ated along the thickness in (z = 0). Transverse normal electric displacement Dz ∗ 1011 evaluated along
the thickness at top (z = +h/2). In-plane stresses σαα, σββ, σαβ and transverse normal stress σzz
evaluated along the thickness at (z = ±h/2). Shell mono-layered piezoelectric cylinder. Mesh (10×10).
Actuator case.
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R/h 2 4 10 100

w (1011) LFM4a 30.225 111.91 969.70 403190

σαz LFM4a -0.1193 -0.2575 -0.6365 -3.1560

σzz LFM4a -0.415 -0.661 -1.150 -3.997

Φ LFM4a 0.00497 0.0195 0.0602 0.3127

Dz (1011) LFM4a 0.752 1.104 1.325 -5.495

w (1011)
LD4 30.223 111.906 969.672 403287
LD1 31.60 111.731 947.779 397293

σαz
LD4 -0.1195 -0.2579 -0.6385 -3.2162
LD1 -0.1144 -0.2383 -0.5845 -2.9859

σzz
LD4 -0.4129 -0.6597 -1.1529 -4.0875
LD1 -0.4033 -0.6466 -1.1245 -3.9824

Φ
LD4 0.0050 0.0195 0.0604 0.3190
LD1 0.0072 0.0212 0.0604 0.3143

Dz (1011)
LD4 0.1516 -0.8323 -3.0984 -23.473
LD1 -2.950 -8.7942 -36.282 -1648.83

Table 8: Transverse normal displacement w∗1011, electric potential Φ, shear stresse σαz and transverse
normal stress σzz evaluated along the thickness in (z = 0). Transverse normal electric displacement
Dz ∗ 1011 evaluated along the thickness at top (z = +h/2). Shell cylinder with 3 layers. Sensor case.
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R/h 2 4 10 100

w (1011) LFM4a -1.306 -1.400 -1.4667 5.5418

σαz (104) LFM4a 19.176 8.4776 1.5865 -0.5423

σzz (104) LFM4a -116.36 -17.086 -0.5748 -0.5571

Φ LFM4a 0.4058 0.4826 0.5029 0.5009

Dz (1011) LFM4a -106.61 -66.035 -32.684 -36.209

w (1011)
LD4 -1.3066 -1.4007 -1.4662 5.5418
LD1 -1.3646 -1.4450 -1.4849 5.4331

σαz (104)
LD4 19.250 8.5036 1.5412 -0.5538
LD1 11.005 5.5673 0.9585 -0.5193

σzz (104)
LD4 -119.606 -18.605 3.309 -0.357
LD1 -82.662 -8.323 5.147 -0.490

Φ
LD4 0.4058 0.4827 0.5029 0.5009
LD1 0.4917 0.4975 0.4996 0.500

Dz (1011)
LD4 -106.851 -66.045 -32.642 -36.201
LD1 -62.002 -38.432 -19.998 -34.863

Table 9: Transverse normal displacement w ∗ 1011, electric potential Φ, shear stresse σαz ∗ 104 and
transverse normal stress σzz ∗ 104 evaluated along the thickness in (z = 0). Transverse normal electric
displacement Dz ∗ 1011 evaluated along the thickness at top (z = +h/2). Shell cylinder with 3 layers.
Actuator case.
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Φ =0

Φb=0

p(x,y)=pz sin( x/a) sin( y/b)

Φb=0

Φ(x,y)=Φz sin(πx/a) sin(πy/b)

Figure 1: Piezo plate sensor and actuator cases
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Figure 2: Geometry of the shell.
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Figure 3: Tying points for the MITC9 shell finite element.
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Traction

Compression

p(x,y)=pz sin( x/a) sin( y/b)

b=0

t=0

Traction

Compression b=0

Φ(x,y)=Φz sin(πx/a) sin(πy/b)

Figure 4: Cylindrical piezo shell, sensor and actuator cases .
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Figure 20: Electric Displacement Dz

along the thickness, with thickness ratio
( a / h ) = 100. Plate with 4 layers. Ac-
tuator case.
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Figure 21: Shear stress σαz along
the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Sensor
case.
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Figure 22: Shear stress σαz along
the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Sen-
sor case.
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Figure 23: Transverse stress σzz along
the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Sensor
case.
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Figure 24: Transverse stress σzz along
the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Sen-
sor case.
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Figure 25: Shear stress σαz along
the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Actua-
tor case.
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Figure 26: Shear stress σαz along
the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Ac-
tuator case.
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Figure 27: Transverse stress σzz along
the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Actua-
tor case.
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Figure 28: Transverse stress σzz along
the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Ac-
tuator case.
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Figure 29: Electric Potential Φ along
the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Sensor
case.
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Figure 30: Electric Potential Φ along
the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Sen-
sor case.
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Figure 31: Electric Displacement Dz

along the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Sensor
case.
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Figure 32: Electric Displacement Dz

along the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Sen-
sor case.
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Figure 33: Electric Potential Φ along
the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Actua-
tor case.
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Figure 34: Electric Potential Φ along
the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Ac-
tuator case.
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Figure 35: Electric Displacement Dz

along the thickness, with thickness ratio
(R/h ) = 2. Shell with 3 layers. Actua-
tor case.
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Figure 36: Electric Displacement Dz

along the thickness, with thickness ratio
(R/h ) = 100. Shell with 3 layers. Ac-
tuator case.
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