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Robust Output Regulation: Optimization-Based Synthesis and
Event-Triggered Implementation

Mohammad Saeed Sarafraz, Anton V. Proskurnikov, Senior Member, IEEE , Mohammad Saleh Tavazoei,
and Peyman Mohajerin Esfahani

Abstract— We investigate the problem of practical output regula-
tion, i.e., to design a controller that brings the system output in the
vicinity of a desired target value while keeping the other variables
bounded. We consider uncertain systems that are possibly nonlin-
ear and the uncertainty of their linear parts is modeled element-
wise through a parametric family of matrix boxes. An optimization-
based design procedure is proposed that delivers a continuous-
time control and estimates the maximal regulation error. We also
analyze an event-triggered emulation of this controller, which can
be implemented on a digital platform, along with an explicit esti-
mates of the regulation error.

Index Terms— Robust control, element-wise uncertainty,
event-triggered control, optimization-based synthesis.

I. INTRODUCTION

Output regulation of uncertain dynamic systems is a fundamental
problem in the control literature that finds a wide range of real-world
applications [1]. The problem has been studied in various settings
depending on the system dynamics (e.g., linear [2] or nonlinear
models [3]) and uncertainty nature (e.g., characterization in time [4]
or frequency domains [5]). In the light of recent developments of
digitalization, communication and computation limitations of the
controllers’ architecture have also become an important consideration,
which also contributes to this variety of the setting. In particular, one
of the distinct features of the controllers is the time scale under which
the controller receives output measurements or updates the control
efforts applied to the systems (e.g., continuous [2], periodic [6], or
event-based interactions [7], [8]).

From a literature point of view, the uncertainty aspect is often the
focus of robust control while the time-scale implementation of the
controllers is the main theme of the event-triggered mechanism. The
control synthesis tools of output regulation were first developed in
the robust control literature for the setting in which the uncertainty is
characterized in the frequency domain [5], [9]. The setting of time-
domain uncertainty, however, remains much less explored partly, due
to the inherent provable computational difficulty [10]. Considering the
current existing works briefly mentioned above, we set the following
as our main objective in this study:

Given a nonlinear plant with element-wise time-domain uncertainty,
we aim to develop a scalable computational framework, along with
rigorous and explicit performance guarantees, to synthesize a robust
output regulator and an event-triggered mechanism enabling its
implementation on a digital platform.
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Related literature on robust control: A natural way for
modeling of the uncertainty in the time domain is through the
state-space representation of the dynamic systems. The stability
of such systems can be cast as an optimization program, which
unfortunately is often computationally intractable [11]. Conservative
approximations in the form of linear matrix inequalities (LMIs) are
proposed for particular subclasses of uncertainty including single
ellipsoid [12] or polytopic systems with low number of vertices [2],
[13], [14]. A richer modeling framework is element-wise or box
uncertainty that allows to conveniently incorporate different sources
of uncertainties. One approach to deal with this class of uncertainty
is randomized algorithms [15]. Alternatively, one can leverage the
recent developments in the robust optimization literature [16] to
address the computational bottleneck. The optimization-based frame-
work proposed in this paper exploits the latter result in the context
of output regulation.

Related literature on event-triggered control of uncertain
systems: The second part of this study is concerned with event-
triggered control, as a powerful technique to address the potential
communication limitation on the measurement or actuation side. A
recent approach towards event-triggered control of uncertain systems
builds on an adaptive control perspective [7], [17]. The structure of
an event triggering mechanism dictated by the necessity to maintain
a positive dwell time between consecutive events usually makes it
impossible to ensure asymptotic convergence. As such, the practical
stability (i.e., convergence to a “tunable” invariant set) is aimed
for. Such a notion is also adopted in other contexts like quantized
control [18], and has been investigated in the presence of a common
Lyapunov function [3], [4].

Focusing on uncertain linear systems, the work [12] considers
norm-bounded uncertainties with continuous measurements, while
[19], [20] develop mechanism under the assumption that the system is
minimum-phase. Most recently, the work [21] studies the problem of
output regulation together along with an event-triggering mechanism
in which the robustness is guaranteed for an unstructured open
uncertainty set. Concerning nonlinear systems, the recent work [22]
proposes an event-triggered mechanism under the assumption that
the system is input-to-state stable. Unlike the existing literature men-
tioned above, in this article we opt to introduce an event-triggering
mechanism in which both monitoring the output measurement and
implementing the actuation values operate on a discrete-time basis. To
our best knowledge, none of the existing works considers this setting
in control of uncertain nonlinear systems. The closest work in this
spirit is [23], in which the class of single-input single-output system
is considered and the performance is guaranteed only for sufficiently
large feedback gains and sufficiently small periodic sampled-times.

Our contributions: The particular emphasis of this study is on
the computational aspect of the control design and the corresponding
event-triggering mechanism, along with explicit performance guaran-
tees. More specifically, the contributions of the article are summarized
as follows:

(i) Dynamic structure and inherent hardness: We propose a
class of dynamic output controllers aiming to locate the closed-
loop equilibrium in accordance with the desired regulation task
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(Section III-A and Lemma III.1). We further show that from
a computational viewpoint stability analysis of the proposed
controller is strongly NP-hard (Proposition III.2).

(ii) Robust control under element-wise (box) uncertainties:
We provide a sufficient condition along with an optimization
framework to synthesize a dynamic output controller that
enjoys a provable practical stability (Theorem III.3). As a
byproduct, we also show that given any fixed controller, the
proposed optimization program reduces to a tractable convex
optimization that can be viewed as a computational certification
tool for the practical stability (Corollary III.4).

(iii) Sampled-time event-triggered mechanism: We propose a
unifying triggering mechanism together with easy-to-compute
sufficient conditions under which the proposed output con-
troller can be implemented through aperiodic measurements
and event-based actuation (Theorem IV.2). The proposed mech-
anism offers explicit computable maximal inter-sampling and
regulation error bounds. The proposed result subsumes both the
existing approaches [24], [25] as a special case (Corollary IV.5
and Remark IV.3).

In the rest of the article, we present a formal description of the
problem along with some basic assumptions in Section II. The robust
control method is developed in Section III, and the sampled-time
event-triggered mechanism is presented in Section IV. Section V
presents a numerical example in order to validate the theoretical
results.

Notation: The set of n× n symmetric matrices and the set of
n × n positive-definite (semi-definite) symmetric ones are denoted
by Sn and Sn�0 (Sn�0), respectively. For two symmetric matrices A
and B, we write A � B (respectively, A � B) if A − B ∈ Sn�0

(respectively, Sn�0). For a square matrix A, we denote [A]† = A +

A>. The symbol Diag {A1, A2, ..., An} denotes the block diagonal
matrix with blocks A1, A2, ..., An. For briefness in notations, the
matrix

[
A B>
B C

]
is shown by

[
A ∗
B C

]
. We use e1, . . . , em to denote

the standard coordinate basis of Rm. Also, 1m ∈ Rm denotes the
vector whose elements are all equal to 1.

II. PROBLEM STATEMENT

Consider the control system{
ẋ(t) = A?x(t) +B?u(t) + k?

(
x(t)

)
y(t) = Cx(t)

(1)

where the vector x(t) ∈ Rnx , u(t) ∈ Rnu , and y(t) ∈ Rny are the
state, the control, and the output vectors, respectively. The matrices
A? and B? represent the linear part of the state dynamics, and the
function k? : Rnx → Rnx encapsulates the nonlinearity of the
dynamics. Throughout this article, we assume that system (1) admits
a unique solution x( · ) for any x(0). The controller to be designed
in the next section has access only to the output y(t). We allow
the matrices A?, B? and the nonlinearity k? : Rnx → Rnx in the
system (1) to be partially uncertain. Our main control objective is to
stabilize (1) in the Lagrange sense (i.e., all solutions are bounded)
and steer the output trajectory of (1) to an ε-neighborhood of a target
value yd ∈ Rny . Formally speaking, we aim to ensure that

sup
t≥0
‖x(t)‖ <∞, lim

t→∞
‖y(t)− yd‖ ≤ ε ∀x(0) ∈ Rnx . (2)

The special case of ε = 0 corresponds to asymptotic output regulation
and the relaxed condition with is known as “ε-practical output
stability” [26]. Henceforth, the following assumptions are adopted.

Assumption II.1. [Uncertainty characterization] System (1) and the
desired value yd ∈ Rny satisfy the following assumptions:

(i) (Box uncertainty) Matrices A? and B? obey inequalities

|A? −A| ≤ Ab, |B? −B| ≤ Bb, (3)

where A and B are known nominal matrices, the inequalities
are understood element-wise, and Ab =

[
abij

]
, Bb =

[
bbij

]
are the respective uncertainty bounds.

(ii) (Bounded nonlinearity) The function k? satisfies

‖k?(x1)− k?(x2)‖ ≤ kb, ∀x1, x2 ∈ Rnx (4)

where kb ≥ 0 is a known constant.
(iii) (Existence of an equilibrium) There exists a pair (xd, ud) ∈

Rnx × Rnu such that

yd = Cxd and A?xd + k?(xd) = −B?ud . (5)

Assumption II.1(ii) holds if and only if the nonlinearity of the
dynamics is globally bounded. If ‖k?(x)‖ ≤ C, then (4) holds with
kb = 2C. However, this estimate of kb may be too conservative,
e.g., if k? is an uncertain constant, one can actually choose kb = 0.
The “incremental” condition (4) thus provides more flexbility. There
are several classes of nonlinear dynamics for which the bound (4) is
available: (i) pendulum-like nonlinearity which represents periodicity
of the dynamics, e.g., phase-locked loops [27], [28], or swing
equations in power systems [29]; (ii) nonlinearity presented due to an
underlying neural network architecture [30] or a lookup-table [31].
Such nonlinearities may or may not be fully known, but regardless of
this knowledge, it is often too complicated to be utilized in control
synthesis algorithms. Furthermore, we emphasize that the bound kb
will not be required for control design and is only used in the final
performance bounds.

Assumption II.1(iii) involves (ny + nx) algebraic constraints
with (nx + nu) variables. Therefore, we typically expect that such
equations have a solution (xd, ud) when nu ≥ ny , i.e., the number
of control variables is not less than the number of outputs. When the
dynamic system (1) is linear (i.e., k∗ is constant), these equations
reduce to a set of linear constraints, and that a sufficient condition
for Assumption II.1(iii) is the matrix

[
C 0
A? B?

]
of full column rank.

Problem II.2. Consider the system (1) under Assumption II.1, and
let yd ∈ Rny and ε ≥ 0 be a desired target and regulation precision,
respectively.

(i) Control synthesis: Synthesize an output control y[0,t] 7→ u(t),1

t ≥ 0, in order to ensure the ε-practical output regulation in
the sense of (2).

(ii) Sampled-time event-based emulation: Given a prescribed
series of measurement sampled-times, design a triggering mech-
anism to update the control along with a guaranteed precision
of the desired output regulation (2).

We start with designing a continuous-time controller (Section III)
whose sampled-time redesign, or emulation, is considered in Sec-
tion IV. Note that the viability of the sampled-time emulation reflects
a certain robustness level of the continuous-time controller.

III. CONTINUOUS-TIME CONTROL DESIGN

The main focus of this section is Problem II.2(i). We first find
a structure of the controller ensuring that the closed-loop system
has an equilibrium (xd, ud) such that yd = Cxd, and then provide
sufficient conditions guaranteeing that this equilibrium is globally
asymptotically stable. The existence of an equilibrium is natural, if

1The notation y[0,t] is the restriction of the function y to the set [0, t], that
is, {y(s) : s ∈ [0, t]}.
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one is interested in the ε-practical stability (2) with an arbitrarily
small ε.

A possible control architecture, and perhaps the simplest form, is
the static controller u(t) = Dcy(t)+η. Unfortunately, to provide the
existence of an equilibrium from Assumption II.1(iii), the parameter
η = ud−Dcyd should depend on ud, which, in turn, depends on the
uncertain matrices A? and B? and function k?. For this reason, we
propose a dynamic controller, being a multidimensional counterpart
of the classical proportional-integral control.

A. Dynamic control and equilibrium existence

Consider now a more general dynamic controller{
ẇ(t) = Acw(t) +Bcy(t) + ξ

u(t) = Ccw(t) +Dcy(t) + η,
(6)

where matrices Ac, Cc ∈ Rnu×nu , Bc, Dc ∈ Rnu×ny and ξ, η ∈
Rnu are the design parameters. These additional parameters in (6)
enable one to make the equilibrium (x∗, w∗) of the closed-loop
system (1) and (6) compatible with the target value yd in spite of
the parametric uncertainty (3).

Lemma III.1 (Closed-loop equilibrium). If Assumption II.1(iii)
holds, the matrix Cc has full column rank, and the controller
parameters are such that

Ac = 0 and ξ = −Bcyd, (7)

then the closed-loop system (1) and (6) has an equilibrium (xd, wd),
where xd is introduced in Assumption II.1(iii).

Proof. Since the matrix Cc has full column rank, there exists wd ∈
Rnu such that Ccwd +Dcy

d +η = ud, where ud is given by (5). In
view of Assumption II.1(iii) and (7), the point (xd, wd) ∈ Rnx+nu

obeys the algebraic equations{
A?xd +B?(Ccw

d +DcCx
d + η) + k?(xd) = 0,

Acw
d +BcCx

d + ξ = Bc(y
d − Cxd) = 0,

(8)

Hence, it is an equilibrium for the closed-loop system.

Notice that the controller’s parameters Bc, Dc, and η do not
influence the existence of an equilibrium compatible with the desired
output yd. While Bc and Dc may influence the stability of the
transient behavior of the closed-loop system, the vector η does not
affect stability and only determines wd. Hence, without loss of
generality, we set η = −Dcyd. Combining this with (7) and the
controller (6) shapes into{

ẇ(t) = Bc
(
y(t)− yd)

u(t) = Ccw(t) +Dc
(
y(t)− yd) . (9)

Note that the dynamic controller (9) may be considered as a (multi-
dimensional) extension of the conventional PI controller.

B. Closed-loop stability of transient behavior

The goal of this section is to design the controller parame-
ters Bc, Cc, and Dc such that the the equilibrium from Lemma III.1
is (practically) stable. To this end, we introduce the augmented state
vector of the closed-loop system as

z(t) :=

[
x(t)− xd

w(t)− wd

]
. (10)

Based on the system dynamics in (1) together with the con-
troller (9), it is obtained that

ż =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)FC̄

]
z

+J>(k?(J>z)− k?(x?)),
(11)

where ∆A = A? −A and ∆B = B? −B represent the uncertainty
in the linear part of the system dynamics, and matrices Ā, B̄, C̄, F ,
and J are defined as follows.

Ā :=

[
A 0
0 0

]
, B̄ :=

[
B 0
0 I

]
C̄ :=

[
C 0
0 I

]
, J :=

[
Inx 0nx×nu

]
, F :=

[
Dc Cc
Bc 0

] (12)

It should be noted that matrix F collects all the design variables of
the controller. The goal of the controller design is to guarantee the
(practical) stability of the system (11) for all uncertainties ∆A,∆B,
and k?( · ) that meet Assumption II.1. Unfortunately, it turns out that
the exact characterization of such an F is provably intractable. In
fact, checking the stability of the system (11) for a given F is also
a difficult problem. This is formalized in the next proposition.

Proposition III.2 (Intractability). Consider the system (1) under
Assumption II.1, and let the control signal follow the dynamics (9).
Then, for a given set of the control parameters (i.e., matrix F in
(12)), the problem of checking whether the output target stability (2)
holds for some ε ≥ 0 is strongly NP hard and equivalent to

∀∆A,∆B : |∆A| ≤ Ab, |∆B| ≤ Bb ∃P ∈ Snx+nu
�0 :[

P
(
Ā+ J>∆AJ +(B̄ + J>∆BJ)FC̄

)]†
� 0.

(13)

Proof. Recall that the nonlinear term in the dynamics (11) is uni-
formly bounded due to Assumption II.1(ii). Therefore, thanks to the
classical result of [32, Theorem 9.1], the stability of the system (11)
is equivalent to the stability of the linear part described as

ż =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)FC̄

]
z . (14)

From the classical linear system theory, we know that the stability
of (14) is equivalent to the existence of a quadratic Lyapunov
function V (z) = z>Pz, where the symmetric positive definite
matrix P may in general depend on the uncertainty in the dynamics.
This assertion can be mathematically translated to checking whether
the given controller parameter F satisfies (13). Note that the order of
the quantifies implies that the matrix P may depend on the uncertain
parameter ∆A and ∆B. The assertion (13) is indeed a special case
of the problem of an interval matrix’s stability [10], which is proven
to be strongly NP-hard [33, Corollary 2.6].

A useful technique to deal with the assertion similar to (13) is
to choose a so-called common Lyapunov function [34]. Namely, we
aim to find a positive-definite matrix P for all possible model pa-
rameters, i.e., the assertion (13) is replaced with a more conservative
requirement as follows:

∃P ∈ Snx+nu
�0 ∀∆A,∆B : |∆A| ≤ Ab, |∆B| ≤ Bb[

P
(
Ā+ J>∆AJ +(B̄ + J>∆BJ)FC̄

)]†
� 0.

(15)

Note that the only difference between (13) and the conservative
assertion in (15) is the order of quantifiers between the Lyapunov
matrix P and the linear dynamics uncertainties ∆A and ∆B. The
argument (15) is a special subclass of problems known as the
“matrix cube problems” [35]. While this class of problems is also
provably hard [35, Proposition 4.1], the state-of-the-art in the convex
optimization literature offers an attractive sufficient condition where
the resulting conservatism is bounded independently of the size of
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the problem [16]. Building on these developments, we will provide
an optimization framework to design the controller parameters along
with a corresponding common Lyapunov function.

Theorem III.3 (Robust control & common Lyapunov function).
Consider the system (1), satisfying Assumption II.1, and the con-
troller (9). Also, consider the optimization program

max αζ−1

s.t. α ∈ R, ζ, κij , µik ∈ R>0

P ∈ Snx+nu
�0 , Cc ∈ Rnu×nu , Bc, Dc ∈ Rnu×ny

F =

[
Dc Cc
Bc 0

]
, M =

[
PĀ+ PB̄FC̄

]†
+ αI

G1 = Diag
{
−κija−2

bij

}
i,j
, G2 = Diag

{
−µikb−2

bik

}
i,k

G3 = Diag
{
−µ−1

ik

}
i,k
, H1 = PJ>(1nx ⊗ Inx)

H2 = C̄>F>J>
[
1nu ⊗ e1 . . . 1nu ⊗ enx

]
M +

∑
i,j κijJ

>e>j ejJ ∗ ∗ ∗ ∗
H>1 G1 ∗ ∗ ∗
H>1 0 G2 ∗ ∗
H>2 0 0 G3 ∗
JP 0 0 0 −ζI,

 � 0

(16)

where α∗, ζ∗ and P∗ denote the optimal solutions of corresponding
decision variables. If α∗ > 0, then the controller provides εc-
practical output regulation (2) where

εc = kb‖C̄‖

√
λmax(P∗)

α∗ζ
−1
∗ λmin(P∗)

. (17)

In particular, if kb = 0 (i.e., the nonlinear term vanishes to a
constant) and α∗ > 0, then the closed-loop system is exponentially
stable and limt→∞ y(t) = yd.

Proof. Consider a quadratic Lyapunov function V (z) = z>Pz. The
time-derivative of V along the trajectories of (11) is

1

2

d

dt
V (z) = z>P

(
Ā+ B̄F C̄

)
z

+ z>P
(
J>∆AJ + J>∆BJFC̄

)
z

+ z>PJ>(k?(J>z)− k?(x?)),

where the last term involving the nonlinear term can be estimated by
invoking the Young’s inequality as follows.

2z>PJ>
(
k?(J>z)− k?(x?)

)
≤ ζ−1z>PJ>JPz+

+ ζ
∥∥k?(J>z)− k?(x?))

∥∥2 ≤ ζ−1z>PJ>JPz + ζk2
b .

Notice that the parameter ζ ∈ R>0 is a positive scalar, and the last
inequality is an immediate consequence of (4). In the light of the
latter estimate, one can observe that if the inequality[

P (Ā+ B̄F C̄) + P (J>∆AJ + J>∆BJFC̄)

+
ζ−1

2
PJ>JP

]†
� −αI,

(18)

holds for some α ∈ R>0, then the dynamics of the Lyapunov function
value along with system trajectories satisfy

1

2

d

dt
V (z) ≤ −α‖z‖2 + ζk2

b ≤
−α

λmax(P∗)
V (z) + ζk2

b . (19)

The above observation implies that lim supt→∞ V
(
z(t)

)
≤

λmax(P∗)ζk
2
b/α, which together with the simple bound

λmin(P∗)‖z‖2 ≤ V (z), leads to

lim sup
t→∞

‖y(t)− yd‖ ≤ lim sup
t→∞

‖C̄‖‖z(t)‖

≤ lim sup
t→∞

‖C̄‖

√
V
(
z(t)

)
λmin(P∗)

≤ εc ,

where εc is defined as in (17). Hence, the above observation indicates
that under the requirement (18) for some α > 0, the desired assertion
holds. Next, we aim to replace the robust inequality (18) by a more
conservative criterion, which in turn can be verified efficiently. This
procedure consists of several steps. Introducing the variable M :=[
PĀ+ PB̄FC̄

]†
+ αI , the inequality (18) is rewritten as

−M − ζ−1PJ>JP +
[
PJ>

nx∑
i=1

( nx∑
j=1

(δaij)e
>
i ej

)
J

+ PJ>
nx∑
i=1

( nu∑
k=1

(δbik)e>i ek
)
JFC̄

]†
� 0, (20)

where the uncertainty parameters are described element-wise as
∆A = [δaij ] and ∆B = [δbij ]. Recall that the condition (20) has to
hold for all uncertain parameters, i.e., it is a robust constraint. Thanks
to [16, Theorem 3.1], constraint (20) holds if there exist parameters
Dij , Eik, λij , γik, where i, j ∈ {1, . . . , nx} and k ∈ {1, . . . , nu},
such that[

Dij − λija2
bij
z>PJ>e>i eiJPz ∗
ejJz λijI

]
� 0,[

Eik − γikb2bikz
>PJ>e>i eiJPz ∗

ekJFC̄z γikI

]
� 0,

−z>
(
M + ζ−1PJ>JP

)
z ≥

∑
i,j Dij +

∑
i,k Eik.

(21)

By deploying the standard Schur complement in the first two inequal-
ities of (21), we arrive at

λij , γik > 0,

Dij − λija2
bij
z>PJ>e>i eiJPz

−λ−1
ij z
>J>e>j ejJz ≥ 0,

Eik − γikb2bij z
>PJ>e>i eiJPz

−γ−1
ik z
>C̄>F>J>e>k ekJFC̄z ≥ 0,

−z>
(
M + ζ−1PJ>JP

)
z ≥

∑
i,j Dij +

∑
i,k Eik.

(22)

Eliminating {Dij}i,j and {Eik}i,k and doing some straightforward
computations, the above inequalities reduces to

λij , γik > 0,

M + ζ−1PJ>JP +
∑
i,j κijJ

>e>j ejJ

−H1G
−1
1 H>1 −H1G

−1
2 H>1 −H2G

−1
3 H>2 � 0,

(23)

where the matrices G1, G2, G3, H1, and H2 are defined as in
(16). The proof is then concluded by applying yet again the Schur
complement to the inequality (23) and replace the variables κij =

λ−1
ij and µik = γ−1

ik . We note that since ζ > 0, then α ≥ 0 if
and only the objective function αζ−1 ≥ 0. Therefore, the explicit
positivity constraint over the variable α can be discarded without any
impact on the assertion of the theorem. In fact, the elimination of this
constraint allows the program (16) being always feasible. Finally, we
also note that the second part of the assertion is a straightforward
consequence of the bound (17) and the fact that asymptotic stability
and exponential stability in linear system coincide.

The optimization program (16) in Theorem III.3 is, in general,
non-convex. We however highlight two important features of this
program: (i) It is a tool enabling co-design of a controller and a
Lyapunov function for the closed-loop system, and (ii) when the
control parameters are fixed, the resulting program reduces to a linear
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matrix inequality (LMI), which is amenable to the off-the-shelves
convex optimization solvers as shown by the following corollary.

Corollary III.4 (Controller certification via convex optimization).
Consider system (1) satisfying Assumption II.1 that is closed through
the feedback (9) with some fixed coefficients (12). Consider the
optimization program

max αζ−1

s.t. α ∈ R, ζ, κij , µik ∈ R>0, P ∈ Snx+nu
�0

M ′ = M +
∑
i,j κijJ

>e>j ejJ −H2G
−1
3 H>2

M ′ ∗ ∗ ∗
H>1 G1 ∗ ∗
H>1 0 G2 ∗
JP 0 0 −ζI

 � 0

(24)

where the matrices C,F,G1, G2, G3, H1, and H2 are defined on
the basis of the system and control parameters2. Let α∗, ζ∗, and P∗
denote an optimizer of the program (24). Then, if α∗ > 0, then the
output target control (2) is fulfilled for all ε ≥ εc as defined in (24).
Moreover, if α∗ ≤ 0, then there exist matrices A? and B? such that

|A? −A| ≤ π

2
Ab, |B? −B| ≤ π

2
Bb,

and the closed-loop system is unstable.

Proof. Considering the optimization program (16) with fixed matrix
F , the matrix H2 is also fixed. The first statement is obtained by
applying the standard Schur complement as in (23). The second
statement follows from [16, Theorem 3.1] stating that the convex
characterization of (15) (i.e., the step from (20) to (21)) is tight up
to multiplier π/2.

We close this section by a remark on the different sources of
conservatism in the proposed approach. It is needless to say that
any numerical progress at the frontier of each of these sources will
lead to an improvement of the solution method in this article.

Remark III.5 (Conservatism of the proposed approach). The path
from the output target control (2) to the numerical solution of
the optimization program (16) constitutes three steps that are only
sufficient conditions and may contribute to the level of conservatism:
(i) to restrict to a common Lyapunov function, i.e., the transition from
(13) to (15), (ii) to apply the state-of-the-art matrix cube problem
from (20) to (21), and (iii) to numerically solve the finite, but possibly
nonconvex, optimization program (16). As detailed in Corollary III.4,
the conservatism introduced by step (ii) is actually tight up to a
constant independently of the dimension of the problem.

IV. APERIODIC EVENT-TRIGGERED ROBUST CONTROL

In this section, we address Problem II.2(ii) aiming to synthesize
a sampled-time counterpart of the controller, which can access
the system output y( · ) only at sampled instants {ts}s∈N. The
sequence ts is predefined by, for instance, an external message
scheduler. Throughout this study we require that ts < ts+1 and ts
tends to infinity when s increases. The latter is a sufficient condition
to ensure a “Zeno-free” control design, a necessary requirement to
avoid possible infinite switches in a finite-time period. We note
that the inter-sampling intervals ts+1 − ts need not be constant,
i.e., we allow an arbitrary aperiodic time sampling. Continuous-time
controller (9) is then naturally replaced by its sampled-time emulation

2Formally speaking, the objective function in (24) is not convex. However,
since the only source of nonconvexity is the scalar variable ζ, a straightforward
approach is to select this variable through a grid-search or bisection.

where the output signal y(t) fed to (9) within each interval [ts, ts+1)
is replaced by its latest measurement y(ts):

w(t) = w(ts) + (t− ts)Bc(y(ts)− yd), t ∈ [ts, ts+1) (25)

On the actuation side, the simplest scenario is to compute the new
control input upon receiving measurement y(ts), which remains
constant till the next measurement y(ts+1) arrives:

u(t) = Ccw(ts) +Dc
(
y(ts)− yd), t ∈ [ts, ts+1). (26)

Note that u(t) takes a constant value within the time interval t ∈
[ts, ts+1). More generally, one may consider an event-triggered
strategy: Upon arrival of the new measurement y(ts), the control
input is updated only if a triggering condition is fulfilled.

Formally, assume that the control input has been updated for the
last time at t = tj . Upon the arrival of the new measurement y(ts),
where ts > tj , the triggering condition is validated that involves the
vector v(tj , ts) :=

[
w(tj)

>, y(tj)
>, w(ts)

>, y(ts)
>]>. Inspired

by [25], we consider a triggering condition as follows[
v(tj , ts)

1

]>
Q
[
v(tj , ts)

1

]
≥ 0. (27)

The condition (27) is slightly more generalized than the one proposed
in [25] in a way that it also supports constant thresholds. Note that
the information vector v(tj , ts) is augmented by a constant 1. If (27)
holds, the control input is updated: we set j = s and find u(tj) =
u(ts) from (26). In the case that (27) does not hold, the control
input remains unchanged till at least time ts+1. This procedure is
summarized in Algorithm 1.

Algorithm 1 Aperiodic Event-Triggered Control (AETC)
1: Initialization: Consider sample instants {ts}s∈N, initial mea-

surement y0, and initial control state w0 = 0. Set j = 0, compute
u0 from (26), and send it to the system (1).

2: Upon receiving y(ts), find w(ts) from (25).
• If (27) holds, then set j ← s, compute u(tj) = u(ts)

from (26) and send it to the system (1);
• otherwise, keep u(ts) = u(tj) for t ∈ [ts, ts+1), i.e., nothing

is required to be communicated to (1).
3: Set s← s+ 1 and go to step 2.

Remark IV.1 (Special triggering mechanisms). If in (27) Q = 0,
the control strategy reduces to the usual aperiodic sampled-time (or
digital) control. As pointed out in [25], the quadratic form (27)
subsumes the relative event-triggered mechanism [24]. The mech-
anism (27) includes the absolute event-triggered mechanism [36]
and mixed event-triggered mechanism [37] as its special cases. More
specifically, when

Q = Q̃(q0, q1) :=

 I ∗ ∗ ∗ ∗
0 I ∗ ∗ ∗
−I 0 I−q1I ∗ ∗
0 −I 0 I−q1I ∗
0 0 0 0 −q0

 , (28)

the triggering mechanism (27) is translated into the condition∥∥∥∥[w(ts)− w(tj)
y(ts)− y(tj)

]∥∥∥∥2

≥ q0 + q1

∥∥∥∥[w(ts)
y(ts)

]∥∥∥∥2

. (29)

In summary, the aperiodic event-triggered control (AETC) mecha-
nism introduced above entails two key components: the time instants
{ts}s∈N, and the triggering mechanism (27) characterized by the
matrix Q. By definition, we know that ts → ∞, and as such, all
solutions of the closed-loop system are forward complete, i.e., no
Zeno trajectories may exist. In the rest of this section, we analyze
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the sampled-time event-triggered emulation of the dynamic controller
from Section III and provide sufficient conditions ensuring (2).

Let us fix the controller parameters to a feasible solu-
tion (Bc∗, Cc∗, Dc∗) of the optimization program (16) along with
the Lyapunov matrix P∗. For the brevity of the exposition, we also
introduce the following notation:

F̂∗ :=

[
Dc∗ Cc∗

0 0

]
, β := ‖P∗‖‖Bc∗C̄‖,

%B :=
(
‖B̄‖+ ‖Bb‖

)2 ‖F̂∗‖2,
%AB := %B‖C̄‖2 +

(
‖Ā‖+ ‖Ab‖

)2
,

ϑB := max
|∆B|≤Bb

‖P∗(B̄ + J>∆BJ)F̂∗‖,

ϑAB := max
|∆A|≤Ab, |∆B|≤Bb

∥∥∥Ā+ J>∆AJ (30)

+ (B̄ + J>∆BJ − I)(F∗ − F̂∗)
∥∥∥

e(h) := ϑ−1
AB(eϑABh − 1)

Now we want to proceed with the main result of this section.

Theorem IV.2 (Certified robust regulation under AETC). Con-
sider the system (1) obeying Assumption II.1. Let the matri-
ces (Bc∗, Cc∗, Dc∗, P∗, α∗, ζ∗) be a feasible solution to optimiza-
tion problem (16) where α∗ > 0. Consider the AETC in Algorithm 1,
where the sequence {ts}s∈N and matrix Q are such that

h̄ := sup
s∈N

(ts+1 − ts) ≤ hmax and Q � Q̃(q0, q1).

Here Q̃(q0, q1) is given by (28) with some constants q0, q1 ≥ 0 and

hmax := ϑ−1
AB ln

(
1 + ϑAB

√
h
)
,

h :=
α2
∗
√
q1λmin(P∗)[(1 + 2

√
q1)2λmax(P∗)]−1 − 2ϑ2Bq1‖C̄‖

2

6ϑ2B(q1%B‖C̄‖4 + 6%AB‖C̄‖2) + 3β2(%Bq1‖C̄‖2 + %AB)2
,

(31)
Then, the closed-loop system under AETC is εd-practical output

stable in the sense of (2) where

ε2d = f1(h̄, q1)q0 + f2(h̄, q1)k2
b , (32)

in which the constants f1 and f2 can be explicitly expressed in
form (42), depending only on h̄, q1, P?, C̄, and parameters (30).

Proof. Suppose t ∈ [ts, ts+1) and let tj ≤ ts be the last time instant
when the control input was computed. Let z(t) be the state of the
closed system defined in (10), and denote

e(t) :=

[
y(tj)− y(t)
w(tj)− w(t)

]
= C̄(z(tj)− z(t)), z̄(t) := z(t)− z(ts).

where the matrix C̄ is defined in (12). Since (25) holds and u(t) ≡
u(tj) for t ∈ [ts, ts+1], the closed-loop system’s state evolves as

ż(t) =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)F∗C̄

]
z(t) (33)

+ J>
(
k?
(
J>z(t)

)
− k?(x?)

)
+ (F̂∗ − F∗)C̄z̄(t)

+ (B̄ + J>∆BJ)F̂∗e(t), t ∈ [ts, ts+1),

where the matrices Ā, B̄, J are defined in (12). Consider the same
Lyapunov function as in the continuous-time case V (z) = z>P∗z
whose time derivative along a trajectory of (33) can be computed by

1

2

d

dt
V (z(t)) = z>(t)P∗

(
(B̄ + J>∆BJ)F̂∗e(t) (34)

+
(
Ā+ J>∆AJ + (B̄ + J>∆BJ)F∗C̄

)
z(t)

+ (F̂∗ − F∗)C̄z̄(t) + J>
(
k?(J>z)− k?(x?)

))
.

By assumption, we know that the objective function of the pro-
gram (16) is positive, i.e., α∗ζ−1

∗ > 0. Due to Young’s inequality,

2z>(t)P∗
(
B̄ + J>∆BJ

)
F̂∗e(t) ≤ ψ1ϑ

2
B‖z(t)‖

2 + ψ−1
1 ‖e(t)‖

2,

2z>(t)P∗
(
F̂∗ − F∗

)
C̄z̄(t) ≤ ψ2β

2‖z(t)‖2 + ψ−1
2 ‖z̄(t)‖

2,

where ψ1, ψ2 are two positive scalars to be specified later. Thus, the
derivative V̇ from (34) can be estimated by

d

dt
V (z(t)) ≤ −(α∗ − ψ1ϑ

2
B − ψ2β

2)‖z(t)‖2 (35)

+ ζ∗k
2
b + ψ1

−1‖e(t)‖2 + ψ2
−1‖z̄(t)‖2.

One may also notice that since ˙̄z(t) = ż(t) and e(t) = C̄(z(tj) −
z(ts))− C̄z̄(t), the equation (33) is rewritten as

˙̄z(t) =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)F∗C̄

]
z(ts) (36)

+
[
Ā+ J>∆AJ + (B̄ + J>∆BJ − I)(F∗ − F̂∗)

]
C̄z̄(t)

+ J>(k?(J>z)− k?(x?)) + (B̄ + J>∆BJ)F̂∗C̄(z(tj)− z(ts)).

Recall that we have assumed h̄ ≤ hmax. Leveraging similar tech-
niques as in [38, Lemma 3], the solution of (36) is estimated as

‖z̄(t)‖ ≤
[ (
‖B̄‖+ ‖Bb‖

)
‖F̂∗‖ ‖e(ts)‖+ kb (37)

+
(
‖Ā‖+ ‖Ab‖+ (‖B̄‖+ ‖Bb‖)‖F∗C̄‖

)
‖z(ts)‖

]
e(h̄)

where the constant e(h) is defined in (30). Notice now that if Q �
Q̃(q0, q1), we can conclude that ‖e(ts)‖2 ≤ q0 + q1‖C̄‖2‖z(ts)‖2.
This inequality automatically holds if ts = tj (and e(ts) = 0).
Otherwise, the triggering condition (27) is violated, whence

‖e(t)‖2 ≤ (‖e(ts)‖+ ‖e(t)− e(ts)‖)2

≤ 2q0 + 2q1‖C̄‖2‖z(ts)‖2 + 2‖C̄‖2‖z̄(t)‖2 (38)

for t ∈ [ts, ts+1]. Denote

ψ1 := σϑ−2
B α∗, ψ2 := σβ−2α∗, σ :=

√
q1(1 + 2

√
q1)−1. (39)

Equations (35) together with (37)-(39) lead to

V̇ (z(t)) ≤ −α∗(1− 2σ)‖z‖2 + g1‖z(ts)‖2 + g2, (40)

where the constants g1, g2 are defined as

g1 = σ−1ϑ2
Bα
−1
∗
(

2q1‖C̄‖2 (41a)

+ 6q1%B‖C̄‖4e2(h̄) + 6%AB‖C̄‖2e2(h̄)
)

+ 3σ−1β2α−1
∗ (%Bq1‖C̄‖2 + %AB)2e2(h̄),

g2 = σ−1ϑ2
Bα
−1
∗
(

2q0 + 6q0%B‖C̄‖2e2(h̄) (41b)

+ 6‖C̄‖2e2(h̄)k2
b

)
+ 3σ−1β2α−1

∗
(
%Bq0 + k2

b

)
e2(h̄) + ζ∗k

2
b .

Recalling that V (z) ≤ ‖z‖2λmax(P∗) and denoting hs := ts+1−ts
and g3 := −α∗(1− 2σ), the inequality (40) entails that

V (ts+1) ≤
(
eg3λ

−1
max(P∗)hs − 1

)
g−1

3 g2+[
eg3λ

−1
max(P∗)hs +

(
eg3λ

−1
max(P∗)hs − 1

)
g−1

3 g1
λmax(P∗)
λmin(P∗)

]
V (ts) .

It can be shown that the expression in brackets [...] is less than 1 if
hs ≤ h̄ < hmax. Furthermore, if h̄ < hmax, then

lim
t→∞

‖y(t)‖2 ≤ ‖C̄‖2 lim
t→∞

‖z(t)‖2 ≤ ‖C̄‖2λ−1
min(P∗) lim

t→∞
V (t)

≤ ‖C̄‖2 g2λmax(P∗)
−g1λmax(P∗)− g3λmin(P∗)

= ε2d.
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f1
(
h̄, q1

)
:=

ϑ2B
(
2 + 6%B‖C̄‖2e2(h̄)

)
‖C̄‖4 + 3β2%B‖C̄‖4e2(h̄)

−ϑ2B
(
2q1‖C̄‖2 + 6q1%B‖C̄‖4e2(h̄) + 6%AB‖C̄‖2e2(h̄)

)
− 3β2(%Bq1‖C̄‖2 + %AB)2e2(h̄) + α2

∗

√
q1λmin(P∗)

(1 + 2
√
q1)2λmax(P∗)

,

f2(h̄, q1) :=
6ϑ2B‖C̄‖

6e2(h̄) + 3β2‖C̄‖4e2(h̄) + α∗ζ∗‖C̄‖2
√
q1(1 + 2

√
q1)−1

−ϑ2B
(
2q1‖C̄‖2 + 6q1%B‖C̄‖4e2(h̄) + 6%AB‖C̄‖2e2(h̄)

)
− 3β2(%Bq1‖C̄‖2 + %AB)2e2(h̄) + α2

∗

√
q1λmin(P∗)

(1 + 2
√
q1)2λmax(P∗)

.

(42)

This implies that the system (1) is εd-practical stable and also y(t)
converges to a ball with center yd and radius εd.

Remark IV.3 (Explicit inter-sampling bound). Theorem IV.2 offers
an AETC with a more general framework including absolute and
relative thresholds whose maximal inter-sampling time hmax can be
found from (31) (cf., [25, Assumption III.1]).

The setting in Theorem IV.2 is clearly more stringent than the
continuous measurements and actuation framework in Theorem III.3.
Therefore, it is no longer surprising that the corresponding practical
stability levels in (17) and (32) satisfy εc ≤ εd. The latter is
essentially quantified based on three parameters: maximum inter-
sampling bound hmax, and the absolute and relative triggering
thresholds q0 and q1 (cf. Remark IV.1). When hmax tends to 0, our
setting effectively moves from the aperiodic sampled measurement
framework to the continuous domain, and when the thresholds q0
and q1 tend to 0, the event-triggered control mechanism transfers to
the continuous-time implementation. It can be shown that the gap
between εc and εd in this case vanishes.

Remark IV.4 (From discrete to continuous implementation). Let
εc be defined as in (17) and εd(h̄, q0, q1) in (32) as a function
of the relevant parameters h̄, q0, and q1. With a straightforward
computation, one can inspect that

lim
q0,q1→0

lim
h̄→0

εd(h̄, q0, q1) = εc.

We note that the practical stability certificate εd of the proposed
AETC in (32) may take 0 values when kb = q0 = 0. This implies
that even if the system is uncertain and we have an AETC in place,
we may still be able to steer the output of the system to the desired
target yd. This interesting outcome, however, comes at the price of
a bound on the absolute threshold q1. We close this section with the
following result in this regard.

Corollary IV.5 (Relative AETC threshold for perfect tracking). Sup-
pose that the system (1) is linear (i.e., kb = 0 in Assumption II.1(ii)),
the program (16) is feasible with α∗ > 0, and the absolute threshold
in Theorem IV.2 is q0 = 0. If

√
q1(2
√
q1 + 1)2 <

α2
∗λmin(P∗)

2‖L̄‖2ϑ2
Bλmax(P∗)

,

then the regulation performance in (32) is εd = 0, i.e., the con-
troller (9) implemented via the AETC scheme in Algorithm 1 steers
the output of the system to the desired target yd.

Proof. The proof is an immediate consequence of Theorem IV.2. It
only suffices to check for which values of q1 the maximal inter-
sampling hmax in (31) is still well-defined.

V. NUMERICAL EXAMPLE

Since optimization problem (16) is non-convex, special numerical
techniques discussed in [39, Section 5] are utilized in the following
example to validate the main results of this study.

Fig. 1. The impact of the nonlinearity amplitude on the actual regulation
error, and the theoretical bound (17) proposed in Theorem III.3.

Example 1. Consider system (1) with the nominal matrices3

A =

 1.40 −0.21 6.71 −5.68
−0.58 −4.29 0 0.67
1.07 4.27 −6.65 5.89
0.05 4.27 1.34 −2.10

 ,
B =

[
0 5.68 1.14 1.14
0 0 −3.15 0

]>
, C =

[
1 0 1 −1
0 1 0 0

]
.

The uncertainty bounds are Ab = 0.1(1>4 ⊗ 14) and Bb =
0.1(1>2 ⊗ 14). Matrices Bc, Cc, and Dc are found from (16) by
means of the aforementioned technique. In this example, we consider
the desired output value as yd =

[
9 10

]
. We first examine the result

of Theorem III.3. For this purpose, we consider a nonlinear term
in the form k?(x) = kb/2

[
sin(x1(t)) . . . sin(x4(t))

]
in the

dynamic (1) and inspect the influence of amplitude kb on the desired
regulation performance. Figure 1 compares the actual regulation error
(i.e., deviation between the output and its desired value) in solid black
line, and the predicted error by (17) in dashed red line.

Next, we introduce a simulation setting to validate the theoretical
bound (31) in Theorem IV.2. While (31) anticipates that h̄ ≤ 0.0286
ensures the stability of the system under AETC, the numerical
investigation shows that in this example the stability is guaranteed for
higher values up to h̄ ≤ 0.105. It is, however, worth mentioning that
the regulation error is not much influenced by h̄ as long as h̄ ≤ 0.105.
This observation is also qualitatively aligned with the assertion of
Theorem IV.2 (cf. (32) and its dependency on h̄ as defined in (42)).

With regards to the triggering mechanism and its impact on the
regulation error in Theorem IV.2, we vary the threshold level in
the inequality (29) in the form q0 = q1 = ξ. The solid black
line in Figure 2 shows the impact of this variation of the pair
(q0, q1) through the variable ξ on the actual the regulation error.
As anticipated by Theorem IV.2, the degradation of the regulation
performance is dominated by the theoretical bound (32) (red dashed
line). Besides these error bounds, we also inspect the relation between
the relative frequency of triggered events (in proportion to the total
number of sampling instants) and the threshold level. This observation
is depicted in blue dotted curve with the axis on the right-hand side

3These nominal matrices are chosen from Compleib library of MATLAB
(http://www.complib.de/).
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Fig. 2. The impact of the threshold level in (29) on the actual regulation
error, the theoretical bound (32), and the frequency of the triggered
events.

of Figure 2. As expected, the increase of the threshold monotonically
reduces the frequency of the triggering events.
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