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Abstract
Themain purpose of this work is to provide an efficient scheme for constructing kernel-based
reduced interpolation models. In the existing literature such problems are mainly addressed
via the well-established knot insertion or knot removal schemes. Such iterative strategies
are usually quite demanding from a computational point of view and our goal is to study
an efficient implementation for data removal approaches, namely efficient reduced basis
algorithm (ERBA). Focusing on kernel-based interpolation, the algorithm makes use of two
iterative rules for removing data. The former, called ERBA-r , is based on classical residual
evaluations. The latter, namely ERBA-p, is independent of the function values and relies on
error bounds defined by the power function. In both cases, inspired by the so-called extended
Rippa’s algorithm, our ERBA takes advantage of a fast implementation.

Keywords Kernels · Reduced basis models · Efficient knot removal schemes · RBF
approximation

Mathematics Subject Classification 65D05 · 41A05 · 65D10 · 65D15

1 Introduction

We introduce the kernel-based scattered data interpolation problem following [1, 2]. Let
Ω ⊆ R

d and X = {xi , i = 1, . . . , n} ⊂ Ω be a set of distinct nodes, n ∈ N, where
xi = (xi,1, . . . , xi,d)ᵀ, i = 1, . . . , n. The scattered data interpolation problem consists in
recovering an unknown function f : Ω −→ R given its values at X , i.e. f = f |X =
( f (x1), . . . , f (xn))ᵀ = ( f1, . . . , fn)ᵀ. This can be achieved by imposing the interpolation
conditions at X . In particular, for kernel-based interpolation, the approximating function
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assumes the form:

S f ,X (x) =
n∑

i=1

ciκε(x, xi ), x ∈ Ω,

where c = (c1, . . . , cn)ᵀ ∈ R
n and κε : Ω × Ω −→ R is a strictly positive definite kernel

depending on a shape parameter ε > 0. In addition, κε is supposed to be radial, i.e. there
exists a univariate function ϕε : R≥0 −→ R such that κε(x, y) = ϕε(r), with r := ‖x− y‖2.
As a consequence, such a setting is commonly referred to as Radial Basis Function (RBF)
interpolation. With this clarification and with abuse of notation, we might write simply κ

instead of κε . The interpolation conditions are satisfied by finding the unique vector c so that

Ac = f , (1)

where A = (Ai, j ) = κ(xi , x j ), i, j = 1, . . . , n, is the so-called interpolation (or collocation
or simply kernel) matrix. The uniqueness of the solution of (1) is guaranteed as long as κ

is strictly positive definite. For a more general formulation of the interpolant that involves
conditionally positive definite kernels, and for a complete overview concerning kernel-based
approximation, we refer the reader e.g. to [2].

The interpolant S f ,X belongs to the space

Hκ = span {κ(·, x), x ∈ Ω} ,

which, equipped with the bilinear form (·, ·)Hκ , is a pre-Hilbert space with reproducing
kernel κ . Moreover, the completion ofHκ with respect to the norm ‖·‖Hκ =

√
(·, ·)Hκ is the

so-called native space Nκ associated to κ . Many upper bounds for the interpolation error,
e.g. in terms of the fill-distance [1, Theorem 14.5, p. 121] and using sampling inequalities [3,
4], are available. Here we focus on the following pointwise error bound [1, Theorem 14.2,
p. 117]:

| f (x) − S f ,X (x)| ≤ Pκ,X (x)‖ f ‖Nκ , f ∈ Nκ , x ∈ Ω, (2)

where Pκ,X is the so-called power function. For the purposes of this paper, we directly define
the power function as [5, p. 116, §14]:

Pκ,X (x) =
√

κ(x, x) − κᵀ(x)A−1κ(x). (3)

where

κ(x) := (κ(x, x1), . . . , κ(x, xn))ᵀ.

Note that (2) splits the error into two terms. The former, i.e. the power function, only depends
on the nodes and on the kernel, while the latter takes into account the function f .

As a consequence, the power function gives information about how the interpolation
error relates to the node distributions. Indeed, as for polynomial and spline interpolation,
the approximation quality strongly depends on the distribution of the scattered data. In view
of this, starting with an initial set of nodes, many adaptive strategies have been studied in
order to construct well-behaved interpolation designs, i.e. interpolation sets which provide
an accurate reconstruction and, preferably, affordable computational costs. In particular, the
so-called greedy approaches match such purposes by iteratively adding new points to the
interpolation set. The iterative rule is based on minimizing a pointwise upper bound for the
interpolant. Precisely, those strategies rely on the residual of the interpolant ( f -greedy) or
on the value of the power function (p-greedy); refer to [6–9] for a general overview. Despite
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the fact that we only focus on these two schemes, other strategies that combine the two
above, known as f · p and f /p greedy, are available; we refer the reader to [10–12]. These
methods fall under the context of knot insertion algorithms, which have been studied also in
the context of adaptive least-squares approximation [1, §21].

Alternatively, as in our work, one could start by taking a large interpolation set, which
provides an accurate approximation, and iteratively remove nodes until the resulting inter-
polation error does not exceed a fixed tolerance (see e.g. [13] for a general overview). These
kinds of knot removal approaches aim to provide reduced models by neglecting as many
points as possible from the initial set while preserving a target accuracy. However, they are
usually computationally expensive, since many interpolants built upon large sets of nodes
need to be constructed [14].

In this paper, in order to overcome the limitations related to the high computational com-
plexity for reduced basis models, we take advantage of the Extension of Rippa’s Algorithm
(ERA) recently provided in [15]; see also [16]. More precisely, classical reduced basis itera-
tive strategies are usually quite demanding (aboutO(n4) operations) and our goal is to study
an efficient implementation for data removal approaches, namely Efficient Reduced Basis
Algorithm (ERBA), which only requires aboutO(n3) operations. Since n might be large, we
should call the algorithm more efficient RBA. However, with abuse of language, we simply
refer to the algorithm as efficient RBA. For the ERBA scheme, besides the residual-based
rule, that leads to the ERBA-r , and that can be derived from the ERA, we provide an efficient
scheme for computing the power function as well. The resulting ERBA-p is a reduced model
that takes advantage of being accurate, fast and easy to implement.

The paper is organised as follows. In Sect. 2, we fix some notations and we introduce the
Reduced Basis Algorithm (RBA) based on knot removal strategies. Its efficient implemen-
tation, i.e. the ERBA scheme, and theoretical results are then provided in Sect. 3, where a
detailed analysis of the computational complexity of the proposed schemes is also included.
Numerical tests that confirm the theoretical findings are presented in Sect. 4. The conclusions
are offered in Sect. 5.

2 The Reduced Basis Algorithm (RBA)

In what follows, we introduce our schemes for reduced basis models based on both the
residual and on the power function minimization. The latter algorithm is quasi optimal in the
sense that, referring to (2), we only take into account the power function, neglecting the term
involving the native space norm of the sought function. This should not be seen as a drawback.
Indeed, we are able to compute a quasi-optimal subset of points independently of the function
values. As a consequence, it might be relevant if one has to deal with many measurements
sampled at the same points. We further point out that the residual-based scheme has strong
similarities with the knot removal algorithm shown in [1, §21]. We now present the RBA
scheme and in the next section we focus on its fast implementation.

Let X = {xi , i = 1, . . . , n} ⊂ Ω be the initial set of nodes, let Xs−1 = {xi , i =
1, . . . , ns−1} ⊂ Ω be the reduced set at the (s − 1)-th step of the algorithm (X0 = X ), and
let τ ∈ R>0 be a fixed tolerance. Choosing ρ ∈ N, ρ < n, and letting � = 	ns−1/ρ
, the
s-th step of the iterative scheme, s ≥ 1, is as follows.

1. Partition Xs−1 into � test sets X 1
s−1, . . . ,X �

s−1, |X j
s−1| = ρ j with ρ j ∈ {ρ, . . . , 2ρ −1},

ρ j ≤ max(2ρ − 1, ns−1). Moreover, let X j
s−1 := Xs−1 \ X j

s−1 be the training sets,
j = 1, . . . , �.
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2. For each X j
s−1, j = 1, . . . , �, compute:

2a. for the residual-based scheme:

w j = 1√
ρ j

‖ f j − S j‖2, (4)

where f j := f |X j
s−1

and S j := S
f ,X j

s−1
(X j

s−1) is the evaluation vector on X j
s−1

of the interpolant S
f ,X j

s−1
. Here, we need to solve an (ns−1 − ρ j ) × (ns−1 − ρ j )

linear system for each j = 1, . . . , � (see (1));
2b. for the power-based scheme:

w j = 1√
ρ j

‖P j‖2,

where P j := P
κ,X j

s−1
(X j

s−1) is the evaluation vector onX
j
s−1 of the power function

P
κ,X j

s−1
. Here, we need to invert an (ns−1 − ρ j ) × (ns−1 − ρ j ) matrix for each

j = 1, . . . , � (see (3)).

3. Choose

j	 = argmin
j∈{1,...,�}

w j .

4. Let rs−1 = w j	 :

4a. if rs−1 ≤ τ , define Xs = Xs−1 \ X j	

s−1 and proceed iteratively with the s-th step;
4b. if rs−1 > τ , Xs = Xs−1 is the final interpolation set obtained by the procedure.

Remark 1 In the presented RBA algorithm, at each iteration, the data set is partitioned ran-
domly. As also confirmed by the numerical experiments carried out in Sect. 4, since ρ � n,
such randomness does not influence the algorithm in selecting meaningful designs of inter-
polation node sets according to the chosen approach. Nevertheless, if relevant, particular
configurations of subsets can be taken into account (e.g. nearest neighbors).

The convergence of the residual-based rule has been studied in many context and for
many basis functions, see e.g. [13] for a general overview. As far as the convergence of the
proposed power function-based scheme is concerned, it is a consequence of [7, Lemma 2.3],
precisely:

‖Pκ,Xs−1‖L∞(Ω)≤ ‖Pκ,Xs‖L∞(Ω),

being Xs ⊂ Xs−1 nested sets.
From now on, in analyzing the computational complexity, we assume without loss of

generality that ρ divides ns at each step of the algorithm, and thus ρ j ≡ ρ holds true.
Therefore, at each step, a classical implementation of this method requires to solving ns
different (ns − ρ) × (ns − ρ) linear systems, in the residual-based case, or the inversion of
an (ns − ρ) × (ns − ρ) matrix in the power-based setting. Hence, in both situations, each
step is computationally demanding. In [1, §21], a similar residual-based approach has been
speeded up by using Rippa’s algorithm in the case ρ = 1. In the next section, inspired by
ERA [15], which speeds up the computational complexity for any ρ ≥ 1, we provide a fast
implementation of the proposed algorithm.
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3 Efficient Reduced Basis Algorithm (ERBA)

To study the computational complexity of the proposed schemes, we have to focus on the
calculation of the residuals (or of the power function) that is performed at each iteration.
Then, fixed a certain step s, with s = 1, 2, . . ., let us introduce the following notations:
Xs := X , ns := n, and let p := (p1, . . . , pρ)ᵀ be the vector of ρ indices related to the

elements of the subset X j
s := V , |X j

s | = ρ. We also adopt the following notations:

f p := ( fi )i∈ p, f p := ( fi )i /∈ p,

A p, p := (Ai, j )i, j /∈ p, A p, p := (Ai, j )i, j∈ p, A p,: := (Ai, j )i∈ p, j∈{1,...,n},
κ(x) := (κ(x, x1), . . . , κ(x, xn))ᵀ,

k p(x) = (κ(x)i )i∈ p, k p(x) = (κ(x)i )i /∈ p,

In the following we explain our efficient strategy for the implementation of both the residual
and power-based schemes, i.e. we speed up Step 2. of the RBA algorithm.

3.1 The ERBA-r

In step 2a. for the computation of S j in Eq. (4), we need to compute the interpolant and hence
solve a system that leads to a matrix inversion. Precisely, let us consider

S f ,V (x) := S( p)
f ,X (x) =

∑

i /∈ p

c( p)
i κε(x, xi ), x ∈ Ω, xi ∈ X ,

where V = X \ V and c( p) := (
c( p)
i

)
i /∈ p is determined by solving

A p, pc( p) = f p.

We are interested in computing the residual

e p := f p − ((c( p))ᵀk p(V))ᵀ, (5)

being k p(V) = (κ(xi , x j ))i∈ p, j /∈ p an (n−ρ)×ρ matrix. Supposing n/ρ = � ∈ N, a classic
approachwould lead to the resolution of � different (n−ρ)×(n−ρ) linear systems, and thus,
since usually n � ρ, to a computational cost of about O(n4). In case ρ = 1 one could use
the Rippa’s algorithm reducing the complexity to O(n3). In case of more folds, i.e. ρ > 1,
we take advantage of the ERA scheme [15] for which (5) can be computed as

e p = (A−1
p, p)

−1cp. (6)

Doing in this way, we need to invert an n×n matrix and then to solve � different ρ ×ρ linear
systems. Therefore, the computational cost is about O(n3), leading to a significant saving
(cf. [15, §2.2]).

3.2 The ERBA-p

Here, we focus on the computation of the power function vector (see (3) and step 2b. of the
algorithm presented in Sect. 2)

PV =
√
diag(k p(V) − k p(V)ᵀ(A p, p)−1k p(V)), (7)
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where diag(·) is the diagonal operator. The vector PV is usually computed by means of a for-
loop over the elements of V (see [1, Program 17.1]). Hence, supposing again n/ρ = � ∈ N,
we need to invert � matrices of dimension (n − ρ) × (n − ρ), leading to a computational
cost of about O(�(n − ρ)3) = O(n(n − ρ)3/ρ). Since n � ρ, the cost for each step of the
algorithm is approximately O(n4).

To provide a fast computation of the power function vector PV , we first recall that, letting
R ∈ R

n1×n2 and S ∈ R
n2×n1 , we have that

diag(RS) = sum(R � Sᵀ), (8)

where� denotes the Hadamard (or pointwise) product. Then, we obtain the following result.

Theorem 1 The vector (7) can be computed as

PV =
√
sum(((A−1

p, p)
−1A−1

p,:) � k(V)ᵀ),

where sum(·) denotes the sum-by-rows operator.
Proof Putting together (5) and (6), we have that

(A−1
p, p)

−1cp = f p − k p(V)ᵀ(A p, p)−1 f p,

k p(V)ᵀ(A p, p)−1 f p = f p − (A−1
p, p)

−1cp.

Since f is arbitrary if the function f is not fixed, we can substitute it with k p(V) in the
equation. Then,

k p(V)ᵀ(A p, p)−1k p(V) = k p(V) − (A−1
p, p)

−1A−1
p,:k(V).

Hence, recalling (7), we get

PV =
√
diag((A−1

p, p)
−1A−1

p,:k(V)),

Finally, by applying (8) to (A−1
p, p)

−1A−1
p,: and k(V), we conclude the proof. ��

By adopting the scheme proposed in Theorem 1, the computational cost at each step is
about O(n3), indeed we need to invert a unique n × n matrix and to perform other minor
calculations that are negligible as long as n � ρ. The proposed strategy is therefore faster
than the classical framework, as confirmed by the experiments carried out in the next section.

4 Numerics

In what follows, we perform some numerical experiments to prove the efficiency of the
proposed ERBA. The tests have been carried out in Matlab on a Intel(R) Core(TM) i7-
1165G7 CPU@2.80 GHz processor. The software is available for the scientific community
at

https://github.com/cesc14/ERBA .

In Sect. 4.1 we compare our efficient implementation with the classical one. In doing so,
we take both smooth and non-smooth target functions and different kernel bases. A focus
on the CPU times is shown in Sect. 4.2, where we let both n and ρ vary. In Sect. 4.3, we
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Fig. 1 (a) The function f . (b) The pointwise relative error between f and the interpolant constructed via the
data set X

analyze a stationary setting where the shape parameter varies according to the interpolation
set. Finally, we present a test comparing the ERBAmethod and greedy schemes (whichmight
be thought as forward RBA approaches).

4.1 ERBA versus RBA

Let Ω = [−1, 1]2. In this subsection, we take the strictly positive definite kernel

ϕ(r) = e−εr , MatérnC0,

and we set ε = 1. As interpolation data set X ⊂ Ω , we consider an n × n grid, with n = 25.
Moreover, we take an m × m evaluation grid Ξ with m = 60.

4.1.1 Regular target function

Let f : Ω −→ R be defined as

f (x) = 1

1 + (x1 − 0.5)2 + (x2 + 0.2)2
, x = (x1, x2).

The associated RMSE computed via the whole data set X and evaluated on Ξ is eX =
9.69E−05. In Fig. 1, we plot the function f and the pointwise relative error between f and
the interpolant S f ,X evaluated on Ξ .

For testing the proposed strategy, we set ρ = 3 and the tolerance τr = 2eX for ERBA-
r , while for ERBA-p we take τp = 2‖PΞ‖2/m, being PΞ the power function vector
constructed via the nodes X and evaluated on Ξ . Denoting by Xs ⊂ X the set of resulting
reduced interpolation nodes, in Tables 1 and 2 we respectively compare the CPU times of
ERBA-r and ERBA-p with their classical implementation. Moreover, the so-constructed
reduced data sets, as well as the pointwise relative error between f and the interpolants
constructed on Xs , are depicted in Fig. 2.

The efficiency of our ERBA scheme is clearly deduced by Tables 1 and 2. Furthermore, as
expected, we note that the ERBA-p tends to extract almost uniformly distributed nodes, while
ERBA-r cluster the points where the target function has steep gradients. Such a behaviour
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Table 1 Results for the ERBA-r
scheme with f

|Xs | eXs ERBA CPU times RBA CPU times

298 1.29E−04 3.14E+00 5.05E+02

CPU times are in seconds

Table 2 Results for the ERBA-p
scheme with f

|Xs | eXs ERBA CPU times RBA CPU times

103 2.41E−03 4.73E+00 5.28E+02

CPU times are in seconds
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Fig. 2 Interpolation of f . (a) The reduced ERBA-r data set. (b) The reduced ERBA-p data set. The pointwise
relative error between f and the interpolant constructed via the reduced ERBA-r (c) and ERBA-p (d) data
set

will be amplified in the next experiment, which is carried out with a discontinuous target
function.
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Fig. 3 (a) The function g. (b) The pointwise relative error between g and the interpolant constructed via the
data set X

Table 3 Results for the ERBA-r
scheme with g

|Xs | eXs ERBA CPU times RBA CPU times

82 1.62E−01 3.63E+00 5.82E+02

CPU times are in seconds

Table 4 Results for the ERBA-p
scheme with g

|Xs | eXs ERBA CPU times RBA CPU times

298 1.09E−01 4.36E+00 5.40E+02

CPU times are in seconds

4.1.2 Discontinuous target function

Let g : Ω −→ R be defined as

g(x) =
{
x1 + x2 − 3 if x1 > 0,

x1 + x2 − 2 if x1 ≤ 0,
x = (x1, x2).

The associated RMSE computed on Ξ is eX = 1.14E−01. In Fig. 3, we plot the function g
and the pointwise relative error between g and the interpolant Sg,X evaluated on Ξ .

Here, we keep ρ = 3 and we set the tolerance τr = (3/2)eX for ERBA-r , while for
ERBA-p we take τp = (3/2)‖PΞ‖2/m, being PΞ the power function vector constructed
via the nodes X and evaluated on Ξ . As in the previous test, we report the CPU times of
ERBA-r and ERBA-p (in Tables 3, 4) and the reduced data sets together with the pointwise
relative errors in Fig. 4. From these results with the discontinuous target function, we recover
the same patterns of the previous experiments, i.e. the efficiency of the ERBA methods and
the clustering effect of the ERBA-r .

4.2 Varying n and�

This subsection is dedicated to test how the efficacy of our schemes depends on n and ρ.
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(a) (b)

(c) (d)

Fig. 4 Interpolation of g. (a) The reduced ERBA-r data set. (b) The reduced ERBA-p data set. The pointwise
relative error between g and the interpolant constructed via the reduced ERBA-r (c) and ERBA-p (d) data set

4.2.1 A focus on n

As a further experiment, always with the aim of comparing the complexity of ERBA and
RBA, we consider the setting of Sect. 4.1 (with target function f ) and we compare the CPU
times of the algorithms by varying the grid size of the initial data set X . Precisely, we take
n = 15 + 3k, k = 0, . . . , 7. The results are reported in Fig. 5. We note that the saving in
terms of computational complexity is relevant for each choice of n.

4.2.2 A focus on�

Here, always in the same setting of Sect. 4.1 (but with target function g), our purpose is to
show how the CPU times and the number of reduced nodes provided by ERBA vary with
the parameter ρ. Thus, we take ρ = 2k, k = 1, . . . , 7, and we display the results in Fig. 6.
We observe that the number of reduced nodes is almost constant, especially as long as ρ is
small. As a consequence, the CPU times decrease with ρ, indeed less steps of the algorithm
are performed.
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(a) (b)

Fig. 5 The CPU times required by ERBA (dashed blue line) and RBA (solid black line) with f . (a) The
residual based case. (b) The power based case

(a) (b)

Fig. 6 ERBA-p (dashed blue line) and ERBA-r (solid black line) with g by varying ρ. (a) CPU time. (b)
Final number of nodes

4.3 Stationary ERBA

In this subsection, we investigate the role of the shape parameter. We take the kernel

ϕ(r) = e−(εr)2 , GaussianC∞.

As interpolation set, we consider n2 quasi-random Halton points [17]H in Ω , with n = 37,
while we keep Ξ as evaluation grid. Here, we focus on a stationary interpolation approach:
fixed an initial ε0 > 0, at each iteration of our method, the shape parameter is set as ε =
ε0/hHs−1,Ξ , where hHs−1,Ξ is the fill-distance at the s-th step of the algorithm, i.e.,

hHs−1,Ξ = max
ξ∈Ξ

(
min

xi∈Hs−1
‖ξ − xi‖2

)
.

In the following, we fix ρ = 7 and we consider the target function f introduced in
Sect. 4.1. In Fig. 7, we plot the pointwise relative errors between such function and the
interpolant constructed on H. The associated RMSE computed on Ξ is eH, f = 1.23E−06.
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Fig. 7 The pointwise relative
error between f and the
interpolant constructed via the
data set H

(a) (b)

(c) (d)

Fig. 8 Interpolation of f . (a) The reduced ERBA-r data set. (b) The reduced ERBA-p data set. The pointwise
relative error between f and the interpolant constructed via the reduced ERBA-r (c) and ERBA-p (d) data
set
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Fig. 9 (a) The function h. (b) The pointwise relative error between h and the interpolant constructed via the
data set Y

We now fix ε0 = 0.1 and we set τr = 1E+04r0 (for ERBA-r ) and τp = (6/5)r0 (for
ERBA-p), being r0 the value produced at the first iteration of ERBA scheme as outlined in the
algorithm described in Sect. 2. Then, the results of the stationary ERBA implementation are
presented in Fig. 8. We point out that, for infinitely smooth kernels, such a stationary strategy
becomes essential to partially avoid the typical ill-conditioning of the kernel matrices.

4.4 ERBA versus Greedy

As a final test, we carry out a comparison between our ERBA scheme and a greedy scheme
that works in a specular manner with respect to RBA. For the sake of a clearer presentation,
we detail it in the Appendix. We take the compactly-supported kernel

ϕ(r) = max(0, 1 − εr)4(4εr + 1), WendlandC2,

with ε = 0.1. As interpolation data set Y ⊂ Ω , we consider an n × n grid, with n = 40,
while we keep Ξ as evaluation grid. Moreover, we consider the target function h : Ω −→ R

defined as

h(x) = tan

(
x1 + x2 + 3

5

)
, x = (x1, x2).

The associated RMSE computed on Ξ is eY = 3.94E − 06. In Fig. 9, we plot the function
h and the pointwise relative error between h and the interpolant Sh,Y evaluated on Ξ .

For both the ERBA and greedy algorithms we take ρ = 5. For ERBA-r and greedy-r ,
we set τr = 1E−06, while we take τp = 5‖PΞ‖2/m, being PΞ the power function vector
constructed via the nodes Y and evaluated on Ξ , for ERBA-p and greedy-p. The initial set
X0 for the greedy schemes is a 5× 5 equispaced grid in Ω , which is nested in X . In Figs. 10
and 11 we report the achieved results.

These experiments point out that in some cases, as when the number of nodes to remove
is not too large, the ERBA is faster than the greedy approach. Indeed, the cost of greedy
schemes increase when the number of the iterations grows.
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(a) (b)

(c) (d)

Fig. 10 Interpolation of h. (a) The reduced ERBA-r data set. (b) The reduced greedy-r data set. The pointwise
relative error between g and the interpolant constructed via the reduced ERBA-r (c) and greedy-r (d) data set

5 Discussion and Conclusions

We have investigated a fast computation of knot removal approaches. We have implemented
two different strategies: the first one in based on classical residual-based schemes while the
second one relies on power function error bounds. The latter is independent of the function
values and tends to return quasi-uniform data (cf. [18] and [11, Theorem 15 & 19 & 20]),
while the former, as expected, keeps more points where the corresponding function has steep
gradients. In both cases we are able to significantly speed up the algorithm thanks to our
implementation.

Work in progress consists in extending the proposed tool to other bases, e.g. splines [19]
and to variably scaled kernels [20, 21]. Moreover, it can be helpful for validating the shape
parameter in RBF interpolation; refer e.g. to [22].
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(a) (b)

(c) (d)

Fig. 11 Interpolation of h. (a) The reduced ERBA-p data set. (b) The reduced greedy-p data set. The pointwise
relative error between h and the interpolant constructed via the reduced ERBA-p (c) and greedy-p (d) data
set
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Appendix: Greedy Algorithms

Let X = {xi , i = 1, . . . , n} ⊂ Ω be the initial set of nodes, let Xs−1 = {xi , i =
1, . . . , n − ns−1} ⊂ Ω be the extracted set at the (s − 1)-th step of the algorithm. The set
X0 ⊂ X is chosen taking n0 � n. Let τ ∈ R>0 be a fixed tolerance. Choosing ρ ∈ N, ρ < n,
and letting � = 	n − ns−1/ρ
, the s-th step of the iterative scheme, s ≥ 1, is as follows.

1. PartitionX \Xs−1 into � test setsX 1
s−1, . . . ,X �

s−1, |X j
s−1| = ρ j with ρ j ∈ {ρ, . . . , 2ρ−

1}, ρ j ≤ max(2ρ − 1, n − ns−1).
2. For each X j

s−1, j = 1, . . . , �, compute:

2a. for the residual-based scheme (greedy-r ):

w j = 1√
ρ j

‖ f j − S j‖2,

where f j := f |X j
s−1

and S j := S f ,Xs−1(X j
s−1) is the evaluation vector on X j

s−1 of

the interpolant S f ,Xs−1 ;
2b. for the power-based scheme (greedy-p):

w j = 1√
ρ j

‖P j‖2,

where P j := Pκ,Xs−1(X j
s−1) is the evaluation vector onX

j
s−1 of the power function

Pκ,Xs−1 ;

3. Choose

j	 = argmax
j∈{1,...,�}

w j .

4. Let rs−1 = w j	 :

4a. if rs−1 > τ , define Xs = Xs−1 ∪ X j	

s−1 and proceed iteratively with the s-th step;
4b. if rs−1 ≤ τ , Xs = Xs−1 is the final interpolation set obtained by the procedure.
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