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Abstract: This paper presents a novel fiducial marker type called ArUcoE. It is obtained from a standard ArUco marker
by enhancing it with a chessboard-like pattern. With our approach the pose estimation accuracy of any ArUco marker can
easily be increased. Further methods to increase the accuracy are analyzed. By applying a subpixel algorithm to the corner
regions we are able to locate the corner points within a pixel and overcome the restriction of pixel-level accuracy. A deep-
learning-based super-resolution method is used to artificially increase the pixel density in the same regions. Additionally,
the effect of using a single and a stereo camera setup on the accuracy is shown.
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1. INTRODUCTION

Machines are getting immersed deeper and deeper into
the world. That’s why spatial understanding of their en-
vironment becomes ever more important. To enable a
robot to manipulate objects, it has to be able to sepa-
rate that object from it’s background and know it’s pose,
which is constituted of position and orientation. Fidu-
cial markers are still relevant for the task of pose esti-
mation, even though more and more deep-learning-based
end-to-end models [1–3] are published, which estimate
the pose of an object directly from raw images without
the need for any purposefully placed features. The pre-
defined patterns with easy to detect features of fiducial
markers help to increase the accuracy and robustness of
pose estimation. Unlike many deep-learning-based ap-
proaches, fiducial markers don’t need to be trained with
application-specific data and are therefore more flexible
and independent of the individual use case.

The case we applied our approach to is the neutron
diffractometer STRESS-SPEC at FRMII [4] at Garching,
Germany. The neutron beam goes through a sample and
is diffracted. The pattern of diffraction reveals material
properties of the sample. In order to get precise measure-
ments, the sample has to be positioned very accurately at
the neutron beam focus point. The neutrons are generated
in a fission process which runs continuously for 60 days.
The goal is to maximize the measurement time by min-
imizing the sample setup time as much as possible with
the help of a higher degree of automation. Using fiducial
markers instead of a laser tracker to track the robot flange
increases the instrument flexibility and enables the mea-
surement of more complex samples, e.g. additively man-
ufactured parts. High-presicion visual servoing is also
relevant not only for neutron diffractormeters, but also
for other fields of application. Especially the demand for

medical robots, which also need to be controlled very ac-
curately and robustly, will increase in the future, because
of the aging population and rising wages.

Fig. 1. 6DoF pose estimation of a robot endeffector with
ArUcoE

Several fiducial marker types have already been pro-
posed in the past. [5–7] give a good overview. In 2014 the
fiducial marker called ArUco was proposed by Garrido-
Jurado et al. [8]. It offers a way to automatically cre-
ate a whole set of markers such that the inter-marker dis-
tance is maximized in order to increase the detection ro-
bustness. The corners of the squared ArUco marker are
used for the pose estimation and the binary pattern within
the square is used to identify the marker. Wang et al.
[9] proposed an improved version of the ArUco marker.
They employ circular patterns at the corners of the orig-
inal ArUco marker to improve the accuracy of the pose
estimation. Our approach, as illustrated in figure 1, ap-
plies rectangular enhancement patterns around the origi-
nal ArUco marker, which is located within the inner green
square. In contrast to Wang et al. [9], we additionally uti-
lize a subpixel algorithm [10] to localize the chessboard-
like corner patterns of our enhancement. This allows us
to estimate the pose of the marker more accurately within
the boundaries of a pixel.

Our contribution consists of
• a novel fiducial marker type called ArUcoE,



• analysis of the effects of subpixel and deep learning
based super-resolution methods and
• evaluation of the pose estimation accuracy with a mono
and a stereo camera setup.

2. METHODOLOGY

Our methodology to increase the pose estimation ac-
curacy of ArUco markers consists of enhancing the orig-
inal ArUco marker with additional rectangular patterns
(figure 2), and using subpixel and super-resolution ap-
proaches. The black rectangular enhancement patterns
are located around the original marker, but they don’t
cover the whole outer square, thus leaving the corners
white. This creates a chessboard-like pattern, which is
easy to detect. First, the inner ArUco marker is detected
using standard techniques. After the marker’s identifica-
tion, the corners of the outer frame can be easily found
and used for the final pose estimation. The region of in-
terest to estimate the pose of the new marker ArUcoE is
shown with a yellow square in figure 2.

Fig. 2. Enhanced ArUco marker (ArUcoE). The red
square contains the original ArUco marker. Our en-
hancement pattern is outside of the green square.

We detect these corners with the subpixel function
from OpenCV [11] called cornerSubPix. That allows us
to locate the corner points within a pixel, allowing us to
go beyond the size limit of a pixel, as shown in figure 3.
Thereby, the gradient of the neighboring pixel values is
used to estimate the location of the corner within a pixel.

Fig. 3. Subpixel corner detection.

Another method to increase the localization accuracy
of the ArUcoE corners is super-resolution, which artifi-
cially increases the image resolution. The deep learning
models for super-resolution are called Super-Resolution
Neural Networks (SRNN). Our SRNN, shown in figure 4
was inspired by [12–14] and consists of a convolutional
neural network with 11 layers. The first layer has six ker-
nels with size 6x6 and the other ones have each six ker-
nels with size 3x3. The model was implemented with
TensorFlow [15] and was trained with a set of 44832 cor-

ner images, which was devided into 404 batches. Mean
square error (MSE) was used as the loss function. We
apply super-resolution only to the regions of interest con-
sisting of 64x64 pixels each, to increase the effiency of
the method. The 64x64 image patches serve as ground
truth data, i.e. as the desired output, during training. They
are blurred with a kernel from [16], manipulated with ran-
dom noise and then downsampled to 16x16 pixels to cre-
ate input data for the training,

Fig. 4. SRNN architecture consisting of 11 layers to ar-
tificially increase the image resolution.

3. EVALUATION

We evaluated our methods in a simulation environment
created with Blender [17] and with real hardware. The ef-
fect of our ArUco marker enhancement, the subpixel and
super-resolution approaches and of using a stereo setup
instead of a mono setup on the pose estimation accuracy
are shown.

The simulated cameras, shown in figure 5, have a focal
length of 50 mm, a resolution of 1080x1080 pixels and a
sensor size of 14.2x14.2 mm. The cameras are located
1000 mm away from an array of markers. In the stereo
setup both cameras are 300 mm apart from each other and
are tilted at an angle of 7.5 around the vertical axis. Both
of them are virtually calibrated with a chessboard pattern
located at the same distance as the markers.

Fig. 5. Virtual setup in Blender.

The real evaluation setup can be seen in figure 6. It
consists two jAi GO-5000C-USB [18] with 5 megapix-
els and 16 mm focal length attached to a frame 300 mm
apart from each other and directed towards the markers



located at the endeffector of an industrial robot arm. The
pose estimation accuracy is evaluated with the 6DoF laser
tracker Leica AT901 [19], which tracks the three reflec-
tors attached above the markers. The measured marker
poses are contained within a cube of 250 mm, whose cen-
ter is 775 mm away from the baseline of the cameras. To
be able to evaluate the pose estimation accuracy of the
camera system with the laser tracker, they have to be set
in relation to each other with the help of hand-eye cali-
bration.

Fig. 6. Real evaluation setup. The blue arrows indicate
the measurement of the ArUcoE markers by the cam-
eras, while the red arrows show the measurement of
the reflectors by the laser tracker.

In table 1 the standard deviation of the pose estimation
translation error in the simulated Blender environment
can be seen. The results of ”ArUcoE mono subpixel” and
”ArUco mono subpixel” show that our enhancement pat-
tern improves the accuracy by orders of magnitude. Us-
ing a stereo setup instead of a mono setup halves the er-
rors. The values of ”ArUco mono subpixel” and ”ArUco
mono” show that the subpixel approach yields a compar-
atively small improvement.

Method σx (µm) σy (µm) σz (µm)

ArUco mono 1435.3 1501.8 2752.1
ArUco mono subpixel 1353.0 1356.3 568.5
ArUcoE mono subpixel 18.7 26.5 333.4
ArUcoE stereo subpixel 8.7 4.4 72.0

Table 1. Pose estimation translation error in simulated
environment.

The standard deviation of the pose error in the real en-
vironment is listed in the tables 2 and 3. Here you can
compare the effects of the subpixel and super-resolution
methods.

Method σx (µm) σy (µm) σz (µm)

ArUcoE mono subpixel 713.4 423.5 351.2
ArUcoE stereo super-res. 143.7 141.5 206.4
ArUcoE stereo subpixel 132.1 141.4 197.7

Table 2. Pose estimation translation error in real envi-
ronment.

It becomes clear that there is not much difference
in accuracy between the methods subpixel and super-
resolution. The subpixel method is slightly better, but it’s

main advantage is its low computational cost compared
to the 11-layer deep learning model used for the super-
resolution method.

Method σRx (deg) σRy (deg) σRz (deg)

ArUcoE mono 0.85 0.74 0.42
ArUcoE stereo super-res. 0.16 0.14 0.18
ArUcoE stereo subpixel 0.13 0.14 0.14

Table 3. Pose estimation rotation error in real environ-
ment.

4. CONCLUSION

We proposed an easy way to enhance the ArUco
marker and showed that it improves the pose estima-
tion accuracy considerably. Furthermore, we investigated
subpixel and super-resolution methods and the positive
effect of using a stereo setup. Even though a single cam-
era is enough to get the 6DoF pose of the ArUco and
ArUcoE markers, it is worthwhile to use more cameras.
The slightly better accuracy and much lower computa-
tional cost of the subpixel algorithm suggests its superi-
ority over the super-resolution method. But we still think
that further investigations into super-resolution methods
are reasonable, because they could allow smaller markers
to be detected robustly.
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