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Abstract—UAV path planning requires finding an optimal
(or sub-optimal) collision free path in a cluttered environment,
while taking into account geometric, physical and temporal
constraints, eventually allowing UAVs to perform their tasks
despite several uncertainty sources. This paper reviews the
current state-of-the-art in path planning, and subsequently
introduces a novel node-based algorithm based on the called
EEA*. EEA* is based on the A* Search algorithm and aims
at mitigating some of its key limitations. The proposed EEA*
deals with 3D environments, it provides robustness quickly
converging to the solution, it is energy efficient and it is real-
time implementable and executable. Along with the proposed
EEA*, a local path planner is developed to cope with unknown
dynamic threats in the environment. Applicability and effec-
tiveness is first demonstrated via simulated experiments using
a fixed-wing UAV that operates in different mountain-like 3D
environments in the presence of several unknown dynamic
obstacles. Then, the algorithm is applied in a multi-agent
setting with three UAVs that are commanded to follow their
respective paths in a safe way. The energy efficiency of the
EEA* algorithm has also been tested and compared with the
conventional A* algorithm.

I. INTRODUCTION

This paper focuses on fixed-wing UAVs and deals with
real-time robust path planning in 3D cluttered environ-
ments, including dynamic collision avoidance, also consid-
ering physical constraints and limitations of the UAV itself.
The problem is challenging since from the the optimization
theory point of view, finding a 3D complete path is NP-
hard.

A novel node-based path planning algorithm with real-
time capabilities, named EEA*, is presented. It is suit-
able to navigate through 3D cluttered environments, and
features a local path planner that copes with unknown
dynamic threats within the operational space. Moreover,
the energy efficiency of the EEA* algorithm is tested and
compared with the conventional A* algorithm. It comes
out that the EEA* reduces the work needed to follow the
route in 86.7% of the time and of the 3.43% on average.
Furthermore, also the average power dissipated has been
indirectly decreased in 86.7% of the cases of a 0.95%.

The rest of the paper is organized as follows. Section II
offers a detailed literature review looking at the state-of-
the-art, advantages and disadvantages as well as implemen-
tation challenges and what limits efficient implementation
of existing path planning techniques. Section III states the
problem and derives the proposed EEA* algorithm, while

Section IV discusses implementation details. Section V
concludes the paper.

II. LITERATURE REVIEW

The UAV path planning problem is cast as an
optimization problem that returns an optimal solution
among all possible ones. According to [1], path planning
algorithms can be divided in five categories: Sampling
based algorithms, Node based optimal algorithms,
Mathematical model based algorithms, Bio-inspired
algorithms, Multi-fusion based algorithms. This
classification is followed below to review related
work.

1) Sampling based algorithms: In [3] and [14] two
versions of the same algorithm have been used: RRT
and RRT*. In the first one, the RRT has been combined
with biased sampling and greedy extension of nodes with
an added continuous curvature path smoothing satisfying
non-holonomic constraints. The algorithm is very simple
and fast enough to be executed online. In the second
one, the RRT* has been used along with nadir- and
oblique- camera views for close proximity as well as
large-scale 3D mapping applications. With the support of
state-of-the-art 3D reconstruction software, the recorded
inspection data have been post-processed and dense and
high-quality point clouds and triangular meshes have been
derived. In [15] a hybrid approach has been employed
for near-optimal solution in a 2D environment. A third
dimension is managed in an online manner with a fuzzy
controller working simultaneously with a Lazy Theta*
algorithm. The best path may be found to avoid obstacles
by changing the UAV’s altitude online using data from
the sensors and topographical database.

2) Node based optimal algorithms: In [4] a Fuzzy
Virtual Forces (FVF) algorithm is used. To solve the
local minima problem encountered in in VF algorithms,
the combination of threats with an adjacent matrix has
been integrated in the algorithm. An adaptive proportion
coefficient based on Bayesian belief network and fuzzy
logic reasoning has been added, which can be adapted to
environment changes. In [22] a modified A* algorithm
is proposed, combined with the Global Navigation
Satellite System (GNSS) error distribution obtained by



TABLE I
SUMMARY OF UAV PATH PLANNING REVIEW. COLUMNS REPRESENT
REFERENCED WORK AND YEAR PUBLISHED (REF), THE UAV TYPE

UNDER CONTROL (UAV), EMPLOYED ALGORITHMS (ALG),
ENVIRONMENT, WHETHER 2D (2D) AND/OR 3D (3D),

REAL-IMPLEMENTATION (REAL-TIME), CHALLENGES NOT
SATISFIED IN THE RESEARCH (LIMITATIONS).

REF UAV TYPE ALGORITHM LIMITS
[2] (2007) Generic VGA 3
[3] (2008) Helicopter RRT 3,4
[4] (2010) Generic FVF 1
[5] (2010 Generic ACO & DE 2
[6] (2011) Generic HVFA 1,3
[7] (2012) Generic MILP 1,2
[8] (2012) Quadrotor Flatness-based 1,4
[9] (2013) Fixed-Wing BLP 1

[10] (2013) Fixed-Wing GA, PSO 3,4
[11] (2013) Quadrotor PRM & A* 3,4
[12] (2013) Quadrotor HS 1,2,3
[13] (2014) Generic GA & PSO 4
[14] (2015) Fixed-Wing, Quadrotor RRT* 3
[15] (2015) Generic BF Lazy Theta* 3
[16] (2016) Quadrotor RRT 3
[17] (2016) Quadrotor Receding Horizon 1
[18] (2016) Quadrotor GWO 1,2,3
[19] (2016) Fixed-Wing HGA 1,2,3
[20] (2017) Generic MOPP & GA 1,3,4
[21] (2018) Quadrotor Q-Learning 1,2,3,4
[22] (2018) Quadrotor Modified A* 2,3
[23] (2019) Hexarotor Receding Horizon 3
[24] (2019) Quadrotor A*, Dijkstra 1,3
[25] (2019) Generic EA 3
[26] (2019) Hexarotor A* & S-PSO 4
[27] (2020) Quadrotor ACO, GLS, LKH 1,2,3
[28] (2020) Generic RLGWO 2,4

implementing the GNSS, whereas in [25] researchers have
proposed an Evolutionary Optimization Algorithm based
on improved t-distribution to deal with high computational
complexity.

3) Mathematical model based algorithms: In [7]
mixed-integer programming for control (MILP) is used to
successfully show the ability to plan paths that achieve
a desired communication topology, while minimizing
fuel consumption and avoiding collision and no-fly
zones, also satisfying altitude constraints with respect
to the terrain. In [8] a trajectory planning/replanning
flatness technique is proposed that can be implemented
in real-time applications deploying a simplified model.
But using the simplified models in trajectory planning
increased uncertainties and mismatch with the system. In
[9] a BLP based approach is proposed that includes a BLP
model and a solution algorithm embedded with heuristic
strategies, while in [37] a BLP-based real-time path
planner is introduced to generate reference way-points
and control inputs at variable planning time intervals.
Performance variations are addressed and smooth flight
paths are adapted only when necessary. In [16] a given
bounded volume is explored in a receding horizon manner.

In [17] the UAV path planning has been modeled as
a single objective optimization problem that utilizes a
receding horizon approach and quadratic Bézier curves.
The method is gradient based, allowing for quick and
robust convergence to a near optimal solution. Differently,
in [38] it is proposed to integrate active perception in
a receding horizon setting for a goal reaching task. In
particular, a perception-aware receding horizon navigation
system is designed using a single forward looking
camera for MAVs. In addition to avoiding obstacles, the
perception-aware receding horizon navigation system is
able to select motion to favor the state estimation accuracy,
which is especially advantageous in environments with
visually degraded regions. In [23] belief uncertainty-aware
planning is followed to achieve consistent exploration.
An architecture is presented to achieve this goal. It has
been experimentally demonstrated that the proposed
receding horizon, two-step, planning paradigm manages to
explore different unknown environments with consistency,
by following uncertainty optimizing trajectories that
are derived through a belief-space propagation process
operating on-board a Micro Aerial Vehicle robot.

4) Bio-inspired algorithms: In [2] an evolutionary
algorithm-based path planner for UAVs has been
presented, called Vibrational Genetic Algorithm (VGA),
which is able to construct feasible path lines under
prescribed constraints such as path length, turn angle, and
clearance between the path and the boundary (terrain)
within an acceptable time period, for the online planner
as well, where the execution time is important. In [10]
two non-deterministic algorithms are used, a Genetic
Algorithm(GA) and a Particle Swarm Optimization (PSO),
while in [12] a novel algorithm denoted by Harmony
Search has been applied to the optimization of agricultural
management tasks. In [19] a Hybrid Genetic Algorithm
(HGA) is introduced to solve the path planning problem
in non-convex environments. Nevertheless, HGA have
given back ineffective results in terms of fuel consumption
due to the high accelerations required to follow the
path. In [26] a complete UAV surveillance system is
designed. An Artificial Neural Network (ANN) is used
to make the control structure easier to be used, to reject
the disturbances and to reduce the control parameters
to be controlled. Furthermore, with a combination of
K-agglomerative clustering, a Set-based Particle Swarm
Optimization (S-PSO) and an A* algorithm, a path
can be efficiently planned predicting and reducing the
energy consumption, as well. In [27], three different path
planning algorithms have been implemented for biological
control. The implemented algorithms are Ant Colony
Optimization (ACO), Guided Local Search (GLS) and
Lin-Kernighan (LKH). LKH gave better results in terms
of RAM consumption, execution time, number of memory
used and distance travelled.

5) Multi-fusion based algorithms: In [5] a hybrid meta-
heuristic Ant Colony Optimization (ACO) and Differential
Evolution (DE) algorithm approach is followed for
Uninhabited Combat Aerial Vehicles (UCAV), allowing



for 3D path planning in combat field environments, whilst
in [6] a hybrid algorithm is proposed that combines a
Virtual Force (VF) algorithm for its simplicity and the
A* algorithm for its robustness and efficiency. In [11] the
authors have improved the PRM by random sampling in
bounding boxes to ensure a more reasonable distribution
in the 3D space. Based on the voxel connectivity, the
selected nodes composed a roadmap, which has been
applied for path searching by the A* algorithm for a
feasible path. In [13] a hybrid metaheuristic approach is
implemented combining GA and PSO. The disadvantage
is that this approach modifies the convergence properties
of the single algorithm, and the convergence of the new
algorithm remains unproven. In [18] a novel approach
is proposed that utilizes the formulation of dynamic
Bayesian, Distance Based Value Function (DBVF) and
Grey Wolf Optimization (GWO) Algorithm, while in [20]
a GA has been implemented along with a Multi-Objective
Path Planning (MOPP) Algorithm for area coverage and
target detection. The GA aims to minimize completion
time, which includes the time to find the target and the
time to set up a communication path. In [21] a hybrid
approach is implemented in a quadrotor. With the use of
the mathematical model enriched by a Q-learning method,
the goal is reached after a reinforcement learning phase.
In [28] a Grey Wolf Optimization algorithm has been
enriched with a Reinforcement Learning method. A cubic
B-spline curve has been used to smooth the generated
flight path. The authors compared the developed algorithm
with another GWO algorithm, showing its statistical
superiority. In [24] the chosen algorithms have been the
A* and Dijkstra algorithms. Real time tests have been
performed on a UAV and the two path length algorithms
show the same path length. With respect to time savings,
the A* algorithm showed better performance. In [40]
the authors have realized a Lazy Theta* implementation
for autonomous exploration in a large environment. To
achieve this goal, two optimizations have been introduced
taking into account the sparse grid that represents the
world and the obstacle detection, while calculations are
reduced by restricting the space discretization of the flight
corridor to two dimensions.

A. Challenges

Literature review reveals challenges when it comes to
real time implementations that need to be overcome. Iden-
tified challenges that have motivated this research are:

1) 3D: The proposed algorithms will be used in a 3D
real world environment. Much research considers a
2.5D environment, and several existing algorithms do
not account for a dynamic 3D environment.

2) Real Time: Since the environment in which the UAV
moves is dynamically changing, the flight path may
also change during flight. As such, any proposed
algorithm must be real-time and on-board imple-
mentable. Many existing algorithms are not imple-
mentable online due to high computational burden.

3) Energy Efficiency: Power and energy limitations
(fuel, battery consumption) must be considered.

When it comes to aggressive maneuvers with high
accelerations, this challenge becomes even more im-
portant. Managing power and energy is one of the
least treated issues although as important as the other
ones.

4) Robustness: A candidate path planning algorithm
must be robust, must overcome the trap in local min-
ima problem, must converge to at least a near optimal
solution. Moreover, the algorithm must demonstrate
ability to account for position sensitive device errors,
rotation driving errors, linear driving errors during
path planning, etc.

III. PROBLEM STATEMENT

The research focuses on deriving a path planning algo-
rithm for UAVs flying in 3D cluttered environments, which
is robust, real-time implementable, it considers unknown
dynamic obstacles for collision avoidance, and it is energy
efficient (minimize energy consumption).

A. 3D Path Planning

The work presented in [29], [30], [31], [32], provides a
clear and mathematical definition of the 3D path planning
problem. Here, fixed-wing UAVs are assumed to fly in a
3D space (R3), called the workspace w. The workspace
includes obstacles, so let woi be the ith obstacle. The free
workspace without obstacles is the overall area represented
by

wfree = w \ Uiwoi (1)

The initial point xinit and the goal point xgoal belong in
the free workspace wfree. Thus, a path planning problem
is defined by a triplet (xinit, xgoal, wfree).

Definition 1: Given is a function δ : [0, T ] → R3 of
bounded variation, where δ(0) = xinit and δ(T ) = xgoal.
If there exists a process Φ that can guarantee δ(τ) ∈ wfree

for all τ ∈ [0, T ], then Φ is called path planning.

Definition 2: Given is a path planning problem
(xinit, xgoal, wfree) and a cost function c : Σ → R ≥ 0,
where Σ denotes the set of all paths. If a process fulfills
Definition 1 to find a δ′, and c(δ′) = min{c(δ), δ set of
all feasible path}, then δ′ is the optimal path and Φ′ is
optimal path planning.

B. Energy Computation for a Fixed-Wing Aircraft

The energy efficiency problem is accommodated as
part of a node-base path planning algorithm, still being
consistent with the physics of the model.
The total energy for traveling from a specified start node
to a destination node is the sum of the total energy spent
when travelling through the required edges. Hence, in order
to calculate the energy of a path that consists of multiple
straight flight paths, compute the energy consumption
∆Ei,j going through each straight line with distance ∆d
from node i to node j, as depicted in Figure 1. The
difference in the total energy consumption is the sum of
differences in potential energy and difference in kinetic



Fig. 1. Energy consumption between two nodes (picture showed in [33])

energy plus the energy used to turn the fixed-wing UAV
between arcs

∆Ei,j = ∆Ep + ∆Ek + ∆Eturn (2)

Assuming there is no energy when the UAV altitude is
decreasing, the difference of potential energy is given as

∆Ep = max(W∆h), 0) = max(mg(hi − hj), 0) (3)

To calculate the kinetic energy we focus on optimizing
the velocity that depends on the drag-to-lift ratio of the
UAV. In [34] the drag-to-lift ratio is represented as

D

L
= AV 2 +

B

V 2
(4)

where V is the flight speed and A and B are variables
calculated by air density. The UAV parameters are given
as

A =
ρf

2W
(5)

B =
2W

ρb2πe
(6)

Most of the parameters depend on the structure of the
UAV; W = mg is the aircraft’s weight, b is the wing span,
f is the parasite area of the aircraft, and e is Oswald’s
efficiency. In addition, ρ(h) is the air density at altitude h
given in [35]:

ρ(h) =
p(h)

RT (h)
=
P0(1− 0.0065(h/T0))5.2561

R(T0 − 6.5(h/1000))
(7)

where P0 = 101, 325N/m2 is the sea level atmospheric
pressure, T0 = 288.15K is the sea level standard
temperature, and R = 287.04m2/Ks2 is the universal gas
constant.

We assume that the fixed-wing UAV flies with a
constant optimum speed Vopt = (B/A)1/4, occurring
when the D/L ratio is optimum (D/Lopt = 2

√
(AB)).

If we assume that the consumption efficiency of the UAV
is 100%, then this ratio is proportional to the energy
consumption, with or without the effect of any wind force.

For a zero-wind scenario, the kinetic energy ∆Ek con-
sumed is used to overcome the drag force D on a straight
flight

∆Ek =

∫
Ddxyz = D∆d (8)

Because the lift force L is equal to the UAV weight, if
the UAV flies with the constant optimum Carson’s speed,
then

∆Ek = W (D/L)opt∆d = 2W

√
f

ρ̄b2πe
∆d (9)

where
ρ̄ = (ρ(hi) + ρ(hj))/2 (10)

Following the calculation from [36], the consumed en-
ergy for turning between two arcs is approximately

Eturn ≈ m
D

L
sinσ|V 2| (11)

where σ is the steepest rolling angle that the drone
needs to take for turning.

Parameters are computed each time instant by the func-
tion that computes the related costs, knowing the altitude
hi the UAV is flying in that specific instant and knowing
that:
• g = 9.81m/s2, gravitational acceleration
• P0 = 101.325N/m2, sea level atmospheric pressure
• T0 = 288, 15K, sea level temperature
• R = 287.04m2/Ks2, universal gas constant
• L = 0.0065K/m, lapse rate
Thus, the following parameters can also be computed:
• T , the temperature at the altitude hi computed as T0−
Lhi, as long as we are in the troposphere, condition
respected since the RQ-170 Sentinel is not apparently
intended to flight above 15.000m

• P , the atmospheric pressure at the altitude hi, com-
puted as P = P0( T

T0
)

g
LR

• ρ(h), the air density at the altitude hi, computed using
the equation 7

• A and B, using the equation 5, computed at the
specific altitude hi

• D/L, the drag-to-lift ratio, computed as the optimal
one that is D/Lopt = 2

√
AB

• V , the velocity of the UAV, kept at its optimal value
and computed as v = (B/A)

1
4

• σ, the steepest rolling angle to be taken to turn, set to
a maximum of 0.78rad in case of turning

Given that the proposed algorithm does not have an
implemented path smoothing feature but it deals with
kinematic and dynamic constraints setting the maximum
turning angle at 0.78rad, the dissipated energy for a turn
is not reliable, it may be misleading. Such a sharp angle
for a fixed-wing UAV at high velocities implies a huge
amount of energy dissipated. Turning angles in real life
will be much smaller, resulting in smaller values in con-
sumed energy for a turn. Therefore, the energy dissipated
during turning maneuvers is neglected, considering only
the variation of potential energy ∆Ep and the variation of
the kinetic energy ∆Ek.



Once the energy spent to follow the path is calculated, the
power needed is obtained knowing that:

[J/s] = [W ] (12)

After the length of the path d is computed through a
proper function, the time t spent to reach the goal is:

t =
d

V
(13)

Knowing t, the power is easily obtained as:

P =
∆Etot

t
(14)

IV. IMPLEMENTATION DETAILS

The choice is to center on Node-based optimal
algorithms due to their reliability and speed to find an
optimal path. These characteristics make them appropriate
for a 3D path planning problem.

Among them, A* is one of the best choices. Indeed,
thanks to its heuristic nature, the A* search algorithm is
noticeably faster than other Node-based ones. Choosing
the A* algorithm two challenges are intrinsically solved:
it deals with 3D environments and it is robust. The third
challenge is the energy consumption problem. This is
why an energy efficient version of the A* is proposed,
called EEA* search algorithm. Finally, to fulfill the real-
time requirement, a local path planner is added to deal
with unknown dynamic obstacles. The logic is to generate
intermediate way-points along the path when an obstacle
is sensed by the fixed-wing UAV. The assumption that are
considered are:
• Part of the map and the static obstacles of the envi-

ronment are known a-priori.
• No wind or disturbances are considered during flight.

A. A* Search Algorithm

The A* search algorithm is a node-based algorithm,
an extension of Dijkstra’s algorithm. As explained in
[41], A* was created as part of the Shakey project that
focused on building a mobile robot that could plan its
own actions. Nils Nilsson originally proposed using the
Graph Traverser algorithm for Shakey’s path planning.
Graph Traverser is guided by a heuristic function h(x),
the estimated distance from node x to the goal node:
it entirely ignores g(x) the distance from the start
node to x. Bertram Raphael suggested using the sum,
g(x) + h(x). Peter Hart invented the concepts we now
call admissibility and consistency of heuristic functions.
A* was originally designed for finding least-cost paths
when the cost of a path is the sum of its edge costs, but it
has been shown that A* can be used to find optimal paths
for any problem satisfying the conditions of a cost algebra.

Ultimately, Node based optimal algorithms are classified
because they deal with node and arc weight information;
they calculate the cost by exploring the nodes to find the
optimal path. Unlike Dijkstra’s algorithm, A* reduces the
number of states by introducing the heuristic estimation

of the cost from the current state to the goal state. A* can
converge very quickly and to an optimal solution.

An evaluation function is introduced, which consists
of post-calculation toward the initial state and heuristic
estimation toward the goal

f(x) = g(x) + h(x) (15)

where g(x) is the cost from the initial state xinit to the
current state x, h(x) is the heuristic estimation of the cost
of an optimal path from the current state x to the goal
state xgoal.

On finite graphs with non-negative edge weights, A*
is guaranteed to terminate and it is complete, i.e. it will
always find a solution (a path from start to goal) if one
exists. On infinite graphs with a finite branching factor and
edge costs that are bounded away from zero d(x, y) > ε >
0 for some fixed ε, A* is guaranteed to terminate only if
there exists a solution.

B. EEA* Search Algorithm

Starting from the implementation of the A* search
algorithm, a way to reduce as much as possible the usage
of the energy is considered. This new algorithm still
has all the advantages of an A* search algorithm and
concurrently returns a path that is more cost-effective in
terms of energy consumption.

A constant velocity along the route V is assumed. The
aircraft’s weight W , its mass m, the wing span b, the
parasite area of the UAV f , the drag-to-lift ratio D/L
and the Oswald’s efficiency factor of the UAV e are
given. The distance from the node i to the node j ∆d is
kept constant. Therefore, the parameters that affect the
total energy computation are the difference of altitude
∆h in the potential energy ∆Ep, the air density at a
certain altitude ρ(h), the kinetic energy ∆Ek, and the
steepest rolling angle for turning σ that affects the energy
consumed for turning, called ∆Eturn.

In this paper, the specific parameter research has
focused on because it seemed more logical to work with,
is the difference of altitude ∆h between one node and its
successor. In particular, limiting as much as possible the
ascending movement of the fixed-wing UAV so that the
total potential energy ∆Ep is as low as possible to fly
from the starting node to the goal node.
Working on the kinetic energy is less relevant since the
air density is strictly related to the altitude to which the
UAV flies in that particular moment. Working on this
parameter is harder due to some constraints in the flight.
Firstly, a safety constraint on the minimum altitude to
avoid collisions with the ground. Secondly, constraints
inherent in laws that give certain ranges of altitudes for
certain type of aircraft.

Going into details, at each computational step of the
algorithm, performed in the same way as the A*, the EEA*



looks for the node with the lowest f(x) in the OPEN list.
Then, it confronts zj , the z component of the node j, with
zi, the z component of the node i (the parent node of j),
obtaining two possible branches:
• if zj is equal or lower than zi then the next node

has been found (the UAV is keeping is altitude or is
descending).

• if zj is greater than zi then update the jth node with
a new greater f(x) value which takes into account
of the energy spent to ascend to a new altitude and
repeat the process looking back in the OPEN list.

Algorithm 1: EEA* Search Algorithm Pseudocode
Result: Waypoints
put xinit in the OPEN list;
while OPEN list is not empty do

while not done do
take from the OPEN list the x with the

lowest f(x) = g(x) + h(x);
if x = xgoal then

break;
end
if z component of x is lower or equal to the
z component of its parent node then

if auxArray is not empty then
set the previously modified cost in

the OPEN list back to their
values;

empty auxArray;
end
done;

end
if z component of x is greater than the z

component of its parent node then
if x is in auxArray then

set the previously modified cost in
the OPEN list back to their
values;

empty auxArray;
done;

else
put x in auxArray;
update the cost of x to the one

considering the ascending
manoeuvre;

end
end

end
same operations of the A* from now on;

end
if x different from xgoal then

exit with error, the OPEN list is empty;
end

If a chosen node has been already picked up before and
its f(x) has already been updated, that is going to be the
next node since every node can be rejected only once.
Once the next node is selected, every nodes whose f(x)
has been changed during this phase has brought back to its

original value. This operation is needed to take into account
the fact that the value of f(x) changes according to the
parent node where the algorithm comes from and does not
depend only on the node itself. Hence, the operation has
to be done again every time the algorithm has to compute
a new node.

C. Local Path Planner

When the distance of the fixed-wing goes below a certain
distance with respect to an obstacle a detection happens.
When this condition is verified, two different situation can
be triggered:

• the UAV detects a generic dynamic obstacle: the
local path planner generates an intermediate waypoint
above the obstacle in order to guarantee the safety of
the flight. The algorithm keep generating intermediate
waypoints above the trajectory planned by the global
path planner as long as the object is sensed by the
sensors of the UAV.

• the UAV detects another UAV: the local path planner
generates an intermediate waypoint rightwards with
respect to the planned algorithm and keep doing that
until the other UAV is not sensed anymore.

In the simulations a blue line is drawn to show the
optimal path planned by the EEA* search algorithm,
whereas a red line represents the actual trajectory
performed by the fixed-wing UAV. The drone avoids in a
fairly smooth manner the dynamic obstacle after sensed it,
generating intermediate waypoints above the actual path
computed by the global path planner. The sensing of the
dynamic unknown obstacles and the computation of new
waypoints is carried out in real-time.

D. Multi-Agent Implementation

The implementation of the fleet of UAVs has been
made to show that the constellation of algorithms and
functions employed by each fixed-wing make them able
to work properly together in a multi-agent situation. Each
drone, receiving the coordinates of the starting point and
of the goal point, is able to compute its own nominal path
deploying the EEA* Search Algorithm; then, when the
UAVs start following their route, they use their local path
planning algorithm to avoid each other treating the other
agents as dynamically changing obstacles. Hence an UAV
does not know during the flight where the other UAVs are
in a specific moment unless they are near enough to be
sensed.
Furthermore, the local path planner applies different actions
on the computation of the intermediate waypoint depending
on if the obstacle is an unrecognized object or another
agent. To do that, the agents are able to recognize the other
agents once they sense each other. In 5 some examples are
depicted.
The workflow of the simulation is the following one:

• The number of agents requested are spawned in the
map in their respective starting node.

• The agents receive their goal node.



• The agents employ the global path planner, in the
specific the EEA* Search Algorithm developed in this
Thesis work.

• The simulation starts and time by time the agents
monitor the area around them to look at possible
threats.

• If a threat is sensed, depending on if it is an unknown
obstacle or another agent, a control action is taken to
make it able to avoid the collision.

• Every agent reach its goal node and the simulation
ends.

V. SIMULATION RESULTS

To test the energy efficiency of the EEA* Search Algo-
rithm 30 simulations have been carried out for the EEA*
and for the A*. In order to compare the performances, the
same start goals and node goals have been given as input.
The tests have been made on a HP Pavillion dv6 laptop
with a second generation Intel Core i7, an 8GB RAM
and 500GB Hard Disk. The parameters that have been
collected are the variation of potential energy ∆Ep, the
variation of the kinetic energy ∆Ek, the variation of the
total energy ∆E which is the sum of the first two, the
average power consumed P .

Then, they have been compared to assess the perfor-
mance of the EEA* in terms of energy efficiency. Specifi-
cally, the variation of the total energy has been compared
and the difference between the two has been computed
for every simulation done. In this way, the amount of
work saved to perform the route with the novel algorithm
has been obtained. After that, the same result has been
computed in terms of percentage value; hence it has been
gotten the percentage of variation of energy saved with the
novel algorithm. Lastly, it was also interesting to do that
for the average power dissipated per second, though it was
not the main goal of the EEA* to minimize that.
In the table II, those computed datas have been collected
and organized as follows: in the first column we have the
number of the simulation which the other datas on the raw
refers to, in the second column we have the total variation
of energy saved, in the third column the percentage of the
total variation of energy saved, in the fourth column we
have the average power saved per second and in the fifth
column the percentage of average power saved per second.
Looking at the table II, some conclusions can be drawn.
The algorithm performs better in terms of energy consump-
tion 86.7% of the time, performs worse 10% of the time
and the two algorithm did the same once, equal to the 3.3%
of the simulation run.
When the EEA* does better, the work saved by the UAV
spans between 0.13% and 13.46% of the one done with
the A*, with an average reduction of 41.5MJ per flight
corresponding to an average 3.43% of variation of energy
saved. The standard deviations are equal to 4.67MJ and
4.04%.

For what concerns the average power dissipated, the
EEA* uses less power than the A* in the 86.7% of the
times, uses more power in the 10% of the cases and uses the
same power in the 3.3% of the cases. Even if the percentage
is the same as for the variation of the total energy, the

Sim ∆E Saved ∆E% Saved P Saved P% Saved
1 0.007GJ 0.53% 0.97MW 3.22%
2 −0.059GJ −4.63% 0.59MW 1.97%
3 0.020GJ 1.85% 1.18MW 3.73%
4 0.004GJ 0.30% −0.31MW −1.05%
5 0.007GJ 0.52% 0.02MW 0.07%
6 0.011GJ 1.20% 0.89MW 2.65%
7 0.0081GJ 1.15% 0.53MW 1.47%
8 0.0151GJ 2.79% −0.02MW −0.05%
9 0.0961GJ 6.07% 0.19MW 0.65%
10 0.0918GJ 6.36% 0.54MW 1.81%
11 0.0905GJ 5.15% 0.09MW 0.31%
12 0.0082GJ 0.63% 0.51MW 1.68%
13 0.0019GJ 0.13% 0.18MW 0.61%
14 −0.0195GJ −1.40% 0.18MW 0.61%
15 0.0923GJ 5.58% −0.01MW −0.03%
16 0.0765GJ 6.56% 0.36MW 1.14%
17 0.0863GJ 11.61% 0.24MW 0.64%
18 0GJ 0% 0MW 0%
19 −0.0229GJ −1.61% 0.78MW 2.64%
20 0.0554GJ 4.61% 0.28MW 0.92%
21 0.0139GJ 1.03% 0.08MW 0.27%
22 0.0319GJ 2.20% 0.06MW 0.21%
23 0.0912GJ 6.64% 0.05MW 0.17%
24 0.0404GJ 2.30% 0.05MW 0.18%
25 0.0661GJ 4.69% 0.40MW 1.36%
26 0.0856GJ 6.69% 0.23MW 0.77%
27 0.0585GJ 4.24% 0.20MW 0.67%
28 0.0389GJ 3.36% 0.24MW 0.77%
29 0.1225GJ 13.46% 0.39MW 1.13%
30 0.1276GJ 10.90% 0.46MW 1.60%

TABLE II
RESULTS OF THE COMPARISON BETWEEN A* AND EEA*. SIM

STANDS FOR THE NUMBER OF SIMULATION, ∆E SAVED IS THE WORK
SAVED EMPLOYING THE EEA*, ∆E% SAVED IS THE PERCENTAGE OF
WORK SAVED, P SAVED IS THE AMOUNT OF AVERAGE POWER SAVED,

P% SAVED IS THE PERCENTAGE OF AVERAGE POWER SAVED.

∆E Saved
Mean = 41.5MJ
Standard Deviation= 46.8MJ
Mean[%] = 3.43%
Standard Devation[%] = 4.04%
P Saved
Mean= 310kW
Standard Deviation= 330kW
Mean[%] = 0.95%
Standard Deviation[%] = 1.11%

TABLE III
THE TABLE ABOVE COLLECTS THE MEAN VALUE OF THE VARIATION
OF THE TOTAL ENERGY WHICH IS SAVED, ITS STANDARD DEVIATION

AND THOSE VALUES EXPRESSED IN PERCENTAGE. BELOW, THE MEAN
VALUE OF THE AVERAGE POWER SAVED, ITS STANDARD DEVIATION

AND THOSE VALUES EXPRESSED IN PERCENTAGE.

two things does not seem to be correlated. When EEA*
performs better, in percentage it consumes from 0.07% to
3.73% less, with an average reduction of 0.95% equal to
310kW and with standard deviations equal to 1.11% and
330kW .

During the 30 simulations using the A* and the 30
simulations of the EEA*, for a total of 60 simulations,
no collision has been registered. Both the static obstacles
and the dynamic obstacles has been avoided correctly by
the algorithms reporting good performances.
In the figure 4 is depicted an example of the control action
applied by the local path planner. The diagram depicted
shows on the vertical axis the distance expressed in meters
between an UAV and one of the dynamic threats present
in the map.
As it can be seen, the UAV approaches the object quickly



Fig. 2. Comparison between A* and EEA* in terms of variation of
total energy consumption. The first picture shows the results plotted on
a diagram. The second picture shows the results plotted on a histogram.
Along the y-axis there is the percentage value, along the x-axis the number
of the simulation associated to that value for both the plots.

Fig. 3. The plot shows the percentage of variation of the total energy
saved by means of using the EEA* algorithm instead of the A* along the
y-axis and the number of the simulation on the x-axis.

and dangerously in the first part of the plot. Nonetheless,
at a certain point, when the distance is more or less near to
500m, the sensors of the drone detect the moving obstacle
approaching and invading the area right in front of the
fixed-wing UAV. At that point, the local path planner
comes into action. Moving the UAV upwards, the local
path planner allows the aircraft to be kept far from the
threats avoiding a collision. This behaviour is depicted in
the diagram with the sharp turning of the function, with
the distance kept for a while at a reasonable distance of
half a kilometer. In that area of the plot the UAV and the
object are flying in the same region, but thanks to the local
path planner, they do that in a safe way. After that, it can
be seen an almost linear increase of the distance between
the two, signifying a departure since both the UAV and the
object keep flying on their own path.

VI. CONCLUSIONS AND FUTURE WORKS

In this research work has been done a literature review
concerning the last decade researches on path planning for
UAVs. After a classification of the algorithms employed,
limitations have been identified and common challenges

Fig. 4. The diagram shows the action of the local path planner with
respect to the distance from the UAV and the object. The y-axis represents
the distance in meters between a certain UAV and a dynamic threats in
the map, the x-axis the time.

Fig. 5. Fleet of UAVs performing their path altogether. When the path
intersect the object is not actual a collision but it means the object or the
UAV are passed in a different moment in time so they did not collide at
all.

have been recognized. These challenges have been over-
come in different ways by researchers, nonetheless, as far
as we know, none of them have solved the four problems
altogether, at leas for UAV applications.
Later, a novel node-based 3D real-time energy efficient
path planning algorithm has been developed using MAT-
LAB in order to overcome this four challenges altogether.
Specifically, the algorithm, called EEA* Search Algorithm,
is based on the A* Search Algorithm and deploys a
global path planner and a local path planner finding the
most energy efficient route and avoiding dynamic unknown
obstacles in the map.
The algorithms have been deployed in different and grad-
ually more complicated environments. Then, three fixed-
wings UAVs have been employed to work together without
interfere with each other.
The energy efficiency has been tested. To do that, 30
simulations have been carried out for both the EEA* and



Fig. 6. Simulations in different mountain environments. In every map
there is a no-fly area in red and a dangerous weather area in white. The
blue line is the one computed by the global path planner, the red line
is the actual trajectory performed by the fixed-wing UAV. The black and
yellow objects are the dynamic threats. The objects are spheres whose
the head is the actual threat; the tail is not a threat, but it is represented
to show the trajectory followed by the dynamically changing obstacles.
The small circle is the starting node, the small cross is the goal node.

the A* feeding them with the same inputs and looking
for the results. From the datas collected it comes out
that the EEA* reduces the work needed to follow the
route in 86.7% of the time and of the 3.43% on average.
Furthermore, also the average power dissipated has been
indirectly decreased in 86.7% of the cases of a 0.95%.

Even if the algorithm seems to show a good behaviour,
still a lot of future work has to be done. In future works,
we have to aim at increasing the uncertainties adding wind
disturbance in such a way to work on an environment as
much as similar to the real world as possible. Another
important aspect to be considered, to better validate the
algorithm developed, is to add a path smoothing algorithm
in order to have more realistic and feasible paths to be
performed by a fixed-wing UAV. This feature not only
have this pro, but it would permit us to study better the
performance of the energy efficiency, taking into account
of the work needed for turning maneuvers. Indeed, with
more realistic paths, the variation of the energy would be
much more accurate, further reducing the approximation
of the results.
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